1
|
Auras F, Ascherl L, Bon V, Vornholt SM, Krause S, Döblinger M, Bessinger D, Reuter S, Chapman KW, Kaskel S, Friend RH, Bein T. Dynamic two-dimensional covalent organic frameworks. Nat Chem 2024; 16:1373-1380. [PMID: 38702406 DOI: 10.1038/s41557-024-01527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Porous covalent organic frameworks (COFs) enable the realization of functional materials with molecular precision. Past research has typically focused on generating rigid frameworks where structural and optoelectronic properties are static. Here we report dynamic two-dimensional (2D) COFs that can open and close their pores upon uptake or removal of guests while retaining their crystalline long-range order. Constructing dynamic, yet crystalline and robust frameworks requires a well-controlled degree of flexibility. We have achieved this through a 'wine rack' design where rigid π-stacked columns of perylene diimides are interconnected by non-stacked, flexible bridges. The resulting COFs show stepwise phase transformations between their respective contracted-pore and open-pore conformations with up to 40% increase in unit-cell volume. This variable geometry provides a handle for introducing stimuli-responsive optoelectronic properties. We illustrate this by demonstrating switchable optical absorption and emission characteristics, which approximate 'null-aggregates' with monomer-like behaviour in the contracted COFs. This work provides a design strategy for dynamic 2D COFs that are potentially useful for realizing stimuli-responsive materials.
Collapse
Affiliation(s)
- Florian Auras
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany.
| | - Laura Ascherl
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Volodymyr Bon
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Simon Krause
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
- Nanochemistry Department, Max-Planck-Institute for Solid State Research, Stuttgart, Germany
| | - Markus Döblinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Derya Bessinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Stephan Reuter
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Kaskel
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | | | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany.
| |
Collapse
|
2
|
Abylgazina L, Senkovska I, Bon V, Bönisch N, Maliuta M, Kaskel S. Guest-selective shape-memory effect in a switchable metal-organic framework DUT-8(Zn). Chem Commun (Camb) 2024; 60:7745-7748. [PMID: 38973568 DOI: 10.1039/d4cc01657b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Crystal size engineering allows tailoring of flexible metal-organic frameworks (MOFs) to achieve new properties. The gating type flexibility of the DUT-8(Zn) ([Zn2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane) compound is known to be extremely particle size sensitive. Here, the physisorption of ethanol vapor gives rise to so-called shape-memory effect, leading to rigidification and flexibility suppression. According to powder X-ray diffraction and nitrogen physisorption experiments, the open pore phase is retained selectively after desorption of alcohols, which could be attributed to the nano-structuring and surface deformation of the crystals as a result of exposure to alcohols.
Collapse
Affiliation(s)
- Leila Abylgazina
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | - Nadine Bönisch
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | - Mariia Maliuta
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| |
Collapse
|
3
|
Chen Y, Lu W, Zhou Y, Hu Z, Wu H, Gao Q, Shi J, Wu W, Lv S, Yao K, He Y, Xie Z. A Spatiotemporal Controllable Biomimetic Skin for Accelerating Wound Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310556. [PMID: 38386291 DOI: 10.1002/smll.202310556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Indexed: 02/23/2024]
Abstract
Skin injury repair is a dynamic process involving a series of interactions over time and space. Linking human physiological processes with materials' changes poses a significant challenge. To match the wound healing process, a spatiotemporal controllable biomimetic skin is developed, which comprises a three-dimensional (3D) printed membrane as the epidermis, a cell-containing hydrogel as the dermis, and a cytokine-laden hydrogel as the hypodermis. In the initial stage of the biomimetic skin repair wound, the membrane frame aids wound closure through pre-tension, while cells proliferate within the hydrogel. Next, as the frame disintegrates over time, cells released from the hydrogel migrate along the residual membrane. Throughout the process, continuous cytokines release from the hypodermis hydrogel ensures comprehensive nourishment. The findings reveal that in the rat full-thickness skin defect model, the biomimetic skin demonstrated a wound closure rate eight times higher than the blank group, and double the collagen content, particularly in the early repair process. Consequently, it is reasonable to infer that this biomimetic skin holds promising potential to accelerate wound closure and repair. This biomimetic skin with mechanobiological effects and spatiotemporal regulation emerges as a promising option for tissue regeneration engineering.
Collapse
Affiliation(s)
- Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Haiyan Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Shang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
4
|
Sikdar N, Laha S, Jena R, Dey A, Rahimi FA, Maji TK. An adsorbate biased dynamic 3D porous framework for inverse CO 2 sieving over C 2H 2. Chem Sci 2024; 15:7698-7706. [PMID: 38784756 PMCID: PMC11110155 DOI: 10.1039/d3sc06611h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/07/2024] [Indexed: 05/25/2024] Open
Abstract
Separating carbon dioxide (CO2) from acetylene (C2H2) is one of the most critical and complex industrial separations due to similarities in physicochemical properties and molecular dimensions. Herein, we report a novel Ni-based three-dimensional framework {[Ni4(μ3-OH)2(μ2-OH2)2(1,4-ndc)3](3H2O)}n (1,4-ndc = 1,4-naphthalenedicarboxylate) with a one-dimensional pore channel (3.05 × 3.57 Å2), that perfectly matches with the molecular size of CO2 and C2H2. The dehydrated framework shows structural transformation, decorated with an unsaturated Ni(ii) centre and pendant oxygen atoms. The dynamic nature of the framework is evident by displaying a multistep gate opening type CO2 adsorption at 195, 273, and 298 K, but not for C2H2. The real time breakthrough gas separation experiments reveal a rarely attempted inverse CO2 selectivity over C2H2, attributed to open metal sites with a perfect pore aperture. This is supported by crystallographic analysis, in situ spectroscopic inspection, and selectivity approximations. In situ DRIFTS measurements and DFT-based theoretical calculations confirm CO2 binding sites are coordinatively unsaturated Ni(ii) and carboxylate oxygen atoms, and highlight the influence of multiple adsorption sites.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Subhajit Laha
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Rohan Jena
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Anupam Dey
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| |
Collapse
|
5
|
Makowski W, Gryta P, Jajko G, Rodlamul P, Jędrzejowski D, Roztocki K, Matoga D. Co-Adsorption of Alcohols and Water in JUK-8 Studied Using Quasi-Equilibrated Thermodesorption. Molecules 2024; 29:2309. [PMID: 38792170 PMCID: PMC11124276 DOI: 10.3390/molecules29102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
JUK-8 ([Zn(oba)(pip)]n, oba2- = 4,4'-oxybis(benzenedicarboxylate), pip = 4-pyridyl-functionalized benzene-1,3-dicarbohydrazide) is a hydrolytically stable flexible metal-organic framework. Owing to its unusual adsorptive properties, JUK-8 can be considered as a promising sensing material for construction of detectors of volatile organic compounds (VOCs) in air. Quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) is a versatile method dedicated to characterization of porous materials. In this work, QE-TPDA was employed to study co-adsorption of water and selected alcohols in JUK-8. For the first time an infrared detector sensitive to organic compounds was used in the QE-TPDA measurements, allowing the study of the influence of water vapor on sorption of VOCs. The QE-TPDA profiles of the studied alcohols, exhibiting two desorption maxima and two adsorption minima, are consistent with the standard sorption isotherms, revealing a two-step adsorption-desorption mechanism. The profiles recorded in the presence of water are noticeably changed in different ways for different alcohols. While at low relative humidity (RH) (ca. 20%) the low temperature adsorption states of ethanol and 1-propanol were only slightly destabilized, for 2-propanol almost complete suppression of adsorption was observed. The results found for moderate RH levels (ca. 50%) indicated that the opening of the JUK-8 structure, responsible for its breathing behavior, was followed by the filling of the just generated pores with a water-alcohol mixture.
Collapse
Affiliation(s)
- Wacław Makowski
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
| | - Patrycja Gryta
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Gabriela Jajko
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Pattaraphon Rodlamul
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
| | - Damian Jędrzejowski
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
| |
Collapse
|
6
|
Karsakov GV, Shirobokov VP, Kulakova A, Milichko VA. Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning. J Phys Chem Lett 2024; 15:3089-3095. [PMID: 38470071 DOI: 10.1021/acs.jpclett.3c03639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Metal-organic frameworks (MOFs) possess a virtually unlimited number of potential structures. Although the latter enables an efficient route to control the structure-related functional properties of MOFs, it still complicates the prediction and searching for an optimal structure for specific application. Next to prediction of the MOFs for gas sorption/separation and catalysis via machine learning (ML), we report on ML to find MOFs demonstrating a phase transition (PT). On the basis of an available QMOF database (7463 frameworks), we create and train the autoencoder followed by training the classifier of MOFs from a unique database with experimentally confirmed PT. This makes it possible to identify MOFs with a high potential for PT and evaluate the most likely stimulus for it (guest molecules or temperature/pressure). The formed list of available MOFs for PT allows us to discuss their structural features and opens an opportunity to search for phase change MOFs for diverse physical/chemical application.
Collapse
Affiliation(s)
- Grigory V Karsakov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Alena Kulakova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institut Jean Lamour, Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), F-54000 Nancy, France
| |
Collapse
|
7
|
Sarkar S. Recent advancements in bionanomaterial applications of peptide nucleic acid assemblies. Biopolymers 2024; 115:e23567. [PMID: 37792292 DOI: 10.1002/bip.23567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Peptide nucleic acid (PNA) is a unique combination of peptides and nucleic acids. PNA can exhibit hydrogen bonding interactions with complementary nucleobases like DNA/RNA. Also, its polyamide backbone allows easy incorporation of biomolecules like peptides and proteins to build hybrid molecular constructs. Because of chimeric structural properties, PNA has lots of potential to build diverse nanostructures. However, progress in the PNA material field is still immature compared with its massive applications in antisense oligonucleotide research. Examples of well-defined molecular assemblies have been reported with PNA amphiphiles, self-assembling guanine-PNA monomers/dimers, and PNA-decorated nucleic acids/ polymers/ peptides. All these works indicate the great potential of PNA to be used as bionanomaterials. The review summarizes the recent reports on PNA-based nanostructures and their versatile applications. Additionally, this review shares a perspective to promote a better understanding of controlling molecular assembly by the systematic structural modifications of PNA monomers.
Collapse
Affiliation(s)
- Srijani Sarkar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
8
|
Zeng T, Ling Y, Jiang W, Yao X, Tao Y, Liu S, Liu H, Yang T, Wen W, Jiang S, Zhao Y, Ma Y, Zhang YB. Atomic observation and structural evolution of covalent organic framework rotamers. Proc Natl Acad Sci U S A 2024; 121:e2320237121. [PMID: 38252821 PMCID: PMC10835055 DOI: 10.1073/pnas.2320237121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Dynamic 3D covalent organic frameworks (COFs) have shown concerted structural transformation and adaptive gas adsorption due to the conformational diversity of organic linkers. However, the isolation and observation of COF rotamers constitute undergoing challenges due to their comparable free energy and subtle rotational energy barrier. Here, we report the atomic-level observation and structural evolution of COF rotamers by cryo-3D electron diffraction and synchrotron powder X-ray diffraction. Specifically, we optimize the crystallinity and morphology of COF-320 to manifest its coherent dynamic responses upon adaptive inclusion of guest molecules. We observe a significant crystal expansion of 29 vol% upon hydration and a giant swelling with volume change up to 78 vol% upon solvation. We record the structural evolution from a non-porous contracted phase to two narrow-pore intermediate phases and the fully opened expanded phase using n-butane as a stabilizing probe at ambient conditions. We uncover the rotational freedom of biphenylene giving rise to significant conformational changes on the diimine motifs from synclinal to syn-periplanar and anticlinal rotamers. We illustrate the 10-fold increment of pore volumes and 100% enhancement of methane uptake capacity of COF-320 at 100 bar and 298 K. The present findings shed light on the design of smarter organic porous materials to maximize host-guest interaction and boost gas uptake capacity through progressive structural transformation.
Collapse
Affiliation(s)
- Tengwu Zeng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yang Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Xuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yu Tao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Shan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Huiyu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Tieying Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
9
|
Loukopoulos E, Angeli GK, Tsangarakis C, Traka E, Froudas KG, Trikalitis PN. Reticular Synthesis of Flexible Rare-Earth Metal-Organic Frameworks: Control of Structural Dynamics and Sorption Properties Through Ligand Functionalization. Chemistry 2024; 30:e202302709. [PMID: 37823681 DOI: 10.1002/chem.202302709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
An exciting direction in metal-organic frameworks involves the design and synthesis of flexible structures which can reversibly adapt their structure when triggered by external stimuli. Controlling the extent and nature of response in such solids is critical in order to develop custom dynamic materials for advanced applications. Towards this, it is highly important to expand the diversity of existing flexible MOFs, generating novel materials and gain an in-depth understanding of the associated dynamic phenomena, eventually unlocking key structure-property relationships. In the present work, we successfully utilized reticular chemistry for the construction of two novel series of highly crystalline, flexible rare-earth MOFs, RE-thc-MOF-2 and RE-teb-MOF-1. Extensive single-crystal to single-crystal structural analyses coupled with detailed gas and vapor sorption studies, shed light onto the unique responsive behavior. The development of these series is related to the reported RE-thc-MOF-1 solids which were found to display a unique continuous breathing and gas-trapping property. The synthesis of RE-thc-MOF-2 and RE-teb-MOF-1 materials represents an important milestone as they provide important insights into the key factors that control the responsive properties of this fascinating family of flexible materials and demonstrates that it is possible to control their dynamic behavior and the associated gas and vapor sorption properties.
Collapse
Affiliation(s)
- Edward Loukopoulos
- Department of Chemistry, University of Crete Voutes, 71003, Heraklion, Greece
| | - Giasemi K Angeli
- Department of Chemistry, University of Crete Voutes, 71003, Heraklion, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | | | - Eleni Traka
- Department of Chemistry, University of Crete Voutes, 71003, Heraklion, Greece
| | | | | |
Collapse
|
10
|
Wang M, Zeng T, Yu Y, Wang X, Zhao Y, Xi H, Zhang YB. Flexibility On-Demand: Multivariate 3D Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1035-1041. [PMID: 38152052 DOI: 10.1021/jacs.3c11944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Dynamic 3D covalent organic frameworks (dynaCOFs) have shown concerted structural transformation and responses upon adaptive guest adsorption. The multivariate (MTV) strategy incorporating multiple functionalities within a backbone is attractive for tuning the framework flexibility and dynamic responses. However, a major synthetic challenge arises from the different chemical reactivities of linkers usually resulting in phase separation. Here, we report a general synthetic protocol for making 3D MTV-COFs by balancing the linker reactivity and solvent polarity. Specifically, 15 crystalline and phase pure MTV-COF-300 isostructures are constructed by linking a tetrahedral unit with eight ditopic struts carrying various functional groups. We find that the electron-donating groups make the linker reactivity too low to allow the reaction to proceed fully, while the electron-withdrawing groups afford increased reactivity and hardly yield crystalline materials. To overcome the crystallization dilemma, the combination of polar aprotic with nonpolar solvents was used to improve the solubility of oligomers and slow the reaction kinetics in MTV-COF synthesis. We demonstrate the abilities of these MTV-COFs to tune gas dynamic behaviors and the separation of benzene and cyclohexane. These findings reveal the integration of multivariate functionalities into dynaCOFs with on-demand flexibility to achieve dynamic synergism in particular applications, outperforming their pure, monofunctional counterparts.
Collapse
Affiliation(s)
- Meng Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tengwu Zeng
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xun Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528225, China
| | - Yingbo Zhao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hongxia Xi
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Szufla M, Krawczuk A, Jajko G, Kozyra P, Matoga D. Flattening of a Bent Sulfonated MOF Linker: Impact on Structures, Flexibility, Gas Adsorption, CO 2/N 2 Selectivity, and Proton Conduction. Inorg Chem 2024; 63:151-162. [PMID: 38117683 DOI: 10.1021/acs.inorgchem.3c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Rational design of organic building blocks provides opportunities to control and tune various physicochemical properties of metal-organic frameworks (MOFs), including gas handling, proton conduction, and structural flexibility, the latter of which is responsible for new adsorption phenomena and often superior properties compared to rigid porous materials. In this work, we report synthesis, crystal structures, gas adsorption, and proton conduction for a flexible two-dimensional cadmium-based MOF (JUK-13-SO3H-SO2) containing a new sulfonated 4,4'-oxybis(benzoate) linker with a blocking SO2 bridge. This two-dimensional (2D) MOF is compared in detail with a previously reported three-dimensional Cd-MOF (JUK-13-SO3H), based on analogous, but nonflat, SO2-free sulfonated dicarboxylate. The comprehensive structure-property relationships and the detailed comparisons with insights into the networks flexibility are supported by five guest-dependent structures determined by single-crystal X-ray diffraction (XRD), and corroborated by spectroscopy (IR, 1H NMR), powder XRD, and elemental/thermogravimetric analyses, as well as by volumetric adsorption measurements (for N2, CO2, H2O), ideal adsorbed solution theory (IAST), density-functional theory (DFT+D) quantum chemical and grand-canonical Monte Carlo (GCMC) calculations, and electrochemical impedance spectroscopy (EIS) studies. Whereas both dynamic MOFs show moderate proton conductivity values, they exhibit excellent CO2/N2 selectivity related to the capture of CO2 from flue gases (IAST coefficients for 15:85 mixtures are equal to ca. 250 at 1 bar and 298 K). The presence of terminal sulfonate groups in both MOFs, introduced using a unique prechlorosulfonation strategy, is responsible for their hydrophilicity and water-assisted proton transport ability. The dynamic nature of the MOFs results in the appearance of breathing-type adsorption isotherms that exhibit large hysteresis loops (for CO2 and H2O) attributed to strong host-guest interactions. Theoretical modeling provides information about the adsorption mechanism and supports interpretation of experimental CO2 adsorption isotherms.
Collapse
Affiliation(s)
- Monika Szufla
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, ul. prof. S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Anna Krawczuk
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
| | - Gabriela Jajko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, ul. prof. S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Paweł Kozyra
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
12
|
Zhang XW, Wang C, Mo ZW, Chen XX, Zhang WX, Zhang JP. Quasi-open Cu(I) sites for efficient CO separation with high O 2/H 2O tolerance. NATURE MATERIALS 2024; 23:116-123. [PMID: 37957269 DOI: 10.1038/s41563-023-01729-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
Carbon monoxide (CO) separation relies on chemical adsorption but suffers from the difficulty of desorption and instability of open metal sites against O2, H2O and so on. Here we demonstrate quasi-open metal sites with hidden or shielded coordination sites as a promising solution. Possessing the trigonal coordination geometry (sp2), Cu(I) ions in porous frameworks show weak physical adsorption for non-target guests. Rational regulation of framework flexibility enables geometry transformation to tetrahedral geometry (sp3), generating a fourth coordination site for the chemical adsorption of CO. Quantitative breakthrough experiments at ambient conditions show CO uptakes up to 4.1 mmol g-1 and CO selectivity up to 347 against CO2, CH4, O2, N2 and H2. The adsorbents can be completely regenerated at 333-373 K to recover CO with a purity of >99.99%, and the separation performances are stable in high-concentration O2 and H2O. Although CO leakage concentration generally follows the structural transition pressure, large amounts (>3 mmol g-1) of ultrahigh-purity (99.9999999%, 9N; CO concentration < 1 part per billion) gases can be produced in a single adsorption process, demonstrating the usefulness of this approach for separation applications.
Collapse
Affiliation(s)
- Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Chao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Zong-Wen Mo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Xian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
13
|
Jin E, Lee IS, Yang DC, Moon D, Nam J, Cho H, Kang E, Lee J, Noh HJ, Min SK, Choe W. Origamic metal-organic framework toward mechanical metamaterial. Nat Commun 2023; 14:7938. [PMID: 38040755 PMCID: PMC10692132 DOI: 10.1038/s41467-023-43647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Origami, known as paper folding has become a fascinating research topic recently. Origami-inspired materials often establish mechanical properties that are difficult to achieve in conventional materials. However, the materials based on origami tessellation at the molecular level have been significantly underexplored. Herein, we report a two-dimensional (2D) porphyrinic metal-organic framework (MOF), self-assembled from Zn nodes and flexible porphyrin linkers, displaying folding motions based on origami tessellation. A combined experimental and theoretical investigation demonstrated the origami mechanism of the 2D porphyrinic MOF, whereby the flexible linker acts as a pivoting point. The discovery of the 2D tessellation hidden in the 2D MOF unveils origami mechanics at the molecular level.
Collapse
Affiliation(s)
- Eunji Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - In Seong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - D ChangMo Yang
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | - Joohan Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Hyeonsoo Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Eunyoung Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Junghye Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Hyuk-Jun Noh
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea.
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
14
|
Jena R, Laha S, Dwarkanath N, Hazra A, Haldar R, Balasubramanian S, Maji TK. Noncovalent interaction guided selectivity of haloaromatic isomers in a flexible porous coordination polymer. Chem Sci 2023; 14:12321-12330. [PMID: 37969590 PMCID: PMC10631220 DOI: 10.1039/d3sc03079b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Porous, supramolecular structures exhibit preferential encapsulation of guest molecules, primarily by means of differences in the order of (noncovalent) interactions. The encapsulation preferences can be for geometry (dimension and shape) and the chemical nature of the guest. While geometry-based sorting is relatively straightforward using advanced porous materials, designing a "chemical nature" specific host is not. To introduce "chemical specificity", the host must retain an accessible and complementary recognition site. In the case of a supramolecular, porous coordination polymer (PCP) [Zn(o-phen)(ndc)] (o-phen: 1,10-phenanthroline, ndc: 2,6-naphthalenedicarboxylate) host, equipped with an adaptable recognition pocket, we have discovered that the preferential encapsulation of a haloaromatic isomer is not only for dimension and shape, but also for the "chemical nature" of the guest. This selectivity, i.e., preference for the dimension, shape and chemical nature, is not guided by any complementary recognition site, which is commonly required for "chemical specificity". Insights from crystal structures and computational studies unveil that the differences in the different types of noncovalent host-guest interaction strengths, acting in a concerted fashion, yield the unique selectivity.
Collapse
Affiliation(s)
- Rohan Jena
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Subhajit Laha
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Nimish Dwarkanath
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Arpan Hazra
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad 500046 Telangana India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| |
Collapse
|
15
|
Vujević L, Karadeniz B, Cindro N, Krajnc A, Mali G, Mazaj M, Avdoshenko SM, Popov AA, Žilić D, Užarević K, Kveder M. Improving the molecular spin qubit performance in zirconium MOF composites by mechanochemical dilution and fullerene encapsulation. Chem Sci 2023; 14:9389-9399. [PMID: 37712041 PMCID: PMC10498684 DOI: 10.1039/d3sc03089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023] Open
Abstract
Enlarging the quantum coherence times and gaining control over quantum effects in real systems are fundamental for developing quantum technologies. Molecular electron spin qubits are particularly promising candidates for realizing quantum information processing due to their modularity and tunability. Still, there is a constant search for tools to increase their quantum coherence times. Here we present how the mechanochemical introduction of active spin qubits in the form of 10% diluted copper(ii)-porphyrins in the diamagnetic PCN-223 and MOF-525 zirconium-MOF polymorph pair can be achieved. Furthermore, the encapsulation of fullerene during the MOF synthesis directs the process exclusively toward the rare PCN-223 framework with a controllable amount of fullerene in the framework channels. In addition to the templating role, the incorporation of fullerene increases the electron spin-lattice and phase-memory relaxation times, T1 and Tm. Besides decreasing the amount of nuclear spin-bearing solvent guests in the non-activated qubit frameworks, the observed improved relaxation times can be rationalized by modulating the phonon density of states upon fullerene encapsulation.
Collapse
Affiliation(s)
- Lucija Vujević
- Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | - Bahar Karadeniz
- Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | - Nikola Cindro
- Department of Chemistry, University of Zagreb 10000 Zagreb Croatia
| | - Andraž Krajnc
- National Institute of Chemistry Hajdrihova 19 SI-1001 Ljubljana Slovenia
| | - Gregor Mali
- National Institute of Chemistry Hajdrihova 19 SI-1001 Ljubljana Slovenia
| | - Matjaž Mazaj
- National Institute of Chemistry Hajdrihova 19 SI-1001 Ljubljana Slovenia
| | | | - Alexey A Popov
- Leibniz IFW Dresden Helmholtzstrasse 20 D-01069 Dresden Germany
| | - Dijana Žilić
- Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | | | - Marina Kveder
- Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| |
Collapse
|
16
|
Kwon NH, Han S, Kim J, Cho ES. Super Proton Conductivity Through Control of Hydrogen-Bonding Networks in Flexible Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301122. [PMID: 37069772 DOI: 10.1002/smll.202301122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Metal-organic frameworks (MOFs) have received much attention as a solid-state electrolyte in proton exchange membrane fuel cells. The introduction of proton carriers and functional groups into MOFs can improve the proton conductivity attributed to the formation of hydrogen-bonding networks, while the underlying synergistic mechanism is still unclear. Here, a series of flexible MOFs (MIL-88B, [Fe3 O(OH)(H2 O)2 (O2 C-C6 H4 -CO2 )3 ] with imidazole) is designed to modify the hydrogen-bonding networks and investigate the resulting proton-conducting characteristics by controlling the breathing behaviors. The breathing behavior is tuned by varying the amount of adsorbed imidazole into pore (small breathing (SB) and large breathing (LB)) and introducing functional groups onto ligands (-NH2 , -SO3 H), resulting in four kinds of imidazole-loaded MOFs-Im@MIL-88B-SB, Im@MIL-88B-LB, Im@MIL-88B-NH2 , and Im@MIL-88B-SO3 H. Im@MIL-88B-LB without functional groups exhibits the highest proton conductivity of 8.93 × 10-2 S cm-1 at 60 °C and 95% relative humidity among imidazole-loaded proton conductors despite the mild condition, indicating that functional groups may not be always required to enhance proton conductivity. The elaborately controlled pore size and host-guest interaction in flexible MOFs through imidazole-dependent structural transformation are translated into the high proton concentration without the limitation of proton mobility, contributing to the formation of effective hydrogen-bonding networks in imidazole conducting media.
Collapse
Affiliation(s)
- Nam Ho Kwon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunghee Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun Seon Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
17
|
Krause S, Milić JV. Functional dynamics in framework materials. Commun Chem 2023; 6:151. [PMID: 37452112 PMCID: PMC10349092 DOI: 10.1038/s42004-023-00945-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Dynamic crystalline materials have emerged as a unique category of condensed phase matter that combines crystalline lattice with components that display dynamic behavior in the solid state. This has involved a range of materials incorporating dynamic functional units in the form of stimuli-responsive molecular switches and machines, among others. In particular, it has been possible by relying on framework materials, such as porous molecular frameworks and other hybrid organic-inorganic systems that demonstrated potential for serving as scaffolds for dynamic molecular functions. As functional dynamics increase the level of complexity, the associated phenomena are often overlooked and need to be explored. In this perspective, we discuss a selection of recent developments of dynamic solid-state materials across material classes, outlining opportunities and fundamental and methodological challenges for their advancement toward innovative functionality and applications.
Collapse
Affiliation(s)
- Simon Krause
- Max Planck Institute for Solid-State Research, Stuttgart, Germany.
| | - Jovana V Milić
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
18
|
Van Speybroeck V. Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220239. [PMID: 37211031 PMCID: PMC10200353 DOI: 10.1098/rsta.2022.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 05/23/2023]
Abstract
The question is addressed in how far current modelling strategies are capable of modelling dynamic phenomena in realistic nanostructured materials at operating conditions. Nanostructured materials used in applications are far from perfect; they possess a broad range of heterogeneities in space and time extending over several orders of magnitude. Spatial heterogeneities from the subnanometre to the micrometre scale in crystal particles with a finite size and specific morphology, impact the material's dynamics. Furthermore, the material's functional behaviour is largely determined by the operating conditions. Currently, there exists a huge length-time scale gap between attainable theoretical length-time scales and experimentally relevant scales. Within this perspective, three key challenges are highlighted within the molecular modelling chain to bridge this length-time scale gap. Methods are needed that enable (i) building structural models for realistic crystal particles having mesoscale dimensions with isolated defects, correlated nanoregions, mesoporosity, internal and external surfaces; (ii) the evaluation of interatomic forces with quantum mechanical accuracy albeit at much lower computational cost than the currently used density functional theory methods and (iii) derivation of the kinetics of phenomena taking place in a multi-length-time scale window to obtain an overall view of the dynamics of the process. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
|
19
|
Zhang Z, Chen Y, Chai K, Kang C, Peh SB, Li H, Ren J, Shi X, Han X, Dejoie C, Day SJ, Yang S, Zhao D. Temperature-dependent rearrangement of gas molecules in ultramicroporous materials for tunable adsorption of CO 2 and C 2H 2. Nat Commun 2023; 14:3789. [PMID: 37355678 DOI: 10.1038/s41467-023-39319-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023] Open
Abstract
The interactions between adsorbed gas molecules within porous metal-organic frameworks are crucial to gas selectivity but remain poorly explored. Here, we report the modulation of packing geometries of CO2 and C2H2 clusters within the ultramicroporous CUK-1 material as a function of temperature. In-situ synchrotron X-ray diffraction reveals a unique temperature-dependent reversal of CO2 and C2H2 adsorption affinities on CUK-1, which is validated by gas sorption and dynamic breakthrough experiments, affording high-purity C2H2 (99.95%) from the equimolar mixture of C2H2/CO2 via a one-step purification process. At low temperatures (<253 K), CUK-1 preferentially adsorbs CO2 with both high selectivity (>10) and capacity (170 cm3 g-1) owing to the formation of CO2 tetramers that simultaneously maximize the guest-guest and host-guest interactions. At room temperature, conventionally selective adsorption of C2H2 is observed. The selectivity reversal, structural robustness, and facile regeneration of CUK-1 suggest its potential for producing high-purity C2H2 by temperature-swing sorption.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - Yinlin Chen
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| | - Kungang Chai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - Junyu Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - Xiansong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - Xue Han
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Catherine Dejoie
- The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220 Cedex 9, 38043, Grenoble, France
| | - Sarah J Day
- Diamond Light Source, Harwell Science Campus, Oxfordshire, OX11 0DE, UK
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore.
| |
Collapse
|
20
|
Walenszus F, Bon V, Evans JD, Krause S, Getzschmann J, Kaskel S, Dvoyashkin M. On the role of history-dependent adsorbate distribution and metastable states in switchable mesoporous metal-organic frameworks. Nat Commun 2023; 14:3223. [PMID: 37270577 DOI: 10.1038/s41467-023-38737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/05/2023] Open
Abstract
A unique feature of metal-organic frameworks (MOFs) in contrast to rigid nanoporous materials is their structural switchabilty offering a wide range of functionality for sustainable energy storage, separation and sensing applications. This has initiated a series of experimental and theoretical studies predominantly aiming at understanding the thermodynamic conditions to transform and release gas, but the nature of sorption-induced switching transitions remains poorly understood. Here we report experimental evidence for fluid metastability and history-dependent states during sorption triggering the structural change of the framework and leading to the counterintuitive phenomenon of negative gas adsorption (NGA) in flexible MOFs. Preparation of two isoreticular MOFs differing by structural flexibility and performing direct in situ diffusion studies aided by in situ X-ray diffraction, scanning electron microscopy and computational modelling, allowed assessment of n-butane molecular dynamics, phase state, and the framework response to obtain a microscopic picture for each step of the sorption process.
Collapse
Affiliation(s)
- Francesco Walenszus
- Department of Inorganic Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Volodymyr Bon
- Department of Inorganic Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Jack D Evans
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Simon Krause
- Nanochemistry department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Jürgen Getzschmann
- Department of Inorganic Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, 01069, Dresden, Germany.
- Fraunhofer Institute IWS, Winterbergstr. 28, 01277, Dresden, Germany.
| | - Muslim Dvoyashkin
- Institute of Chemical Technology, Universität Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
21
|
Hanna SL, Farha OK. Energy-structure-property relationships in uranium metal-organic frameworks. Chem Sci 2023; 14:4219-4229. [PMID: 37123191 PMCID: PMC10132172 DOI: 10.1039/d3sc00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Located at the foot of the periodic table, uranium is a relatively underexplored element possessing rich chemistry. In addition to its high relevance to nuclear power, uranium shows promise for small molecule activation and photocatalysis, among many other powerful functions. Researchers have used metal-organic frameworks (MOFs) to harness uranium's properties, and in their quest to do so, have discovered remarkable structures and unique properties unobserved in traditional transition metal MOFs. More recently, (e.g. the last 8-10 years), theoretical calculations of framework energetics have supplemented structure-property studies in uranium MOFs (U-MOFs). In this Perspective, we summarize how these budding energy-structure-property relationships in U-MOFs enable a deeper understanding of chemical phenomena, enlarge chemical space, and elevate the field to targeted, rather than exploratory, discovery. Importantly, this Perspective encourages interdisciplinary connections between experimentalists and theorists by demonstrating how these collaborations have elevated the entire U-MOF field.
Collapse
Affiliation(s)
- Sylvia L Hanna
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
- Department of Chemical and Biological Engineering, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
22
|
Song J, Yang W, Han X, Jiang S, Zhang C, Pan W, Jian S, Hu J. Performance of Rod-Shaped Ce Metal-Organic Frameworks for Defluoridation. Molecules 2023; 28:molecules28083492. [PMID: 37110726 PMCID: PMC10143828 DOI: 10.3390/molecules28083492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The performance of a Ce(III)-4,4',4″-((1,3,5-triazine-2,4,6-triyl) tris (azanediyl)) tribenzoic acid-organic framework (Ce-H3TATAB-MOFs) for capturing excess fluoride in aqueous solutions and its subsequent defluoridation was investigated in depth. The optimal sorption capacity was obtained with a metal/organic ligand molar ratio of 1:1. The morphological characteristics, crystalline shape, functional groups, and pore structure of the material were analyzed via SEM, XRD, FTIR, XPS, and N2 adsorption-desorption experiments, and the thermodynamics, kinetics, and adsorption mechanism were elucidated. The influence of pH and co-existing ions for defluoridation performance were also sought. The results show that Ce-H3TATAB-MOFs is a mesoporous material with good crystallinity, and that quasi-second kinetic and Langmuir models can describe the sorption kinetics and thermodynamics well, demonstrating that the entire sorption process is a monolayer-governed chemisorption. The Langmuir maximum sorption capacity was 129.7 mg g-1 at 318 K (pH = 4). The adsorption mechanism involves ligand exchange, electrostatic interaction, and surface complexation. The best removal effect was reached at pH 4, and a removal effectiveness of 76.57% was obtained under strongly alkaline conditions (pH 10), indicating that the adsorbent has a wide range of applications. Ionic interference experiments showed that the presence of PO43- and H2PO4- in water have an inhibitory effect on defluoridation, whereas SO42-, Cl-, CO32-, and NO3- are conducive to the adsorption of fluoride due to the ionic effect.
Collapse
Affiliation(s)
- Jiangyan Song
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350001, China
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
| | - Weisen Yang
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
| | - Xiaoshuai Han
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenbin Pan
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350001, China
| | - Shaoju Jian
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
| | - Jiapeng Hu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350001, China
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
23
|
Troyano J, Maspoch D. Propagating MOF flexibility at the macroscale: the case of MOF-based mechanical actuators. Chem Commun (Camb) 2023; 59:1744-1756. [PMID: 36661894 DOI: 10.1039/d2cc05813h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Shapeshifting materials have captured the imagination of researchers for their myriad potential applications, yet their practical development remains challenging. These materials operate by mechanical actuation: their structural responses to external stimuli generate mechanical work. Here, we review progress on the use of flexible metal-organic frameworks (MOFs) in composite actuators that shapeshift in a controlled fashion. We highlight the dynamic behaviour of flexible MOFs, which are unique among materials, even other porous ones, and introduce the concept of propagation, which involves the efficient transmission of flexible MOF deformations to the macroscale. Furthermore, we explain how researchers can observe, measure, and induce such effects in MOF composites. Next, we review pioneering first-generation MOF-composite actuators that shapeshift in response to changes in humidity, temperature, pressure, or to other stimuli. Finally, we allude to recent developments, identify remaining R & D hurdles, and suggest future directions in this field.
Collapse
Affiliation(s)
- Javier Troyano
- Inorganic Chemistry Department, Autonomous University of Madrid, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
24
|
Miura H, Bon V, Senkovska I, Ehrling S, Bönisch N, Mäder G, Grünzner S, Khadiev A, Novikov D, Maity K, Richter A, Kaskel S. Spatiotemporal Design of the Metal-Organic Framework DUT-8(M). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207741. [PMID: 36349824 DOI: 10.1002/adma.202207741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Switchable metal-organic frameworks (MOFs) change their structure in time and selectively open their pores adsorbing guest molecules, leading to highly selective separation, pressure amplification, sensing, and actuation applications. The 3D engineering of MOFs has reached a high level of maturity, but spatiotemporal evolution opens a new perspective toward engineering materials in the 4th dimension (time) by t-axis design, in essence exploiting the deliberate tuning of activation barriers. This work demonstrates the first example in which an explicit temporal engineering of a switchable MOF (DUT-8, [M1 M2 (2,6-ndc)2 dabco]n , 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4diazabicyclo[2.2.2]octane, M1 = Ni, M2 = Co) is presented. The temporal response is deliberately tuned by variations in cobalt content. A spectrum of advanced analytical methods is presented for analyzing the switching kinetics stimulated by vapor adsorption using in situ time-resolved techniques ranging from ensemble adsorption and advanced synchrotron X-ray diffraction experiments to individual crystal analysis. A novel analysis technique based on microscopic observation of individual crystals in a microfluidic channel reveals the lowest limit for adsorption switching reported so far. Differences in the spatiotemporal response of crystal ensembles originate from an induction time that varies statistically and widens characteristically with increasing cobalt content reflecting increasing activation barriers.
Collapse
Affiliation(s)
- Hiroki Miura
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
- Nippon Steel Corporation, 20-1 Shintomi, Futtsu, Chiba, 293-8511, Japan
| | - Volodymyr Bon
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Irena Senkovska
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Sebastian Ehrling
- 3P INSTRUMENTS GmbH & Co. KG, Branch office Leipzig, Bitterfelder Str. 1-5, 04129, Leipzig, Germany
| | - Nadine Bönisch
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Gerrit Mäder
- Fraunhofer Institute of Materials and Beam Technology, Wintergerbstr. 28, 01277, Dresden, Germany
| | - Stefan Grünzner
- Professur Mikrosystemtechnik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Azat Khadiev
- P23 group, Petra III Synchrotron, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Dmitri Novikov
- P23 group, Petra III Synchrotron, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Kartik Maity
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Andreas Richter
- Professur Mikrosystemtechnik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
- Fraunhofer Institute of Materials and Beam Technology, Wintergerbstr. 28, 01277, Dresden, Germany
| |
Collapse
|
25
|
Thaggard GC, Leith GA, Sosnin D, Martin CR, Park KC, McBride MK, Lim J, Yarbrough BJ, Maldeni Kankanamalage BKP, Wilson GR, Hill AR, Smith MD, Garashchuk S, Greytak AB, Aprahamian I, Shustova NB. Confinement-Driven Photophysics in Hydrazone-Based Hierarchical Materials. Angew Chem Int Ed Engl 2023; 62:e202211776. [PMID: 36346406 DOI: 10.1002/anie.202211776] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Confinement-imposed photophysics was probed for novel stimuli-responsive hydrazone-based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution-like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady-state and time-resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone-based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Daniil Sosnin
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Margaret K McBride
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Austin R Hill
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
26
|
|
27
|
Gulcay-Ozcan E, Iacomi P, Rioland G, Maurin G, Devautour-Vinot S. Airborne Toluene Detection Using Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53777-53787. [PMID: 36416767 DOI: 10.1021/acsami.2c15237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The pollution of indoor air is a major worldwide concern in our modern society for people's comfort, health, and safety. In particular, toluene, present in many substances including paints, thinners, candles, leathers, cosmetics, inks, and glues, affects the human health even at very low concentrations throughout its action on the central nervous system. Its prevalence in many workplace environments can fluctuate considerably, which led to firm regulation with exposure limits varying between 50 and 400 ppm depending on exposure time. This therefore requires the development of technologies for an accurate detection of this contaminant. Metal-organic frameworks have been proposed as promising candidates to detect and monitor a series of molecules at even extremely low concentrations owing to the high tunability of their functionality. Herein, a high-throughput Monte Carlo screening approach was devised to identify the best MOFs from the computation-ready, experimental (CoRE) metal-organic framework (MOF) density-derived electrostatic and chemical (DDEC) database for the selective capture of toluene from air at room temperature, with the consideration of a ternary mixture composed of extremely low-level concentration of toluene (10 ppm) in oxygen and nitrogen to mimic the composition of air. An aluminum MOF, DUT-4, with channel-like micropores was identified as an excellent candidate for the selective adsorption of toluene from air with a predicted adsorption uptake of 0.5 g/g at 10 ppm concentration and room temperature. The toluene adsorption behavior of DUT-4 at low equivalent concentrations, alongside its sensing performance, was further experimentally investigated by its incorporation in a quartz crystal microbalance sensor, confirming the promises of DUT-4. Decisively, the resulting high sensitivity and fast kinetics of our developed sensor highlight the applicability of this hand-in-hand computational-experimental methodology to porous material screening for sensing applications.
Collapse
Affiliation(s)
- Ezgi Gulcay-Ozcan
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293Montpellier, France
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, 31401Toulouse, Cedex 09, France
| | - Paul Iacomi
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293Montpellier, France
- Surface Measurement Systems, London, HA0 4PE, U.K
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, 31401Toulouse, Cedex 09, France
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293Montpellier, France
| | | |
Collapse
|
28
|
Lu W, Zhang E, Qian J, Weeraratna C, Jackson MN, Zhu C, Long JR, Ahmed M. Probing growth of metal-organic frameworks with X-ray scattering and vibrational spectroscopy. Phys Chem Chem Phys 2022; 24:26102-26110. [PMID: 36274571 DOI: 10.1039/d2cp04375k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nucleation and crystallization arising from liquid to solid phase are involved in a multitude of processes in fields ranging from materials science to biology. Controlling the thermodynamics and kinetics of growth is advantageous to help tune the formation of complex morphologies. Here, we harness wide-angle X-ray scattering and vibrational spectroscopy to elucidate the mechanism for crystallization and growth of the metal-organic framework Co-MOF-74 within microscopic volumes enclosed in a capillary and an attenuated total reflection microchip reactor. The experiments reveal molecular and structural details of the growth processes, while the results of plane wave density functional calculations allow identification of lattice and linker modes in the formed crystals. Synthesis of the metal-organic framework with microscopic volumes leads to monodisperse and micron-sized crystals, in contrast to those typically observed under bulk reaction conditions. Reduction in the volume of reagents within the microchip reactor was found to accelerate the reaction rate. The coupling of spectroscopy with scattering to probe reactions in microscopic volumes promises to be a useful tool in the synthetic chemist's kit to understand chemical bonding and has potential in designing complex materials.
Collapse
Affiliation(s)
- Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Emily Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jin Qian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Chaya Weeraratna
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Megan N Jackson
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Roztocki K, Bon V, Senkovska I, Matoga D, Kaskel S. A Logic Gate Based on a Flexible Metal-Organic Framework (JUK-8) for the Concomitant Detection of Hydrogen and Oxygen. Chemistry 2022; 28:e202202255. [PMID: 35899822 PMCID: PMC9804503 DOI: 10.1002/chem.202202255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/05/2023]
Abstract
We present an autonomous, chemical logic gate based on a switchable metal-organic framework (MOF) composite, containing carbon nanoparticles and a Pt catalyst. The switchable MOF composite performs as AND logic gate. Hydrogen and oxygen gas streams serve as binary inputs. Catalytically formed water induces a structural transition (crystal volume expansion) of the MOF, and as a consequence, a detectable drop in conductance of the composite as a 'true' output only if both gases come in contact with the composite.
Collapse
Affiliation(s)
- Kornel Roztocki
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 861-614PoznańPoland
| | - Volodymyr Bon
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
| | - Irena Senkovska
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
| | - Dariusz Matoga
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakówPoland
| | - Stefan Kaskel
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
| |
Collapse
|
30
|
Klokic S, Naumenko D, Marmiroli B, Carraro F, Linares-Moreau M, Zilio SD, Birarda G, Kargl R, Falcaro P, Amenitsch H. Unraveling the timescale of the structural photo-response within oriented metal-organic framework films. Chem Sci 2022; 13:11869-11877. [PMID: 36320901 PMCID: PMC9580475 DOI: 10.1039/d2sc02405e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023] Open
Abstract
Fundamental knowledge on the intrinsic timescale of structural transformations in photo-switchable metal-organic framework films is crucial to tune their switching performance and to facilitate their applicability as stimuli-responsive materials. In this work, for the first time, an integrated approach to study and quantify the temporal evolution of structural transformations is demonstrated on an epitaxially oriented DMOF-1-on-MOF film system comprising azobenzene in the DMOF-1 pores (DMOF-1/AB). We employed time-resolved Grazing Incidence Wide-Angle X-Ray Scattering measurements to track the structural response of the DMOF-1/AB film upon altering the length of the azobenzene molecule by photo-isomerization (trans-to-cis, 343 nm; cis-to-trans, 450 nm). Within seconds, the DMOF-1/AB response occurred fully reversible and over several switching cycles by cooperative photo-switching of the oriented DMOF-1/AB crystallites as confirmed further by infrared measurements. Our work thereby suggests a new avenue to elucidate the timescales and photo-switching characteristics in structurally responsive MOF film systems.
Collapse
Affiliation(s)
- Sumea Klokic
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Denys Naumenko
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Simone Dal Zilio
- IOM-CNR, Laboratorio TASC S.S. 14, 163.5 km, Basovizza Trieste 34149 Italy
| | - Giovanni Birarda
- Elettra Sincrotrone Trieste - SISSI Bio Beamline S.S. 14, 163.5 km, Basovizza Trieste 34149 Italy
| | - Rupert Kargl
- Institute of Chemistry and Technology of Bio-Based Systems, Graz University of Technology 8010 Graz Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| |
Collapse
|
31
|
Abstract
Chemical separations, mostly based on heat-driven techniques such as distillation, account for a large portion of the world's energy consumption. In principle, differential adsorption is a more energy-efficient separation method, but conventional adsorbent materials are still not effective for many industry-relevant mixtures. Porous coordination polymers (PCPs), or metal-organic frameworks (MOFs), are attractive for their well-defined, designable, modifiable, and flexible structures connecting to various potential applications. While the importance of the structural flexibility of MOFs in adsorption-based functions has been demonstrated, the understanding of this special feature is still in its infancy and mostly stays at the periodic structural transformation at the equilibrium state and the special shapes of single-component adsorption isotherms. There are many confusions about the categorization and roles of various types of flexibility. This Account discusses the role of flexibility of MOFs for adsorptive separation, mainly from the thermodynamic and kinetic points of view.As the classic type of framework flexibility, guest-driven structural transformations and the corresponding adsorption isotherms can be thermodynamically described by the energies of the host-guest system. The highly guest-specific pore-opening action showing contrasting single-component adsorption isotherms is regarded as a strategy for achieving molecular sieving without the need for aperture size control, but its effect and role for mixture separation are still controversial. Quantitative mixture adsorption/separation experiments showed that the common periodic (cooperative) pore-opening action leads to coadsorption of molecules smaller than the opened aperture, while the aperiodic (noncooperative) one can achieve inversed molecular sieving under a thermodynamic mechanism.The energy barrier and structure in the nonequilibrium state are also important for flexibility and adsorption/separation. With suitable energy barriers between metastable structures, new types of framework flexibility such as aperture gating can be realized. While kinetically controlled gating flexibility is usually ignored because of the difficulty of characterization or considered as disadvantageous for separation because of the variable aperture size, it plays a critical role in most kinetic separation systems, including adsorbents conventionally regarded as rigid. With the concept of gating flexibility, the meanings of aperture and guest sizes for judging molecular sieving need to be reconsidered. Gating flexibility depends on not only the host itself but also the guest, the host-guest interaction, and the external environment such as temperature, which can be rationally tuned to achieve special adsorption/separation behaviors such as inversed temperature dependence, molecular sieving, and even inversed thermodynamic selectivity. The comprehensive understanding of the thermodynamic and kinetic bases of flexibility will give a new horizon for next-generation separation materials beyond MOFs and adsorbents.
Collapse
Affiliation(s)
- Dong-Dong Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou 510275, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou 510275, China
| |
Collapse
|
32
|
Feng L, Astumian RD, Stoddart JF. Controlling dynamics in extended molecular frameworks. Nat Rev Chem 2022; 6:705-725. [PMID: 37117491 DOI: 10.1038/s41570-022-00412-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Molecular machines are essential dynamic components for fuel production, cargo delivery, information storage and processing in living systems. Scientists have demonstrated that they can design and synthesize artificial molecular machines that operate efficiently in isolation - for example, at high dilution in solution - fuelled by chemicals, electricity or light. To organize the spatial arrangement and motion of these machines within close proximity to one another in solid frameworks, such that useful macroscopic work can be performed, remains a challenge in both chemical and materials science. In this Review, we summarize the progress that has been made during the past decade in organizing dynamic molecular entities in such solid frameworks. Emerging applications of these dynamic smart materials in the contexts of molecular recognition, optoelectronics, drug delivery, photodynamic therapy and water desalination are highlighted. Finally, we review recent work on a new non-equilibrium adsorption phenomenon for which we have coined the term mechanisorption. The ability to use external energy to drive directional processes in mechanized extended frameworks augurs well for the future development of artificial molecular factories.
Collapse
|
33
|
Bon V, Busov N, Senkovska I, Bönisch N, Abylgazina L, Khadiev A, Novikov D, Kaskel S. The importance of crystal size for breathing kinetics in MIL-53(Al). Chem Commun (Camb) 2022; 58:10492-10495. [PMID: 36043355 DOI: 10.1039/d2cc02662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we analyze the switching kinetics of a breathing framework MIL-53(Al) with respect to different crystallite size regimes. Synchrotron time-resolved powder X-ray diffraction (PXRD) and adsorption rate analysis of n-butane physisorption at 298 K demonstrate the decisive role of crystal size affecting the time domain of breathing transitions in MIL-53(Al).
Collapse
Affiliation(s)
- Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Nikita Busov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Nadine Bönisch
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Leila Abylgazina
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Azat Khadiev
- P23 group, Petra III Synchrotron, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Dmitri Novikov
- P23 group, Petra III Synchrotron, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| |
Collapse
|
34
|
Nasi H, Chiara di Gregorio M, Wen Q, Shimon LJW, Kaplan‐Ashiri I, Bendikov T, Leitus G, Kazes M, Oron D, Lahav M, van der Boom ME. Directing the Morphology, Packing, and Properties of Chiral Metal-Organic Frameworks by Cation Exchange. Angew Chem Int Ed Engl 2022; 61:e202205238. [PMID: 35594390 PMCID: PMC9542332 DOI: 10.1002/anie.202205238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 11/08/2022]
Abstract
We show that metal-organic frameworks, based on tetrahedral pyridyl ligands, can be used as a morphological and structural template to form a series of isostructural crystals having different metal ions and properties. An iterative crystal-to-crystal conversion has been demonstrated by consecutive cation exchanges. The primary manganese-based crystals are characterized by an uncommon space group (P622). The packing includes chiral channels that can mediate the cation exchange, as indicated by energy-dispersive X-ray spectroscopy on microtome-sectioned crystals. The observed cation exchange is in excellent agreement with the Irving-Williams series (MnZn) associated with the relative stability of the resulting coordination nodes. Furthermore, we demonstrate how the metal cation controls the optical and magnetic properties. The crystals maintain their morphology, allowing a quantitative comparison of their properties at both the ensemble and single-crystal level.
Collapse
Affiliation(s)
- Hadar Nasi
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Maria Chiara di Gregorio
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Qiang Wen
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Linda J. W. Shimon
- Department of Chemical Research SupportWeizmann Institute of Science7610001RehovotIsrael
| | - Ifat Kaplan‐Ashiri
- Department of Chemical Research SupportWeizmann Institute of Science7610001RehovotIsrael
| | - Tatyana Bendikov
- Department of Chemical Research SupportWeizmann Institute of Science7610001RehovotIsrael
| | - Gregory Leitus
- Department of Chemical Research SupportWeizmann Institute of Science7610001RehovotIsrael
| | - Miri Kazes
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Dan Oron
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Michal Lahav
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Milko E. van der Boom
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| |
Collapse
|
35
|
Hu Q, Zhang M, Xu L, Wang S, Yang T, Wu M, Lu W, Li Y, Yu D. Unraveling timescale-dependent Fe-MOFs crystal evolution for catalytic ozonation reactivity modulation. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128575. [PMID: 35278971 DOI: 10.1016/j.jhazmat.2022.128575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/05/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Iron-based metal-organic frameworks (Fe-MOFs) have been considered competitive catalyst candidates for the effective degradation of organic pollutants via advanced oxidation processes (AOPs) due to their unique porous architecture and tunable active site structure. However, little is known about the role of synergetic relationship between porous architecture and active site exposure of Fe-MOFs on catalysis for AOPs yet. Here, we demonstrated an overlooked compromise over these two features on modulating the catalytic ozonation reactivity of MIL-53(Fe) through a timescale-dependent crystal evolution. Enabled by intramolecular hydrogen bonds, the MIL-53(Fe) was subjected to six evolution steps in terms of crystal morphology, leading to a volcano plot of catalytic ozonation reactivity for Rhodamine B (RhB) degradation versus the crystallization time. Evidence suggested that the surface area of MIL-53(Fe) decreased dramatically, while the density of accessible active site increased when prolonging crystallization time, allowing for the facile modulation of catalytic ozonation reactivity of MIL-53(Fe). Electron paramagnetic resonance and fluorescence quantification tests verified that the screened MIL-53(Fe)s had a much better capacity for ∙OH generation than benchmark ozonation catalyst α-MnO2 and α-FeOOH. Moreover, the MIL-53(Fe) with the highest reactivity (i.e., MIL-53(Fe)-18H) could effectively destruct a broad spectrum of emerging and refractory organic pollutants and allow the thorough purification of secondary effluents discharged from textile dyeing & finishing industry for in situ reuse. Therefore, our study advances the understanding of the compromise effect between porous architecture and active site on catalysis reactivity of Fe-MOFs and promotes the rational design of more effective Fe-MOFs as well as their derivatives for environmental applications.
Collapse
Affiliation(s)
- Qian Hu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zheijiang Sci-Tech University Tongxiang Research Institute, Tongxiang 345000, China
| | - Mingyan Zhang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Licong Xu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shanli Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tao Yang
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec 46117, Czech Republic
| | - Minghua Wu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongqiang Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zheijiang Sci-Tech University Tongxiang Research Institute, Tongxiang 345000, China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zheijiang Sci-Tech University Tongxiang Research Institute, Tongxiang 345000, China.
| |
Collapse
|
36
|
Schwotzer F, Horak J, Senkovska I, Schade E, Gorelik TE, Wollmann P, Anh ML, Ruck M, Kaiser U, Weidinger IM, Kaskel S. Cooperative Assembly of 2D-MOF Nanoplatelets into Hierarchical Carpets and Tubular Superstructures for Advanced Air Filtration. Angew Chem Int Ed Engl 2022; 61:e202117730. [PMID: 35285126 PMCID: PMC9315001 DOI: 10.1002/anie.202117730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Clean air is an indispensable prerequisite for human health. The capture of small toxic molecules requires the development of advanced materials for air filtration. Two-dimensional nanomaterials offer highly accessible surface areas but for real-world applications their assembly into well-defined hierarchical mesostructures is essential. DUT-134(Cu) ([Cu2 (dttc)2 ]n , dttc=dithieno[3,2-b : 2',3'-d]thiophene-2,6-dicarboxylate]) is a metal-organic framework forming platelet-shaped particles, that can be organized into complex structures, such as millimeter large free-standing layers (carpets) and tubes. The structured material demonstrates enhanced accessibility of open metal sites and significantly enhanced H2 S adsorption capacity in gas filtering tests compared with traditional bulk analogues.
Collapse
Affiliation(s)
- Friedrich Schwotzer
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Jacob Horak
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Irena Senkovska
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Elke Schade
- IWS DresdenWinterbergstr. 2801277DresdenGermany
| | - Tatiana E. Gorelik
- Electron Microscopy Group of Materials Science (EMMS)Central Facility for Electron MicroscopyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Philipp Wollmann
- ElectrochemistryTechnische Universität DresdenZellescher Weg 1901069DresdenGermany
| | - Mai Lê Anh
- Inorganic Chemistry IITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Michael Ruck
- Inorganic Chemistry IITechnische Universität DresdenBergstr. 6601069DresdenGermany
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| | - Ute Kaiser
- Electron Microscopy Group of Materials Science (EMMS)Central Facility for Electron MicroscopyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Inez M. Weidinger
- ElectrochemistryTechnische Universität DresdenZellescher Weg 1901069DresdenGermany
| | - Stefan Kaskel
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
- IWS DresdenWinterbergstr. 2801277DresdenGermany
| |
Collapse
|
37
|
Nasi H, Chiara di Gregorio M, Wen Q, Shimon LJW, Kaplan-Ashiri I, Bendikov T, Leitus G, Kazes M, Oron D, Lahav M, van der Boom ME. Directing the Morphology, Packing, and Properties of Chiral MetalOrganic Frameworks by Cation Exchange. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hadar Nasi
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | | | - Qiang Wen
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | - Linda J. W. Shimon
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | | | | | - Gregory Leitus
- Weizmann Institute of Science Molecular Science and Materials Science ISRAEL
| | - Miri Kazes
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | - Dan Oron
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | - Michal Lahav
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | | |
Collapse
|
38
|
Jayapaul J, Komulainen S, Zhivonitko VV, Mareš J, Giri C, Rissanen K, Lantto P, Telkki VV, Schröder L. Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics. Nat Commun 2022; 13:1708. [PMID: 35361759 PMCID: PMC8971460 DOI: 10.1038/s41467-022-29249-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
Guest capture and release are important properties of self-assembling nanostructures. Over time, a significant fraction of guests might engage in short-lived states with different symmetry and stereoselectivity and transit frequently between multiple environments, thereby escaping common spectroscopy techniques. Here, we investigate the cavity of an iron-based metal organic polyhedron (Fe-MOP) using spin-hyperpolarized 129Xe Chemical Exchange Saturation Transfer (hyper-CEST) NMR. We report strong signals unknown from previous studies that persist under different perturbations. On-the-fly delivery of hyperpolarized gas yields CEST signatures that reflect different Xe exchange kinetics from multiple environments. Dilute pools with ~ 104-fold lower spin numbers than reported for directly detected hyperpolarized nuclei are readily detected due to efficient guest turnover. The system is further probed by instantaneous and medium timescale perturbations. Computational modeling indicates that these signals originate likely from Xe bound to three Fe-MOP diastereomers (T, C3, S4). The symmetry thus induces steric effects with aperture size changes that tunes selective spin manipulation as it is employed in CEST MRI agents and, potentially, impacts other processes occurring on the millisecond time scale.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | | | | | - Jiří Mareš
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology (MIPT), University of Oulu, 90014, Oulu, Finland
| | - Chandan Giri
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Perttu Lantto
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland.
| | | | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
39
|
Schwotzer F, Horak J, Senkovska I, Schade E, Gorelik TE, Wollmann P, Anh ML, Ruck M, Kaiser U, Weidinger IM, Kaskel S. Cooperative Assembly of 2D‐MOF Nanoplatelets into Hierarchical Carpets and Tubular Superstructures for Advanced Air Filtration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Friedrich Schwotzer
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Jacob Horak
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Irena Senkovska
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Elke Schade
- IWS Dresden Winterbergstr. 28 01277 Dresden Germany
| | - Tatiana E. Gorelik
- Electron Microscopy Group of Materials Science (EMMS) Central Facility for Electron Microscopy Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Philipp Wollmann
- Electrochemistry Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Mai Lê Anh
- Inorganic Chemistry II Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Michael Ruck
- Inorganic Chemistry II Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Str. 40 01187 Dresden Germany
| | - Ute Kaiser
- Electron Microscopy Group of Materials Science (EMMS) Central Facility for Electron Microscopy Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Inez M. Weidinger
- Electrochemistry Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Stefan Kaskel
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
- IWS Dresden Winterbergstr. 28 01277 Dresden Germany
| |
Collapse
|
40
|
Kenzhebayeva Y, Bachinin S, Solomonov AI, Gilemkhanova V, Shipilovskikh SA, Kulachenkov N, Fisenko SP, Rybin MV, Milichko VA. Light-Induced Color Switching of Single Metal-Organic Framework Nanocrystals. J Phys Chem Lett 2022; 13:777-783. [PMID: 35041418 DOI: 10.1021/acs.jpclett.1c03630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoinduced modulation of the optical parameters of nanomaterials underlies the operating principles of all-optical nanodevices. Here, we demonstrate the laser-induced 10% modulation of the refractive index and 16-fold modulation of the extinction coefficient of the dynamic metal-organic framework (HKUST-1) nanocrystals within the whole visible range. Using the laser-induced water sorption/desorption process inside HKUST-1, we have achieved size-dependent reversible tuning of brightness and color of its nanocrystals over the different spatial directions and color palette. The numerical analysis also confirmed the detected optical tuning through the evolution of optical spectra and directivity of the scattered light. The results of the work demonstrate the promising nature of the dynamic metal-organic frameworks for nonlinear optics and expand the library of chemically synthesized hybrid materials with light-controlled optical properties.
Collapse
Affiliation(s)
- Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Venera Gilemkhanova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Nikita Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Sergey P Fisenko
- A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus (NASB) P. Browka 15, 220072 Minsk, Belarus
| | - Mikhail V Rybin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), F-54000 Nancy, France
| |
Collapse
|
41
|
Hanna SL, Debela TT, Mroz AM, Syed ZH, Kirlikovali KO, Hendon CH, Farha OK. Identification of a metastable uranium metal–organic framework isomer through non-equilibrium synthesis. Chem Sci 2022; 13:13032-13039. [PMID: 36425512 PMCID: PMC9667927 DOI: 10.1039/d2sc04783g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022] Open
Abstract
Since the structure of supramolecular isomers determines their performance, rational synthesis of a specific isomer hinges on understanding the energetic relationships between isomeric possibilities. To this end, we have systematically interrogated a pair of uranium-based metal–organic framework topological isomers both synthetically and through density functional theory (DFT) energetic calculations. Although synthetic and energetic data initially appeared to mismatch, we assigned this phenomenon to the appearance of a metastable isomer, driven by levers defined by Le Châtelier's principle. Identifying the relationship between structure and energetics in this study reveals how non-equilibrium synthetic conditions can be used as a strategy to target metastable MOFs. Additionally, this study demonstrates how defined MOF design rules may enable access to products within the energetic phase space which are more complex than conventional binary (e.g., kinetic vs. thermodynamic) products. Identifying the relationship between structure and energetics in a uranium MOF isomer system reveals how non-equilibrium synthetic conditions can be used as a strategy to target metastable MOFs.![]()
Collapse
Affiliation(s)
- Sylvia L. Hanna
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Tekalign T. Debela
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Austin M. Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Zoha H. Syed
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Christopher H. Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
42
|
Hanna SL, Chheda S, Anderson R, Ray D, Malliakas CD, Knapp JG, Otake KI, Li P, Li P, Wang X, Wasson MC, Zosel K, Evans AM, Robison L, Islamoglu T, Zhang X, Dichtel WR, Stoddart JF, Gomez-Gualdron DA, Gagliardi L, Farha OK. Discovery of spontaneous de-interpenetration through charged point-point repulsions. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
NiPd mediated by conductive metal organic frameworks with facilitated electron transfer for assaying of H2O2 released from living cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Evans JD. An approach for the pore-centred description of adsorption in hierarchical porous materials. CrystEngComm 2022. [DOI: 10.1039/d2ce00696k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of metal–organic frameworks featuring hierarchical pore systems is presented and leveraged to understand adsorption in unique pore structures.
Collapse
Affiliation(s)
- Jack D. Evans
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
45
|
Vaidhyanathan R, Singh HD, Nandi S, Chakraborty D, Singh K, Vinod CP. Coordination flexibility aided CO2-specific gating in an Iron Isonicotinate MOF. Chem Asian J 2021; 17:e202101305. [PMID: 34972258 DOI: 10.1002/asia.202101305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Indexed: 11/10/2022]
Abstract
Coordination flexibility assisted porosity has been introduced into an Iron-isonicotinate metal organic framework (MOF), (Fe(4-PyC) 2 .(OH). The framework showed CO 2 -specific gate opening behavior, which gets tuned as a function of temperature and pressure. The MOF's physisorptive porosity towards CO 2 , CH 4 , and N 2 was investigated; it adsorbed only CO 2 via a gate opening phenomenon. The isonicotinate, representing a borderline soft base, is bound to the hard Fe 3+ centre through monodentate carboxylate and pyridyl nitrogen. This moderately weak binding enables isonicotinate to spin like a spindle under the CO 2 pressure opening the gate for a sharp increase in CO 2 uptake at 333 mmHg (At 298K, the CO 2 uptake increases from 0.70 to 1.57 mmol/g). We investigated the MOF's potential for CO 2 /N 2 and CO 2 /CH 4 gas separation aided by this gating. IAST model reveals that the CO 2 /N 2 selectivity jumps from 325 to 3131 when the gate opens, while the CO 2 /CH 4 selectivity increases three times. Interestingly, this Fe-isonicotinate MOF did not follow the trend set by our earlier reported Hard-Soft Gate Control (established for isostructural M 2+ -isonicotinate MOFs (M = Mg, Mn)). However, we account for this discrepancy using the different oxidation state of metals confirmed by X-ray photoelectron spectroscopy and magnetism.
Collapse
Affiliation(s)
- Ramanathan Vaidhyanathan
- Indian Institute of Science Education and Research, Chemistry, Main Building, IISER, Dr. Homi Bhabha Rd. Pashan Pune Maharashtra, 411008, Pune, INDIA
| | - Himan Dev Singh
- IISER P: Indian Institute of Science Education Research Pune, Chemistry, INDIA
| | - Shyamapada Nandi
- IISER Pune: Indian Institute of Science Education Research Pune, Chemistry, INDIA
| | - Debanjan Chakraborty
- IISER Pune: Indian Institute of Science Education Research Pune, Chemistry, INDIA
| | - Kirandeep Singh
- CSIR-NCL: National Chemical Laboratory CSIR, Physical and Materials Chemistry, INDIA
| | - Chathakudath P Vinod
- CSIR-NCL: National Chemical Laboratory CSIR, Catalysis and Inorganic Chemistry, INDIA
| |
Collapse
|
46
|
Iacomi P, Maurin G. ResponZIF Structures: Zeolitic Imidazolate Frameworks as Stimuli-Responsive Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50602-50642. [PMID: 34669387 DOI: 10.1021/acsami.1c12403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) have long been recognized as a prominent subset of the metal-organic framework (MOF) family, in part because of their ease of synthesis and good thermal and chemical stability, alongside attractive properties for diverse potential applications. Prototypical ZIFs like ZIF-8 have become embodiments of the significant promise held by porous coordination polymers as next-generation designer materials. At the same time, their intriguing property of experiencing significant structural changes upon the application of external stimuli such as temperature, mechanical pressure, guest adsorption, or electromagnetic fields, among others, has placed this family of MOFs squarely under the umbrella of stimuli-responsive materials. In this review, we provide an overview of the current understanding of the triggered structural and electronic responses observed in ZIFs (linker and bond dynamics, crystalline and amorphous phase changes, luminescence, etc.). We then describe the state-of-the-art experimental and computational methodology capable of shedding light on these complex phenomena, followed by a comprehensive summary of the stimuli-responsive nature of four prototypical ZIFs: ZIF-8, ZIF-7, ZIF-4, and ZIF-zni. We further expose the relevant challenges for the characterization and fundamental understanding of responsive ZIFs, including how to take advantage of their flexible properties for new application avenues.
Collapse
Affiliation(s)
- Paul Iacomi
- UMR 5253, CNRS, ENSCM, Institut Charles Gerhardt Montpellier, University of Montpellier, Montpellier 34293, France
| | - Guillaume Maurin
- UMR 5253, CNRS, ENSCM, Institut Charles Gerhardt Montpellier, University of Montpellier, Montpellier 34293, France
| |
Collapse
|
47
|
Wang SQ, Mukherjee S, Zaworotko MJ. Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous structures: an emerging class of soft porous crystals. Faraday Discuss 2021; 231:9-50. [PMID: 34318839 DOI: 10.1039/d1fd00037c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coordination networks (CNs) are a class of (usually) crystalline solids typically comprised of metal ions or cluster nodes linked into 2 or 3 dimensions by organic and/or inorganic linker ligands. Whereas CNs tend to exhibit rigid structures and permanent porosity as exemplified by most metal-organic frameworks, MOFs, there exists a small but growing class of CNs that can undergo extreme, reversible structural transformation(s) when exposed to gases, vapours or liquids. These "soft" or "stimuli-responsive" CNs were introduced two decades ago and are attracting increasing attention thanks to two features: the amenability of CNs to design from first principles, thereby enabling crystal engineering of families of related CNs; and the potential utility of soft CNs for adsorptive storage and separation. A small but growing subset of soft CNs exhibit reversible phase transformations between nonporous (closed) and porous (open) structures. These "switching CNs" are distinguished by stepped sorption isotherms coincident with phase transformation and, perhaps counterintuitively, they can exhibit benchmark properties with respect to working capacity (storage) and selectivity (separation). This review addresses fundamental and applied aspects of switching CNs through surveying their sorption properties, analysing the structural transformations that enable switching, discussing structure-function relationships and presenting design principles for crystal engineering of the next generation of switching CNs.
Collapse
Affiliation(s)
- Shi-Qiang Wang
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
| | - Soumya Mukherjee
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland. .,Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
| |
Collapse
|
48
|
Hosono N, Uemura T. Metal-Organic Frameworks as Versatile Media for Polymer Adsorption and Separation. Acc Chem Res 2021; 54:3593-3603. [PMID: 34506124 DOI: 10.1021/acs.accounts.1c00377] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular recognition is of paramount importance for modern chemical processes and has now been achieved for small molecules using well-established host-guest chemistry and adsorption-science principles. In contrast, technologies for recognizing polymer structure are relatively undeveloped. Conventional polymer separation methods, which are mostly limited in practice to size-exclusion chromatography and reprecipitation, find it difficult to recognize minute structural differences in polymer structures as such small structural alterations barely influence the polymer characteristics, including molecular size, polarity, and solubility. Therefore, most of the polymeric products being used today contain mixtures of polymers with different structures as it is challenging to completely control polymer structures during synthesis even with state-of-the-art substitution and polymerization techniques. In this context, development of novel techniques that can resolve the challenges of polymer recognition and separation is in great demand, as these techniques hold the promise of a new paradigm in polymer synthesis, impacting not only materials chemistry but also analytical and biological chemistry.In biological systems, precise recognition and translation of base monomer sequences of mRNA are achieved by threading them through small ribosome tunnels. This principle of introducing polymers into nanosized channels can possibly help us design powerful polymer recognition and separation technologies using metal-organic frameworks (MOFs) as ideal and highly designable recognition media. MOFs are porous materials comprising organic ligands and metal ions and have been extensively studied as porous beds for gas separation and storage. Recently, we found that MOFs can accommodate large polymeric chains in their nanopores. Polymer chains can spontaneously infiltrate MOFs from neat molten and solution phases by threading their terminals into MOF nanochannels. Polymer structures can be recognized and differentiated due to such insertion processes, resulting in the selective adsorption of polymers on MOFs. This enables the precise recognition of the polymer terminus structure, resulting in the perfect separation of a variety of terminal-functionalized polymers that are otherwise difficult to separate by conventional polymer separation methods. Furthermore, the MOFs can recognize polymer shapes, thus enabling the large-scale separation of high purity cyclic polymers from the complex crude mixtures of linear polymers, which are used as precursor materials in common cyclization reactions. In solution-phase adsorption, many factors, including molecular weight, terminal groups, polymer shape, polymer-MOF interaction, and coexisting solvent molecules, influence the selective adsorption behavior; this yields a new liquid chromatography-based polymer separation technology using an MOF as the stationary phase. MOF-packed columns, in which a novel separation mode based on polymer insertion into the MOF operates under a dynamic insertion/rejection equilibrium at the liquid/solid interface, exhibited excellent polymer separation capability. The polymer recognition principle described in this study thus has a high probability for realizing previously unfeasible polymer separations based on monomer composition and sequences, stereoregularity, regioregularity, helicity, and block sequences in synthetic polymers and biomacromolecules.
Collapse
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
49
|
Guillerm V, Eddaoudi M. The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal-Organic Frameworks. Acc Chem Res 2021; 54:3298-3312. [PMID: 34227389 DOI: 10.1021/acs.accounts.1c00214] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The prediction of crystal structures assembled in three dimensions has been considered for a long time, simultaneously as a chemical wasteland and a certain growth point of the chemistry of the future. Less than 30 years after Roald Hoffmann's statement, we can categorically affirm that the elevation of reticular chemistry and the introduction of metal-organic frameworks (MOFs) significantly tackled this tridimensional assembly issue. MOFs result from the assembly of organic polytopic organic ligands bridging metal nodes, clusters, chains, or layers together into mostly three-periodic open frameworks. They can exhibit extremely high porosity and offer great potential as revolutionary catalysts, drug carrier systems, sensors, smart materials, and, of course, separation agents. Overall, the progressive development of reticular chemistry has been a game changer in materials chemistry during the last 25 years.Such diverse properties often result not only from the selected organic and inorganic molecular building blocks (MBBs) but also from their distribution within the framework. Indeed, the size and shape of the porous system, as well as the location of active sites influence the overall properties. Therefore, in the continuity of achieving the crystallization of three-periodic structures, chemists and crystal engineers faced the next challenge, as summarized by John Maddox: "it remains in general impossible to predict the structure of even the simplest crystallographic solids from knowledge of their chemical composition". This is where rational design takes place.In this Account, we detail three specific approaches developed by our group to facilitate the design and assembly of finely tuned MOFs. All are based on careful geometrical consideration and a deep study and understanding of the existing nets and topologies. We recognized that highly connected nets, if possible, edge-transitive, are ideal blueprints because their number is limited in contrast to nets with lower connectivity. Therefore, we embarked on taking advantage of existing highly connected MBBs, or, in parallel, promoting their formation to meet our requirements. This is achieved by utilizing externally decorated metal-organic polyhedra as supermolecular building blocks (SBBs), serving as a net-coding building unit, comprising the requisite connectivity and directional information coding for the chosen nets. The SBB approach allowed the synthesis of several families of SBB-based MOFs, including fcu, rht, and gea-MOFs, that are detailed here.The second strategy is directly inherited from the success of the SBB approach. In seeking highly connected building units, our group naturally expanded its research focus to nets that can be deconstructed into layers, pillared in various ways. In the supermolecular building layer (SBL) approach, the layers have an almost infinite connectivity, and the framework backbone is fixed in two dimensions while the third is free for pillar expansion and functionalization. The cases of trigonal pillaring leading to rtl, eea, and apo MOFs as well as the quadrangular pillaring leading to a family of tbo-MOFs are discussed here, along with recent cases of highly connected pillars in pek and aea-MOFs.Finally, our experience with highly coordinated MBBs led us to develop a novel way to use them as secondary building units of lower connectivity and unlock the possibility of assembling a novel class of zeolite-like MOFs (ZMOFs). The case of the Zr-sod-ZMOFs designed through a cantellation strategy is described as a future leading direction of MOF design.
Collapse
Affiliation(s)
- Vincent Guillerm
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
50
|
Laha S, Haldar R, Dwarkanath N, Bonakala S, Sharma A, Hazra A, Balasubramanian S, Maji TK. A Dynamic Chemical Clip in Supramolecular Framework for Sorting Alkylaromatic Isomers using Thermodynamic and Kinetic Preferences. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Subhajit Laha
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Ritesh Haldar
- New Chemistry Unit (NCU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
- Present address: Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046 Telangana India
| | - Nimish Dwarkanath
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Satyanarayana Bonakala
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Abhishek Sharma
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Arpan Hazra
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
- New Chemistry Unit (NCU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| |
Collapse
|