1
|
Li D, Zhai J, Wang K, Shen Y, Huang X. Three-Dimensional Reconstruction-Characterization of Polymeric Membranes: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2891-2916. [PMID: 39913944 DOI: 10.1021/acs.est.4c09734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Polymeric membranes serve as vital separation materials in diverse energy and environmental applications. A comprehensive understanding of three-dimensional (3D) structures of membranes is critical to performance evaluation and future design. Such quantitative 3D structural information is beyond the limit of most employed conventional two-dimentional characterization techniques such as scanning electron microscopy. In this review, we summarize eight types of 3D reconstruction-characterization techniques for membrane materials. Originated from life and materials science, these techniques have been optimized to reveal the 3D structures of membrane materials in the separation field. We systematically introduce the theories of each technique, summarize the sample preparation procedures developed for membrane materials, and demonstrate step-by-step data processing, including 3D model reconstruction and subsequent characterization. Representative case studies are introduced to show the progress of this field and how technical challenges have been overcome over the years. In the end, we share our perspectives and believe that this review can serve as a useful reference for 3D reconstruction-characterization techniques developed for membrane materials.
Collapse
Affiliation(s)
- Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
| | - Juan Zhai
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
| | - Yuexiao Shen
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
- Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Vega Ibáñez F, Verbeeck J. Retrieval of Phase Information from Low-Dose Electron Microscopy Experiments: Are We at the Limit Yet? MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae125. [PMID: 39804730 DOI: 10.1093/mam/ozae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
The challenge of imaging low-density objects in an electron microscope without causing beam damage is significant in modern transmission electron microscopy. This is especially true for life science imaging, where the sample, rather than the instrument, still determines the resolution limit. Here, we explore whether we have to accept this or can progress further in this area. To do this, we use numerical simulations to see how much information we can obtain from a weak phase object at different electron doses. Starting from a model with four phase values, we compare Zernike phase contrast with measuring diffracted intensity under multiple random phase illuminations to solve the inverse problem. Our simulations have shown that diffraction-based methods perform better than the Zernike method, as we have found and addressed a normalization issue that, in some other studies, led to an overly optimistic representation of the Zernike setup. We further validated this using more realistic 2D objects and found that random phase illuminated diffraction can be up to five times more efficient than an ideal Zernike implementation. These findings suggest that diffraction-based methods could be a promising approach for imaging beam-sensitive materials and that current low-dose imaging methods are not yet at the quantum limit.
Collapse
Affiliation(s)
- Francisco Vega Ibáñez
- EMAT, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium
- Nanocenter of excellence, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium
| | - Jo Verbeeck
- EMAT, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium
- Nanocenter of excellence, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium
| |
Collapse
|
3
|
Li G, Xu M, Tang WQ, Liu Y, Chen C, Zhang D, Liu L, Ning S, Zhang H, Gu ZY, Lai Z, Muller DA, Han Y. Atomically resolved imaging of radiation-sensitive metal-organic frameworks via electron ptychography. Nat Commun 2025; 16:914. [PMID: 39837871 PMCID: PMC11750992 DOI: 10.1038/s41467-025-56215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Electron ptychography, recognized as an ideal technique for low-dose imaging, consistently achieves deep sub-angstrom resolution at electron doses of several thousand electrons per square angstrom (e-/Å2) or higher. Despite its proven efficacy, the application of electron ptychography at even lower doses-necessary for materials highly sensitive to electron beams-raises questions regarding its feasibility and the attainable resolution under such stringent conditions. Herein, we demonstrate the implementation of near-atomic-resolution ( ~ 2 Å) electron ptychography reconstruction at electron doses as low as ~100 e-/Å2, for metal-organic frameworks (MOFs), which are known for their extreme sensitivity. The reconstructed images clearly resolve organic linkers, metal clusters, and even atomic columns within these clusters, while unravelling various local structural features in MOFs, including missing linkers, extra clusters, and surface termination modes. By combining the findings from simulations and experiments, we have identified that employing a small convergence semi-angle during data acquisition is crucial for effective iterative ptychographic reconstruction under such low-dose conditions. This important insight advances our understanding of the rapidly evolving electron ptychography technique and provides a novel approach to high-resolution imaging of various sensitive materials.
Collapse
Affiliation(s)
- Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Ying Liu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Lingmei Liu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Shoucong Ning
- Department of Physics, University of Science and Technology of China, Hefei, China.
| | - Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou, China.
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou, China.
| |
Collapse
|
4
|
Jílek Z, Radlička T, Krzyžánek V. Simulation Study of Low-Dose 4D-STEM Phase Contrast Techniques at the Nanoscale in SEM. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:70. [PMID: 39791828 PMCID: PMC11722761 DOI: 10.3390/nano15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE). We simulate the four-dimensional scanning transmission electron microscopy (4D-STEM) datasets for specific parameters corresponding to a scanning electron microscope (SEM) with an immersive objective and a given pixelated detector. The performance of these phase contrast techniques is analyzed using a contrast transfer function. Simulated datasets from a sample consisting of graphene sheets and carbon nanotubes are used for iCOM and ePIE reconstructions for two aperture sizes and two electron doses. We highlight the influence of aperture size, showing that for a smaller aperture, the radiation dose is spent mostly on larger sample features, which may aid in imaging sensitive samples while minimizing radiation damage.
Collapse
Affiliation(s)
| | - Tomáš Radlička
- Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61200 Brno, Czech Republic; (Z.J.); (V.K.)
| | | |
Collapse
|
5
|
Miao J. Computational microscopy with coherent diffractive imaging and ptychography. Nature 2025; 637:281-295. [PMID: 39780004 DOI: 10.1038/s41586-024-08278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/23/2024] [Indexed: 01/11/2025]
Abstract
Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations. Here, I review the innovative developments in CDI and ptychography, which achieve exceptional imaging capabilities across nine orders of magnitude in length scales, from resolving atomic structures in materials at sub-ångstrom resolution to quantitative phase imaging of centimetre-sized tissues, using the same principle and similar computational algorithms. These methods have been applied to determine the 3D atomic structures of crystal defects and amorphous materials, visualize oxygen vacancies in high-temperature superconductors and capture ultrafast dynamics. They have also been used for nanoscale imaging of magnetic, quantum and energy materials, nanomaterials, integrated circuits and biological specimens. By harnessing fourth-generation synchrotron radiation, X-ray-free electron lasers, high-harmonic generation, electron microscopes, optical microscopes, cutting-edge detectors and deep learning, CDI and ptychography are poised to make even greater contributions to multidisciplinary sciences in the years to come.
Collapse
Affiliation(s)
- Jianwei Miao
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Smith J, Tran H, Roccapriore KM, Shen Z, Zhang G, Chi M. Advanced Compressive Sensing and Dynamic Sampling for 4D-STEM Imaging of Interfaces. SMALL METHODS 2025; 9:e2400742. [PMID: 39324310 DOI: 10.1002/smtd.202400742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Indexed: 09/27/2024]
Abstract
Interfaces in energy materials and devices often involve beam-sensitive materials such as fast ionic, soft, or liquid phases. 4D scanning transmission electron microscopy (4D-STEM) offers insights into local lattice, strain charge, and field distributions, but faces challenges in analyzing beam-sensitive interfaces at high spatial resolutions. Here, a 4D-STEM compressive sensing algorithm is introduced that significantly reduces data acquisition time and electron dose. This method autonomously allocates probe positions on interfaces and reconstructs missing information from datasets acquired via dynamic sampling. This algorithm allows for the integration of various scanning schemes and electron probe conditions to optimize data integrity. Its data reconstruction employs a neural network and an autoencoder to correlate diffraction pattern features with measured properties, significantly reducing training costs. The accuracy of the reconstructed 4D-STEM datasets is verified using a combination of explicitly and implicitly trained parameters from atomic resolution datasets. This method is broadly applicable for 4D-STEM imaging of any local features of interest and will be available on GitHub upon publication.
Collapse
Affiliation(s)
- Jacob Smith
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Hoang Tran
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kevin M Roccapriore
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zhaiming Shen
- Department of Mathematics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Guannan Zhang
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
7
|
Zhang H, Li X, Liu J, Lan YQ, Han Y. Advancing Single-Particle Analysis in Synthetic Chemical Systems: A Forward-Looking Discussion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406914. [PMID: 39180273 DOI: 10.1002/adma.202406914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Single-particle analysis (SPA) is a fundamental method of cryo-electron microscopy developed to resolve the structures of biological macromolecules. This method has seen significant success in structural biology, yet its potential applications in synthetic chemical systems remain underexplored. In this perspective article, SPA and associated electron microscopy techniques are first briefly introduced. It is then proposed that SPA is well-suited for structural analysis of chemical systems where discrete, identical macromolecules can be readily obtained. Applicable systems include various clusters such as coinage metal clusters, metal-oxo/sulfur clusters, metal-organic clusters, and supramolecular compounds like coordination cages and metallo-supramolecular cages. When high-quality large single crystals are unattainable, SPA provides an alternative method for determining their structures. Beyond these end products, it is suggested that SPA can be instrumental in studying synthetic intermediates of materials with specific building units, such as metal-organic frameworks and zeolites. Given that various intermediates coexist in the reaction system, a purification step is necessary before conducting SPA, which can be facilitated by soft-landing electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou, 510640, China
| | - Xiaopeng Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510631, China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510631, China
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou, 510640, China
| |
Collapse
|
8
|
Stahlberg H. Cryo-electron microscopy in color. Nat Methods 2024; 21:2233-2234. [PMID: 39448879 DOI: 10.1038/s41592-024-02427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Affiliation(s)
- Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Science, EPFL, Lausanne, Switzerland.
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Bekkevold JM, Peters JJP, Ishikawa R, Shibata N, Jones L. Ultra-fast Digital DPC Yielding High Spatio-temporal Resolution for Low-Dose Phase Characterization. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:878-888. [PMID: 39270660 DOI: 10.1093/mam/ozae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
In the scanning transmission electron microscope, both phase imaging of beam-sensitive materials and characterization of a material's functional properties using in situ experiments are becoming more widely available. As the practicable scan speed of 4D-STEM detectors improves, so too does the temporal resolution achievable for both differential phase contrast (DPC) and ptychography. However, the read-out burden of pixelated detectors, and the size of the gigabyte to terabyte sized data sets, remain a challenge for both temporal resolution and their practical adoption. In this work, we combine ultra-fast scan coils and detector signal digitization to show that a high-fidelity DPC phase reconstruction can be achieved from an annular segmented detector. Unlike conventional analog data phase reconstructions from digitized DPC-segment images yield reliable data, even at the fastest scan speeds. Finally, dose fractionation by fast scanning and multi-framing allows for postprocess binning of frame streams to balance signal-to-noise ratio and temporal resolution for low-dose phase imaging for in situ experiments.
Collapse
Affiliation(s)
- Julie Marie Bekkevold
- School of Physics, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
- Advanced Microscopy Laboratory, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin D02 DA31, Ireland
| | - Jonathan J P Peters
- School of Physics, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
- Advanced Microscopy Laboratory, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin D02 DA31, Ireland
| | - Ryo Ishikawa
- Institute of Engineering Innovation, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Lewys Jones
- School of Physics, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
- Advanced Microscopy Laboratory, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin D02 DA31, Ireland
| |
Collapse
|
10
|
Yamada K, Akaishi N, Yatabe K, Takayama Y. Ptychographic phase retrieval via a deep-learning-assisted iterative algorithm. J Appl Crystallogr 2024; 57:1323-1335. [PMID: 39387085 PMCID: PMC11460392 DOI: 10.1107/s1600576724006897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/13/2024] [Indexed: 10/12/2024] Open
Abstract
Ptychography is a powerful computational imaging technique with microscopic imaging capability and adaptability to various specimens. To obtain an imaging result, it requires a phase-retrieval algorithm whose performance directly determines the imaging quality. Recently, deep neural network (DNN)-based phase retrieval has been proposed to improve the imaging quality from the ordinary model-based iterative algorithms. However, the DNN-based methods have some limitations because of the sensitivity to changes in experimental conditions and the difficulty of collecting enough measured specimen images for training the DNN. To overcome these limitations, a ptychographic phase-retrieval algorithm that combines model-based and DNN-based approaches is proposed. This method exploits a DNN-based denoiser to assist an iterative algorithm like ePIE in finding better reconstruction images. This combination of DNN and iterative algorithms allows the measurement model to be explicitly incorporated into the DNN-based approach, improving its robustness to changes in experimental conditions. Furthermore, to circumvent the difficulty of collecting the training data, it is proposed that the DNN-based denoiser be trained without using actual measured specimen images but using a formula-driven supervised approach that systemically generates synthetic images. In experiments using simulation based on a hard X-ray ptychographic measurement system, the imaging capability of the proposed method was evaluated by comparing it with ePIE and rPIE. These results demonstrated that the proposed method was able to reconstruct higher-spatial-resolution images with half the number of iterations required by ePIE and rPIE, even for data with low illumination intensity. Also, the proposed method was shown to be robust to its hyperparameters. In addition, the proposed method was applied to ptychographic datasets of a Simens star chart and ink toner particles measured at SPring-8 BL24XU, which confirmed that it can successfully reconstruct images from measurement scans with a lower overlap ratio of the illumination regions than is required by ePIE and rPIE.
Collapse
Affiliation(s)
- Koki Yamada
- Department of Electrical Engineering and Computer ScienceTokyo University of Agriculture and Technology2-24-16 Naka-cho, KoganeiTokyoJapan
| | - Natsuki Akaishi
- Department of Electrical Engineering and Computer ScienceTokyo University of Agriculture and Technology2-24-16 Naka-cho, KoganeiTokyoJapan
| | - Kohei Yatabe
- Department of Electrical Engineering and Computer ScienceTokyo University of Agriculture and Technology2-24-16 Naka-cho, KoganeiTokyoJapan
| | - Yuki Takayama
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 468-1 Aoba-ku, Sendai, Japan
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba-ku, Sendai, Japan
- Research Center for Green X-Tech, Green Goals Initiative, Tohoku University, 6-6 Aoba-ku, Sendai, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, Japan
| |
Collapse
|
11
|
Küçükoğlu B, Mohammed I, Guerrero-Ferreira RC, Ribet SM, Varnavides G, Leidl ML, Lau K, Nazarov S, Myasnikov A, Kube M, Radecke J, Sachse C, Müller-Caspary K, Ophus C, Stahlberg H. Low-dose cryo-electron ptychography of proteins at sub-nanometer resolution. Nat Commun 2024; 15:8062. [PMID: 39277607 PMCID: PMC11401879 DOI: 10.1038/s41467-024-52403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
Cryo-transmission electron microscopy (cryo-EM) of frozen hydrated specimens is an efficient method for the structural analysis of purified biological molecules. However, cryo-EM and cryo-electron tomography are limited by the low signal-to-noise ratio (SNR) of recorded images, making detection of smaller particles challenging. For dose-resilient samples often studied in the physical sciences, electron ptychography - a coherent diffractive imaging technique using 4D scanning transmission electron microscopy (4D-STEM) - has recently demonstrated excellent SNR and resolution down to tens of picometers for thin specimens imaged at room temperature. Here we apply 4D-STEM and ptychographic data analysis to frozen hydrated proteins, reaching sub-nanometer resolution 3D reconstructions. We employ low-dose cryo-EM with an aberration-corrected, convergent electron beam to collect 4D-STEM data for our reconstructions. The high frame rate of the electron detector allows us to record large datasets of electron diffraction patterns with substantial overlaps between the interaction volumes of adjacent scan positions, from which the scattering potentials of the samples are iteratively reconstructed. The reconstructed micrographs show strong SNR enabling the reconstruction of the structure of apoferritin protein at up to 5.8 Å resolution. We also show structural analysis of the Phi92 capsid and sheath, tobacco mosaic virus, and bacteriorhodopsin at slightly lower resolutions.
Collapse
Affiliation(s)
- Berk Küçükoğlu
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, EPFL, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Rte. de la Sorge, 1015, Lausanne, Switzerland
| | - Inayathulla Mohammed
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, EPFL, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Rte. de la Sorge, 1015, Lausanne, Switzerland
| | - Ricardo C Guerrero-Ferreira
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, EPFL, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Rte. de la Sorge, 1015, Lausanne, Switzerland
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University School of Medicine, 1521 Dickey Drive NE, Atlanta, GA, 30322, USA
| | - Stephanie M Ribet
- National Center for Electron Microscopy (NCEM), Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Georgios Varnavides
- National Center for Electron Microscopy (NCEM), Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720, USA
| | - Max Leo Leidl
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-Universität München, Butenandstr. 11, 81377, München, Germany
| | - Kelvin Lau
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Sergey Nazarov
- Dubochet Center for Imaging Lausanne, EPFL and UNIL, EPFL VPA DCI-Lausanne, 1015, Lausanne, Switzerland
| | - Alexander Myasnikov
- Dubochet Center for Imaging Lausanne, EPFL and UNIL, EPFL VPA DCI-Lausanne, 1015, Lausanne, Switzerland
| | - Massimo Kube
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, EPFL, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Rte. de la Sorge, 1015, Lausanne, Switzerland
| | - Julika Radecke
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, EPFL, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Rte. de la Sorge, 1015, Lausanne, Switzerland
| | - Carsten Sachse
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Knut Müller-Caspary
- Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-Universität München, Butenandstr. 11, 81377, München, Germany
| | - Colin Ophus
- National Center for Electron Microscopy (NCEM), Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, EPFL, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Rte. de la Sorge, 1015, Lausanne, Switzerland.
| |
Collapse
|
12
|
Yeo J, Daurer BJ, Kimanius D, Balakrishnan D, Bepler T, Tan YZ, Loh ND. Ghostbuster: A phase retrieval diffraction tomography algorithm for cryo-EM. Ultramicroscopy 2024; 262:113962. [PMID: 38642481 DOI: 10.1016/j.ultramic.2024.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Ewald sphere curvature correction, which extends beyond the projection approximation, stretches the shallow depth of field in cryo-EM reconstructions of thick particles. Here we show that even for previously assumed thin particles, reconstruction artifacts which we refer to as ghosts can appear. By retrieving the lost phases of the electron exitwaves and accounting for the first Born approximation scattering within the particle, we show that these ghosts can be effectively eliminated. Our simulations demonstrate how such ghostbusting can improve reconstructions as compared to existing state-of-the-art software. Like ptychographic cryo-EM, our Ghostbuster algorithm uses phase retrieval to improve reconstructions, but unlike the former, we do not need to modify the existing data acquisition pipelines.
Collapse
Affiliation(s)
- Joel Yeo
- NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, 119077 Singapore, Singapore; Department of Physics, National University of Singapore, 117551 Singapore, Singapore; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634 Singapore, Singapore
| | - Benedikt J Daurer
- Center for Bio-Imaging Sciences, National University of Singapore, 117557 Singapore, Singapore; Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - Dari Kimanius
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; CZ Imaging Institute, 3400 Bridge Parkway, Redwood City, CA 94065, USA
| | - Deepan Balakrishnan
- Department of Biological Sciences, National University of Singapore, 117558 Singapore, Singapore; Center for Bio-Imaging Sciences, National University of Singapore, 117557 Singapore, Singapore
| | - Tristan Bepler
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY, USA
| | - Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, 117558 Singapore, Singapore; Center for Bio-Imaging Sciences, National University of Singapore, 117557 Singapore, Singapore; Disease Intervention Technology Laboratory (DITL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 138648 Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673 Singapore, Singapore
| | - N Duane Loh
- NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, 119077 Singapore, Singapore; Department of Physics, National University of Singapore, 117551 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 117558 Singapore, Singapore; Center for Bio-Imaging Sciences, National University of Singapore, 117557 Singapore, Singapore.
| |
Collapse
|
13
|
Seifer S, Kirchweger P, Edel KM, Elbaum M. Optimizing Contrast in Automated 4D STEM Cryotomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:476-488. [PMID: 38885145 DOI: 10.1093/mam/ozae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024]
Abstract
4D STEM is an emerging approach to electron microscopy. While it was developed principally for high-resolution studies in materials science, the possibility to collect the entire transmitted flux makes it attractive for cryomicroscopy in application to life science and radiation-sensitive materials where dose efficiency is of utmost importance. We present a workflow to acquire tomographic tilt series of 4D STEM data sets using a segmented diode and an ultrafast pixelated detector, demonstrating the methods using a specimen of a T4 bacteriophage. Full integration with the SerialEM platform conveniently provides all the tools for grid navigation and automation of the data collection. Scripts are provided to convert the raw data to mrc format files and further to generate a variety of modes representing both scattering and phase contrasts, including incoherent and annular bright field, integrated center of mass, and parallax decomposition of a simulated integrated differential phase contrast. Principal component analysis of virtual annular detectors proves particularly useful, and axial contrast is improved by 3D deconvolution with an optimized point spread function. Contrast optimization enables visualization of irregular features such as DNA strands and thin filaments of the phage tails, which would be lost upon averaging or imposition of an inappropriate symmetry.
Collapse
Affiliation(s)
- Shahar Seifer
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl St, Rehovot 7610001, Israel
| | - Peter Kirchweger
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl St, Rehovot 7610001, Israel
| | - Karlina Maria Edel
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl St, Rehovot 7610001, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl St, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Zhan Z, Liu Y, Wang W, Du G, Cai S, Wang P. Atomic-level imaging of beam-sensitive COFs and MOFs by low-dose electron microscopy. NANOSCALE HORIZONS 2024; 9:900-933. [PMID: 38512352 DOI: 10.1039/d3nh00494e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Electron microscopy, an important technique that allows for the precise determination of structural information with high spatiotemporal resolution, has become indispensable in unravelling the complex relationships between material structure and properties ranging from mesoscale morphology to atomic arrangement. However, beam-sensitive materials, particularly those comprising organic components such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), would suffer catastrophic damage from the high energy electrons, hindering the determination of atomic structures. A low-dose approach has arisen as a possible solution to this problem based on the integration of advancements in several aspects: electron optical system, detector, image processing, and specimen preservation. This article summarizes the transmission electron microscopy characterization of MOFs and COFs, including local structures, host-guest interactions, and interfaces at the atomic level. Revolutions in advanced direct electron detectors, algorithms in image acquisition and processing, and emerging methodology for high quality low-dose imaging are also reviewed. Finally, perspectives on the future development of electron microscopy methodology with the support of computer science are presented.
Collapse
Affiliation(s)
- Zhen Zhan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Yuxin Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Weizhen Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Guangyu Du
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Songhua Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Peng Wang
- Department of Physics, University of Warwick, CV4 7AL, Coventry, UK.
| |
Collapse
|
15
|
Hofer C, Gao C, Chennit T, Yuan B, Pennycook TJ. Phase offset method of ptychographic contrast reversal correction. Ultramicroscopy 2024; 258:113922. [PMID: 38217895 DOI: 10.1016/j.ultramic.2024.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
The contrast transfer function of direct ptychography methods such as the single side band (SSB) method are single signed, yet these methods still sometimes exhibit contrast reversals, most often where the projected potentials are strong. In thicker samples central focusing often provides the best ptychographic contrast as this leads to defocus variations within the sample canceling out. However focusing away from the entrance surface is often undesirable as this degrades the annular dark field (ADF) signal. Here we discuss how phase wrap asymptotes in the frequency response of SSB ptychography give rise to contrast reversals, without the need for dynamical scattering, and how these can be counteracted by manipulating the phases such that the asymptotes are either shifted to higher frequencies or damped via amplitude modulation. This is what enables post collection defocus correction of contrast reversals. However, the phase offset method of counteracting contrast reversals we introduce here is generally found to be superior to post collection application of defocus, with greater reliability and generally stronger contrast. Importantly, the phase offset method also works for thin and thick samples where central focusing does not. Finally, the independence of the method from focus is useful for optical sectioning involving ptychography, improving interpretability by better disentangling the effects of strong potentials and focus.
Collapse
Affiliation(s)
- Christoph Hofer
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Chuang Gao
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Tamazouzt Chennit
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Biao Yuan
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Timothy J Pennycook
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
16
|
Axelrod JJ, Zhang JT, Petrov PN, Glaeser RM, Mȕller H. Modern approaches to improving phase contrast electron microscopy. ARXIV 2024:arXiv:2401.11678v2. [PMID: 38344223 PMCID: PMC10854270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Although defocus can be used to generate partial phase contrast in transmission electron microscope images, cryo-electron microscopy (cryo-EM) can be further improved by the development of phase plates which increase contrast by applying a phase shift to the unscattered part of the electron beam. Many approaches have been investigated, including the ponderomotive interaction between light and electrons. We review the recent successes achieved with this method in high-resolution, single-particle cryo-EM. We also review the status of using pulsed or near-field enhanced laser light as alternatives, along with approaches that use scanning transmission electron microscopy (STEM) with a segmented detector rather than a phase plate.
Collapse
Affiliation(s)
- Jeremy J Axelrod
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jessie T Zhang
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Petar N Petrov
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Robert M Glaeser
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Holger Mȕller
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Nguyen KX, Jiang Y, Lee CH, Kharel P, Zhang Y, van der Zande AM, Huang PY. Achieving sub-0.5-angstrom-resolution ptychography in an uncorrected electron microscope. Science 2024; 383:865-870. [PMID: 38386746 DOI: 10.1126/science.adl2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Subangstrom resolution has long been limited to aberration-corrected electron microscopy, where it is a powerful tool for understanding the atomic structure and properties of matter. Here, we demonstrate electron ptychography in an uncorrected scanning transmission electron microscope (STEM) with deep subangstrom spatial resolution down to 0.44 angstroms, exceeding the conventional resolution of aberration-corrected tools and rivaling their highest ptychographic resolutions. Our approach, which we demonstrate on twisted two-dimensional materials in a widely available commercial microscope, far surpasses prior ptychographic resolutions (1 to 5 angstroms) of uncorrected STEMs. We further show how geometric aberrations can create optimized, structured beams for dose-efficient electron ptychography. Our results demonstrate that expensive aberration correctors are no longer required for deep subangstrom resolution.
Collapse
Affiliation(s)
- Kayla X Nguyen
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yi Jiang
- Advanced Photon Source Facility, Argonne National Laboratory, Lemont, IL, USA
| | - Chia-Hao Lee
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Priti Kharel
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yue Zhang
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Arend M van der Zande
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pinshane Y Huang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
18
|
Chen Z, Zheng S, Wang W, Song J, Yuan X. Temporal structured illumination and vision-transformer enables large field-of-view binary snapshot ptychography. OPTICS EXPRESS 2024; 32:1540-1551. [PMID: 38297703 DOI: 10.1364/oe.504721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Ptychography, a widely used computational imaging method, generates images by processing coherent interference patterns scattered from an object of interest. In order to capture scenes with large field-of-view (FoV) and high spatial resolution simultaneously in a single shot, we propose a temporal-compressive structured-light Ptychography system. A novel three-step reconstruction algorithm composed of multi-frame spectra reconstruction, phase retrieval, and multi-frame image stitching is developed, where we employ the emerging Transformer-based network in the first step. Experimental results demonstrate that our system can expand the FoV by 20× without losing spatial resolution. Our results offer huge potential for enabling lensless imaging of molecules with large FoV as well as high spatial-temporal resolutions. We also notice that due to the loss of low-intensity information caused by the compressed sensing process, our method so far is only applicable to binary targets.
Collapse
|
19
|
Ribet SM, Zeltmann SE, Bustillo KC, Dhall R, Denes P, Minor AM, Dos Reis R, Dravid VP, Ophus C. Design of Electrostatic Aberration Correctors for Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1950-1960. [PMID: 37851063 DOI: 10.1093/micmic/ozad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
In a scanning transmission electron microscope (STEM), producing a high-resolution image generally requires an electron beam focused to the smallest point possible. However, the magnetic lenses used to focus the beam are unavoidably imperfect, introducing aberrations that limit resolution. Modern STEMs overcome this by using hardware aberration correctors comprised of many multipole elements, but these devices are complex, expensive, and can be difficult to tune. We demonstrate a design for an electrostatic phase plate that can act as an aberration corrector. The corrector is comprised of annular segments, each of which is an independent two-terminal device that can apply a constant or ramped phase shift to a portion of the electron beam. We show the improvement in image resolution using an electrostatic corrector. Engineering criteria impose that much of the beam within the probe-forming aperture be blocked by support bars, leading to large probe tails for the corrected probe that sample the specimen beyond the central lobe. We also show how this device can be used to create other STEM beam profiles such as vortex beams and probes with a high degree of phase diversity, which improve information transfer in ptychographic reconstructions.
Collapse
Affiliation(s)
- Stephanie M Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven E Zeltmann
- Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, NY 14853, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rohan Dhall
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter Denes
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrew M Minor
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Pan X, Wang S, Zhou Z, Zhou L, Liu P, Li C, Wang W, Zhang C, Dong Y, Zhang Y. An efficient ptychography reconstruction strategy through fine-tuning of large pre-trained deep learning model. iScience 2023; 26:108420. [PMID: 38034346 PMCID: PMC10687283 DOI: 10.1016/j.isci.2023.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
With pre-trained large models and their associated fine-tuning paradigms being constantly applied in deep learning, the performance of large models achieves a dramatic boost, mostly owing to the improvements on both data quantity and quality. Next-generation synchrotron light sources offer ultra-bright and highly coherent X-rays, which are becoming one of the largest data sources for scientific experiments. As one of the most data-intensive scanning-based imaging methodologies, ptychography produces an immense amount of data, making the adoption of large deep learning models possible. Here, we introduce and refine the architecture of a neural network model to improve the reconstruction performance, through fine-tuning large pre-trained model using a variety of datasets. The pre-trained model exhibits remarkable generalization capability, while the fine-tuning strategy enhances the reconstruction quality. We anticipate this work will contribute to the advancement of deep learning methods in ptychography, as well as in broader coherent diffraction imaging methodologies in future.
Collapse
Affiliation(s)
- Xinyu Pan
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongzheng Zhou
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhou
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan, Guangdong 523803, China
| | - Wenhui Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan, Guangdong 523803, China
| | - Chenglong Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Pelz PM, Griffin SM, Stonemeyer S, Popple D, DeVyldere H, Ercius P, Zettl A, Scott MC, Ophus C. Solving complex nanostructures with ptychographic atomic electron tomography. Nat Commun 2023; 14:7906. [PMID: 38036516 PMCID: PMC10689721 DOI: 10.1038/s41467-023-43634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Transmission electron microscopy (TEM) is essential for determining atomic scale structures in structural biology and materials science. In structural biology, three-dimensional structures of proteins are routinely determined from thousands of identical particles using phase-contrast TEM. In materials science, three-dimensional atomic structures of complex nanomaterials have been determined using atomic electron tomography (AET). However, neither of these methods can determine the three-dimensional atomic structure of heterogeneous nanomaterials containing light elements. Here, we perform ptychographic electron tomography from 34.5 million diffraction patterns to reconstruct an atomic resolution tilt series of a double wall-carbon nanotube (DW-CNT) encapsulating a complex ZrTe sandwich structure. Class averaging the resulting tilt series images and subpixel localization of the atomic peaks reveals a Zr11Te50 structure containing a previously unobserved ZrTe2 phase in the core. The experimental realization of atomic resolution ptychographic electron tomography will allow for the structural determination of a wide range of beam-sensitive nanomaterials containing light elements.
Collapse
Affiliation(s)
- Philipp M Pelz
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich Alexander-Universität Erlangen-Nürnberg, IZNF, 91058, Erlangen, Germany.
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Sinéad M Griffin
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Scott Stonemeyer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Derek Popple
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Hannah DeVyldere
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Peter Ercius
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex Zettl
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Mary C Scott
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Colin Ophus
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
22
|
Kim NY, Cao S, More KL, Lupini AR, Miao J, Chi M. Hollow Ptychography: Toward Simultaneous 4D Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208162. [PMID: 37203310 DOI: 10.1002/smll.202208162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/13/2023] [Indexed: 05/20/2023]
Abstract
With the recent development of high-acquisition-speed pixelated detectors, 4D scanning transmission electron microscopy (4D-STEM) is becoming routinely available in high-resolution electron microscopy. 4D-STEM acts as a "universal" method that provides local information on materials that is challenging to extract from bulk techniques. It extends conventional STEM imaging to include super-resolution techniques and to provide quantitative phase-based information, such as differential phase contrast, ptychography, or Bloch wave phase retrieval. However, an important missing factor is the chemical and bonding information provided by electron energy loss spectroscopy (EELS). 4D-STEM and EELS cannot currently be acquired simultaneously due to the overlapping geometry of the detectors. Here, the feasibility of modifying the detector geometry to overcome this challenge for bulk specimens is demonstrated, and the use of a partial or defective detector for ptycholgaphic structural imaging is explored. Results show that structural information beyond the diffraction-limit and chemical information from the material can be extracted together, resulting in simultaneous multi-modal measurements, adding the additional dimensions of spectral information to 4D datasets.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Shaohong Cao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Karren L More
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
23
|
Zhang Y, van Schayck JP, Pedrazo-Tardajos A, Claes N, Noteborn WEM, Lu PH, Duimel H, Dunin-Borkowski RE, Bals S, Peters PJ, Ravelli RBG. Charging of Vitreous Samples in Cryogenic Electron Microscopy Mitigated by Graphene. ACS NANO 2023; 17:15836-15846. [PMID: 37531407 PMCID: PMC10448747 DOI: 10.1021/acsnano.3c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Cryogenic electron microscopy can provide high-resolution reconstructions of macromolecules embedded in a thin layer of ice from which atomic models can be built de novo. However, the interaction between the ionizing electron beam and the sample results in beam-induced motion and image distortion, which limit the attainable resolutions. Sample charging is one contributing factor of beam-induced motions and image distortions, which is normally alleviated by including part of the supporting conducting film within the beam-exposed region. However, routine data collection schemes avoid strategies whereby the beam is not in contact with the supporting film, whose rationale is not fully understood. Here we characterize electrostatic charging of vitreous samples, both in imaging and in diffraction mode. We mitigate sample charging by depositing a single layer of conductive graphene on top of regular EM grids. We obtained high-resolution single-particle analysis (SPA) reconstructions at 2 Å when the electron beam only irradiates the middle of the hole on graphene-coated grids, using data collection schemes that previously failed to produce sub 3 Å reconstructions without the graphene layer. We also observe that the SPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to data obtained without the graphene layer. This mitigation of charging could have broad implications for various EM techniques, including SPA and cryotomography, and for the study of radiation damage and the development of future sample carriers. Furthermore, it may facilitate the exploration of more dose-efficient, scanning transmission EM based SPA techniques.
Collapse
Affiliation(s)
- Yue Zhang
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - J. Paul van Schayck
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Adrián Pedrazo-Tardajos
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp 2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Nathalie Claes
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp 2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Willem E. M. Noteborn
- Netherlands
Centre for Electron Nanoscopy (NeCEN), Leiden
University, 2300 RS Leiden, The Netherlands
| | - Peng-Han Lu
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, 52425 Jülich, Germany
| | - Hans Duimel
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Rafal E. Dunin-Borkowski
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, 52425 Jülich, Germany
| | - Sara Bals
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp 2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Peter J. Peters
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Raimond B. G. Ravelli
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
24
|
Terzoudis-Lumsden EWC, Petersen TC, Brown HG, Pelz PM, Ophus C, Findlay SD. Resolution of Virtual Depth Sectioning from Four-Dimensional Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1409-1421. [PMID: 37488824 DOI: 10.1093/micmic/ozad068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 07/26/2023]
Abstract
One approach to three-dimensional structure determination using the wealth of scattering data in four-dimensional (4D) scanning transmission electron microscopy (STEM) is the parallax method proposed by Ophus et al. (2019. Advanced phase reconstruction methods enabled by 4D scanning transmission electron microscopy, Microsc Microanal25, 10-11), which determines the scattering matrix and uses it to synthesize a virtual depth-sectioning reconstruction of the sample structure. Drawing on an equivalence with a hypothetical confocal imaging mode, we derive contrast transfer and point spread functions for this parallax method applied to weakly scattering objects, showing them identical to earlier depth-sectioning STEM modes when only bright field signal is used, but that improved depth resolution is possible if dark field signal can be used. Through a simulation-based study of doped Si, we show that this depth resolution is preserved for thicker samples, explore the impact of shot noise on the parallax reconstructions, discuss challenges to making use of dark field signal, and identify cases where the interpretation of the parallax reconstruction breaks down.
Collapse
Affiliation(s)
| | - T C Petersen
- School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia
- Monash Centre for Electron Microscopy, Monash University, Melbourne, VIC 3800, Australia
| | - H G Brown
- Ian Holmes Imaging Center, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3052, Australia
| | - P M Pelz
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria 91058, Germany
| | - C Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - S D Findlay
- School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
25
|
Jiang Y, Cao MC, Chen Z, Han Y. Optimizing Parameters for High-resolution and Low-dose Electron Ptychography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:284-285. [PMID: 37613141 DOI: 10.1093/micmic/ozad067.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Yi Jiang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Michael C Cao
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, United States
| | - Zhen Chen
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, United States
| |
Collapse
|
26
|
Robinson AW, Nicholls D, Wells J, Moshtaghpour A, Chi M, Kirkland AI, Browning ND. Fast STEM Simulation Technique to Improve Quality of Inpainted Experimental Images Through Dictionary Transfer. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:681-682. [PMID: 37613365 DOI: 10.1093/micmic/ozad067.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- A W Robinson
- Mechanical, Materials, & Aerospace Engineering, University of Liverpool, Liverpool, U.K
| | - D Nicholls
- Mechanical, Materials, & Aerospace Engineering, University of Liverpool, Liverpool, U.K
| | - J Wells
- Distributed Algorithms CDT, University of Liverpool, Liverpool, U.K
| | - A Moshtaghpour
- Mechanical, Materials, & Aerospace Engineering, University of Liverpool, Liverpool, U.K
- Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, U. K
| | - M Chi
- Centre for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN, USA
| | - A I Kirkland
- Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, U. K
- Department of Materials, University of Oxford, Oxford, U. K
| | - N D Browning
- Mechanical, Materials, & Aerospace Engineering, University of Liverpool, Liverpool, U.K
- Physical & Computational Science, Pacific Northwest National Lab, Richland, WA, USA
- Sivananthan Laboratories, 590 Territorial Drive, Bolingbrook, IL, USA
| |
Collapse
|
27
|
Seifer S, Elbaum M. Synchronization of scanning probe and pixelated sensor for image-guided diffraction microscopy. HARDWAREX 2023; 14:e00431. [PMID: 37293572 PMCID: PMC10245099 DOI: 10.1016/j.ohx.2023.e00431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
A 4-dimensional modality of a scanning transmission electron microscope (4D-STEM) acquires diffraction images formed by a coherent and focused electron beam scanning the specimen. Newly developed ultrafast detectors offer a possibility to acquire high throughput diffraction patterns at each pixel of the scan, enabling rapid tilt series acquisition for 4D-STEM tomography. Here we present a solution to the problem of synchronizing the electron probe scan with the diffraction image acquisition, and demonstrate on a fast hybrid-pixel detector camera (ARINA, DECTRIS). Image-guided tracking and autofocus corrections are handled by the freely-available microscope-control software SerialEM, in conjunction with a high angle annular dark field (HAADF) image acquired simultaneously. The open source SavvyScan system offers a versatile set of scanning patterns, operated by commercially available multi-channel acquisition and signal generator computer cards (Spectrum Instrumentation GmbH). Images are recorded only within a sub-region of the total field, so as to avoid spurious data collection during flyback and/or acceleration periods in the scan. Hence, the trigger of the fast camera follows selected pulses from the scan generator clock gated according to the chosen scan pattern. Software and protocol are provided for gating the trigger pulses via a microcontroller (ST Microelectronics ARM Cortex). We demonstrate the system on a standard replica grating and by diffraction imaging of a ferritin specimen.
Collapse
Affiliation(s)
- Shahar Seifer
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Pei X, Zhou L, Huang C, Boyce M, Kim JS, Liberti E, Hu Y, Sasaki T, Nellist PD, Zhang P, Stuart DI, Kirkland AI, Wang P. Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer. Nat Commun 2023; 14:3027. [PMID: 37230988 PMCID: PMC10212999 DOI: 10.1038/s41467-023-38268-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in cryogenic transmission electron microscopy have revolutionised the determination of many macromolecular structures at atomic or near-atomic resolution. This method is based on conventional defocused phase contrast imaging. However, it has limitations of weaker contrast for small biological molecules embedded in vitreous ice, in comparison with cryo-ptychography, which shows increased contrast. Here we report a single-particle analysis based on the use of ptychographic reconstruction data, demonstrating that three dimensional reconstructions with a wide information transfer bandwidth can be recovered by Fourier domain synthesis. Our work suggests future applications in otherwise challenging single particle analyses, including small macromolecules and heterogeneous or flexible particles. In addition structure determination in situ within cells without the requirement for protein purification and expression may be possible.
Collapse
Affiliation(s)
- Xudong Pei
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Liqi Zhou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
- Department of Physics, University of Warwick, Coventry, UK
| | - Chen Huang
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
| | - Mark Boyce
- Division of Structural Biology, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Judy S Kim
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Materials, University of Oxford, Oxford, UK
| | - Emanuela Liberti
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
| | - Yiming Hu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | | | | | - Peijun Zhang
- Division of Structural Biology, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - David I Stuart
- Division of Structural Biology, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Angus I Kirkland
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK.
- Department of Materials, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Department of Physics, University of Warwick, Coventry, UK.
| |
Collapse
|
29
|
Hu Z, Zhang Y, Li P, Batey D, Maiden A. Near-field multi-slice ptychography: quantitative phase imaging of optically thick samples with visible light and X-rays. OPTICS EXPRESS 2023; 31:15791-15809. [PMID: 37157672 DOI: 10.1364/oe.487002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ptychography is a form of lens-free coherent diffractive imaging now used extensively in electron and synchrotron-based X-ray microscopy. In its near-field implementation, it offers a route to quantitative phase imaging at an accuracy and resolution competitive with holography, with the added advantages of extended field of view and blind deconvolution of the illumination beam profile from the sample image. In this paper we show how near-field ptychography can be combined with a multi-slice model, adding to this list of advantages the unique ability to recover high-resolution phase images of larger samples, whose thickness places them beyond the depth of field of alternative methods.
Collapse
|
30
|
Ning S, Xu W, Loh L, Lu Z, Bosman M, Zhang F, He Q. An integrated constrained gradient descent (iCGD) protocol to correct scan-positional errors for electron ptychography with high accuracy and precision. Ultramicroscopy 2023; 248:113716. [PMID: 36958156 DOI: 10.1016/j.ultramic.2023.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/11/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Correcting scan-positional errors is critical in achieving electron ptychography with both high resolution and high precision. This is a demanding and challenging task due to the sheer number of parameters that need to be optimized. For atomic-resolution ptychographic reconstructions, we found classical refining methods for scan positions not satisfactory due to the inherent entanglement between the object and scan positions, which can produce systematic errors in the results. Here, we propose a new protocol consisting of a series of constrained gradient descent (CGD) methods to achieve better recovery of scan positions. The central idea of these CGD methods is to utilize a priori knowledge about the nature of STEM experiments and add necessary constraints to isolate different types of scan positional errors during the iterative reconstruction process. Each constraint will be introduced with the help of simulated 4D-STEM datasets with known positional errors. Then the integrated constrained gradient decent (iCGD) protocol will be demonstrated using an experimental 4D-STEM dataset of the 1H-MoS2 monolayer. We will show that the iCGD protocol can effectively address the errors of scan positions across the spectrum and help to achieve electron ptychography with high accuracy and precision.
Collapse
Affiliation(s)
- Shoucong Ning
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Wenhui Xu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Harbin Institute of Technology, Harbin 150001, China
| | - Leyi Loh
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Zhen Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Michel Bosman
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Fucai Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore.
| |
Collapse
|
31
|
Dong Z, Zhang E, Jiang Y, Zhang Q, Mayoral A, Jiang H, Ma Y. Atomic-Level Imaging of Zeolite Local Structures Using Electron Ptychography. J Am Chem Soc 2023; 145:6628-6632. [PMID: 36877580 DOI: 10.1021/jacs.2c12673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Zeolites are among the most important heterogeneous catalysts, widely employed in separation reaction, fine chemical production, and petroleum refining. Through rational design of the frameworks, zeolites with versatile functions can be synthesized. Local imaging of zeolite structures at the atomic scale, including the basic framework atoms (Si, Al, and O) and extra-framework cations, is necessary to understand the structure-function relationship of zeolites. Herein, we implemented electron ptychography into direct imaging of local structures of two zeolites, Na-LTA and ZSM-5. Not only all the framework atoms but also extra-framework Na+ cations with only 1/4 occupation probabilities in Na-LTA were directly observed. Local structures of ZSM-5 zeolites having guest molecules among channels with different orientations were also unraveled using different reconstruction algorithms. The approach presented here provides a new way to locally image zeolites structure, and it is expected to be an essential key for further studying and tuning zeolites active sites at the atomic level.
Collapse
Affiliation(s)
- Zhuoya Dong
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China.,Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Enci Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yilan Jiang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Qing Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Alvaro Mayoral
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China.,Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Huaidong Jiang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China.,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
32
|
Chang DJ, O'Leary CM, Su C, Jacobs DA, Kahn S, Zettl A, Ciston J, Ercius P, Miao J. Deep-Learning Electron Diffractive Imaging. PHYSICAL REVIEW LETTERS 2023; 130:016101. [PMID: 36669218 DOI: 10.1103/physrevlett.130.016101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
We report the development of deep-learning coherent electron diffractive imaging at subangstrom resolution using convolutional neural networks (CNNs) trained with only simulated data. We experimentally demonstrate this method by applying the trained CNNs to recover the phase images from electron diffraction patterns of twisted hexagonal boron nitride, monolayer graphene, and a gold nanoparticle with comparable quality to those reconstructed by a conventional ptychographic algorithm. Fourier ring correlation between the CNN and ptychographic images indicates the achievement of a resolution in the range of 0.70 and 0.55 Å. We further develop CNNs to recover the probe function from the experimental data. The ability to replace iterative algorithms with CNNs and perform real-time atomic imaging from coherent diffraction patterns is expected to find applications in the physical and biological sciences.
Collapse
Affiliation(s)
- Dillan J Chang
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Colum M O'Leary
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Cong Su
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute at the University of California, Berkeley, California 94720, USA
| | - Daniel A Jacobs
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Salman Kahn
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute at the University of California, Berkeley, California 94720, USA
| | - Alex Zettl
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute at the University of California, Berkeley, California 94720, USA
| | - Jim Ciston
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
33
|
Li G, Zhang H, Han Y. 4D-STEM Ptychography for Electron-Beam-Sensitive Materials. ACS CENTRAL SCIENCE 2022; 8:1579-1588. [PMID: 36589892 PMCID: PMC9801507 DOI: 10.1021/acscentsci.2c01137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 05/26/2023]
Abstract
Recent advances in high-speed pixelated electron detectors have substantially facilitated the implementation of four-dimensional scanning transmission electron microscopy (4D-STEM). A critical application of 4D-STEM is electron ptychography, which reveals the atomic structure of a specimen by reconstructing its transmission function from redundant convergent-beam electron diffraction patterns. Although 4D-STEM ptychography offers many advantages over conventional imaging modes, this emerging technique has not been fully applied to materials highly sensitive to electron beams. In this Outlook, we introduce the fundamentals of 4D-STEM ptychography, focusing on data collection and processing methods, and present the current applications of 4D-STEM ptychography in various materials. Next, we discuss the potential advantages of imaging electron-beam-sensitive materials using 4D-STEM ptychography and explore its feasibility by performing simulations and experiments on a zeolite material. The preliminary results demonstrate that, at the low electron dose required to preserve the zeolite structure, 4D-STEM ptychography can reliably provide higher resolution and greater tolerance to the specimen thickness and probe defocus as compared to existing imaging techniques. In the final section, we discuss the challenges and possible strategies to further reduce the electron dose for 4D-STEM ptychography. If successful, it will be a game-changer for imaging extremely sensitive materials, such as metal-organic frameworks, hybrid halide perovskites, and supramolecular crystals.
Collapse
Affiliation(s)
| | | | - Yu Han
- Advanced Membranes and Porous
Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
34
|
Russo CJ, Dickerson JL, Naydenova K. Cryomicroscopy in situ: what is the smallest molecule that can be directly identified without labels in a cell? Faraday Discuss 2022; 240:277-302. [PMID: 35913392 PMCID: PMC9642008 DOI: 10.1039/d2fd00076h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
Electron cryomicroscopy (cryoEM) has made great strides in the last decade, such that the atomic structure of most biological macromolecules can, at least in principle, be determined. Major technological advances - in electron imaging hardware, data analysis software, and cryogenic specimen preparation technology - continue at pace and contribute to the exponential growth in the number of atomic structures determined by cryoEM. It is now conceivable that within the next decade we will have structures for hundreds of thousands of unique protein and nucleic acid molecular complexes. But the answers to many important questions in biology would become obvious if we could identify these structures precisely inside cells with quantifiable error. In the context of an abundance of known structures, it is appropriate to consider the current state of electron cryomicroscopy for frozen specimens prepared directly from cells, and try to answer to the question of the title, both now and in the foreseeable future.
Collapse
Affiliation(s)
- Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Joshua L Dickerson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
35
|
Lazić I, Wirix M, Leidl ML, de Haas F, Mann D, Beckers M, Pechnikova EV, Müller-Caspary K, Egoavil R, Bosch EGT, Sachse C. Single-particle cryo-EM structures from iDPC-STEM at near-atomic resolution. Nat Methods 2022; 19:1126-1136. [PMID: 36064775 PMCID: PMC9467914 DOI: 10.1038/s41592-022-01586-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
In electron cryomicroscopy (cryo-EM), molecular images of vitrified biological samples are obtained by conventional transmission microscopy (CTEM) using large underfocuses and subsequently computationally combined into a high-resolution three-dimensional structure. Here, we apply scanning transmission electron microscopy (STEM) using the integrated differential phase contrast mode also known as iDPC-STEM to two cryo-EM test specimens, keyhole limpet hemocyanin (KLH) and tobacco mosaic virus (TMV). The micrographs show complete contrast transfer to high resolution and enable the cryo-EM structure determination for KLH at 6.5 Å resolution, as well as for TMV at 3.5 Å resolution using single-particle reconstruction methods, which share identical features with maps obtained by CTEM of a previously acquired same-sized TMV data set. These data show that STEM imaging in general, and in particular the iDPC-STEM approach, can be applied to vitrified single-particle specimens to determine near-atomic resolution cryo-EM structures of biological macromolecules.
Collapse
Affiliation(s)
- Ivan Lazić
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands.
| | - Maarten Wirix
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Max Leo Leidl
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-University Munich, Munich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-1): Physics of Nanoscale Systems, Jülich, Germany
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany
| | - Felix de Haas
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Daniel Mann
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany
| | - Maximilian Beckers
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Evgeniya V Pechnikova
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Knut Müller-Caspary
- Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-University Munich, Munich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-1): Physics of Nanoscale Systems, Jülich, Germany
| | - Ricardo Egoavil
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Eric G T Bosch
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Carsten Sachse
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany.
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
36
|
Three-dimensional electron ptychography of organic-inorganic hybrid nanostructures. Nat Commun 2022; 13:4787. [PMID: 35970924 PMCID: PMC9378626 DOI: 10.1038/s41467-022-32548-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Three dimensional scaffolded DNA origami with inorganic nanoparticles has been used to create tailored multidimensional nanostructures. However, the image contrast of DNA is poorer than those of the heavy nanoparticles in conventional transmission electron microscopy at high defocus so that the biological and non-biological components in 3D scaffolds cannot be simultaneously resolved using tomography of samples in a native state. We demonstrate the use of electron ptychography to recover high contrast phase information from all components in a DNA origami scaffold without staining. We further quantitatively evaluate the enhancement of contrast in comparison with conventional transmission electron microscopy. In addition, We show that for ptychography post-reconstruction focusing simplifies the workflow and reduces electron dose and beam damage. The authors demonstrate electron ptychographic computed tomography by simultaneously recording high contrast data from both the organic- and inorganic components in a 3D DNA-origami framework hybrid nanostructure.
Collapse
|
37
|
Parker KA, Ribet S, Kimmel BR, Dos Reis R, Mrksich M, Dravid VP. Scanning Transmission Electron Microscopy in a Scanning Electron Microscope for the High-Throughput Imaging of Biological Assemblies. Biomacromolecules 2022; 23:3235-3242. [PMID: 35881504 DOI: 10.1021/acs.biomac.2c00323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron microscopy of soft and biological materials, or "soft electron microscopy", is essential to the characterization of macromolecules. Soft microscopy is governed by enhancing contrast while maintaining low electron doses, and sample preparation and imaging methodologies are driven by the length scale of features of interest. While cryo-electron microscopy offers the highest resolution, larger structures can be characterized efficiently and with high contrast using low-voltage electron microscopy by performing scanning transmission electron microscopy in a scanning electron microscope (STEM-in-SEM). Here, STEM-in-SEM is demonstrated for a four-lobed protein assembly where the arrangement of the proteins in the construct must be examined. STEM image simulations show the theoretical contrast enhancement at SEM-level voltages for unstained structures, and experimental images with multiple STEM modes exhibit the resolution possible for negative-stained proteins. This technique can be extended to complex protein assemblies, larger structures such as cell sections, and hybrid materials, making STEM-in-SEM a valuable high-throughput imaging method.
Collapse
Affiliation(s)
- Kelly A Parker
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephanie Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Blaise R Kimmel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
Cao MC, Chen Z, Jiang Y, Han Y. Automatic parameter selection for electron ptychography via Bayesian optimization. Sci Rep 2022; 12:12284. [PMID: 35854039 PMCID: PMC9296498 DOI: 10.1038/s41598-022-16041-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Electron ptychography provides new opportunities to resolve atomic structures with deep sub-angstrom spatial resolution and to study electron-beam sensitive materials with high dose efficiency. In practice, obtaining accurate ptychography images requires simultaneously optimizing multiple parameters that are often selected based on trial-and-error, resulting in low-throughput experiments and preventing wider adoption. Here, we develop an automatic parameter selection framework to circumvent this problem using Bayesian optimization with Gaussian processes. With minimal prior knowledge, the workflow efficiently produces ptychographic reconstructions that are superior to those processed by experienced experts. The method also facilitates better experimental designs by exploring optimized experimental parameters from simulated data.
Collapse
Affiliation(s)
- Michael C Cao
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Zhen Chen
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi Jiang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
39
|
Wen X, Zhou X, Li Y, Ji Y, Zhou K, Liu S, Jia D, Liu W, Chi D, Liu Z. High-performance lensless diffraction imaging from diverse holograms by three-dimensional scanning. OPTICS LETTERS 2022; 47:3423-3426. [PMID: 35838695 DOI: 10.1364/ol.464864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
For lensless diffraction imaging, it is a challenging dilemma to achieve a large field of view (FOV) and high resolution with a small amount of data at the same time. Ptychography can reconstruct the high-resolution image and illumination light simultaneously. But the illumination is limited to a small size by a probe in typical ptychography. For large samples, it takes much time to collect abundant patterns and has strict requirements for the computing power of computers. Another widely applied method, multi-height measurement, can realize a wide FOV with several holograms. But, the recovered image is easily destroyed by the background noise. In this Letter, a lensless diffraction imaging method by three-dimensional scanning is proposed. All positions of the object are different in three directions instead of scanning schemes only on a plane or along the optic axis, so more diversity of diffraction information is obtained. We apply the illumination without the limit of a confined aperture, which means that the imaging FOV of a pattern is equal to the size of the utilized image sensor. In comparison with the multi-height method, our method can separate the illumination background noise from the retrieved object. Consequently, the proposed method realized high resolution and contrast, large FOV, and the removal of background noise simultaneously. Experimental validations and comparisons with other methods are presented.
Collapse
|
40
|
Sha H, Cui J, Yu R. Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction. SCIENCE ADVANCES 2022; 8:eabn2275. [PMID: 35559675 PMCID: PMC9106290 DOI: 10.1126/sciadv.abn2275] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/30/2022] [Indexed: 05/31/2023]
Abstract
Superresolution imaging of solids is essential to explore local symmetry breaking and derived material properties. Electron ptychography is one of the most promising schemes to realize superresolution imaging beyond aberration correction. However, to reach both deep sub-angstrom resolution imaging and accurate measurement of atomic structures, it is still required for the electron beam to be nearly parallel to the zone axis of crystals. Here, we report an efficient and robust method to correct the specimen misorientation in electron ptychography, giving deep sub-angstrom resolution for specimens with large misorientations. The method largely reduces the experimental difficulties of electron ptychography and paves the way for widespread applications of ptychographic deep sub-angstrom resolution imaging.
Collapse
Affiliation(s)
- Haozhi Sha
- National Center for Electron Microscopy in Beijing, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jizhe Cui
- National Center for Electron Microscopy in Beijing, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Rong Yu
- National Center for Electron Microscopy in Beijing, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Ning S, Xu W, Ma Y, Loh L, Pennycook TJ, Zhou W, Zhang F, Bosman M, Pennycook SJ, He Q, Loh ND. Accurate and Robust Calibration of the Uniform Affine Transformation Between Scan-Camera Coordinates for Atom-Resolved In-Focus 4D-STEM Datasets. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-11. [PMID: 35260221 DOI: 10.1017/s1431927622000320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate geometrical calibration between the scan coordinates and the camera coordinates is critical in four-dimensional scanning transmission electron microscopy (4D-STEM) for both quantitative imaging and ptychographic reconstructions. For atomic-resolved, in-focus 4D-STEM datasets, we propose a hybrid method incorporating two sub-routines, namely a J-matrix method and a Fourier method, which can calibrate the uniform affine transformation between the scan-camera coordinates using raw data, without a priori knowledge of the crystal structure of the specimen. The hybrid method is found robust against scan distortions and residual probe aberrations. It is also effective even when defects are present in the specimen, or the specimen becomes relatively thick. We will demonstrate that a successful geometrical calibration with the hybrid method will lead to a more reliable recovery of both the specimen and the electron probe in a ptychographic reconstruction. We will also show that, although the elimination of local scan position errors still requires an iterative approach, the rate of convergence can be improved, and the residual errors can be further reduced if the hybrid method can be firstly applied for initial calibration. The code is made available as a simple-to-use tool to correct affine transformations of the scan-camera coordinates in 4D-STEM experiments.
Collapse
Affiliation(s)
- Shoucong Ning
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
- Center for Bio-Imaging Sciences, National University of Singapore, Singapore117557, Singapore
| | - Wenhui Xu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Harbin Institute of Technology, Harbin150001, China
| | - Yinhang Ma
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing100049, China
| | - Leyi Loh
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | | | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing100049, China
| | - Fucai Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Michel Bosman
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Stephen J Pennycook
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - N Duane Loh
- Center for Bio-Imaging Sciences, National University of Singapore, Singapore117557, Singapore
- Department of Physics, National University of Singapore, Singapore117551, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore117557, Singapore
| |
Collapse
|
42
|
Jannis D, Hofer C, Gao C, Xie X, Béché A, Pennycook TJ, Verbeeck J. Event driven 4D STEM acquisition with a Timepix3 detector: Microsecond dwell time and faster scans for high precision and low dose applications. Ultramicroscopy 2022; 233:113423. [PMID: 34837737 DOI: 10.1016/j.ultramic.2021.113423] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Four dimensional scanning transmission electron microscopy (4D STEM) records the scattering of electrons in a material in great detail. The benefits offered by 4D STEM are substantial, with the wealth of data it provides facilitating for instance high precision, high electron dose efficiency phase imaging via centre of mass or ptychography based analysis. However the requirement for a 2D image of the scattering to be recorded at each probe position has long placed a severe bottleneck on the speed at which 4D STEM can be performed. Recent advances in camera technology have greatly reduced this bottleneck, with the detection efficiency of direct electron detectors being especially well suited to the technique. However even the fastest frame driven pixelated detectors still significantly limit the scan speed which can be used in 4D STEM, making the resulting data susceptible to drift and hampering its use for low dose beam sensitive applications. Here we report the development of the use of an event driven Timepix3 direct electron camera that allows us to overcome this bottleneck and achieve 4D STEM dwell times down to 100 ns; orders of magnitude faster than what has been possible with frame based readout. We characterize the detector for different acceleration voltages and show that the method is especially well suited for low dose imaging and promises rich datasets without compromising dwell time when compared to conventional STEM imaging.
Collapse
Affiliation(s)
- D Jannis
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - C Hofer
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - C Gao
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - X Xie
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - A Béché
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - T J Pennycook
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - J Verbeeck
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
43
|
|
44
|
Roitman D, Shiloh R, Lu PH, Dunin-Borkowski RE, Arie A. Shaping of Electron Beams Using Sculpted Thin Films. ACS PHOTONICS 2021; 8:3394-3405. [PMID: 34938823 PMCID: PMC8679091 DOI: 10.1021/acsphotonics.1c00951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 05/04/2023]
Abstract
Electron beam shaping by sculpted thin films relies on electron-matter interactions and the wave nature of electrons. It can be used to study physical phenomena of special electron beams and to develop technological applications in electron microscopy that offer new and improved measurement techniques and increased resolution in different imaging modes. In this Perspective, we review recent applications of sculpted thin films for electron orbital angular momentum sorting, improvements in phase contrast transmission electron microscopy, and aberration correction. For the latter, we also present new results of our work toward correction of the spherical aberration of Lorentz scanning transmission electron microscopes and suggest a method to correct chromatic aberration using thin films. This review provides practical insight for researchers in the field and motivates future progress in electron microscopy.
Collapse
Affiliation(s)
- Dolev Roitman
- School
of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roy Shiloh
- Physics
Department, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Peng-Han Lu
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, Jülich 52428, Germany
- RWTH
Aachen University, Aachen 52062, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, Jülich 52428, Germany
| | - Ady Arie
- School
of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
45
|
Ortega E, Nicholls D, Browning ND, de Jonge N. High temporal-resolution scanning transmission electron microscopy using sparse-serpentine scan pathways. Sci Rep 2021; 11:22722. [PMID: 34811427 PMCID: PMC8608981 DOI: 10.1038/s41598-021-02052-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Scanning transmission electron microscopy (STEM) provides structural analysis with sub-angstrom resolution. But the pixel-by-pixel scanning process is a limiting factor in acquiring high-speed data. Different strategies have been implemented to increase scanning speeds while at the same time minimizing beam damage via optimizing the scanning strategy. Here, we achieve the highest possible scanning speed by eliminating the image acquisition dead time induced by the beam flyback time combined with reducing the amount of scanning pixels via sparse imaging. A calibration procedure was developed to compensate for the hysteresis of the magnetic scan coils. A combination of sparse and serpentine scanning routines was tested for a crystalline thin film, gold nanoparticles, and in an in-situ liquid phase STEM experiment. Frame rates of 92, 23 and 5.8 s-1 were achieved for images of a width of 128, 256, and 512 pixels, respectively. The methods described here can be applied to single-particle tracking and analysis of radiation sensitive materials.
Collapse
Affiliation(s)
- Eduardo Ortega
- INM - Leibniz Institute for New Materials, 66123, Saarbrucken, Germany
| | - Daniel Nicholls
- School of Engineering & School of Physical Sciences, University of Liverpool, Liverpool, L69 3GQ, UK
| | - Nigel D Browning
- School of Engineering & School of Physical Sciences, University of Liverpool, Liverpool, L69 3GQ, UK.,Sivananthan Laboratories, 590 Territorial Drive, Bolingbrook, IL, 60440, USA
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, 66123, Saarbrucken, Germany. .,Department of Physics, Saarland University, 66123, Saarbrucken, Germany.
| |
Collapse
|
46
|
Ribet SM, Murthy AA, Roth EW, Dos Reis R, Dravid VP. Making the Most of your Electrons: Challenges and Opportunities in Characterizing Hybrid Interfaces with STEM. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:100-115. [PMID: 35241968 PMCID: PMC8887695 DOI: 10.1016/j.mattod.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Inspired by the unique architectures composed of hard and soft materials in natural and biological systems, synthetic hybrid structures and associated soft-hard interfaces have recently evoked significant interest. Soft matter is typically dominated by fluctuations even at room temperature, while hard matter (which often serves as the substrate or anchor for the soft component) is governed by rigid mechanical behavior. This dichotomy offers considerable opportunities to leverage the disparate properties offered by these components across a wide spectrum spanning from basic science to engineering insights with significant technological overtones. Such hybrid structures, which include polymer nanocomposites, DNA functionalized nanoparticle superlattices and metal organic frameworks to name a few, have delivered promising insights into the areas of catalysis, environmental remediation, optoelectronics, medicine, and beyond. The interfacial structure between these hard and soft phases exists across a variety of length scales and often strongly influence the functionality of hybrid systems. While scanning/transmission electron microscopy (S/TEM) has proven to be a valuable tool for acquiring intricate molecular and nanoscale details of these interfaces, the unusual nature of hybrid composites presents a suite of challenges that make assessing or establishing the classical structure-property relationships especially difficult. These include challenges associated with preparing electron-transparent samples and obtaining sufficient contrast to resolve the interface between dissimilar materials given the dose sensitivity of soft materials. We discuss each of these challenges and supplement a review of recent developments in the field with additional experimental investigations and simulations to present solutions for attaining a nano or atomic-level understanding of these interfaces. These solutions present a host of opportunities for investigating and understanding the role interfaces play in this unique class of functional materials.
Collapse
Affiliation(s)
- Stephanie M Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
| | - Eric W Roth
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| |
Collapse
|
47
|
Elbaum M, Seifer S, Houben L, Wolf SG, Rez P. Toward Compositional Contrast by Cryo-STEM. Acc Chem Res 2021; 54:3621-3631. [PMID: 34491730 DOI: 10.1021/acs.accounts.1c00279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electron microscopy (EM) is the most versatile tool for the study of matter at scales ranging from subatomic to visible. The high vacuum environment and the charged irradiation require careful stabilization of many specimens of interest. Biological samples are particularly sensitive due to their composition of light elements suspended in an aqueous medium. Early investigators developed techniques of embedding and staining with heavy metal salts for contrast enhancement. Indeed, the Nobel Prize in 1974 recognized Claude, de Duve, and Palade for establishment of the field of cell biology, largely due to their developments in separation and preservation of cellular components for electron microscopy. A decade later, cryogenic fixation was introduced. Vitrification of the water avoids the need for dehydration and provides an ideal matrix in which the organic macromolecules are suspended; the specimen represents a native state, suddenly frozen in time at temperatures below -150 °C. The low temperature maintains a low vapor pressure for the electron microscope, and the amorphous nature of the medium avoids diffraction contrast from crystalline ice. Such samples are extremely delicate, however, and cryo-EM imaging is a race for information in the face of ongoing damage by electron irradiation. Through this journey, cryo-EM enhanced the resolution scale from membranes to molecules and most recently to atoms. Cryo-EM pioneers, Dubochet, Frank, and Henderson, were awarded the Nobel Prize in 2017 for high resolution structure determination of biological macromolecules.A relatively untapped feature of cryo-EM is its preservation of composition. Nothing is added and nothing removed. Analytical spectroscopies based on electron energy loss or X-ray emission can be applied, but the very small interaction cross sections conflict with the weak exposures required to preserve sample integrity. To what extent can we interpret quantitatively the pixel intensities in images themselves? Conventional cryo-transmission electron microscopy (TEM) is limited in this respect, due to the strong dependence of the contrast transfer on defocus and the absence of contrast at low spatial frequencies.Inspiration comes largely from a different modality for cryo-tomography, using soft X-rays. Contrast depends on the difference in atomic absorption between carbon and oxygen in a region of the spectrum between their core level ionization energies, the so-called water window. Three dimensional (3D) reconstruction provides a map of the local X-ray absorption coefficient. The quantitative contrast enables the visualization of organic materials without stain and measurement of their concentration quantitatively. We asked, what aspects of the quantitative contrast might be transferred to cryo-electron microscopy?Compositional contrast is accessible in scanning transmission EM (STEM) via incoherent elastic scattering, which is sensitive to the atomic number Z. STEM can be regarded as a high energy, low angle diffraction measurement performed pixel by pixel with a weakly convergent beam. When coherent diffraction effects are absent, that is, in amorphous materials, a dark field signal measures quantitatively the flux scattered from the specimen integrated over the detector area. Learning to interpret these signals will open a new dimension in cryo-EM. This Account describes our efforts so far to introduce STEM for cryo-EM and tomography of biological specimens. We conclude with some thoughts on further developments.
Collapse
Affiliation(s)
| | | | | | | | - Peter Rez
- Department of Physics, Arizona State University, 550 E Tyler Drive, Tempe, Arizona 85287, United States
| |
Collapse
|
48
|
Zhang Y, Lu PH, Rotunno E, Troiani F, van Schayck JP, Tavabi AH, Dunin-Borkowski RE, Grillo V, Peters PJ, Ravelli RBG. Single-particle cryo-EM: alternative schemes to improve dose efficiency. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1343-1356. [PMID: 34475283 PMCID: PMC8415325 DOI: 10.1107/s1600577521007931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Imaging of biomolecules by ionizing radiation, such as electrons, causes radiation damage which introduces structural and compositional changes of the specimen. The total number of high-energy electrons per surface area that can be used for imaging in cryogenic electron microscopy (cryo-EM) is severely restricted due to radiation damage, resulting in low signal-to-noise ratios (SNR). High resolution details are dampened by the transfer function of the microscope and detector, and are the first to be lost as radiation damage alters the individual molecules which are presumed to be identical during averaging. As a consequence, radiation damage puts a limit on the particle size and sample heterogeneity with which electron microscopy (EM) can deal. Since a transmission EM (TEM) image is formed from the scattering process of the electron by the specimen interaction potential, radiation damage is inevitable. However, we can aim to maximize the information transfer for a given dose and increase the SNR by finding alternatives to the conventional phase-contrast cryo-EM techniques. Here some alternative transmission electron microscopy techniques are reviewed, including phase plate, multi-pass transmission electron microscopy, off-axis holography, ptychography and a quantum sorter. Their prospects for providing more or complementary structural information within the limited lifetime of the sample are discussed.
Collapse
Affiliation(s)
- Yue Zhang
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Peng-Han Lu
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Enzo Rotunno
- CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/A, I-41125 Modena, Italy
| | - Filippo Troiani
- CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/A, I-41125 Modena, Italy
| | - J. Paul van Schayck
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Amir H. Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Vincenzo Grillo
- CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/A, I-41125 Modena, Italy
| | - Peter J. Peters
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Raimond B. G. Ravelli
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| |
Collapse
|
49
|
Liu JJ. Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-53. [PMID: 34414878 DOI: 10.1017/s1431927621012125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/TEM instruments to form sub-Ångstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron–specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precision machining synergistically made atomic-resolution STEM imaging routinely accessible. It is anticipated that further hardware/software development is needed to achieve three-dimensional atomic-resolution STEM imaging with single-atom chemical sensitivity, even for electron-beam-sensitive materials. Artificial intelligence, machine learning, and big-data science are expected to significantly enhance the impact of STEM and associated techniques on many research fields such as materials science and engineering, quantum and nanoscale science, physics and chemistry, and biology and medicine. This review focuses on advances of STEM imaging from the invention of the field-emission electron gun to the realization of aberration-corrected and monochromated atomic-resolution STEM and its broad applications.
Collapse
Affiliation(s)
- Jingyue Jimmy Liu
- Department of Physics, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|
50
|
Rizvi A, Mulvey JT, Carpenter BP, Talosig R, Patterson JP. A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chem Rev 2021; 121:14232-14280. [PMID: 34329552 DOI: 10.1021/acs.chemrev.1c00189] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular self-assembly is pervasive in the formation of living and synthetic materials. Knowledge gained from research into the principles of molecular self-assembly drives innovation in the biological, chemical, and materials sciences. Self-assembly processes span a wide range of temporal and spatial domains and are often unintuitive and complex. Studying such complex processes requires an arsenal of analytical and computational tools. Within this arsenal, the transmission electron microscope stands out for its unique ability to visualize and quantify self-assembly structures and processes. This review describes the contribution that the transmission electron microscope has made to the field of molecular self-assembly. An emphasis is placed on which TEM methods are applicable to different structures and processes and how TEM can be used in combination with other experimental or computational methods. Finally, we provide an outlook on the current challenges to, and opportunities for, increasing the impact that the transmission electron microscope can have on molecular self-assembly.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin T Mulvey
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|