1
|
Saxena J, Das S, Kumar A, Sharma A, Sharma L, Kaushik S, Kumar Srivastava V, Jamal Siddiqui A, Jyoti A. Biomarkers in sepsis. Clin Chim Acta 2024; 562:119891. [PMID: 39067500 DOI: 10.1016/j.cca.2024.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Sepsis is a life-threatening condition characterized by dysregulated host response to infection leading to organ dysfunction. Despite advances in understanding its pathology, sepsis remains a global health concern and remains a major contributor to mortality. Timely identification is crucial for improving clinical outcomes, as delayed treatment significantly impacts survival. Accordingly, biomarkers play a pivotal role in diagnosis, risk stratification, and management. This review comprehensively discusses various biomarkers in sepsis and their potential application in antimicrobial stewardship and risk assessment. Biomarkers such as white blood cell count, neutrophil to lymphocyte ratio, erythrocyte sedimentation rate, C-reactive protein, interleukin-6, presepsin, and procalcitonin have been extensively studied for their diagnostic and prognostic value as well as in guiding antimicrobial therapy. Furthermore, this review explores the role of biomarkers in risk stratification, emphasizing the importance of identifying high-risk patients who may benefit from specific therapeutic interventions. Moreover, the review discusses the emerging field of transcriptional diagnostics and metagenomic sequencing. Advances in sequencing have enabled the identification of host response signatures and microbial genomes, offering insight into disease pathology and aiding species identification. In conclusion, this review provides a comprehensive overview of the current understanding and future directions of biomarker-based approaches in sepsis diagnosis, management, and personalized therapy.
Collapse
Affiliation(s)
- Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Sarvjeet Das
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Anshu Kumar
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology,and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology,and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
2
|
Kreitmann L, D'Souza G, Miglietta L, Vito O, Jackson HR, Habgood-Coote D, Levin M, Holmes A, Kaforou M, Rodriguez-Manzano J. A computational framework to improve cross-platform implementation of transcriptomics signatures. EBioMedicine 2024; 105:105204. [PMID: 38901146 PMCID: PMC11245942 DOI: 10.1016/j.ebiom.2024.105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024] Open
Abstract
The emergence of next-generation sequencing technologies and computational advances have expanded our understanding of gene expression regulation (i.e., the transcriptome). This has also led to an increased interest in using transcriptomic biomarkers to improve disease diagnosis and stratification, to assess prognosis and predict the response to treatment. Significant progress in identifying transcriptomic signatures for various clinical needs has been made, with large discovery studies accounting for challenges such as patient variability, unwanted batch effects, and data complexities; however, obstacles related to the technical aspects of cross-platform implementation still hinder the successful integration of transcriptomic technologies into standard diagnostic workflows. In this article, we discuss the challenges associated with integrating transcriptomic signatures derived using high-throughput technologies (such as RNA-sequencing) into clinical diagnostic tools using nucleic acid amplification (NAA) techniques. The novelty of the proposed approach lies in our aim to embed constraints related to cross-platform implementation in the process of signature discovery. These constraints could include technical limitations of amplification platform and chemistry, the maximal number of targets imposed by the chosen multiplexing strategy, and the genomic context of identified RNA biomarkers. Finally, we propose to build a computational framework that would integrate these constraints in combination with existing statistical and machine learning models used for signature identification. We envision that this could accelerate the integration of RNA signatures discovered by high-throughput technologies into NAA-based approaches suitable for clinical applications.
Collapse
Affiliation(s)
- Louis Kreitmann
- Section of Adult Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Giselle D'Souza
- Section of Adult Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Luca Miglietta
- Section of Adult Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Ortensia Vito
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Heather R Jackson
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Dominic Habgood-Coote
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Michael Levin
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Alison Holmes
- Section of Adult Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Jesus Rodriguez-Manzano
- Section of Adult Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom.
| |
Collapse
|
3
|
Xie J, Zheng X, Yan J, Li Q, Jin N, Wang S, Zhao P, Li S, Ding W, Cheng L, Geng Q. Deep learning model to discriminate diverse infection types based on pairwise analysis of host gene expression. iScience 2024; 27:109908. [PMID: 38827397 PMCID: PMC11141160 DOI: 10.1016/j.isci.2024.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
Accurate detection of pathogens, particularly distinguishing between Gram-positive and Gram-negative bacteria, could improve disease treatment. Host gene expression can capture the immune system's response to infections caused by various pathogens. Here, we present a deep neural network model, bvnGPS2, which incorporates the attention mechanism based on a large-scale integrated host transcriptome dataset to precisely identify Gram-positive and Gram-negative bacterial infections as well as viral infections. We performed analysis of 4,949 blood samples across 40 cohorts from 10 countries using our previously designed omics data integration method, iPAGE, to select discriminant gene pairs and train the bvnGPS2. The performance of the model was evaluated on six independent cohorts comprising 374 samples. Overall, our deep neural network model shows robust capability to accurately identify specific infections, paving the way for precise medicine strategies in infection treatment and potentially also for identifying subtypes of other diseases.
Collapse
Affiliation(s)
- Jize Xie
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
- John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xubin Zheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
- Great Bay University, Dongguan, China
| | - Jianlong Yan
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
| | - Qizhi Li
- John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Jin
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
- Health Data Science Center, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Shuojia Wang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
| | - Pengfei Zhao
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
| | - Shuai Li
- John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wanfu Ding
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
| | - Lixin Cheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
- Health Data Science Center, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Qingshan Geng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
| |
Collapse
|
4
|
Halder A, Liesenfeld O, Whitfield N, Uhle F, Schenz J, Mehrabi A, Schmitt FCF, Weigand MA, Decker SO. A 29-mRNA host-response classifier identifies bacterial infections following liver transplantation - a pilot study. Langenbecks Arch Surg 2024; 409:185. [PMID: 38865015 PMCID: PMC11169022 DOI: 10.1007/s00423-024-03373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/01/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Infections are common complications in patients following liver transplantation (LTX). The early diagnosis and prognosis of these infections is an unmet medical need even when using routine biomarkers such as C-reactive protein (CRP) and procalcitonin (PCT). Therefore, new approaches are necessary. METHODS In a prospective, observational pilot study, we monitored 30 consecutive patients daily between days 0 and 13 following LTX using the 29-mRNA host classifier IMX-BVN-3b that determine the likelihood of bacterial infections and viral infections. True infection status was determined using clinical adjudication. Results were compared to the accuracy of CRP and PCT for patients with and without bacterial infection due to clinical adjudication. RESULTS Clinical adjudication confirmed bacterial infections in 10 and fungal infections in 2 patients. 20 patients stayed non-infected until day 13 post-LTX. IMX-BVN-3b bacterial scores were increased directly following LTX and decreased until day four in all patients. Bacterial IMX-BVN-3b scores detected bacterial infections in 9 out of 10 patients. PCT concentrations did not differ between patients with or without bacterial, whereas CRP was elevated in all patients with significantly higher levels in patients with bacterial infections. CONCLUSION The 29-mRNA host classifier IMX-BVN-3b identified bacterial infections in post-LTX patients and did so earlier than routine biomarkers. While our pilot study holds promise future studies will determine whether these classifiers may help to identify post-LTX infections earlier and improve patient management. CLINICAL TRIAL NOTATION German Clinical Trials Register: DRKS00023236, Registered 07 October 2020, https://drks.de/search/en/trial/DRKS00023236.
Collapse
Affiliation(s)
- Amelie Halder
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | | | | | - Florian Uhle
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Judith Schenz
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Arianeb Mehrabi
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral & Transplantation Surgery, Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Felix C F Schmitt
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Markus A Weigand
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Sebastian O Decker
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Hwang H, Jeon H, Yeo N, Baek D. Big data and deep learning for RNA biology. Exp Mol Med 2024; 56:1293-1321. [PMID: 38871816 PMCID: PMC11263376 DOI: 10.1038/s12276-024-01243-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
The exponential growth of big data in RNA biology (RB) has led to the development of deep learning (DL) models that have driven crucial discoveries. As constantly evidenced by DL studies in other fields, the successful implementation of DL in RB depends heavily on the effective utilization of large-scale datasets from public databases. In achieving this goal, data encoding methods, learning algorithms, and techniques that align well with biological domain knowledge have played pivotal roles. In this review, we provide guiding principles for applying these DL concepts to various problems in RB by demonstrating successful examples and associated methodologies. We also discuss the remaining challenges in developing DL models for RB and suggest strategies to overcome these challenges. Overall, this review aims to illuminate the compelling potential of DL for RB and ways to apply this powerful technology to investigate the intriguing biology of RNA more effectively.
Collapse
Affiliation(s)
- Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonseong Jeon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Genome4me Inc., Seoul, Republic of Korea
| | - Nagyeong Yeo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Genome4me Inc., Seoul, Republic of Korea.
| |
Collapse
|
6
|
Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohé SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, Brunkhorst FM, Bauer M, Torres A, Cossarizza A, Monneret G, Cavaillon JM, Shankar-Hari M, Giamarellos-Bourboulis EJ, Winkler MS, Skirecki T, Osuchowski M, Rubio I, Bermejo-Martin JF, Schefold JC, Venet F. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. THE LANCET. RESPIRATORY MEDICINE 2024; 12:305-322. [PMID: 38142698 DOI: 10.1016/s2213-2600(23)00330-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
Collapse
Affiliation(s)
- Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Almansa Mora
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gunnar Lachmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Berlin, Germany
| | - Massimo Girardis
- Department of Intensive Care and Anesthesiology, University Hospital of Modena, Modena, Italy
| | - Alberto Garcia-Salido
- Hospital Infantil Universitario Niño Jesús, Pediatric Critical Care Unit, Madrid, Spain
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Antoni Torres
- Pulmonology Department. Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon-1, Hôpital E Herriot, Lyon, France
| | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Jesus F Bermejo-Martin
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Venet
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Ecole Normale Supeérieure de Lyon, Universiteé Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
7
|
Rashid A, Al-Obeida F, Hafez W, Benakatti G, Malik RA, Koutentis C, Sharief J, Brierley J, Quraishi N, Malik ZA, Anwary A, Alkhzaimi H, Zaki SA, Khilnani P, Kadwa R, Phatak R, Schumacher M, Shaikh G, Al-Dubai A, Hussain A. ADVANCING THE UNDERSTANDING OF CLINICAL SEPSIS USING GENE EXPRESSION-DRIVEN MACHINE LEARNING TO IMPROVE PATIENT OUTCOMES. Shock 2024; 61:4-18. [PMID: 37752080 DOI: 10.1097/shk.0000000000002227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
ABSTRACT Sepsis remains a major challenge that necessitates improved approaches to enhance patient outcomes. This study explored the potential of machine learning (ML) techniques to bridge the gap between clinical data and gene expression information to better predict and understand sepsis. We discuss the application of ML algorithms, including neural networks, deep learning, and ensemble methods, to address key evidence gaps and overcome the challenges in sepsis research. The lack of a clear definition of sepsis is highlighted as a major hurdle, but ML models offer a workaround by focusing on endpoint prediction. We emphasize the significance of gene transcript information and its use in ML models to provide insights into sepsis pathophysiology and biomarker identification. Temporal analysis and integration of gene expression data further enhance the accuracy and predictive capabilities of ML models for sepsis. Although challenges such as interpretability and bias exist, ML research offers exciting prospects for addressing critical clinical problems, improving sepsis management, and advancing precision medicine approaches. Collaborative efforts between clinicians and data scientists are essential for the successful implementation and translation of ML models into clinical practice. Machine learning has the potential to revolutionize our understanding of sepsis and significantly improve patient outcomes. Further research and collaboration between clinicians and data scientists are needed to fully understand the potential of ML in sepsis management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joe Brierley
- Great Ormond Street Children's Hospital, London, UK
| | - Nasir Quraishi
- Centre for Spinal Studies & Surgery, Queen's Medical Centre. The University of Nottingham. Nottingham, UK
| | - Zainab A Malik
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences. Dubai, U.A.E
| | - Arif Anwary
- School of Computing, Edinburgh Napier University. Edinburgh, UK
| | | | | | | | | | - Rajesh Phatak
- Pediatric Intensive Care, Burjeel Hospital, Najda, Abu Dhabi
| | | | - Guftar Shaikh
- Endocrinology, Royal Hospital for Children. Glasgow, UK
| | - Ahmed Al-Dubai
- School of Computing, Edinburgh Napier University. Edinburgh, UK
| | - Amir Hussain
- School of Computing, Edinburgh Napier University. Edinburgh, UK
| |
Collapse
|
8
|
Daenen K, Tong-Minh K, Liesenfeld O, Stoof SCM, Huijben JA, Dalm VASH, Gommers D, van Gorp ECM, Endeman H. A Transcriptomic Severity Classifier IMX-SEV-3b to Predict Mortality in Intensive Care Unit Patients with COVID-19: A Prospective Observational Pilot Study. J Clin Med 2023; 12:6197. [PMID: 37834841 PMCID: PMC10573111 DOI: 10.3390/jcm12196197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The prediction of disease outcomes in COVID-19 patients in the ICU is of critical importance, and the examination of host gene expressions is a promising tool. The 29-host mRNA Inflam-matix-Severity-3b (IMX-SEV-3b) classifier has been reported to predict mortality in emergency department COVID-19 patients and surgical ICU patients. The accuracy of the IMX-SEV-3b in predicting mortality in COVID-19 patients admitted to the ICU is yet unknown. Our aim was to investigate the accuracy of the IMX-SEV-3b in predicting the ICU mortality of COVID-19 patients. In addition, we assessed the predictive performance of routinely measured biomarkers and the Sequential Organ Failure Assessment (SOFA) score as well. This was a prospective observational study enrolling COVID-19 patients who received mechanical ventilation on the ICU of the Erasmus MC, the Netherlands. The IMX-SEV-3b scores were generated by amplifying 29 host response genes from blood collected in PAXgene® Blood RNA tubes. A severity score was provided, ranging from 0 to 1 for increasing disease severity. The primary outcome was the accuracy of the IMX-SEV-3b in predicting ICU mortality, and we calculated the AUROC of the IMX-SEV-3b score, the biomarkers C-reactive protein (CRP), D-dimer, ferritin, leukocyte count, interleukin-6 (IL-6), lactate dehydrogenase (LDH), neutrophil-to-lymphocyte ratio (NLR), procalcitonin (PCT) and the SOFA score. A total of 53 patients were included between 1 March and 30 April 2020, with 47 of them being included within 72 h of their admission to the ICU. Of these, 18 (34%) patients died during their ICU stay, and the IMX-SEV-3b scores were significantly higher in non-survivors compared to survivors (0.65 versus 0.57, p = 0.05). The Area Under the Receiver Operating Characteristic Curve (AUROC) for prediction of ICU mortality by the IMX-SEV-3b was 0.65 (0.48-0.82). The AUROCs of the biomarkers ranged from 0.52 to 0.66, and the SOFA score had an AUROC of 0.81 (0.69-0.93). The AUROC of the pooled biomarkers CRP, D-dimer, ferritin, leukocyte count, IL-6, LDH, NLR and PCT for prediction of ICU mortality was 0.81 (IQR 0.69-0.93). Further validation in a larger interventional trial of a point-of-care version of the IMX-SEV-3b classifier is warranted to determine its value for patient management.
Collapse
Affiliation(s)
- Katrijn Daenen
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (J.A.H.); (D.G.); (H.E.)
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (E.C.M.v.G.)
| | - Kirby Tong-Minh
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (E.C.M.v.G.)
| | | | - Sara C. M. Stoof
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (J.A.H.); (D.G.); (H.E.)
| | - Jilske A. Huijben
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (J.A.H.); (D.G.); (H.E.)
| | - Virgil A. S. H. Dalm
- Department of Immunology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Diederik Gommers
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (J.A.H.); (D.G.); (H.E.)
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (E.C.M.v.G.)
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (J.A.H.); (D.G.); (H.E.)
| |
Collapse
|
9
|
Pandya R, He YD, Sweeney TE, Hasin-Brumshtein Y, Khatri P. A machine learning classifier using 33 host immune response mRNAs accurately distinguishes viral and non-viral acute respiratory illnesses in nasal swab samples. Genome Med 2023; 15:64. [PMID: 37641125 PMCID: PMC10463681 DOI: 10.1186/s13073-023-01216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Viral acute respiratory illnesses (viral ARIs) contribute significantly to human morbidity and mortality worldwide, but their successful treatment requires timely diagnosis of viral etiology, which is complicated by overlap in clinical presentation with the non-viral ARIs. Multiple pandemics in the twenty-first century to date have further highlighted the unmet need for effective monitoring of clinically relevant emerging viruses. Recent studies have identified conserved host response to viral infections in the blood. METHODS We hypothesize that a similarly conserved host response in nasal samples can be utilized for diagnosis and to rule out viral infection in symptomatic patients when current diagnostic tests are negative. Using a multi-cohort analysis framework, we analyzed 1555 nasal samples across 10 independent cohorts dividing them into training and validation. RESULTS Using six of the datasets for training, we identified 119 genes that are consistently differentially expressed in viral ARI patients (N = 236) compared to healthy controls (N = 146) and further down-selected 33 genes for classifier development. The resulting locked logistic regression-based classifier using the 33-mRNAs had AUC of 0.94 and 0.89 in the six training and four validation datasets, respectively. Furthermore, we found that although trained on healthy controls only, in the four validation datasets, the 33-mRNA classifier distinguished viral ARI from both healthy or non-viral ARI samples with > 80% specificity and sensitivity, irrespective of age, viral type, and viral load. Single-cell RNA-sequencing data showed that the 33-mRNA signature is dominated by macrophages and neutrophils in nasal samples. CONCLUSION This proof-of-concept signature has potential to be adapted as a clinical point-of-care test ('RespVerity') to improve the diagnosis of viral ARIs.
Collapse
Affiliation(s)
| | - Yudong D. He
- Inflammatix Inc., CA 94085 Sunnyvale, USA
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305 USA
- Allen Institute of Immunology, Seattle, WA USA
| | | | | | - Purvesh Khatri
- Inflammatix Inc., CA 94085 Sunnyvale, USA
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305 USA
- Department of Medicine, Center for Biomedical Informatics Research, School of Medicine, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
10
|
Balch JA, Chen UI, Liesenfeld O, Starostik P, Loftus TJ, Efron PA, Brakenridge SC, Sweeney TE, Moldawer LL. Defining critical illness using immunological endotypes in patients with and without sepsis: a cohort study. Crit Care 2023; 27:292. [PMID: 37474944 PMCID: PMC10360294 DOI: 10.1186/s13054-023-04571-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Sepsis is a heterogenous syndrome with limited therapeutic options. Identifying immunological endotypes through gene expression patterns in septic patients may lead to targeted interventions. We investigated whether patients admitted to a surgical intensive care unit (ICU) with sepsis and with high risk of mortality express similar endotypes to non-septic, but still critically ill patients using two multiplex transcriptomic metrics obtained both on admission to a surgical ICU and at set intervals. METHODS We analyzed transcriptomic data from 522 patients in two single-site, prospective, observational cohorts admitted to surgical ICUs over a 5-year period ending in July 2020. Using an FDA-cleared analytical platform (nCounter FLEX®, NanoString, Inc.), we assessed a previously validated 29-messenger RNA transcriptomic classifier for likelihood of 30-day mortality (IMX-SEV-3) and a 33-messenger RNA transcriptomic endotype classifier. Clinical outcomes included all-cause mortality, development of chronic critical illness, and secondary infections. Univariate and multivariate analyses were performed to assess for true effect and confounding. RESULTS Sepsis was associated with a significantly higher predicted and actual hospital mortality. At enrollment, the predominant endotype for both septic and non-septic patients was adaptive, though with significantly different distributions. Inflammopathic and coagulopathic septic patients, as well as inflammopathic non-septic patients, showed significantly higher frequencies of secondary infections compared to those with adaptive endotypes (p < 0.01). Endotypes changed during ICU hospitalization in 57.5% of patients. Patients who remained adaptive had overall better prognosis, while those who remained inflammopathic or coagulopathic had worse overall outcomes. For severity metrics, patients admitted with sepsis and a high predicted likelihood of mortality showed an inflammopathic (49.6%) endotype and had higher rates of cumulative adverse outcomes (67.4%). Patients at low mortality risk, whether septic or non-septic, almost uniformly presented with an adaptive endotype (100% and 93.4%, respectively). CONCLUSION Critically ill surgical patients express different and evolving immunological endotypes depending upon both their sepsis status and severity of their clinical course. Future studies will elucidate whether endotyping critically ill, septic patients can identify individuals for targeted therapeutic interventions to improve patient management and outcomes.
Collapse
Affiliation(s)
- Jeremy A Balch
- Sepsis and Critical Illness Research Center, Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, P. O. Box 100019, Gainesville, FL, 32610-0019, USA
| | - Uan-I Chen
- Inflammatix, Inc., Sunnyvale, CA, 94085, USA
| | | | - Petr Starostik
- UF Health Medical Laboratory at Rocky Point, Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Tyler J Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, P. O. Box 100019, Gainesville, FL, 32610-0019, USA
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, P. O. Box 100019, Gainesville, FL, 32610-0019, USA
| | - Scott C Brakenridge
- Sepsis and Critical Illness Research Center, Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, P. O. Box 100019, Gainesville, FL, 32610-0019, USA
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, WA, 63110, USA
| | | | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, P. O. Box 100019, Gainesville, FL, 32610-0019, USA.
| |
Collapse
|
11
|
Balch JA, Chen UI, Liesenfeld O, Starostik P, Loftus TJ, Efron PA, Brakenridge SC, Sweeney TE, Moldawer LL. Defining critical illness using immunological endotypes in patients with and without of sepsis: A cohort study. RESEARCH SQUARE 2023:rs.3.rs-2874506. [PMID: 37214996 PMCID: PMC10197751 DOI: 10.21203/rs.3.rs-2874506/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background: Sepsis is a heterogenous syndrome with limited therapeutic options. Identifying characteristic gene expression patterns, or endotypes, in septic patients may lead to targeted interventions. We investigated whether patients admitted to a surgical ICU with sepsis and with high risk of mortality express similar endotypes to non-septic, but still critically ill patients using two multiplex transcriptomic metrics obtained both on admission to a surgical intensive care unit (ICU) and at set intervals. Methods: We analyzed transcriptomic data from 522 patients in two single-site, prospective, observational cohorts admitted to surgical ICUs over a 5-year period ending in July 2020 . Using an FDA-cleared analytical platform (nCounter FLEX ® , NanoString, Inc.), we assessed a previously validated 29-messenger RNA transcriptomic classifier for likelihood of 30-day mortality (IMX-SEV-3) and a 33-messenger RNA transcriptomic endotype classifier. Clinical outcomes included all-cause (in-hospital, 30-, 90-day) mortality, development of chronic critical illness (CCI), and secondary infections. Univariate and multivariate analyses were performed to assess for true effect and confounding. Results: Sepsis was associated with a significantly higher predicted and actual hospital mortality. At enrollment, the predominant endotype for both septic and non-septic patients was adaptive , though with significantly different distributions. Inflammopathic and coagulopathic septic patients, as well as inflammopathic non-septic patients, showed significantly higher frequencies of secondary infections compared to those with adaptive endotypes (p<0.01). Endotypes changed during ICU hospitalization in 57.5% of patients. Patients who remained adaptive had overall better prognosis, while those who remained inflammopathic or coagulopathic had worse overall outcomes. For severity metrics, patients admitted with sepsis and a high predicted likelihood of mortality showed an inflammopathic (49.6%) endotype and had higher rates of cumulative adverse outcomes (67.4%). Patients at low mortality risk, whether septic or non-septic, almost uniformly presented with an adaptive endotype (100% and 93.4%, respectively). Conclusion : Critically ill surgical patients express different and evolving immunological endotypes depending upon both their sepsis status and severity of their clinical course. Future studies will elucidate whether endotyping critically ill, septic patients can identify individuals for targeted therapeutic interventions to improve patient management and outcomes.
Collapse
|
12
|
Turgman O, Schinkel M, Wiersinga WJ. Host Response Biomarkers for Sepsis in the Emergency Room. Crit Care 2023; 27:97. [PMID: 36941681 PMCID: PMC10027585 DOI: 10.1186/s13054-023-04367-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Oren Turgman
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel Schinkel
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Department of Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Division of Infectious Diseases, Department of Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Tsakiroglou M, Evans A, Pirmohamed M. Leveraging transcriptomics for precision diagnosis: Lessons learned from cancer and sepsis. Front Genet 2023; 14:1100352. [PMID: 36968610 PMCID: PMC10036914 DOI: 10.3389/fgene.2023.1100352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Diagnostics require precision and predictive ability to be clinically useful. Integration of multi-omic with clinical data is crucial to our understanding of disease pathogenesis and diagnosis. However, interpretation of overwhelming amounts of information at the individual level requires sophisticated computational tools for extraction of clinically meaningful outputs. Moreover, evolution of technical and analytical methods often outpaces standardisation strategies. RNA is the most dynamic component of all -omics technologies carrying an abundance of regulatory information that is least harnessed for use in clinical diagnostics. Gene expression-based tests capture genetic and non-genetic heterogeneity and have been implemented in certain diseases. For example patients with early breast cancer are spared toxic unnecessary treatments with scores based on the expression of a set of genes (e.g., Oncotype DX). The ability of transcriptomics to portray the transcriptional status at a moment in time has also been used in diagnosis of dynamic diseases such as sepsis. Gene expression profiles identify endotypes in sepsis patients with prognostic value and a potential to discriminate between viral and bacterial infection. The application of transcriptomics for patient stratification in clinical environments and clinical trials thus holds promise. In this review, we discuss the current clinical application in the fields of cancer and infection. We use these paradigms to highlight the impediments in identifying useful diagnostic and prognostic biomarkers and propose approaches to overcome them and aid efforts towards clinical implementation.
Collapse
Affiliation(s)
- Maria Tsakiroglou
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Maria Tsakiroglou,
| | - Anthony Evans
- Computational Biology Facility, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
Li Q, Zheng X, Xie J, Wang R, Li M, Wong MH, Leung KS, Li S, Geng Q, Cheng L. bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks. Bioinformatics 2023; 39:7066914. [PMID: 36857587 PMCID: PMC9997702 DOI: 10.1093/bioinformatics/btad109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
MOTIVATION The confusion of acute inflammation infected by virus and bacteria or noninfectious inflammation will lead to missing the best therapy occasion resulting in poor prognoses. The diagnostic model based on host gene expression has been widely used to diagnose acute infections, but the clinical usage was hindered by the capability across different samples and cohorts due to the small sample size for signature training and discovery. RESULTS Here, we construct a large-scale dataset integrating multiple host transcriptomic data and analyze it using a sophisticated strategy which removes batch effect and extracts the common information from different cohorts based on the relative expression alteration of gene pairs. We assemble 2680 samples across 16 cohorts and separately build gene pair signature (GPS) for bacterial, viral, and noninfected patients. The three GPSs are further assembled into an antibiotic decision model (bacterial-viral-noninfected GPS, bvnGPS) using multiclass neural networks, which is able to determine whether a patient is bacterial infected, viral infected, or noninfected. bvnGPS can distinguish bacterial infection with area under the receiver operating characteristic curve (AUC) of 0.953 (95% confidence interval, 0.948-0.958) and viral infection with AUC of 0.956 (0.951-0.961) in the test set (N = 760). In the validation set (N = 147), bvnGPS also shows strong performance by attaining an AUC of 0.988 (0.978-0.998) on bacterial-versus-other and an AUC of 0.994 (0.984-1.000) on viral-versus-other. bvnGPS has the potential to be used in clinical practice and the proposed procedure provides insight into data integration, feature selection and multiclass classification for host transcriptomics data. AVAILABILITY AND IMPLEMENTATION The codes implementing bvnGPS are available at https://github.com/Ritchiegit/bvnGPS. The construction of iPAGE algorithm and the training of neural network was conducted on Python 3.7 with Scikit-learn 0.24.1 and PyTorch 1.7. The visualization of the results was implemented on R 4.2, Python 3.7, and Matplotlib 3.3.4.
Collapse
Affiliation(s)
- Qizhi Li
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.,John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xubin Zheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,Great Bay University, Dongguan, China
| | - Jize Xie
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.,John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Mengyao Li
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Man-Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,Department of Applied Data Science, Hong Kong Shue Yan University, North Point, Hong Kong
| | - Shuai Li
- John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qingshan Geng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Lixin Cheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| |
Collapse
|
15
|
Feng A, Yang EY, Moore AR, Dhingra S, Chang SE, Yin X, Pi R, Mack EK, Völkel S, Geßner R, Gündisch M, Neubauer A, Renz H, Tsiodras S, Fragkou PC, Asuni AA, Levitt JE, Wilson JG, Leong M, Lumb JH, Mao R, Pinedo K, Roque J, Richards CM, Stabile M, Swaminathan G, Salagianni ML, Triantafyllia V, Bertrams W, Blish CA, Carette JE, Frankovich J, Meffre E, Nadeau KC, Singh U, Wang TT, Luning Prak ET, Herold S, Andreakos E, Schmeck B, Skevaki C, Rogers AJ, Utz PJ. Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI Insight 2023; 8:e163150. [PMID: 36752204 PMCID: PMC9977421 DOI: 10.1172/jci.insight.163150] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/14/2022] [Indexed: 02/09/2023] Open
Abstract
The widespread presence of autoantibodies in acute infection with SARS-CoV-2 is increasingly recognized, but the prevalence of autoantibodies in non-SARS-CoV-2 infections and critical illness has not yet been reported. We profiled IgG autoantibodies in 267 patients from 5 independent cohorts with non-SARS-CoV-2 viral, bacterial, and noninfectious critical illness. Serum samples were screened using Luminex arrays that included 58 cytokines and 55 autoantigens, many of which are associated with connective tissue diseases (CTDs). Samples positive for anti-cytokine antibodies were tested for receptor blocking activity using cell-based functional assays. Anti-cytokine antibodies were identified in > 50% of patients across all 5 acutely ill cohorts. In critically ill patients, anti-cytokine antibodies were far more common in infected versus uninfected patients. In cell-based functional assays, 11 of 39 samples positive for select anti-cytokine antibodies displayed receptor blocking activity against surface receptors for Type I IFN, GM-CSF, and IL-6. Autoantibodies against CTD-associated autoantigens were also commonly observed, including newly detected antibodies that emerged in longitudinal samples. These findings demonstrate that anti-cytokine and autoantibodies are common across different viral and nonviral infections and range in severity of illness.
Collapse
Affiliation(s)
- Allan Feng
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Emily Y. Yang
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Andrew Reese Moore
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Shaurya Dhingra
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Sarah Esther Chang
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Xihui Yin
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Ruoxi Pi
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Elisabeth K.M. Mack
- Department of Hematology, Oncology, Immunology, Philipps University Marburg, Marburg, Germany
| | - Sara Völkel
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Reinhard Geßner
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Margrit Gündisch
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology, Immunology, Philipps University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Paraskevi C. Fragkou
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Adijat A. Asuni
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Joseph E. Levitt
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | | | - Michelle Leong
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer H. Lumb
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Rong Mao
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Kassandra Pinedo
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Jonasel Roque
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Christopher M. Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Mikayla Stabile
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Gayathri Swaminathan
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Maria L. Salagianni
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Wilhelm Bertrams
- Institute for Lung Research, UGMLC, Philipps University Marburg, Marburg, Germany
| | - Catherine A. Blish
- Institute for Immunity, Transplantation and Infection
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer Frankovich
- Department of Pediatrics, Division of Allergy, Immunology, Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| | - Kari Christine Nadeau
- Institute for Immunity, Transplantation and Infection
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Upinder Singh
- Institute for Immunity, Transplantation and Infection
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Taia T. Wang
- Institute for Immunity, Transplantation and Infection
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine and
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susanne Herold
- Department of Internal Medicine V, Infectious Diseases and Infection Control, UKGM, Justus Liebig University, and Institute for Lung Health (ILH), Giessen, Germany
- DZL and UGMLC, Giessen, Germany
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Bernd Schmeck
- Institute for Lung Research, UGMLC, Philipps University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Marburg, Germany
- DZL, German Center for Infection Research (DZIF), Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Angela J. Rogers
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Paul J. Utz
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| |
Collapse
|
16
|
Cao J, Xiao Y, Zhang M, Huang L, Wang Y, Liu W, Wang X, Wu J, Huang Y, Wang R, Zhou L, Li L, Zhang Y, Ren L, Qian K, Wang J. Deep Learning of Dual Plasma Fingerprints for High-Performance Infection Classification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206349. [PMID: 36470664 DOI: 10.1002/smll.202206349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Infection classification is the key for choosing the proper treatment plans. Early determination of the causative agents is critical for disease control. Host responses analysis can detect variform and sensitive host inflammatory responses to ascertain the presence and type of the infection. However, traditional host-derived inflammatory indicators are insufficient for clinical infection classification. Fingerprints-based omic analysis has attracted increasing attention globally for analyzing the complex host systemic immune response. A single type of fingerprints is not applicable for infection classification (area under curve (AUC) of 0.550-0.617). Herein, an infection classification platform based on deep learning of dual plasma fingerprints (DPFs-DL) is developed. The DPFs with high reproducibility (coefficient of variation <15%) are obtained at low sample consumption (550 nL native plasma) using inorganic nanoparticle and organic matrix assisted laser desorption/ionization mass spectrometry. A classifier (DPFs-DL) for viral versus bacterial infection discrimination (AUC of 0.775) and coronavirus disease 2019 (COVID-2019) diagnosis (AUC of 0.917) is also built. Furthermore, a metabolic biomarker panel of two differentially regulated metabolites, which may serve as potential biomarkers for COVID-19 management (AUC of 0.677-0.883), is constructed. This study will contribute to the development of precision clinical care for infectious diseases.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Lin Huang
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ying Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Wanshan Liu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Jiao Wu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yida Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Ruimin Wang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Li Zhou
- Beijing health biotech co. Ltd, Beijing, 100193, P. R. China
| | - Lin Li
- Beijing health biotech co. Ltd, Beijing, 100193, P. R. China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| |
Collapse
|
17
|
Shojaei M, Chen UI, Midic U, Thair S, Teoh S, McLean A, Sweeney TE, Thompson M, Liesenfeld O, Khatri P, Tang B. Multisite validation of a host response signature for predicting likelihood of bacterial and viral infections in patients with suspected influenza. Eur J Clin Invest 2023; 53:e13957. [PMID: 36692131 DOI: 10.1111/eci.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Indiscriminate use of antimicrobials and antimicrobial resistance is a public health threat. IMX-BVN-1, a 29-host mRNA classifier, provides two separate scores that predict likelihoods of bacterial and viral infections in patients with suspected acute infections. We validated the performance of IMX-BVN-1 in adults attending acute health care settings with suspected influenza. METHOD We amplified 29-host response genes in RNA extracted from blood by NanoString nCounter. IMX-BVN-1 calculated two scores to predict probabilities of bacterial and viral infections. Results were compared against the infection status (no infection; highly probable/possible infection; confirmed infection) determined by clinical adjudication. RESULTS Amongst 602 adult patients (74.9% ED, 16.9% ICU, 8.1% outpatients), 7.6% showed in-hospital mortality and 15.5% immunosuppression. Median IMX-BVN-1 bacterial and viral scores were higher in patients with confirmed bacterial (0.27) and viral (0.62) infections than in those without bacterial (0.08) or viral (0.21) infection, respectively. The AUROC distinguishing bacterial from nonbacterial illness was 0.81 and 0.87 when distinguishing viral from nonviral illness. The bacterial top quartile's positive likelihood ratio (LR) was 4.38 with a rule-in specificity of 88%; the bacterial bottom quartile's negative LR was 0.13 with a rule-out sensitivity of 96%. Similarly, the viral top quartile showed an infinite LR with rule-in specificity of 100%; the viral bottom quartile had a LR of 0.22 and a rule-out sensitivity of 85%. CONCLUSION IMX-BVN-1 showed high accuracy for differentiating bacterial and viral infections from noninfectious illness in patients with suspected influenza. Clinical utility of IMX-BVN will be validated following integration into a point of care system.
Collapse
Affiliation(s)
- Maryam Shojaei
- Department of Medicine, Sydney Medical School Nepean, Nepean Hospital, University of Sydney, Penrith, New South Wales, Australia.,Department of Intensive Care Medicine, Nepean Hospital, Penrith, New South Wales, Australia.,Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Uan-I Chen
- Inflammatix, Inc., Sunnyvale, California, USA
| | - Uros Midic
- Inflammatix, Inc., Sunnyvale, California, USA
| | | | - Sally Teoh
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, New South Wales, Australia
| | - Anthony McLean
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, New South Wales, Australia
| | | | | | | | | | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, New South Wales, Australia.,Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
18
|
Ram-Mohan N, Rogers AJ, Blish CA, Nadeau KC, Zudock EJ, Kim D, Quinn JV, Sun L, Liesenfeld O, Yang S. Using a 29-mRNA Host Response Classifier To Detect Bacterial Coinfections and Predict Outcomes in COVID-19 Patients Presenting to the Emergency Department. Microbiol Spectr 2022; 10:e0230522. [PMID: 36250865 PMCID: PMC9769905 DOI: 10.1128/spectrum.02305-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023] Open
Abstract
Clinicians in the emergency department (ED) face challenges in concurrently assessing patients with suspected COVID-19 infection, detecting bacterial coinfection, and determining illness severity since current practices require separate workflows. Here, we explore the accuracy of the IMX-BVN-3/IMX-SEV-3 29 mRNA host response classifiers in simultaneously detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and bacterial coinfections and predicting clinical severity of COVID-19. A total of 161 patients with PCR-confirmed COVID-19 (52.2% female; median age, 50.0 years; 51% hospitalized; 5.6% deaths) were enrolled at the Stanford Hospital ED. RNA was extracted (2.5 mL whole blood in PAXgene blood RNA), and 29 host mRNAs in response to the infection were quantified using Nanostring nCounter. The IMX-BVN-3 classifier identified SARS-CoV-2 infection in 151 patients with a sensitivity of 93.8%. Six of 10 patients undetected by the classifier had positive COVID tests more than 9 days prior to enrollment, and the remaining patients oscillated between positive and negative results in subsequent tests. The classifier also predicted that 6 (3.7%) patients had a bacterial coinfection. Clinical adjudication confirmed that 5/6 (83.3%) of the patients had bacterial infections, i.e., Clostridioides difficile colitis (n = 1), urinary tract infection (n = 1), and clinically diagnosed bacterial infections (n = 3), for a specificity of 99.4%. Two of 101 (2.8%) patients in the IMX-SEV-3 "Low" severity classification and 7/60 (11.7%) in the "Moderate" severity classification died within 30 days of enrollment. IMX-BVN-3/IMX-SEV-3 classifiers accurately identified patients with COVID-19 and bacterial coinfections and predicted patients' risk of death. A point-of-care version of these classifiers, under development, could improve ED patient management, including more accurate treatment decisions and optimized resource utilization. IMPORTANCE We assay the utility of the single-test IMX-BVN-3/IMX-SEV-3 classifiers that require just 2.5 mL of patient blood in concurrently detecting viral and bacterial infections as well as predicting the severity and 30-day outcome from the infection. A point-of-care device, in development, will circumvent the need for blood culturing and drastically reduce the time needed to detect an infection. This will negate the need for empirical use of broad-spectrum antibiotics and allow for antibiotic use stewardship. Additionally, accurate classification of the severity of infection and the prediction of 30-day severe outcomes will allow for appropriate allocation of hospital resources.
Collapse
Affiliation(s)
- Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Angela J. Rogers
- Department of Medicine—Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Catherine A. Blish
- Department of Medicine/Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Kari C. Nadeau
- Department of Medicine—Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth J. Zudock
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David Kim
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - James V. Quinn
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Lixian Sun
- Inflammatix, Inc., Burlingame, California, USA
| | | | - The Stanford COVID-19 Biobank Study Group
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine—Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine/Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
- Inflammatix, Inc., Burlingame, California, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
19
|
Rao AM, Popper SJ, Gupta S, Davong V, Vaidya K, Chanthongthip A, Dittrich S, Robinson MT, Vongsouvath M, Mayxay M, Nawtaisong P, Karmacharya B, Thair SA, Bogoch I, Sweeney TE, Newton PN, Andrews JR, Relman DA, Khatri P. A robust host-response-based signature distinguishes bacterial and viral infections across diverse global populations. Cell Rep Med 2022; 3:100842. [PMID: 36543117 PMCID: PMC9797950 DOI: 10.1016/j.xcrm.2022.100842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
Limited sensitivity and specificity of current diagnostics lead to the erroneous prescription of antibiotics. Host-response-based diagnostics could address these challenges. However, using 4,200 samples across 69 blood transcriptome datasets from 20 countries from patients with bacterial or viral infections representing a broad spectrum of biological, clinical, and technical heterogeneity, we show current host-response-based gene signatures have lower accuracy to distinguish intracellular bacterial infections from viral infections than extracellular bacterial infections. Using these 69 datasets, we identify an 8-gene signature to distinguish intracellular or extracellular bacterial infections from viral infections with an area under the receiver operating characteristic curve (AUROC) > 0.91 (85.9% specificity and 90.2% sensitivity). In prospective cohorts from Nepal and Laos, the 8-gene classifier distinguished bacterial infections from viral infections with an AUROC of 0.94 (87.9% specificity and 91% sensitivity). The 8-gene signature meets the target product profile proposed by the World Health Organization and others for distinguishing bacterial and viral infections.
Collapse
Affiliation(s)
- Aditya M. Rao
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA,Immunology Graduate Program, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Stephen J. Popper
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Sanjana Gupta
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Krista Vaidya
- Dhulikhel Hospital, Kathmandu University Hospital, Kavrepalanchok, Nepal
| | - Anisone Chanthongthip
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Sabine Dittrich
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew T. Robinson
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao PDR
| | - Pruksa Nawtaisong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Biraj Karmacharya
- Dhulikhel Hospital, Kathmandu University Hospital, Kavrepalanchok, Nepal
| | - Simone A. Thair
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Isaac Bogoch
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Paul N. Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jason R. Andrews
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David A. Relman
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA,Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA,Corresponding author
| |
Collapse
|
20
|
Komorowski M, Green A, Tatham KC, Seymour C, Antcliffe D. Sepsis biomarkers and diagnostic tools with a focus on machine learning. EBioMedicine 2022; 86:104394. [PMID: 36470834 PMCID: PMC9783125 DOI: 10.1016/j.ebiom.2022.104394] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Over the last years, there have been advances in the use of data-driven techniques to improve the definition, early recognition, subtypes characterisation, prognostication and treatment personalisation of sepsis. Some of those involve the discovery or evaluation of biomarkers or digital signatures of sepsis or sepsis sub-phenotypes. It is hoped that their identification may improve timeliness and accuracy of diagnosis, suggest physiological pathways and therapeutic targets, inform targeted recruitment into clinical trials, and optimise clinical management. Given the complexities of the sepsis response, panels of biomarkers or models combining biomarkers and clinical data are necessary, as well as specific data analysis methods, which broadly fall under the scope of machine learning. This narrative review gives a brief overview of the main machine learning techniques (mainly in the realms of supervised and unsupervised methods) and published applications that have been used to create sepsis diagnostic tools and identify biomarkers.
Collapse
Affiliation(s)
- Matthieu Komorowski
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom,Corresponding author.
| | - Ashleigh Green
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kate C. Tatham
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom,Anaesthetics, Perioperative Medicine and Pain Department, Royal Marsden NHS Foundation Trust, 203 Fulham Rd, London, SW3 6JJ, United Kingdom
| | - Christopher Seymour
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Antcliffe
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
21
|
Prospective validation of a transcriptomic severity classifier among patients with suspected acute infection and sepsis in the emergency department. Eur J Emerg Med 2022; 29:357-365. [PMID: 35467566 PMCID: PMC9432813 DOI: 10.1097/mej.0000000000000931] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND IMPORTANCE mRNA-based host response signatures have been reported to improve sepsis diagnostics. Meanwhile, prognostic markers for the rapid and accurate prediction of severity in patients with suspected acute infections and sepsis remain an unmet need. IMX-SEV-2 is a 29-host-mRNA classifier designed to predict disease severity in patients with acute infection or sepsis. OBJECTIVE Validation of the host-mRNA infection severity classifier IMX-SEV-2. DESIGN, SETTINGS AND PARTICIPANTS Prospective, observational, convenience cohort of emergency department (ED) patients with suspected acute infections. OUTCOME MEASURES AND ANALYSIS Whole blood RNA tubes were analyzed using independently trained and validated composite target genes (IMX-SEV-2). IMX-SEV-2-generated risk scores for severity were compared to the patient outcomes in-hospital mortality and 72-h multiorgan failure. MAIN RESULTS Of the 312 eligible patients, 22 (7.1%) died in hospital and 58 (18.6%) experienced multiorgan failure within 72 h of presentation. For predicting in-hospital mortality, IMX-SEV-2 had a significantly higher area under the receiver operating characteristic (AUROC) of 0.84 [95% confidence intervals (CI), 0.76-0.93] compared to 0.76 (0.64-0.87) for lactate, 0.68 (0.57-0.79) for quick Sequential Organ Failure Assessment (qSOFA) and 0.75 (0.65-0.85) for National Early Warning Score 2 (NEWS2), ( P = 0.015, 0.001 and 0.013, respectively). For identifying and predicting 72-h multiorgan failure, the AUROC of IMX-SEV-2 was 0.76 (0.68-0.83), not significantly different from lactate (0.73, 0.65-0.81), qSOFA (0.77, 0.70-0.83) or NEWS2 (0.81, 0.75-0.86). CONCLUSION The IMX-SEV-2 classifier showed a superior prediction of in-hospital mortality compared to biomarkers and clinical scores among ED patients with suspected infections. No improvement for predicting multiorgan failure was found compared to established scores or biomarkers. Identifying patients with a high risk of mortality or multiorgan failure may improve patient outcomes, resource utilization and guide therapy decision-making.
Collapse
|
22
|
Bauer W, Gläser S, Thiemig D, Wanner K, Peric A, Behrens S, Bialas J, Behrens A, Galtung N, Liesenfeld O, Sun L, May L, Mace S, Ott S, Vesenbeckh S. Detection of Viral Infection and Bacterial Coinfection and Superinfection in Coronavirus Disease 2019 Patients Presenting to the Emergency Department Using the 29-mRNA Host Response Classifier IMX-BVN-3: A Multicenter Study. Open Forum Infect Dis 2022; 9:ofac437. [PMID: 36111173 PMCID: PMC9452140 DOI: 10.1093/ofid/ofac437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background Identification of bacterial coinfection in patients with coronavirus disease 2019 (COVID-19) facilitates appropriate initiation or withholding of antibiotics. The Inflammatix Bacterial Viral Noninfected (IMX-BVN) classifier determines the likelihood of bacterial and viral infections. In a multicenter study, we investigated whether IMX-BVN version 3 (IMX-BVN-3) identifies patients with COVID-19 and bacterial coinfections or superinfections. Methods Patients with polymerase chain reaction-confirmed COVID-19 were enrolled in Berlin, Germany; Basel, Switzerland; and Cleveland, Ohio upon emergency department or hospital admission. PAXgene Blood RNA was extracted and 29 host mRNAs were quantified. IMX-BVN-3 categorized patients into very unlikely, unlikely, possible, and very likely bacterial and viral interpretation bands. IMX-BVN-3 results were compared with clinically adjudicated infection status. Results IMX-BVN-3 categorized 102 of 111 (91.9%) COVID-19 patients into very likely or possible, 7 (6.3%) into unlikely, and 2 (1.8%) into very unlikely viral bands. Approximately 94% of patients had IMX-BVN-3 unlikely or very unlikely bacterial results. Among 7 (6.3%) patients with possible (n = 4) or very likely (n = 3) bacterial results, 6 (85.7%) had clinically adjudicated bacterial coinfection or superinfection. Overall, 19 of 111 subjects for whom adjudication was performed had a bacterial infection; 7 of these showed a very likely or likely bacterial result in IMX-BVN-3. Conclusions IMX-BVN-3 identified COVID-19 patients as virally infected and identified bacterial coinfections and superinfections. Future studies will determine whether a point-of-care version of the classifier may improve the management of COVID-19 patients, including appropriate antibiotic use.
Collapse
Affiliation(s)
- Wolfgang Bauer
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Emergency Medicine, Berlin, Germany
| | - Sven Gläser
- Klinik für Innere Medizin–Pneumologie, Vivantes Klinikum Spandau und Klinik für Innere Medizin–Pneumologie und Infektiologie, Vivantes Klinikum Neukölln, Berlin, Germany
- Klinik für Innere Medizin–Pneumologie und Infektiologie, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Dorina Thiemig
- Klinik für Innere Medizin–Pneumologie und Infektiologie, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Katrin Wanner
- Klinik für Innere Medizin–Pneumologie, Vivantes Klinikum Spandau und Klinik für Innere Medizin–Pneumologie und Infektiologie, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Alexander Peric
- Klinik für Innere Medizin–Pneumologie und Infektiologie, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Steffen Behrens
- Klinik für Innere Medizin–Kardiologie, Vivantes–Netzwerk für Gesundheit/Vivantes Humboldt-Klinikum and Klinik für Innere Medizin–Kardiologie und konservative Intensivmedizin, Vivantes–Netzwerk für Gesundheit/Vivantes Klinikum Spandau, Berlin, Germany
| | - Johanna Bialas
- Labor Berlin–Charité Vivantes Services GmbH, Berlin, Germany
| | - Angelika Behrens
- Klinik für Innere Medizin, Gastroenterologie und Pneumologie, Evangelische Elisabeth Klinik Krankenhausbetriebs gGmbH, Berlin, Germany
| | - Noa Galtung
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Emergency Medicine, Berlin, Germany
| | | | - Lisa Sun
- Inflammatix Inc, Burlingame, California, USA
| | - Larissa May
- Department of Emergency Medicine, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Sharron Mace
- Department of Emergency Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sebastian Ott
- Department of Pulmonary Medicine, St Claraspital AG, Basel, Switzerland
- University of Bern, Bern, Switzerland
| | - Silvan Vesenbeckh
- Department of Pulmonary Medicine, St Claraspital AG, Basel, Switzerland
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
23
|
Kostaki A, Wacker JW, Safarika A, Solomonidi N, Katsaros K, Giannikopoulos G, Koutelidakis IM, Hogan CA, Uhle F, Liesenfeld O, Sweeney TE, Giamarellos-Bourboulis EJ. A 29-MRNA HOST RESPONSE WHOLE-BLOOD SIGNATURE IMPROVES PREDICTION OF 28-DAY MORTALITY AND 7-DAY INTENSIVE CARE UNIT CARE IN ADULTS PRESENTING TO THE EMERGENCY DEPARTMENT WITH SUSPECTED ACUTE INFECTION AND/OR SEPSIS. Shock 2022; 58:224-230. [PMID: 36125356 PMCID: PMC9512237 DOI: 10.1097/shk.0000000000001970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Background: Risk stratification of emergency department patients with suspected acute infections and/or suspected sepsis remains challenging. We prospectively validated a 29-messenger RNA host response classifier for predicting severity in these patients. Methods: We enrolled adults presenting with suspected acute infections and at least one vital sign abnormality to six emergency departments in Greece. Twenty-nine target host RNAs were quantified on NanoString nCounter and analyzed with the Inflammatix Severity 2 (IMX-SEV-2) classifier to determine risk scores as low, moderate, and high severity. Performance of IMX-SEV-2 for prediction of 28-day mortality was compared with that of lactate, procalcitonin, and quick sequential organ failure assessment (qSOFA). Results: A total of 397 individuals were enrolled; 38 individuals (9.6%) died within 28 days. Inflammatix Severity 2 classifier predicted 28-day mortality with an area under the receiver operator characteristics curve of 0.82 (95% confidence interval [CI], 0.74-0.90) compared with lactate, 0.66 (95% CI, 0.54-0.77); procalcitonin, 0.67 (95% CI, 0.57-0.78); and qSOFA, 0.81 (95% CI, 0.72-0.89). Combining qSOFA with IMX-SEV-2 improved prognostic accuracy from 0.81 to 0.89 (95% CI, 0.82-0.96). The high-severity (rule-in) interpretation band of IMX-SEV-2 demonstrated 96.9% specificity for predicting 28-day mortality, whereas the low-severity (rule-out) band had a sensitivity of 78.9%. Similarly, IMX-SEV-2 alone accurately predicted the need for day-7 intensive care unit care and further boosted overall accuracy when combined with qSOFA. Conclusions: Inflammatix Severity 2 classifier predicted 28-day mortality and 7-day intensive care unit care with high accuracy and boosted the accuracy of clinical scores when used in combination.
Collapse
Affiliation(s)
- Antigone Kostaki
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Greece
| | | | - Asimina Safarika
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Greece
| | - Nicky Solomonidi
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Walsh CJ, Batt J, Herridge MS, Mathur S, Bader GD, Hu P, Khatri P, Dos Santos CC. Comprehensive multi-cohort transcriptional meta-analysis of muscle diseases identifies a signature of disease severity. Sci Rep 2022; 12:11260. [PMID: 35789175 PMCID: PMC9253003 DOI: 10.1038/s41598-022-15003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Muscle diseases share common pathological features suggesting common underlying mechanisms. We hypothesized there is a common set of genes dysregulated across muscle diseases compared to healthy muscle and that these genes correlate with severity of muscle disease. We performed meta-analysis of transcriptional profiles of muscle biopsies from human muscle diseases and healthy controls. Studies obtained from public microarray repositories fulfilling quality criteria were divided into six categories: (i) immobility, (ii) inflammatory myopathies, (iii) intensive care unit (ICU) acquired weakness (ICUAW), (iv) congenital muscle diseases, (v) chronic systemic diseases, (vi) motor neuron disease. Patient cohorts were separated in discovery and validation cohorts retaining roughly equal proportions of samples for the disease categories. To remove bias towards a specific muscle disease category we repeated the meta-analysis five times by removing data sets corresponding to one muscle disease class at a time in a "leave-one-disease-out" analysis. We used 636 muscle tissue samples from 30 independent cohorts to identify a 52 gene signature (36 up-regulated and 16 down-regulated genes). We validated the discriminatory power of this signature in 657 muscle biopsies from 12 additional patient cohorts encompassing five categories of muscle diseases with an area under the receiver operating characteristic curve of 0.91, 83% sensitivity, and 85.3% specificity. The expression score of the gene signature inversely correlated with quadriceps muscle mass (r = -0.50, p-value = 0.011) in ICUAW and shoulder abduction strength (r = -0.77, p-value = 0.014) in amyotrophic lateral sclerosis (ALS). The signature also positively correlated with histologic assessment of muscle atrophy in ALS (r = 0.88, p-value = 1.62 × 10-3) and fibrosis in muscular dystrophy (Jonckheere trend test p-value = 4.45 × 10-9). Our results identify a conserved transcriptional signature associated with clinical and histologic muscle disease severity. Several genes in this conserved signature have not been previously associated with muscle disease severity.
Collapse
Affiliation(s)
- C J Walsh
- Keenan Research Center for Biomedical Science, Saint Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - J Batt
- Keenan Research Center for Biomedical Science, Saint Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - M S Herridge
- Interdepartmental Division of Critical Care, University Health Network, University of Toronto, Toronto, ON, Canada
| | - S Mathur
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - G D Bader
- The Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - P Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - P Khatri
- Stanford Institute for Immunity, Transplantation and Infection (ITI), Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA, USA
| | - C C Dos Santos
- Keenan Research Center for Biomedical Science, Saint Michael's Hospital, Toronto, ON, Canada. .,Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Brakenridge SC, Chen UI, Loftus T, Ungaro R, Dirain M, Kerr A, Zhong L, Bacher R, Starostik P, Ghita G, Midic U, Darden D, Fenner B, Wacker J, Efron PA, Liesenfeld O, Sweeney TE, Moldawer LL. Evaluation of a Multivalent Transcriptomic Metric for Diagnosing Surgical Sepsis and Estimating Mortality Among Critically Ill Patients. JAMA Netw Open 2022; 5:e2221520. [PMID: 35819783 PMCID: PMC9277492 DOI: 10.1001/jamanetworkopen.2022.21520] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/19/2022] [Indexed: 02/02/2023] Open
Abstract
Importance Rapid and accurate discrimination of sepsis and its potential severity currently require multiple assays with slow processing times that are often inconclusive in discerning sepsis from sterile inflammation. Objective To analyze a whole-blood, multivalent, host-messenger RNA expression metric for estimating the likelihood of bacterial infection and 30-day mortality and compare performance of the metric with that of other diagnostic and prognostic biomarkers and clinical parameters. Design, Setting, and Participants This prospective diagnostic and prognostic study was performed in the surgical intensive care unit (ICU) of a single, academic health science center. The analysis included 200 critically ill adult patients admitted with suspected sepsis (cohort A) or those at high risk for developing sepsis (cohort B) between July 1, 2020, and July 30, 2021. Exposures Whole-blood sample measurements of a custom 29-messenger RNA transcriptomic metric classifier for likelihood of bacterial infection (IMX-BVN-3) or 30-day mortality (severity) (IMX-SEV-3) in a clinical-diagnostic laboratory setting using an analysis platform (510[k]-cleared nCounter FLEX; NanoString, Inc), compared with measurement of procalcitonin and interleukin 6 (IL-6) plasma levels, and maximum 24-hour sequential organ failure assessment (SOFA) scores. Main Outcomes and Measures Estimated sepsis and 30-day mortality performance. Results Among the 200 patients included (124 men [62.0%] and 76 women [38.0%]; median age, 62.5 [IQR, 47.0-72.0] years), the IMX-BVN-3 bacterial infection classifier had an area under the receiver operating characteristics curve (AUROC) of 0.84 (95% CI, 0.77-0.90) for discriminating bacterial infection at ICU admission, similar to procalcitonin (0.85 [95% CI, 0.79-0.90]; P = .79) and significantly better than IL-6 (0.67 [95% CI, 0.58-0.75]; P < .001). For estimating 30-day mortality, the IMX-SEV-3 metric had an AUROC of 0.81 (95% CI, 0.66-0.95), which was significantly better than IL-6 levels (0.57 [95% CI, 0.37-0.77]; P = .006), marginally better than procalcitonin levels (0.65 [95% CI, 0.50-0.79]; P = .06), and similar to the SOFA score (0.76 [95% CI, 0.62-0.91]; P = .48). Combining IMX-BVN-3 and IMX-SEV-3 with procalcitonin or IL-6 levels or SOFA scores did not significantly improve performance. Among patients with sepsis, IMX-BVN-3 scores decreased over time, reflecting the resolution of sepsis. In 11 individuals at high risk (cohort B) who subsequently developed sepsis during their hospital course, IMX-BVN-3 bacterial infection scores did not decline over time and peaked on the day of documented infection. Conclusions and Relevance In this diagnostic and prognostic study, a novel, multivalent, transcriptomic metric accurately estimated the presence of bacterial infection and risk for 30-day mortality in patients admitted to a surgical ICU. The performance of this single transcriptomic metric was equivalent to or better than multiple alternative diagnostic and prognostic metrics when measured at admission and provided additional information when measured over time.
Collapse
Affiliation(s)
- Scott C. Brakenridge
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
- Division of Burn, Trauma & Critical Care Surgery, Department of Surgery, University of Washington, Seattle
| | - Uan-I Chen
- Inflammatix, Inc, Burlingame, California
| | - Tyler Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| | - Ricardo Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| | - Marvin Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| | - Austin Kerr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| | - Luer Zhong
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| | - Rhonda Bacher
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| | - Petr Starostik
- Molecular Pathology Laboratory at Rocky Point, Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville
- Clinical and Diagnostic Laboratories, Health Science Center, UF (University of Florida) Health Shands Hospital, Gainesville
| | - Gabriella Ghita
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| | - Uros Midic
- Inflammatix, Inc, Burlingame, California
| | - Dijoia Darden
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| | - Brittany Fenner
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| | | | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| | | | | | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville
| |
Collapse
|
26
|
Kreitmann L, Bodinier M, Fleurie A, Imhoff K, Cazalis MA, Peronnet E, Cerrato E, Tardiveau C, Conti F, Llitjos JF, Textoris J, Monneret G, Blein S, Brengel-Pesce K. Mortality Prediction in Sepsis With an Immune-Related Transcriptomics Signature: A Multi-Cohort Analysis. Front Med (Lausanne) 2022; 9:930043. [PMID: 35847809 PMCID: PMC9280291 DOI: 10.3389/fmed.2022.930043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 12/29/2022] Open
Abstract
Background Novel biomarkers are needed to progress toward individualized patient care in sepsis. The immune profiling panel (IPP) prototype has been designed as a fully-automated multiplex tool measuring expression levels of 26 genes in sepsis patients to explore immune functions, determine sepsis endotypes and guide personalized clinical management. The performance of the IPP gene set to predict 30-day mortality has not been extensively characterized in heterogeneous cohorts of sepsis patients. Methods Publicly available microarray data of sepsis patients with widely variable demographics, clinical characteristics and ethnical background were co-normalized, and the performance of the IPP gene set to predict 30-day mortality was assessed using a combination of machine learning algorithms. Results We collected data from 1,801 arrays sampled on sepsis patients and 598 sampled on controls in 17 studies. When gene expression was assayed at day 1 following admission (1,437 arrays sampled on sepsis patients, of whom 1,161 were alive and 276 (19.2%) were dead at day 30), the IPP gene set showed good performance to predict 30-day mortality, with an area under the receiving operating characteristics curve (AUROC) of 0.710 (CI 0.652-0.768). Importantly, there was no statistically significant improvement in predictive performance when training the same models with all genes common to the 17 microarray studies (n = 7,122 genes), with an AUROC = 0.755 (CI 0.697-0.813, p = 0.286). In patients with gene expression data sampled at day 3 following admission or later, the IPP gene set had higher performance, with an AUROC = 0.804 (CI 0.643-0.964), while the total gene pool had an AUROC = 0.787 (CI 0.610-0.965, p = 0.811). Conclusion Using pooled publicly-available gene expression data from multiple cohorts, we showed that the IPP gene set, an immune-related transcriptomics signature conveys relevant information to predict 30-day mortality when sampled at day 1 following admission. Our data also suggests that higher predictive performance could be obtained when assaying gene expression at later time points during the course of sepsis. Prospective studies are needed to confirm these findings using the IPP gene set on its dedicated measurement platform.
Collapse
Affiliation(s)
- Louis Kreitmann
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), bioMérieux S.A., Marcy-l’Étoile, France
| | - Maxime Bodinier
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), bioMérieux S.A., Marcy-l’Étoile, France
| | - Aurore Fleurie
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), bioMérieux S.A., Marcy-l’Étoile, France
| | - Katia Imhoff
- Data Science, bioMérieux S.A., Marcy-l’Etoile, France
| | - Marie-Angelique Cazalis
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), bioMérieux S.A., Marcy-l’Étoile, France
| | - Estelle Peronnet
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), bioMérieux S.A., Marcy-l’Étoile, France
| | - Elisabeth Cerrato
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), bioMérieux S.A., Marcy-l’Étoile, France
| | - Claire Tardiveau
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), bioMérieux S.A., Marcy-l’Étoile, France
| | - Filippo Conti
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Immunology Laboratory, Edouard Herriot Hospital – Hospices Civils de Lyon, Lyon, France
| | - Jean-François Llitjos
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), bioMérieux S.A., Marcy-l’Étoile, France
- Anaesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | | | - Guillaume Monneret
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Immunology Laboratory, Edouard Herriot Hospital – Hospices Civils de Lyon, Lyon, France
| | - Sophie Blein
- Data Science, bioMérieux S.A., Marcy-l’Etoile, France
| | - Karen Brengel-Pesce
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression”, Joint Research Unit Université Claude Bernard Lyon 1 – Hospices Civils de Lyon – bioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), bioMérieux S.A., Marcy-l’Étoile, France
| |
Collapse
|
27
|
Ko ER, Henao R, Frankey K, Petzold EA, Isner PD, Jaehne AK, Allen N, Gardner-Gray J, Hurst G, Pflaum-Carlson J, Jayaprakash N, Rivers EP, Wang H, Ugalde I, Amanullah S, Mercurio L, Chun TH, May L, Hickey RW, Lazarus JE, Gunaratne SH, Pallin DJ, Jambaulikar G, Huckins DS, Ampofo K, Jhaveri R, Jiang Y, Komarow L, Evans SR, Ginsburg GS, Tillekeratne LG, McClain MT, Burke TW, Woods CW, Tsalik EL. Prospective Validation of a Rapid Host Gene Expression Test to Discriminate Bacterial From Viral Respiratory Infection. JAMA Netw Open 2022; 5:e227299. [PMID: 35420659 PMCID: PMC9011121 DOI: 10.1001/jamanetworkopen.2022.7299] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Importance Bacterial and viral causes of acute respiratory illness (ARI) are difficult to clinically distinguish, resulting in the inappropriate use of antibacterial therapy. The use of a host gene expression-based test that is able to discriminate bacterial from viral infection in less than 1 hour may improve care and antimicrobial stewardship. Objective To validate the host response bacterial/viral (HR-B/V) test and assess its ability to accurately differentiate bacterial from viral infection among patients with ARI. Design, Setting, and Participants This prospective multicenter diagnostic study enrolled 755 children and adults with febrile ARI of 7 or fewer days' duration from 10 US emergency departments. Participants were enrolled from October 3, 2014, to September 1, 2019, followed by additional enrollment of patients with COVID-19 from March 20 to December 3, 2020. Clinical adjudication of enrolled participants identified 616 individuals as having bacterial or viral infection. The primary analysis cohort included 334 participants with high-confidence reference adjudications (based on adjudicator concordance and the presence of an identified pathogen confirmed by microbiological testing). A secondary analysis of the entire cohort of 616 participants included cases with low-confidence reference adjudications (based on adjudicator discordance or the absence of an identified pathogen in microbiological testing). Thirty-three participants with COVID-19 were included post hoc. Interventions The HR-B/V test quantified the expression of 45 host messenger RNAs in approximately 45 minutes to derive a probability of bacterial infection. Main Outcomes and Measures Performance characteristics for the HR-B/V test compared with clinical adjudication were reported as either bacterial or viral infection or categorized into 4 likelihood groups (viral very likely [probability score <0.19], viral likely [probability score of 0.19-0.40], bacterial likely [probability score of 0.41-0.73], and bacterial very likely [probability score >0.73]) and compared with procalcitonin measurement. Results Among 755 enrolled participants, the median age was 26 years (IQR, 16-52 years); 360 participants (47.7%) were female, and 395 (52.3%) were male. A total of 13 participants (1.7%) were American Indian, 13 (1.7%) were Asian, 368 (48.7%) were Black, 131 (17.4%) were Hispanic, 3 (0.4%) were Native Hawaiian or Pacific Islander, 297 (39.3%) were White, and 60 (7.9%) were of unspecified race and/or ethnicity. In the primary analysis involving 334 participants, the HR-B/V test had sensitivity of 89.8% (95% CI, 77.8%-96.2%), specificity of 82.1% (95% CI, 77.4%-86.6%), and a negative predictive value (NPV) of 97.9% (95% CI, 95.3%-99.1%) for bacterial infection. In comparison, the sensitivity of procalcitonin measurement was 28.6% (95% CI, 16.2%-40.9%; P < .001), the specificity was 87.0% (95% CI, 82.7%-90.7%; P = .006), and the NPV was 87.6% (95% CI, 85.5%-89.5%; P < .001). When stratified into likelihood groups, the HR-B/V test had an NPV of 98.9% (95% CI, 96.1%-100%) for bacterial infection in the viral very likely group and a positive predictive value of 63.4% (95% CI, 47.2%-77.9%) for bacterial infection in the bacterial very likely group. The HR-B/V test correctly identified 30 of 33 participants (90.9%) with acute COVID-19 as having a viral infection. Conclusions and Relevance In this study, the HR-B/V test accurately discriminated bacterial from viral infection among patients with febrile ARI and was superior to procalcitonin measurement. The findings suggest that an accurate point-of-need host response test with high NPV may offer an opportunity to improve antibiotic stewardship and patient outcomes.
Collapse
Affiliation(s)
- Emily R. Ko
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
- Hospital Medicine, Division of General Internal Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
- Department of Biostatistics and Informatics, Duke University, Durham, North Carolina
- Duke Clinical Research Institute, Durham, North Carolina
| | - Katherine Frankey
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Elizabeth A. Petzold
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Pamela D. Isner
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Anja K. Jaehne
- Department of Emergency Medicine, Henry Ford Hospital System, Detroit, Michigan
| | - Nakia Allen
- Department of Pediatrics, Henry Ford Hospital System, Detroit, Michigan
| | - Jayna Gardner-Gray
- Department of Emergency Medicine, Henry Ford Hospital System, Detroit, Michigan
- Department of Medicine, Henry Ford Hospital System, Detroit, Michigan
- Division of Pulmonary and Critical Care Medicine, Henry Ford Hospital System, Detroit, Michigan
| | - Gina Hurst
- Department of Emergency Medicine, Henry Ford Hospital System, Detroit, Michigan
- Department of Medicine, Henry Ford Hospital System, Detroit, Michigan
- Division of Pulmonary and Critical Care Medicine, Henry Ford Hospital System, Detroit, Michigan
| | - Jacqueline Pflaum-Carlson
- Department of Emergency Medicine, Henry Ford Hospital System, Detroit, Michigan
- Department of Medicine, Henry Ford Hospital System, Detroit, Michigan
- Division of Pulmonary and Critical Care Medicine, Henry Ford Hospital System, Detroit, Michigan
| | - Namita Jayaprakash
- Department of Emergency Medicine, Henry Ford Hospital System, Detroit, Michigan
- Division of Pulmonary and Critical Care Medicine, Henry Ford Hospital System, Detroit, Michigan
| | - Emanuel P. Rivers
- Department of Emergency Medicine, Henry Ford Hospital System, Detroit, Michigan
- Department of Surgery, Henry Ford Hospital System, Detroit, Michigan
| | - Henry Wang
- McGovern Medical University of Texas Health, Houston
- Department of Emergency Medicine, The Ohio State University, Columbus
| | - Irma Ugalde
- McGovern Medical University of Texas Health, Houston
| | - Siraj Amanullah
- Department of Emergency Medicine, Alpert Medical School of Brown University, Hasbro Children’s Hospital, Providence, Rhode Island
- Department of Pediatrics, Alpert Medical School of Brown University, Hasbro Children’s Hospital, Providence, Rhode Island
| | - Laura Mercurio
- Department of Emergency Medicine, Alpert Medical School of Brown University, Hasbro Children’s Hospital, Providence, Rhode Island
- Department of Pediatrics, Alpert Medical School of Brown University, Hasbro Children’s Hospital, Providence, Rhode Island
| | - Thomas H. Chun
- Department of Emergency Medicine, Alpert Medical School of Brown University, Hasbro Children’s Hospital, Providence, Rhode Island
- Department of Pediatrics, Alpert Medical School of Brown University, Hasbro Children’s Hospital, Providence, Rhode Island
| | - Larissa May
- Department of Emergency Medicine, University of California, Davis
| | - Robert W. Hickey
- Division of Pediatric Emergency Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacob E. Lazarus
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Shauna H. Gunaratne
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Daniel J. Pallin
- Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - David S. Huckins
- Department of Emergency Medicine, Newton-Wellesley Hospital, Boston, Massachusetts
| | - Krow Ampofo
- Department of Pediatrics, University of Utah, Salt Lake City
| | - Ravi Jhaveri
- Department of Pediatrics, University of North Carolina at Chapel Hill
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yunyun Jiang
- The Biostatistics Center, George Washington University, Rockville, Maryland
| | - Lauren Komarow
- The Biostatistics Center, George Washington University, Rockville, Maryland
| | - Scott R. Evans
- The Biostatistics Center, George Washington University, Rockville, Maryland
| | - Geoffrey S. Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
| | - L. Gayani Tillekeratne
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Medical Service, Durham Veterans Affairs Health Care System, Durham, North Carolina
| | - Micah T. McClain
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Medical Service, Durham Veterans Affairs Health Care System, Durham, North Carolina
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Christopher W. Woods
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Medical Service, Durham Veterans Affairs Health Care System, Durham, North Carolina
| | - Ephraim L. Tsalik
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Emergency Medicine Service, Durham Veterans Affairs Health Care System, Durham, North Carolina
| |
Collapse
|
28
|
Liu YE, Saul S, Rao AM, Robinson ML, Agudelo Rojas OL, Sanz AM, Verghese M, Solis D, Sibai M, Huang CH, Sahoo MK, Gelvez RM, Bueno N, Estupiñan Cardenas MI, Villar Centeno LA, Rojas Garrido EM, Rosso F, Donato M, Pinsky BA, Einav S, Khatri P. An 8-gene machine learning model improves clinical prediction of severe dengue progression. Genome Med 2022; 14:33. [PMID: 35346346 PMCID: PMC8959795 DOI: 10.1186/s13073-022-01034-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Each year 3-6 million people develop life-threatening severe dengue (SD). Clinical warning signs for SD manifest late in the disease course and are nonspecific, leading to missed cases and excess hospital burden. Better SD prognostics are urgently needed. METHODS We integrated 11 public datasets profiling the blood transcriptome of 365 dengue patients of all ages and from seven countries, encompassing biological, clinical, and technical heterogeneity. We performed an iterative multi-cohort analysis to identify differentially expressed genes (DEGs) between non-severe patients and SD progressors. Using only these DEGs, we trained an XGBoost machine learning model on public data to predict progression to SD. All model parameters were "locked" prior to validation in an independent, prospectively enrolled cohort of 377 dengue patients in Colombia. We measured expression of the DEGs in whole blood samples collected upon presentation, prior to SD progression. We then compared the accuracy of the locked XGBoost model and clinical warning signs in predicting SD. RESULTS We identified eight SD-associated DEGs in the public datasets and built an 8-gene XGBoost model that accurately predicted SD progression in the independent validation cohort with 86.4% (95% CI 68.2-100) sensitivity and 79.7% (95% CI 75.5-83.9) specificity. Given the 5.8% proportion of SD cases in this cohort, the 8-gene model had a positive and negative predictive value (PPV and NPV) of 20.9% (95% CI 16.7-25.6) and 99.0% (95% CI 97.7-100.0), respectively. Compared to clinical warning signs at presentation, which had 77.3% (95% CI 58.3-94.1) sensitivity and 39.7% (95% CI 34.7-44.9) specificity, the 8-gene model led to an 80% reduction in the number needed to predict (NNP) from 25.4 to 5.0. Importantly, the 8-gene model accurately predicted subsequent SD in the first three days post-fever onset and up to three days prior to SD progression. CONCLUSIONS The 8-gene XGBoost model, trained on heterogeneous public datasets, accurately predicted progression to SD in a large, independent, prospective cohort, including during the early febrile stage when SD prediction remains clinically difficult. The model has potential to be translated to a point-of-care prognostic assay to reduce dengue morbidity and mortality without overwhelming limited healthcare resources.
Collapse
Affiliation(s)
- Yiran E. Liu
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Cancer Biology Graduate Program, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA
| | - Sirle Saul
- grid.168010.e0000000419368956Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA
| | - Aditya Manohar Rao
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Immunology Graduate Program, School of Medicine, Stanford University, CA Stanford, USA
| | - Makeda Lucretia Robinson
- grid.168010.e0000000419368956Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | | | - Ana Maria Sanz
- grid.477264.4Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Michelle Verghese
- grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Daniel Solis
- grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Mamdouh Sibai
- grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Chun Hong Huang
- grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Malaya Kumar Sahoo
- grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Rosa Margarita Gelvez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Bucaramanga, Colombia
| | - Nathalia Bueno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Bucaramanga, Colombia
| | | | | | | | - Fernando Rosso
- grid.477264.4Clinical Research Center, Fundación Valle del Lili, Cali, Colombia ,grid.477264.4Division of Infectious Diseases, Department of Internal Medicine, Fundación Valle del Lili, Cali, Colombia
| | - Michele Donato
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA
| | - Benjamin A. Pinsky
- grid.168010.e0000000419368956Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Shirit Einav
- grid.168010.e0000000419368956Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Department of Microbiology and Immunology, School of Medicine, Stanford University, CA Stanford, USA
| | - Purvesh Khatri
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA
| |
Collapse
|
29
|
Ram-Mohan N, Rogers AJ, Blish CA, Nadeau KC, Zudock EJ, Kim D, Quinn JV, Sun L, Liesenfeld O, Yang S. Detection of bacterial co-infections and prediction of fatal outcomes in COVID-19 patients presenting to the emergency department using a 29 mRNA host response classifier. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.03.14.22272394. [PMID: 35313598 PMCID: PMC8936113 DOI: 10.1101/2022.03.14.22272394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective Clinicians in the emergency department (ED) face challenges in concurrently assessing patients with suspected COVID-19 infection, detecting bacterial co-infection, and determining illness severity since current practices require separate workflows. Here we explore the accuracy of the IMX-BVN-3/IMX-SEV-3 29 mRNA host response classifiers in simultaneously detecting SARS-CoV-2 infection, bacterial co-infections, and predicting clinical severity of COVID-19. Methods 161 patients with PCR-confirmed COVID-19 (52.2% female, median age 50.0 years, 51% hospitalized, 5.6% deaths) were enrolled at the Stanford Hospital ED. RNA was extracted (2.5 mL whole blood in PAXgene Blood RNA) and 29 host mRNAs in response to the infection were quantified using Nanostring nCounter. Results The IMX-BVN-3 classifier identified SARS-CoV-2 infection in 151 patients with a sensitivity of 93.8%. Six of 10 patients undetected by the classifier had positive COVID tests more than 9 days prior to enrolment and the remaining oscillated between positive and negative results in subsequent tests. The classifier also predicted that 6 (3.7%) patients had a bacterial co-infection. Clinical adjudication confirmed that 5/6 (83.3%) of the patients had bacterial infections, i.e. Clostridioides difficile colitis (n=1), urinary tract infection (n=1), and clinically diagnosed bacterial infections (n=3) for a specificity of 99.4%. 2/101 (2.8%) patients in the IMX-SEV-3 Low and 7/60 (11.7%) in the Moderate severity classifications died within thirty days of enrollment. Conclusions IMX-BVN-3/IMX-SEV-3 classifiers accurately identified patients with COVID-19, bacterial co-infections, and predicted patients’ risk of death. A point-of-care version of these classifiers, under development, could improve ED patient management including more accurate treatment decisions and optimized resource utilization.
Collapse
Affiliation(s)
- Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Angela J. Rogers
- Department of Medicine-Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Catherine A. Blish
- Department of Medicine/Infectious Diseases, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kari C. Nadeau
- Department of Medicine-Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Elizabeth J Zudock
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Kim
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - James V. Quinn
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
30
|
Bodkin N, Ross M, McClain MT, Ko ER, Woods CW, Ginsburg GS, Henao R, Tsalik EL. Systematic comparison of published host gene expression signatures for bacterial/viral discrimination. Genome Med 2022; 14:18. [PMID: 35184750 PMCID: PMC8858657 DOI: 10.1186/s13073-022-01025-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Background Measuring host gene expression is a promising diagnostic strategy to discriminate bacterial and viral infections. Multiple signatures of varying size, complexity, and target populations have been described. However, there is little information to indicate how the performance of various published signatures compare to one another. Methods This systematic comparison of host gene expression signatures evaluated the performance of 28 signatures, validating them in 4589 subjects from 51 publicly available datasets. Thirteen COVID-specific datasets with 1416 subjects were included in a separate analysis. Individual signature performance was evaluated using the area under the receiving operating characteristic curve (AUC) value. Overall signature performance was evaluated using median AUCs and accuracies. Results Signature performance varied widely, with median AUCs ranging from 0.55 to 0.96 for bacterial classification and 0.69–0.97 for viral classification. Signature size varied (1–398 genes), with smaller signatures generally performing more poorly (P < 0.04). Viral infection was easier to diagnose than bacterial infection (84% vs. 79% overall accuracy, respectively; P < .001). Host gene expression classifiers performed more poorly in some pediatric populations (3 months–1 year and 2–11 years) compared to the adult population for both bacterial infection (73% and 70% vs. 82%, respectively; P < .001) and viral infection (80% and 79% vs. 88%, respectively; P < .001). We did not observe classification differences based on illness severity as defined by ICU admission for bacterial or viral infections. The median AUC across all signatures for COVID-19 classification was 0.80 compared to 0.83 for viral classification in the same datasets. Conclusions In this systematic comparison of 28 host gene expression signatures, we observed differences based on a signature’s size and characteristics of the validation population, including age and infection type. However, populations used for signature discovery did not impact performance, underscoring the redundancy among many of these signatures. Furthermore, differential performance in specific populations may only be observable through this type of large-scale validation. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01025-x.
Collapse
|
31
|
Hasin-Brumshtein Y, Sakaram S, Khatri P, He YD, Sweeney TE. A robust gene expression signature for NASH in liver expression data. Sci Rep 2022; 12:2571. [PMID: 35173224 PMCID: PMC8850484 DOI: 10.1038/s41598-022-06512-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a progressive liver disease that affects up to 30% of worldwide population, of which up to 25% progress to Non-Alcoholic SteatoHepatitis (NASH), a severe form of the disease that involves inflammation and predisposes the patient to liver cirrhosis. Despite its epidemic proportions, there is no reliable diagnostics that generalizes to global patient population for distinguishing NASH from NAFLD. We performed a comprehensive multicohort analysis of publicly available transcriptome data of liver biopsies from Healthy Controls (HC), NAFLD and NASH patients. Altogether we analyzed 812 samples from 12 different datasets across 7 countries, encompassing real world patient heterogeneity. We used 7 datasets for discovery and 5 datasets were held-out for independent validation. Altogether we identified 130 genes significantly differentially expressed in NASH versus a mixed group of NAFLD and HC. We show that our signature is not driven by one particular group (NAFLD or HC) and reflects true biological signal. Using a forward search we were able to downselect to a parsimonious set of 19 mRNA signature with mean AUROC of 0.98 in discovery and 0.79 in independent validation. Methods for consistent diagnosis of NASH relative to NAFLD are urgently needed. We showed that gene expression data combined with advanced statistical methodology holds the potential to serve basis for development of such diagnostic tests for the unmet clinical need.
Collapse
Affiliation(s)
| | - Suraj Sakaram
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, 94305, USA.,Department of Medicine, Center for Biomedical Informatics Research, Stanford University, Stanford, CA, 94305, USA
| | - Yudong D He
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.
| | - Timothy E Sweeney
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.
| |
Collapse
|
32
|
Wang R, Zheng X, Wang J, Wan S, Song F, Wong MH, Leung KS, Cheng L. Improving bulk RNA-seq classification by transferring gene signature from single cells in acute myeloid leukemia. Brief Bioinform 2022; 23:6523149. [PMID: 35136933 DOI: 10.1093/bib/bbac002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
The advances in single-cell RNA sequencing (scRNA-seq) technologies enable the characterization of transcriptomic profiles at the cellular level and demonstrate great promise in bulk sample analysis thereby offering opportunities to transfer gene signature from scRNA-seq to bulk data. However, the gene expression signatures identified from single cells are typically inapplicable to bulk RNA-seq data due to the profiling differences of distinct sequencing technologies. Here, we propose single-cell pair-wise gene expression (scPAGE), a novel method to develop single-cell gene pair signatures (scGPSs) that were beneficial to bulk RNA-seq classification to transfer knowledge across platforms. PAGE was adopted to tackle the challenge of profiling differences. We applied the method to acute myeloid leukemia (AML) and identified the scGPS from mouse scRNA-seq that allowed discriminating between AML and control cells. The scGPS was validated in bulk RNA-seq datasets and demonstrated better performance (average area under the curve [AUC] = 0.96) than the conventional gene expression strategies (average AUC$\le$ 0.88) suggesting its potential in disclosing the molecular mechanism of AML. The scGPS also outperformed its bulk counterpart, which highlighted the benefit of gene signature transfer. Furthermore, we confirmed the utility of scPAGE in sepsis as an example of other disease scenarios. scPAGE leveraged the advantages of single-cell profiles to enhance the analysis of bulk samples revealing great potential of transferring knowledge from single-cell to bulk transcriptome studies.
Collapse
Affiliation(s)
- Ran Wang
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xubin Zheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Jun Wang
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Fangda Song
- School of Data Science, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Man Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwong Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lixin Cheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| |
Collapse
|
33
|
Atallah J, Mansour MK. Implications of Using Host Response-Based Molecular Diagnostics on the Management of Bacterial and Viral Infections: A Review. Front Med (Lausanne) 2022; 9:805107. [PMID: 35186993 PMCID: PMC8850635 DOI: 10.3389/fmed.2022.805107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Host-based diagnostics are a rapidly evolving field that may serve as an alternative to traditional pathogen-based diagnostics for infectious diseases. Understanding the exact mechanisms underlying a host-immune response and deriving specific host-response signatures, biomarkers and gene transcripts will potentially achieve improved diagnostics that will ultimately translate to better patient outcomes. Several studies have focused on novel techniques and assays focused on immunodiagnostics. In this review, we will highlight recent publications on the current use of host-based diagnostics alone or in combination with traditional microbiological assays and their potential future implications on the diagnosis and prognostic accuracy for the patient with infectious complications. Finally, we will address the cost-effectiveness implications from a healthcare and public health perspective.
Collapse
Affiliation(s)
- Johnny Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
A 6-mRNA host response classifier in whole blood predicts outcomes in COVID-19 and other acute viral infections. Sci Rep 2022; 12:889. [PMID: 35042868 PMCID: PMC8766462 DOI: 10.1038/s41598-021-04509-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/23/2021] [Indexed: 01/26/2023] Open
Abstract
Predicting the severity of COVID-19 remains an unmet medical need. Our objective was to develop a blood-based host-gene-expression classifier for the severity of viral infections and validate it in independent data, including COVID-19. We developed a logistic regression-based classifier for the severity of viral infections and validated it in multiple viral infection settings including COVID-19. We used training data (N = 705) from 21 retrospective transcriptomic clinical studies of influenza and other viral illnesses looking at a preselected panel of host immune response messenger RNAs. We selected 6 host RNAs and trained logistic regression classifier with a cross-validation area under curve of 0.90 for predicting 30-day mortality in viral illnesses. Next, in 1417 samples across 21 independent retrospective cohorts the locked 6-RNA classifier had an area under curve of 0.94 for discriminating patients with severe vs. non-severe infection. Next, in independent cohorts of prospectively (N = 97) and retrospectively (N = 100) enrolled patients with confirmed COVID-19, the classifier had an area under curve of 0.89 and 0.87, respectively, for identifying patients with severe respiratory failure or 30-day mortality. Finally, we developed a loop-mediated isothermal gene expression assay for the 6-messenger-RNA panel to facilitate implementation as a rapid assay. With further study, the classifier could assist in the risk assessment of COVID-19 and other acute viral infections patients to determine severity and level of care, thereby improving patient management and reducing healthcare burden.
Collapse
|
35
|
Tran NK, Albahra S, Rashidi H, May L. Innovations in infectious disease testing: Leveraging COVID-19 pandemic technologies for the future. Clin Biochem 2022; 117:10-15. [PMID: 34998789 PMCID: PMC8735816 DOI: 10.1016/j.clinbiochem.2021.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/13/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
Abstract
Innovations in infectious disease testing have improved our abilities to detect and understand the microbial world. The 2019 novel coronavirus infectious disease (COVID-19) pandemic introduced new innovations including non-prescription “over the counter” infectious disease tests, mass spectrometry-based detection of COVID-19 host response, and the implementation of artificial intelligence (AI) and machine learning (ML) to identify individuals infected by the severe acute respiratory syndrome - coronavirus – 2 (SARS-CoV-2). As the world recovers from the COVID-19 pandemic; these innovative solutions will give rise to a new era of infectious disease tests extending beyond the detection of SARS-CoV-2. To this end, the purpose of this review is to summarize current trends in infectious disease testing and discuss innovative applications specifically in the areas of POC testing, MS, molecular diagnostics, sample types, and AI/ML.
Collapse
Affiliation(s)
- Nam K Tran
- Dept. of Pathology and Laboratory Medicine, UC Davis School of Medicine, United States.
| | - Samer Albahra
- Dept. of Pathology and Laboratory Medicine, UC Davis School of Medicine, United States
| | - Hooman Rashidi
- Dept. of Pathology and Laboratory Medicine, UC Davis School of Medicine, United States
| | - Larissa May
- Department of Emergency Medicine, UC Davis School of Medicine, United States
| |
Collapse
|
36
|
Pediatric sepsis biomarkers for prognostic and predictive enrichment. Pediatr Res 2022; 91:283-288. [PMID: 34127800 PMCID: PMC8202042 DOI: 10.1038/s41390-021-01620-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/29/2022]
Abstract
Sepsis is a major public health problem in children throughout the world. Given that the treatment guidelines emphasize early recognition, there is interest in developing biomarkers of sepsis, and most attention is focused on diagnostic biomarkers. While there is a need for ongoing discovery and development of diagnostic biomarkers for sepsis, this review will focus on less well-known applications of sepsis biomarkers. Among patients with sepsis, the biomarkers can give information regarding the risk of poor outcome from sepsis, risk of sepsis-related organ dysfunction, and subgroups of patients with sepsis who share underlying biological features potentially amenable to targeted therapeutics. These types of biomarkers, beyond the traditional concept of diagnosis, address the important concepts of prognostic and predictive enrichment, which are key components of bringing the promise of precision medicine to the bedside of children with sepsis.
Collapse
|
37
|
Tran NK, Albahra S, May L, Waldman S, Crabtree S, Bainbridge S, Rashidi H. Evolving Applications of Artificial Intelligence and Machine Learning in Infectious Diseases Testing. Clin Chem 2021; 68:125-133. [PMID: 34969102 PMCID: PMC9383167 DOI: 10.1093/clinchem/hvab239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/15/2021] [Indexed: 12/31/2022]
Abstract
Background Artificial intelligence (AI) and machine learning (ML) are poised to transform infectious disease testing. Uniquely, infectious disease testing is technologically diverse spaces in laboratory medicine, where multiple platforms and approaches may be required to support clinical decision-making. Despite advances in laboratory informatics, the vast array of infectious disease data is constrained by human analytical limitations. Machine learning can exploit multiple data streams, including but not limited to laboratory information and overcome human limitations to provide physicians with predictive and actionable results. As a quickly evolving area of computer science, laboratory professionals should become aware of AI/ML applications for infectious disease testing as more platforms are become commercially available. Content In this review we: (a) define both AI/ML, (b) provide an overview of common ML approaches used in laboratory medicine, (c) describe the current AI/ML landscape as it relates infectious disease testing, and (d) discuss the future evolution AI/ML for infectious disease testing in both laboratory and point-of-care applications. Summary The review provides an important educational overview of AI/ML technique in the context of infectious disease testing. This includes supervised ML approaches, which are frequently used in laboratory medicine applications including infectious diseases, such as COVID-19, sepsis, hepatitis, malaria, meningitis, Lyme disease, and tuberculosis. We also apply the concept of “data fusion” describing the future of laboratory testing where multiple data streams are integrated by AI/ML to provide actionable clinical knowledge.
Collapse
Affiliation(s)
- Nam K Tran
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| | - Samer Albahra
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| | - Larissa May
- Department of Emergency Medicine, UC Davis School of Medicine, CA
| | - Sarah Waldman
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, CA
| | - Scott Crabtree
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, CA
| | - Scott Bainbridge
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| | - Hooman Rashidi
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| |
Collapse
|
38
|
Jaffe IS, Jaehne AK, Quackenbush E, Ko ER, Rivers EP, McClain MT, Ginsburg GS, Woods CW, Tsalik EL. Comparing the Diagnostic Accuracy of Clinician Judgment to a Novel Host Response Diagnostic for Acute Respiratory Illness. Open Forum Infect Dis 2021; 8:ofab564. [PMID: 34888402 DOI: 10.1093/ofid/ofab564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 11/12/2022] Open
Abstract
Background Difficulty discriminating bacterial from viral infections drives antibacterial misuse. Host gene expression tests discriminate bacterial and viral etiologies, but their clinical utility has not been evaluated. Methods Host gene expression and procalcitonin levels were measured in 582 emergency department participants with suspected infection. We also recorded clinician diagnosis and clinician-recommended treatment. These 4 diagnostic strategies were compared with clinical adjudication as the reference. To estimate the clinical impact of host gene expression, we calculated the change in overall Net Benefit (∆NB; the difference in Net Benefit comparing 1 diagnostic strategy with a reference) across a range of prevalence estimates while factoring in the clinical significance of false-positive and -negative errors. Results Gene expression correctly classified bacterial, viral, or noninfectious illness in 74.1% of subjects, similar to the other strategies. Clinical diagnosis and clinician-recommended treatment revealed a bias toward overdiagnosis of bacterial infection resulting in high sensitivity (92.6% and 94.5%, respectively) but poor specificity (67.2% and 58.8%, respectively), resulting in a 33.3% rate of inappropriate antibacterial use. Gene expression offered a more balanced sensitivity (79.0%) and specificity (80.7%), which corresponded to a statistically significant improvement in average weighted accuracy (79.9% vs 71.5% for procalcitonin and 76.3% for clinician-recommended treatment; P<.0001 for both). Consequently, host gene expression had greater Net Benefit in diagnosing bacterial infection than clinician-recommended treatment (∆NB=6.4%) and procalcitonin (∆NB=17.4%). Conclusions Host gene expression-based tests to distinguish bacterial and viral infection can facilitate appropriate treatment, improving patient outcomes and mitigating the antibacterial resistance crisis.
Collapse
Affiliation(s)
- Ian S Jaffe
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anja K Jaehne
- Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, Michigan, USA
| | - Eugenia Quackenbush
- Department of Emergency Medicine, University of North Carolina Medical Center, Chapel Hill, North Carolina, USA
| | - Emily R Ko
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emanuel P Rivers
- Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, Michigan, USA
| | - Micah T McClain
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Medical Service, Durham Veterans Affairs Health Care System, Durham, North Carolina, USA
| | - Geoffrey S Ginsburg
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher W Woods
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Medical Service, Durham Veterans Affairs Health Care System, Durham, North Carolina, USA
| | - Ephraim L Tsalik
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Emergency Medicine Service, Durham Veterans Affairs Health Care System, Durham, North Carolina, USA
| |
Collapse
|
39
|
Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell 2021; 12:911-946. [PMID: 33131025 PMCID: PMC8674396 DOI: 10.1007/s13238-020-00799-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNA (circRNA) is a novel class of single-stranded RNAs with a closed loop structure. The majority of circRNAs are formed by a back-splicing process in pre-mRNA splicing. Their expression is dynamically regulated and shows spatiotemporal patterns among cell types, tissues and developmental stages. CircRNAs have important biological functions in many physiological processes, and their aberrant expression is implicated in many human diseases. Due to their high stability, circRNAs are becoming promising biomarkers in many human diseases, such as cardiovascular diseases, autoimmune diseases and human cancers. In this review, we focus on the translational potential of using human blood circRNAs as liquid biopsy biomarkers for human diseases. We highlight their abundant expression, essential biological functions and significant correlations to human diseases in various components of peripheral blood, including whole blood, blood cells and extracellular vesicles. In addition, we summarize the current knowledge of blood circRNA biomarkers for disease diagnosis or prognosis.
Collapse
Affiliation(s)
- Guoxia Wen
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| | - Wanjun Gu
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
40
|
Almansa R, Herrero-Rodríguez C, Martínez-Huélamo M, Vicente-Andres MDP, Nieto-Barbero JA, Martín-Ballesteros M, Rodilla-Carvajal MDM, de la Fuente A, Ortega A, Alonso-Ramos MJ, Wacker J, Liesenfeld O, Sweeney TE, Bermejo-Martin JF, García-Ortiz L. A host transcriptomic signature for identification of respiratory viral infections in the community. Eur J Clin Invest 2021; 51:e13626. [PMID: 34120332 DOI: 10.1111/eci.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fever-7 is a test evaluating host mRNA expression levels of IFI27, JUP, LAX, HK3, TNIP1, GPAA1 and CTSB in blood able to detect viral infections. This test has been validated mostly in hospital settings. Here we have evaluated Fever-7 to identify the presence of respiratory viral infections in a Community Health Center. METHODS A prospective study was conducted in the "Servicio de Urgencias de Atención Primaria" in Salamanca, Spain. Patients with clinical signs of respiratory infection and at least one point in the National Early Warning Score were recruited. Fever-7 mRNAs were profiled on a Nanostring nCounter® SPRINT instrument from blood collected upon patient enrolment. Viral diagnosis was performed on nasopharyngeal aspirates (NPAs) using the Biofire-RP2 panel. RESULTS A respiratory virus was detected in the NPAs of 66 of the 100 patients enrolled. Median National Early Warning Score was 7 in the group with no virus detected and 6.5 in the group with a respiratory viral infection (P > .05). The Fever-7 score yielded an overall AUC of 0.81 to predict a positive viral syndromic test. The optimal operating point for the Fever-7 score yielded a sensitivity of 82% with a specificity of 71%. Multivariate analysis showed that Fever-7 was a robust marker of viral infection independently of age, sex, major comorbidities and disease severity at presentation (OR [CI95%], 3.73 [2.14-6.51], P < .001). CONCLUSIONS Fever-7 is a promising host immune mRNA signature for the early identification of a respiratory viral infection in the community.
Collapse
Affiliation(s)
- Raquel Almansa
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud, Salamanca, Spain.,Hospital Universitario Río Hortega, Gerencia Regional de Salud, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Herrero-Rodríguez
- Servicio de Urgencias de Atención Primaria de Salamanca (SUAP). Gerencia de Atención Primaria de Salamanca, Gerencia Regional de salud de Castilla y León (SACyL), Salamanca, Spain.,Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Gerencia de Atención Primaria de Salamanca, Gerencia Regional de salud de Castilla y León (SACyL), Salamanca, Spain
| | - Misericordia Martínez-Huélamo
- Servicio de Urgencias de Atención Primaria de Salamanca (SUAP). Gerencia de Atención Primaria de Salamanca, Gerencia Regional de salud de Castilla y León (SACyL), Salamanca, Spain
| | - Maria Del Pilar Vicente-Andres
- Servicio de Urgencias de Atención Primaria de Salamanca (SUAP). Gerencia de Atención Primaria de Salamanca, Gerencia Regional de salud de Castilla y León (SACyL), Salamanca, Spain
| | - Jose Angel Nieto-Barbero
- Servicio de Urgencias de Atención Primaria de Salamanca (SUAP). Gerencia de Atención Primaria de Salamanca, Gerencia Regional de salud de Castilla y León (SACyL), Salamanca, Spain
| | - Miryam Martín-Ballesteros
- Servicio de Urgencias de Atención Primaria de Salamanca (SUAP). Gerencia de Atención Primaria de Salamanca, Gerencia Regional de salud de Castilla y León (SACyL), Salamanca, Spain
| | - Maria Del Mar Rodilla-Carvajal
- Servicio de Urgencias de Atención Primaria de Salamanca (SUAP). Gerencia de Atención Primaria de Salamanca, Gerencia Regional de salud de Castilla y León (SACyL), Salamanca, Spain
| | - Amanda de la Fuente
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud, Salamanca, Spain.,Hospital Universitario Río Hortega, Gerencia Regional de Salud, Valladolid, Spain
| | - Alicia Ortega
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud, Salamanca, Spain.,Hospital Universitario Río Hortega, Gerencia Regional de Salud, Valladolid, Spain
| | - Maria Jesus Alonso-Ramos
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud, Salamanca, Spain
| | | | | | | | - Jesús F Bermejo-Martin
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud, Salamanca, Spain.,Hospital Universitario Río Hortega, Gerencia Regional de Salud, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis García-Ortiz
- Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Gerencia de Atención Primaria de Salamanca, Gerencia Regional de salud de Castilla y León (SACyL), Salamanca, Spain.,Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain
| | | |
Collapse
|
41
|
A Transcriptomic Severity Metric That Predicts Clinical Outcomes in Critically Ill Surgical Sepsis Patients. Crit Care Explor 2021; 3:e0554. [PMID: 34671746 PMCID: PMC8522866 DOI: 10.1097/cce.0000000000000554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Supplemental Digital Content is available in the text. Clinically deployable methods for the rapid and accurate prediction of sepsis severity that could elicit a meaningful change in clinical practice are currently lacking. We evaluated a whole-blood, multiplex host-messenger RNA expression metric, Inflammatix-Severity-2, for identifying septic, hospitalized patients’ likelihood of 30-day mortality, development of chronic critical illness, discharge disposition, and/or secondary infections.
Collapse
|
42
|
Sakaram S, Hasin-Brumshtein Y, Khatri P, He YD, Sweeney TE. A Multi-mRNA Prognostic Signature for Anti-TNFα Therapy Response in Patients with Inflammatory Bowel Disease. Diagnostics (Basel) 2021; 11:1902. [PMID: 34679598 PMCID: PMC8534494 DOI: 10.3390/diagnostics11101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Anti-TNF-alpha (anti-TNFα) therapies have transformed the care and management of inflammatory bowel disease (IBD). However, they are expensive and ineffective in greater than 50% of patients, and they increase the risk of infections, liver issues, arthritis, and lymphoma. With 1.6 million Americans suffering from IBD and global prevalence on the rise, there is a critical unmet need in the use of anti-TNFα therapies: a test for the likelihood of therapy response. Here, as a proof-of-concept, we present a multi-mRNA signature for predicting response to anti-TNFα treatment to improve the efficacy and cost-to-benefit ratio of these biologics. METHODS We surveyed public data repositories and curated four transcriptomic datasets (n = 136) from colonic and ileal mucosal biopsies of IBD patients (pretreatment) who were subjected to anti-TNFα therapy and subsequently adjudicated for response. We applied a multicohort analysis with a leave-one-study-out (LOSO) approach, MetaIntegrator, to identify significant differentially expressed (DE) genes between responders and non-responders and then used a greedy forward search to identify a parsimonious gene signature. We then calculated an anti-TNFα response (ATR) score based on this parsimonious gene signature to predict responder status and assessed discriminatory performance via an area-under-receiver operating-characteristic curve (AUROC). RESULTS We identified 324 significant DE genes between responders and non-responders. The greedy forward search yielded seven genes that robustly distinguish anti-TNFα responders from non-responders, with an AUROC of 0.88 (95% CI: 0.70-1). The Youden index yielded a mean sensitivity of 91%, mean specificity of 76%, and mean accuracy of 86%. CONCLUSIONS Our findings suggest that there is a robust transcriptomic signature for predicting anti-TNFα response in mucosal biopsies from IBD patients prior to treatment initiation. This seven-gene signature should be further investigated for its potential to be translated into a predictive test for clinical use.
Collapse
Affiliation(s)
- Suraj Sakaram
- Inflammatix, Inc., 863 Mitten Rd., Suite 104, Burlingame, CA 94010, USA; (S.S.); (Y.H.-B.)
| | | | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA 94305, USA;
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yudong D. He
- Inflammatix, Inc., 863 Mitten Rd., Suite 104, Burlingame, CA 94010, USA; (S.S.); (Y.H.-B.)
| | - Timothy E. Sweeney
- Inflammatix, Inc., 863 Mitten Rd., Suite 104, Burlingame, CA 94010, USA; (S.S.); (Y.H.-B.)
| |
Collapse
|
43
|
Bauer W, Kappert K, Galtung N, Lehmann D, Wacker J, Cheng HK, Liesenfeld O, Buturovic L, Luethy R, Sweeney TE, Tauber R, Somasundaram R. A Novel 29-Messenger RNA Host-Response Assay From Whole Blood Accurately Identifies Bacterial and Viral Infections in Patients Presenting to the Emergency Department With Suspected Infections: A Prospective Observational Study. Crit Care Med 2021; 49:1664-1673. [PMID: 34166284 PMCID: PMC8439671 DOI: 10.1097/ccm.0000000000005119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The rapid diagnosis of acute infections and sepsis remains a serious challenge. As a result of limitations in current diagnostics, guidelines recommend early antimicrobials for suspected sepsis patients to improve outcomes at a cost to antimicrobial stewardship. We aimed to develop and prospectively validate a new, 29-messenger RNA blood-based host-response classifier Inflammatix Bacterial Viral Non-Infected version 2 (IMX-BVN-2) to determine the likelihood of bacterial and viral infections. DESIGN Prospective observational study. SETTING Emergency Department, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany. PATIENTS Three hundred twelve adult patients presenting to the emergency department with suspected acute infections or sepsis with at least one vital sign change. INTERVENTIONS None (observational study only). MEASUREMENTS AND MAIN RESULTS Gene expression levels from extracted whole blood RNA was quantified on a NanoString nCounter SPRINT (NanoString Technologies, Seattle, WA). Two predicted probability scores for the presence of bacterial and viral infection were calculated using the IMX-BVN-2 neural network classifier, which was trained on an independent development set. The IMX-BVN-2 bacterial score showed an area under the receiver operating curve for adjudicated bacterial versus ruled out bacterial infection of 0.90 (95% CI, 0.85-0.95) compared with 0.89 (95% CI, 0.84-0.94) for procalcitonin with procalcitonin being used in the adjudication. The IMX-BVN-2 viral score area under the receiver operating curve for adjudicated versus ruled out viral infection was 0.83 (95% CI, 0.77-0.89). CONCLUSIONS IMX-BVN-2 demonstrated accuracy for detecting both viral infections and bacterial infections. This shows the potential of host-response tests as a novel and practical approach for determining the causes of infections, which could improve patient outcomes while upholding antimicrobial stewardship.
Collapse
Affiliation(s)
- Wolfgang Bauer
- Department of Emergency Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Kai Kappert
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Noa Galtung
- Department of Emergency Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Dana Lehmann
- Department of Emergency Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | - Rudolf Tauber
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Rajan Somasundaram
- Department of Emergency Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
44
|
A Host of Host Assays: The Clinical Accuracy of Two Host Gene Expression Assays in Acute Infection. Crit Care Med 2021; 49:1812-1814. [PMID: 34529611 DOI: 10.1097/ccm.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Tsalik EL, Henao R, Montgomery JL, Nawrocki JW, Aydin M, Lydon EC, Ko ER, Petzold E, Nicholson BP, Cairns CB, Glickman SW, Quackenbush E, Kingsmore SF, Jaehne AK, Rivers EP, Langley RJ, Fowler VG, McClain MT, Crisp RJ, Ginsburg GS, Burke TW, Hemmert AC, Woods CW. Discriminating Bacterial and Viral Infection Using a Rapid Host Gene Expression Test. Crit Care Med 2021; 49:1651-1663. [PMID: 33938716 PMCID: PMC8448917 DOI: 10.1097/ccm.0000000000005085] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Host gene expression signatures discriminate bacterial and viral infection but have not been translated to a clinical test platform. This study enrolled an independent cohort of patients to describe and validate a first-in-class host response bacterial/viral test. DESIGN Subjects were recruited from 2006 to 2016. Enrollment blood samples were collected in an RNA preservative and banked for later testing. The reference standard was an expert panel clinical adjudication, which was blinded to gene expression and procalcitonin results. SETTING Four U.S. emergency departments. PATIENTS Six-hundred twenty-three subjects with acute respiratory illness or suspected sepsis. INTERVENTIONS Forty-five-transcript signature measured on the BioFire FilmArray System (BioFire Diagnostics, Salt Lake City, UT) in ~45 minutes. MEASUREMENTS AND MAIN RESULTS Host response bacterial/viral test performance characteristics were evaluated in 623 participants (mean age 46 yr; 45% male) with bacterial infection, viral infection, coinfection, or noninfectious illness. Performance of the host response bacterial/viral test was compared with procalcitonin. The test provided independent probabilities of bacterial and viral infection in ~45 minutes. In the 213-subject training cohort, the host response bacterial/viral test had an area under the curve for bacterial infection of 0.90 (95% CI, 0.84-0.94) and 0.92 (95% CI, 0.87-0.95) for viral infection. Independent validation in 209 subjects revealed similar performance with an area under the curve of 0.85 (95% CI, 0.78-0.90) for bacterial infection and 0.91 (95% CI, 0.85-0.94) for viral infection. The test had 80.1% (95% CI, 73.7-85.4%) average weighted accuracy for bacterial infection and 86.8% (95% CI, 81.8-90.8%) for viral infection in this validation cohort. This was significantly better than 68.7% (95% CI, 62.4-75.4%) observed for procalcitonin (p < 0.001). An additional cohort of 201 subjects with indeterminate phenotypes (coinfection or microbiology-negative infections) revealed similar performance. CONCLUSIONS The host response bacterial/viral measured using the BioFire System rapidly and accurately discriminated bacterial and viral infection better than procalcitonin, which can help support more appropriate antibiotic use.
Collapse
Affiliation(s)
- Ephraim L. Tsalik
- Durham Veterans Affairs Health Care System, Durham, NC, USA
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Informatics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | | | | | - Mert Aydin
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Emily C. Lydon
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Emily R. Ko
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Regional Hospital, Durham, NC, USA
| | - Elizabeth Petzold
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | | | - Charles B. Cairns
- University of North Carolina Medical Center, Chapel Hill, NC, USA
- Drexel University, Philadelphia, PA, USA
| | - Seth W. Glickman
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | | | | | | | | | | | - Vance G. Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Micah T. McClain
- Durham Veterans Affairs Health Care System, Durham, NC, USA
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | | | - Geoffrey S. Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | | | - Christopher W. Woods
- Durham Veterans Affairs Health Care System, Durham, NC, USA
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
46
|
He YD, Wohlford EM, Uhle F, Buturovic L, Liesenfeld O, Sweeney TE. The Optimization and Biological Significance of a 29-Host-Immune-mRNA Panel for the Diagnosis of Acute Infections and Sepsis. J Pers Med 2021; 11:735. [PMID: 34442377 PMCID: PMC8402342 DOI: 10.3390/jpm11080735] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
In response to the unmet need for timely accurate diagnosis and prognosis of acute infections and sepsis, host-immune-response-based tests are being developed to help clinicians make more informed decisions including prescribing antimicrobials, ordering additional diagnostics, and assigning level of care. One such test (InSep™, Inflammatix, Inc.) uses a 29-mRNA panel to determine the likelihood of bacterial infection, the separate likelihood of viral infection, and the risk of physiologic decompensation (severity of illness). The test, being implemented in a rapid point-of-care platform with a turnaround time of 30 min, enables accurate and rapid diagnostic use at the point of impact. In this report, we provide details on how the 29-biomarker signature was chosen and optimized, together with its molecular, immunological, and medical significance to better understand the pathophysiological relevance of altered gene expression in disease. We synthesize key results obtained from gene-level functional annotations, geneset-level enrichment analysis, pathway-level analysis, and gene-network-level upstream regulator analysis. Emerging findings are summarized as hallmarks on immune cell interaction, inflammatory mediators, cellular metabolism and homeostasis, immune receptors, intracellular signaling and antiviral response; and converging themes on neutrophil degranulation and activation involved in immune response, interferon, and other signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy E. Sweeney
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA 94010, USA; (Y.D.H.); (E.M.W.); (F.U.); (L.B.); (O.L.)
| |
Collapse
|
47
|
Safarika A, Wacker JW, Katsaros K, Solomonidi N, Giannikopoulos G, Kotsaki A, Koutelidakis IM, Coyle SM, Cheng HK, Liesenfeld O, Sweeney TE, Giamarellos-Bourboulis EJ. A 29-mRNA host response test from blood accurately distinguishes bacterial and viral infections among emergency department patients. Intensive Care Med Exp 2021; 9:31. [PMID: 34142256 PMCID: PMC8211458 DOI: 10.1186/s40635-021-00394-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Whether or not to administer antibiotics is a common and challenging clinical decision in patients with suspected infections presenting to the emergency department (ED). We prospectively validate InSep, a 29-mRNA blood-based host response test for the prediction of bacterial and viral infections. METHODS The PROMPT trial is a prospective, non-interventional, multi-center clinical study that enrolled 397 adult patients presenting to the ED with signs of acute infection and at least one vital sign change. The infection status was adjudicated using chart review (including a syndromic molecular respiratory panel, procalcitonin and C-reactive protein) by three infectious disease physicians blinded to InSep results. InSep (version BVN-2) was performed using PAXgene Blood RNA processed and quantified on NanoString nCounter SPRINT. InSep results (likelihood of bacterial and viral infection) were compared to the adjudicated infection status. RESULTS Subject mean age was 64 years, comorbidities were significant for diabetes (17.1%), chronic obstructive pulmonary disease (13.6%), and severe neurological disease (6.8%); 16.9% of subjects were immunocompromised. Infections were adjudicated as bacterial (14.1%), viral (11.3%) and noninfected (0.25%): 74.1% of subjects were adjudicated as indeterminate. InSep distinguished bacterial vs. viral/noninfected patients and viral vs. bacterial/noninfected patients using consensus adjudication with AUROCs of 0.94 (95% CI 0.90-0.99) and 0.90 (95% CI 0.83-0.96), respectively. AUROCs for bacterial vs. viral/noninfected patients were 0.88 (95% CI 0.79-0.96) for PCT, 0.80 (95% CI 0.72-89) for CRP and 0.78 (95% CI 0.69-0.87) for white blood cell counts (of note, the latter biomarkers were provided as part of clinical adjudication). To enable clinical actionability, InSep incorporates score cutoffs to allocate patients into interpretation bands. The Very Likely (rule in) InSep bacterial band showed a specificity of 98% compared to 94% for the corresponding PCT band (> 0.5 µg/L); the Very Unlikely (rule-out) band showed a sensitivity of 95% for InSep compared to 86% for PCT. For the detection of viral infections, InSep demonstrated a specificity of 93% for the Very Likely band (rule in) and a sensitivity of 96% for the Very Unlikely band (rule out). CONCLUSIONS InSep demonstrated high accuracy for predicting the presence of both bacterial and viral infections in ED patients with suspected acute infections or suspected sepsis. When translated into a rapid, point-of-care test, InSep will provide ED physicians with actionable results supporting early informed treatment decisions to improve patient outcomes while upholding antimicrobial stewardship. Registration number at Clinicaltrials.gov NCT03295825.
Collapse
Affiliation(s)
- Asimina Safarika
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, ATTIKON University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | | | | | - Nicky Solomonidi
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, ATTIKON University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | | | - Antigone Kotsaki
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, ATTIKON University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | | | | | - Henry K Cheng
- Inflammatix Inc, Clinical Affairs, Burlingame, CA, USA
| | | | | | - Evangelos J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, ATTIKON University Hospital, 1 Rimini Str, 12462, Athens, Greece.
| |
Collapse
|
48
|
Jones LM, Khatri P. Multisystem inflammatory syndrome in children: a microcosm of challenges and opportunities for translational bioinformatics in pediatric research. Curr Opin Pediatr 2021; 33:325-330. [PMID: 33871421 PMCID: PMC8096697 DOI: 10.1097/mop.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Despite significant progress in our understanding and clinical management of multisystem inflammatory syndrome in children (MIS-C), significant challenges remain. Here, we review recently published studies on the clinical diagnosis, risk stratification, and treatment of MIS-C, highlighting key gaps in research progress that are a microcosm for challenges in translational pediatric research. We then discuss potential solutions in the realm of translational bioinformatics. RECENT FINDINGS Current case definitions are inconsistent and do not capture the underlying pathophysiology of MIS-C, which remains poorly understood. Although overall mortality is low, some patients rapidly decompensate, and a test to identify those at risk for severe outcomes remains an unmet need. Treatment consists of various combinations of immunoglobulins, corticosteroids, and biologics, based on extrapolated data and expert opinion, while the benefits remain unclear as we await the completion of clinical trials. SUMMARY The small size and heterogeneity of the pediatric population contribute to unmet needs because of financial and logistical constraints of the current research infrastructure focused on eliminating most sources of heterogeneity, leading to ungeneralizable results. Data sharing and meta-analysis of gene expression shows promise to accelerate progress in the field of MIS-C as well as other childhood diseases beyond the current pandemic.
Collapse
Affiliation(s)
- Lara Murphy Jones
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA 94305
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA 94305
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Stanford University, CA 94305
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA 94305
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA 94305
| |
Collapse
|
49
|
Zandstra J, Jongerius I, Kuijpers TW. Future Biomarkers for Infection and Inflammation in Febrile Children. Front Immunol 2021; 12:631308. [PMID: 34079538 PMCID: PMC8165271 DOI: 10.3389/fimmu.2021.631308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Febrile patients, suffering from an infection, inflammatory disease or autoimmunity may present with similar or overlapping clinical symptoms, which makes early diagnosis difficult. Therefore, biomarkers are needed to help physicians form a correct diagnosis and initiate the right treatment to improve patient outcomes following first presentation or admittance to hospital. Here, we review the landscape of novel biomarkers and approaches of biomarker discovery. We first discuss the use of current plasma parameters and whole blood biomarkers, including results obtained by RNA profiling and mass spectrometry, to discriminate between bacterial and viral infections. Next we expand upon the use of biomarkers to distinguish between infectious and non-infectious disease. Finally, we discuss the strengths as well as the potential pitfalls of current developments. We conclude that the use of combination tests, using either protein markers or transcriptomic analysis, have advanced considerably and should be further explored to improve current diagnostics regarding febrile infections and inflammation. If proven effective when combined, these biomarker signatures will greatly accelerate early and tailored treatment decisions.
Collapse
Affiliation(s)
- Judith Zandstra
- Division Research and Landsteiner Laboratory, Department of Immunopathology, Sanquin Blood Supply, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, Netherlands
| | - Ilse Jongerius
- Division Research and Landsteiner Laboratory, Department of Immunopathology, Sanquin Blood Supply, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, Netherlands
- Division Research and Landsteiner Laboratory, Department of Blood Cell Research, Sanquin Blood Supply, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
50
|
Wu M, Du X, Gu R, Wei J. Artificial Intelligence for Clinical Decision Support in Sepsis. Front Med (Lausanne) 2021; 8:665464. [PMID: 34055839 PMCID: PMC8155362 DOI: 10.3389/fmed.2021.665464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Sepsis is one of the main causes of death in critically ill patients. Despite the continuous development of medical technology in recent years, its morbidity and mortality are still high. This is mainly related to the delay in starting treatment and non-adherence of clinical guidelines. Artificial intelligence (AI) is an evolving field in medicine, which has been used to develop a variety of innovative Clinical Decision Support Systems. It has shown great potential in predicting the clinical condition of patients and assisting in clinical decision-making. AI-derived algorithms can be applied to multiple stages of sepsis, such as early prediction, prognosis assessment, mortality prediction, and optimal management. This review describes the latest literature on AI for clinical decision support in sepsis, and outlines the application of AI in the prediction, diagnosis, subphenotyping, prognosis assessment, and clinical management of sepsis. In addition, we discussed the challenges of implementing and accepting this non-traditional methodology for clinical purposes.
Collapse
Affiliation(s)
- Miao Wu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xianjin Du
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Raymond Gu
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jie Wei
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|