1
|
Guo CT, Jardin BD, Lin JS, Ambroise RL, Wang Z, Yang LZ, Mazumdar N, Lu FJ, Ma Q, Cao YP, Liu CZ, Li KL, Liu XJ, Lan F, Zhao MM, Xiao H, Dong ED, Pu WT, Guo YX. In vivo proximity proteomics uncovers palmdelphin (PALMD) as a Z-disc-associated mitigator of isoproterenol-induced cardiac injury. Acta Pharmacol Sin 2024:10.1038/s41401-024-01348-y. [PMID: 39043970 DOI: 10.1038/s41401-024-01348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Z-discs are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-disc-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-disc proteome in vivo. We found palmdelphin (PALMD) as a novel Z-disc-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific Palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed the transverse tubule (T-tubule)-sarcoplasmic reticulum (SR) ultrastructures, which formed the Z-disc-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with the reduction of nexilin (NEXN), a crucial Z-disc-associated protein that is essential for both Z-disc and JMC structures and functions. PALMD interacted with NEXN and enhanced its protein stability while the Nexn mRNA level was not affected. AAV-based NEXN addback rescued the exacerbated cardiac injury in isoproterenol-treated PALMD-depleted mice. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis.
Collapse
Affiliation(s)
- Cong-Ting Guo
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Blake D Jardin
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Jun-Sen Lin
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | | | - Ze Wang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lu-Zi Yang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Neil Mazumdar
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Fu-Jian Lu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Yang-Po Cao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Can-Zhao Liu
- Department of Cardiology, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kai-Long Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xu-Jie Liu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Feng Lan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Ming-Ming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
| | - Er-Dan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
| | - Yu-Xuan Guo
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China.
| |
Collapse
|
2
|
Stroik D, Gregorich ZR, Raza F, Ge Y, Guo W. Titin: roles in cardiac function and diseases. Front Physiol 2024; 15:1385821. [PMID: 38660537 PMCID: PMC11040099 DOI: 10.3389/fphys.2024.1385821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The giant protein titin is an essential component of muscle sarcomeres. A single titin molecule spans half a sarcomere and mediates diverse functions along its length by virtue of its unique domains. The A-band of titin functions as a molecular blueprint that defines the length of the thick filaments, the I-band constitutes a molecular spring that determines cell-based passive stiffness, and various domains, including the Z-disk, I-band, and M-line, serve as scaffolds for stretch-sensing signaling pathways that mediate mechanotransduction. This review aims to discuss recent insights into titin's functional roles and their relationship to cardiac function. The role of titin in heart diseases, such as dilated cardiomyopathy and heart failure with preserved ejection fraction, as well as its potential as a therapeutic target, is also discussed.
Collapse
Affiliation(s)
- Dawson Stroik
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachery R. Gregorich
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Farhan Raza
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Wei Guo
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Jiao X, Li X, Zhang N, Zhang W, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Postmortem Muscle Proteome Characteristics of Silver Carp ( Hypophthalmichthys molitrix): Insights from Full-Length Transcriptome and Deep 4D Label-Free Proteomic. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1376-1390. [PMID: 38165648 DOI: 10.1021/acs.jafc.3c06902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The coverage of the protein database directly determines the results of shotgun proteomics. In this study, PacBio single-molecule real-time sequencing technology was performed on postmortem silver carp muscle transcripts. A total of 42.43 Gb clean data, 35,834 nonredundant transcripts, and 15,413 unigenes were obtained. In total, 99.32% of the unigenes were successfully annotated and assigned specific functions. PacBio long-read isoform sequencing (Iso-Seq) analysis can provide more accurate protein information with a higher proportion of complete coding sequences and longer lengths. Subsequently, 2671 proteins were identified in deep 4D proteomics informed by a full-length transcriptomics technique, which has been shown to improve the identification of low-abundance muscle proteins and potential protein isoforms. The feature of the sarcomeric protein profile and information on more than 30 major proteins in the white dorsal muscle of silver carp were reported here for the first time. Overall, this study provides valuable transcriptome data resources and the comprehensive muscle protein information detected to date for further study into the processing characteristic of early postmortem fish muscle, as well as a spectral library for data-independent acquisition and data processing. This batch of muscle-specific dependent acquisition data is available via PRIDE with identifier PXD043702.
Collapse
Affiliation(s)
- Xidong Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingying Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenhai Zhang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- Anjoy Foods Group Co., Ltd., Xiamen 361022, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- Anjoy Foods Group Co., Ltd., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Gotthardt M, Badillo-Lisakowski V, Parikh VN, Ashley E, Furtado M, Carmo-Fonseca M, Schudy S, Meder B, Grosch M, Steinmetz L, Crocini C, Leinwand L. Cardiac splicing as a diagnostic and therapeutic target. Nat Rev Cardiol 2023; 20:517-530. [PMID: 36653465 DOI: 10.1038/s41569-022-00828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Despite advances in therapeutics for heart failure and arrhythmias, a substantial proportion of patients with cardiomyopathy do not respond to interventions, indicating a need to identify novel modifiable myocardial pathobiology. Human genetic variation associated with severe forms of cardiomyopathy and arrhythmias has highlighted the crucial role of alternative splicing in myocardial health and disease, given that it determines which mature RNA transcripts drive the mechanical, structural, signalling and metabolic properties of the heart. In this Review, we discuss how the analysis of cardiac isoform expression has been facilitated by technical advances in multiomics and long-read and single-cell sequencing technologies. The resulting insights into the regulation of alternative splicing - including the identification of cardiac splice regulators as therapeutic targets and the development of a translational pipeline to evaluate splice modulators in human engineered heart tissue, animal models and clinical trials - provide a basis for improved diagnosis and therapy. Finally, we consider how the medical and scientific communities can benefit from facilitated acquisition and interpretation of splicing data towards improved clinical decision-making and patient care.
Collapse
Affiliation(s)
- Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany.
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Victor Badillo-Lisakowski
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany
| | - Victoria Nicole Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Euan Ashley
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marta Furtado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sarah Schudy
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Heidelberg-Mannheim), Heidelberg, Germany
| | - Markus Grosch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Lars Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Leslie Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
5
|
Dai Y, Ignatyeva N, Xu H, Wali R, Toischer K, Brandenburg S, Lenz C, Pronto J, Fakuade FE, Sossalla S, Zeisberg EM, Janshoff A, Kutschka I, Voigt N, Urlaub H, Rasmussen TB, Mogensen J, Lehnart SE, Hasenfuss G, Ebert A. An Alternative Mechanism of Subcellular Iron Uptake Deficiency in Cardiomyocytes. Circ Res 2023; 133:e19-e46. [PMID: 37313752 DOI: 10.1161/circresaha.122.321157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Systemic defects in intestinal iron absorption, circulation, and retention cause iron deficiency in 50% of patients with heart failure. Defective subcellular iron uptake mechanisms that are independent of systemic absorption are incompletely understood. The main intracellular route for iron uptake in cardiomyocytes is clathrin-mediated endocytosis. METHODS We investigated subcellular iron uptake mechanisms in patient-derived and CRISPR/Cas-edited induced pluripotent stem cell-derived cardiomyocytes as well as patient-derived heart tissue. We used an integrated platform of DIA-MA (mass spectrometry data-independent acquisition)-based proteomics and signaling pathway interrogation. We employed a genetic induced pluripotent stem cell model of 2 inherited mutations (TnT [troponin T]-R141W and TPM1 [tropomyosin 1]-L185F) that lead to dilated cardiomyopathy (DCM), a frequent cause of heart failure, to study the underlying molecular dysfunctions of DCM mutations. RESULTS We identified a druggable molecular pathomechanism of impaired subcellular iron deficiency that is independent of systemic iron metabolism. Clathrin-mediated endocytosis defects as well as impaired endosome distribution and cargo transfer were identified as a basis for subcellular iron deficiency in DCM-induced pluripotent stem cell-derived cardiomyocytes. The clathrin-mediated endocytosis defects were also confirmed in the hearts of patients with DCM with end-stage heart failure. Correction of the TPM1-L185F mutation in DCM patient-derived induced pluripotent stem cells, treatment with a peptide, Rho activator II, or iron supplementation rescued the molecular disease pathway and recovered contractility. Phenocopying the effects of the TPM1-L185F mutation into WT induced pluripotent stem cell-derived cardiomyocytes could be ameliorated by iron supplementation. CONCLUSIONS Our findings suggest that impaired endocytosis and cargo transport resulting in subcellular iron deficiency could be a relevant pathomechanism for patients with DCM carrying inherited mutations. Insight into this molecular mechanism may contribute to the development of treatment strategies and risk management in heart failure.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Nadezda Ignatyeva
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Hang Xu
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Ruheen Wali
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Karl Toischer
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Sören Brandenburg
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Christof Lenz
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Department of Clinical Chemistry, University Medical Center Goettingen, (C.L., H.U.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen (C.L., H.U.)
| | - Julius Pronto
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
| | - Funsho E Fakuade
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Samuel Sossalla
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
- Department for Internal Medicine II, University Medical Center Regensburg (S.S.)
| | - Elisabeth M Zeisberg
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Andreas Janshoff
- Institute for Physical Chemistry (A.J.), University of Goettingen, Germany
| | - Ingo Kutschka
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Department of Thoracic and Cardiovascular Surgery, University Medical Center Göttingen (I.K.)
| | - Niels Voigt
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Goettingen, (C.L., H.U.), University of Goettingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen (C.L., H.U.)
| | | | - Jens Mogensen
- Department of Cardiology, Aalborg University Hospital, Denmark (J.M.)
| | - Stephan E Lehnart
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Gerd Hasenfuss
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Antje Ebert
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| |
Collapse
|
6
|
González Morales N, Marescal O, Szikora S, Katzemich A, Correia-Mesquita T, Bíró P, Erdelyi M, Mihály J, Schöck F. The oxoglutarate dehydrogenase complex is involved in myofibril growth and Z-disc assembly in Drosophila. J Cell Sci 2023; 136:jcs260717. [PMID: 37272588 PMCID: PMC10323237 DOI: 10.1242/jcs.260717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibrils. Muscle contraction is achieved by the simultaneous shortening of sarcomeres, which requires all sarcomeres to be the same size. Muscles have a variety of ways to ensure sarcomere homogeneity. We have previously shown that the controlled oligomerization of Zasp proteins sets the diameter of the myofibril. Here, we looked for Zasp-binding proteins at the Z-disc to identify additional proteins coordinating myofibril growth and assembly. We found that the E1 subunit of the oxoglutarate dehydrogenase complex localizes to both the Z-disc and the mitochondria, and is recruited to the Z-disc by Zasp52. The three subunits of the oxoglutarate dehydrogenase complex are required for myofibril formation. Using super-resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Metabolomics identified an amino acid imbalance affecting protein synthesis as a possible cause of myofibril defects, which is supported by OGDH-dependent localization of ribosomes at the Z-disc.
Collapse
Affiliation(s)
- Nicanor González Morales
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
- Department of Biology, Dalhousie University, Nova Scotia B3H 4R2, Canada
| | - Océane Marescal
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Anja Katzemich
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| | | | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged 6720, Hungary
| | - Miklos Erdelyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged 6720, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| | - Frieder Schöck
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| |
Collapse
|
7
|
Gerlach GF, Imseis ZH, Cooper SL, Santos AN, O’Brien LL. Mapping of the podocin proximity-dependent proteome reveals novel components of the kidney podocyte foot process. Front Cell Dev Biol 2023; 11:1195037. [PMID: 37325559 PMCID: PMC10262054 DOI: 10.3389/fcell.2023.1195037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The unique architecture of glomerular podocytes is integral to kidney filtration. Interdigitating foot processes extend from the podocyte cell body, wrap around fenestrated capillaries, and form specialized junctional complexes termed slit diaphragms to create a molecular sieve. However, the full complement of proteins which maintain foot process integrity, and how this localized proteome changes with disease, remain to be elucidated. Methods: Proximity-dependent biotin identification (BioID) enables the identification of spatially localized proteomes. To this end, we developed a novel in vivo BioID knock-in mouse model. We utilized the slit diaphragm protein podocin (Nphs2) to create a podocin-BioID fusion. Podocin-BioID localizes to the slit diaphragm, and biotin injection leads to podocyte-specific protein biotinylation. We isolated the biotinylated proteins and performed mass spectrometry to identify proximal interactors. Results and Discussion: Gene ontology analysis of 54 proteins specifically enriched in our podocin-BioID sample revealed 'cell junctions,' 'actin binding,' and 'cytoskeleton organization' as top terms. Known foot process components were identified, and we further uncovered two novel proteins: the tricellular junctional protein Ildr2 and the CDC42 and N-WASP interactor Fnbp1l. We confirmed that Ildr2 and Fnbp1l are expressed by podocytes and partially colocalize with podocin. Finally, we investigated how this proteome changes with age and uncovered a significant increase in Ildr2. This was confirmed by immunofluorescence on human kidney samples and suggests altered junctional composition may preserve podocyte integrity. Together, these assays have led to new insights into podocyte biology and support the efficacy of utilizing BioID in vivo to interrogate spatially localized proteomes in health, aging, and disease.
Collapse
Affiliation(s)
| | | | | | | | - Lori L. O’Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Linke WA. Stretching the story of titin and muscle function. J Biomech 2023; 152:111553. [PMID: 36989971 DOI: 10.1016/j.jbiomech.2023.111553] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
The discovery of the giant protein titin, also known as connectin, dates almost half a century back. In this review, I recapitulate major advances in the discovery of the titin filaments and the recognition of their properties and function until today. I briefly discuss how our understanding of the layout and interactions of titin in muscle sarcomeres has evolved and review key facts about the titin sequence at the gene (TTN) and protein levels. I also touch upon properties of titin important for the stability of the contractile units and the assembly and maintenance of sarcomeric proteins. The greater part of my discussion centers around the mechanical function of titin in skeletal muscle. I cover milestones of research on titin's role in stretch-dependent passive tension development, recollect the reasons behind the enormous elastic diversity of titin, and provide an update on the molecular mechanisms of titin elasticity, details of which are emerging even now. I reflect on current knowledge of how muscle fibers behave mechanically if titin stiffness is removed and how titin stiffness can be dynamically regulated, such as by posttranslational modifications or calcium binding. Finally, I highlight novel and exciting, but still controversially discussed, insight into the role titin plays in active tension development, such as length-dependent activation and contraction from longer muscle lengths.
Collapse
Affiliation(s)
- Wolfgang A Linke
- Institute of Physiology II, University of Münster, Germany; Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany; German Centre for Cardiovascular Research, Berlin, Germany.
| |
Collapse
|
9
|
Oura S, Ninomiya A, Sugihara F, Matzuk MM, Ikawa M. Proximity-dependent biotin labeling in testicular germ cells identified TESMIN-associated proteins. Sci Rep 2022; 12:22198. [PMID: 36564444 PMCID: PMC9789103 DOI: 10.1038/s41598-022-26501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Characterization of protein-protein interactions (PPI) is a key to understanding the functions of proteins of interest. Recently developed proximity-dependent biotin identification (BioID) has been actively investigated as an alternative PPI mapping method because of its usefulness in uncovering transient PPI. Here, as an example of proximity labeling proteomics application in the testis, we generated two transgenic mouse lines expressing two biotin ligases (BioID2 or TurboID) fused with TESMIN, which translocates from the cytosol to the nucleus during meiotic progression and is required for reproduction. The BioID2 transgene, albeit not the TurboID transgene, rescued fertility defects of the Tesmin KO male mice, indicating that the TESMIN-BioID2 fusion can physiologically replace TESMIN. Furthermore, biotinylated protein pull-down and affinity-purification followed by mass spectrometry using the TESMIN-BioID2 transgenic mice captured components of the MYBL1-MuvB complex that regulate cell-cycle gene expression. Thus, our study shows that proximity labeling proteomics can be applied in male germ cells, although the choice of biotin ligase needs to be carefully tested.
Collapse
Affiliation(s)
- Seiya Oura
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Akinori Ninomiya
- Core Instrumentation Facility, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
- The Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, 108-8639, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Titin-truncating variants in hiPSC cardiomyocytes induce pathogenic proteinopathy and sarcomere defects with preserved core contractile machinery. Stem Cell Reports 2022; 18:220-236. [PMID: 36525964 PMCID: PMC9860080 DOI: 10.1016/j.stemcr.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Titin-truncating variants (TTNtv) are the single largest genetic cause of dilated cardiomyopathy (DCM). In this study we modeled disease phenotypes of A-band TTNtv-induced DCM in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using genome editing and tissue engineering technologies. Transcriptomic, cellular, and micro-tissue studies revealed that A-band TTNtv hiPSC-CMs exhibit pathogenic proteinopathy, sarcomere defects, aberrant Na+ channel activities, and contractile dysfunction. These phenotypes establish a dual mechanism of poison peptide effect and haploinsufficiency that collectively contribute to DCM pathogenesis. However, TTNtv cellular defects did not interfere with the function of the core contractile machinery, the actin-myosin-troponin-Ca2+ complex, and preserved the therapeutic mechanism of sarcomere modulators. Treatment of TTNtv cardiac micro-tissues with investigational sarcomere modulators augmented contractility and resulted in sustained transcriptomic changes that promote reversal of DCM disease signatures. Together, our findings elucidate the underlying pathogenic mechanisms of A-band TTNtv-induced DCM and demonstrate the validity of sarcomere modulators as potential therapeutics.
Collapse
|
11
|
Tomalka A, Heim M, Klotz A, Rode C, Siebert T. Ultrastructural and kinetic evidence support that thick filaments slide through the Z-disc. J R Soc Interface 2022; 19:20220642. [PMID: 36475390 PMCID: PMC9727675 DOI: 10.1098/rsif.2022.0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
How myofilaments operate at short mammalian skeletal muscle lengths is unknown. A common assumption is that thick (myosin-containing) filaments get compressed at the Z-disc. We provide ultrastructural evidence of sarcomeres contracting down to 0.44 µm-approximately a quarter of thick filament resting length-in long-lasting contractions while apparently keeping a regular, parallel thick filament arrangement. Sarcomeres produced force at such extremely short lengths. Furthermore, sarcomeres adopted a bimodal length distribution with both modes below lengths where sarcomeres are expected to generate force in classic force-length measurements. Mammalian fibres did not restore resting length but remained short after deactivation, as previously reported for amphibian fibres, and showed increased forces during passive re-elongation. These findings are incompatible with viscoelastic thick filament compression but agree with predictions of a model incorporating thick filament sliding through the Z-disc. This more coherent picture of mechanical mammalian skeletal fibre functioning opens new perspectives on muscle physiology.
Collapse
Affiliation(s)
- André Tomalka
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Maximilian Heim
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Annika Klotz
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Christian Rode
- Institute of Sport Science, Department of Biomechanics, University of Rostock, Rostock, Germany
| | - Tobias Siebert
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Mathew B, Bathla S, Williams KR, Nairn AC. Deciphering Spatial Protein-Protein Interactions in Brain Using Proximity Labeling. Mol Cell Proteomics 2022; 21:100422. [PMID: 36198386 PMCID: PMC9650050 DOI: 10.1016/j.mcpro.2022.100422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/18/2023] Open
Abstract
Cellular biomolecular complexes including protein-protein, protein-RNA, and protein-DNA interactions regulate and execute most biological functions. In particular in brain, protein-protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell-cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte-neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.
Collapse
Affiliation(s)
- Boby Mathew
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Department of Psychiatry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
13
|
Ortiz-Zapater E, Bagley DC, Hernandez VL, Roberts LB, Maguire TJA, Voss F, Mertins P, Kirchner M, Peset-Martin I, Woszczek G, Rosenblatt J, Gotthardt M, Santis G, Parsons M. Epithelial coxsackievirus adenovirus receptor promotes house dust mite-induced lung inflammation. Nat Commun 2022; 13:6407. [PMID: 36302767 PMCID: PMC9613683 DOI: 10.1038/s41467-022-33882-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Airway inflammation and remodelling are important pathophysiologic features in asthma and other respiratory conditions. An intact epithelial cell layer is crucial to maintain lung homoeostasis, and this depends on intercellular adhesion, whilst damaged respiratory epithelium is the primary instigator of airway inflammation. The Coxsackievirus Adenovirus Receptor (CAR) is highly expressed in the epithelium where it modulates cell-cell adhesion stability and facilitates immune cell transepithelial migration. However, the contribution of CAR to lung inflammation remains unclear. Here we investigate the mechanistic contribution of CAR in mediating responses to the common aeroallergen, House Dust Mite (HDM). We demonstrate that administration of HDM in mice lacking CAR in the respiratory epithelium leads to loss of peri-bronchial inflammatory cell infiltration, fewer goblet-cells and decreased pro-inflammatory cytokine release. In vitro analysis in human lung epithelial cells confirms that loss of CAR leads to reduced HDM-dependent inflammatory cytokine release and neutrophil migration. Epithelial CAR depletion also promoted smooth muscle cell proliferation mediated by GSK3β and TGF-β, basal matrix production and airway hyperresponsiveness. Our data demonstrate that CAR coordinates lung inflammation through a dual function in leucocyte recruitment and tissue remodelling and may represent an important target for future therapeutic development in inflammatory lung diseases.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science King's College London, London, UK
| | - Dustin C Bagley
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | | | - Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas J A Maguire
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Felizia Voss
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Assoziation (MDC), Berlin, Germany
- DZHK Partner site Berlin, Berlin, Germany
| | - Philipp Mertins
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Marieluise Kirchner
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Grzegorz Woszczek
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Michael Gotthardt
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Assoziation (MDC), Berlin, Germany
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - George Santis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science King's College London, London, UK
- Department of Respiratory Medicine, Guy's & St Thomas NHS Trust, London, UK
| | - Maddy Parsons
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
14
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
15
|
Mapping autophagosome contents identifies interleukin-7 receptor-α as a key cargo modulating CD4+ T cell proliferation. Nat Commun 2022; 13:5174. [PMID: 36055998 PMCID: PMC9440129 DOI: 10.1038/s41467-022-32718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
CD4+ T cells are pivotal cells playing roles in the orchestration of humoral and cytotoxic immune responses. It is known that CD4+ T cell proliferation relies on autophagy, but identification of the autophagosomal cargo involved is missing. Here we create a transgenic mouse model, to enable direct mapping of the proteinaceous content of autophagosomes in primary cells by LC3 proximity labelling. Interleukin-7 receptor-α, a cytokine receptor mostly found in naïve and memory T cells, is reproducibly detected in autophagosomes of activated CD4+ T cells. Consistently, CD4+ T cells lacking autophagy show increased interleukin-7 receptor-α surface expression, while no defect in internalisation is observed. Mechanistically, excessive surface interleukin-7 receptor-α sequestrates the common gamma chain, impairing the interleukin-2 receptor assembly and downstream signalling crucial for T cell proliferation. This study shows that key autophagy substrates can be reliably identified in this mouse model and help mechanistically unravel autophagy's contribution to healthy physiology and disease.
Collapse
|
16
|
CF-PPiD technology based on cell-free protein array and proximity biotinylation enzyme for in vitro direct interactome analysis. Sci Rep 2022; 12:10592. [PMID: 35732899 PMCID: PMC9217950 DOI: 10.1038/s41598-022-14872-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
Protein–protein interaction (PPI) analysis is a key process to understand protein functions. Recently, we constructed a human protein array (20 K human protein beads array) consisting of 19,712 recombinant human proteins produced by a wheat cell-free protein production system. Here, we developed a cell-free protein array technology for proximity biotinylation-based PPI identification (CF-PPiD). The proximity biotinylation enzyme AirID-fused TP53 and -IκBα proteins each biotinylated specific interacting proteins on a 1536-well magnetic plate. In addition, AirID-fused cereblon was shown to have drug-inducible PPIs using CF-PPiD. Using the human protein beads array with AirID-IκBα, 132 proteins were biotinylated, and then selected clones showed these biological interactions in cells. Although ZBTB9 was not immunoprecipitated, it was highly biotinylated by AirID-IκBα, suggesting that this system detected weak interactions. These results indicated that CF-PPiD is useful for the biochemical identification of directly interacting proteins.
Collapse
|
17
|
Freitas FC, Maldonado M, Oliveira Junior AB, Onuchic JN, Oliveira RJD. Biotin-painted proteins have thermodynamic stability switched by kinetic folding routes. J Chem Phys 2022; 156:195101. [PMID: 35597640 DOI: 10.1063/5.0083875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biotin-labeled proteins are widely used as tools to study protein-protein interactions and proximity in living cells. Proteomic methods broadly employ proximity-labeling technologies based on protein biotinylation in order to investigate the transient encounters of biomolecules in subcellular compartments. Biotinylation is a post-translation modification in which the biotin molecule is attached to lysine or tyrosine residues. So far, biotin-based technologies proved to be effective instruments as affinity and proximity tags. However, the influence of biotinylation on aspects such as folding, binding, mobility, thermodynamic stability, and kinetics needs to be investigated. Here, we selected two proteins [biotin carboxyl carrier protein (BCCP) and FKBP3] to test the influence of biotinylation on thermodynamic and kinetic properties. Apo (without biotin) and holo (biotinylated) protein structures were used separately to generate all-atom structure-based model simulations in a wide range of temperatures. Holo BCCP contains one biotinylation site, and FKBP3 was modeled with up to 23 biotinylated lysines. The two proteins had their estimated thermodynamic stability changed by altering their energy landscape. In all cases, after comparison between the apo and holo simulations, differences were observed on the free-energy profiles and folding routes. Energetic barriers were altered with the density of states clearly showing changes in the transition state. This study suggests that analysis of large-scale datasets of biotinylation-based proximity experiments might consider possible alterations in thermostability and folding mechanisms imposed by the attached biotins.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Michelli Maldonado
- Departamento de Matemática, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Antonio Bento Oliveira Junior
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
18
|
Stachowski-Doll MJ, Papadaki M, Martin TG, Ma W, Gong HM, Shao S, Shen S, Muntu NA, Kumar M, Perez E, Martin JL, Moravec CS, Sadayappan S, Campbell SG, Irving T, Kirk JA. GSK-3β Localizes to the Cardiac Z-Disc to Maintain Length Dependent Activation. Circ Res 2022; 130:871-886. [PMID: 35168370 PMCID: PMC8930626 DOI: 10.1161/circresaha.121.319491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Altered kinase localization is gaining appreciation as a mechanism of cardiovascular disease. Previous work suggests GSK-3β (glycogen synthase kinase 3β) localizes to and regulates contractile function of the myofilament. We aimed to discover GSK-3β's in vivo role in regulating myofilament function, the mechanisms involved, and the translational relevance. METHODS Inducible cardiomyocyte-specific GSK-3β knockout mice and left ventricular myocardium from nonfailing and failing human hearts were studied. RESULTS Skinned cardiomyocytes from knockout mice failed to exhibit calcium sensitization with stretch indicating a loss of length-dependent activation (LDA), the mechanism underlying the Frank-Starling Law. Titin acts as a length sensor for LDA, and knockout mice had decreased titin stiffness compared with control mice, explaining the lack of LDA. Knockout mice exhibited no changes in titin isoforms, titin phosphorylation, or other thin filament phosphorylation sites known to affect passive tension or LDA. Mass spectrometry identified several z-disc proteins as myofilament phospho-substrates of GSK-3β. Agreeing with the localization of its targets, GSK-3β that is phosphorylated at Y216 binds to the z-disc. We showed pY216 was necessary and sufficient for z-disc binding using adenoviruses for wild-type, Y216F, and Y216E GSK-3β in neonatal rat ventricular cardiomyocytes. One of GSK-3β's z-disc targets, abLIM-1 (actin-binding LIM protein 1), binds to the z-disc domains of titin that are important for maintaining passive tension. Genetic knockdown of abLIM-1 via siRNA in human engineered heart tissues resulted in enhancement of LDA, indicating abLIM-1 may act as a negative regulator that is modulated by GSK-3β. Last, GSK-3β myofilament localization was reduced in left ventricular myocardium from failing human hearts, which correlated with depressed LDA. CONCLUSIONS We identified a novel mechanism by which GSK-3β localizes to the myofilament to modulate LDA. Importantly, z-disc GSK-3β levels were reduced in patients with heart failure, indicating z-disc localized GSK-3β is a possible therapeutic target to restore the Frank-Starling mechanism in patients with heart failure.
Collapse
Affiliation(s)
- Marisa J Stachowski-Doll
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Weikang Ma
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Henry M Gong
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Stephanie Shao
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
| | - Shi Shen
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
| | - Nitha Aima Muntu
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung, and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Edith Perez
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Jody L Martin
- Department of Pharmacology, Cardiovascular Research Institute, UC Davis School of Medicine, CA (J.L.M.)
| | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, OH (C.S.M.)
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung, and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Stuart G Campbell
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT (S.G.C.)
| | - Thomas Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| |
Collapse
|
19
|
Kushner JS, Liu G, Eisert RJ, Bradshaw GA, Pitt GS, Hinson JT, Kalocsay M, Marx SO. Detecting Cardiovascular Protein-Protein Interactions by Proximity Proteomics. Circ Res 2022; 130:273-287. [PMID: 35050691 PMCID: PMC8852690 DOI: 10.1161/circresaha.121.319810] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rapidly changing and transient protein-protein interactions regulate dynamic cellular processes in the cardiovascular system. Traditional methods, including affinity purification and mass spectrometry, have revealed many macromolecular complexes in cardiomyocytes and the vasculature. Yet these methods often fail to identify in vivo or transient protein-protein interactions. To capture these interactions in living cells and animals with subsequent mass spectrometry identification, enzyme-catalyzed proximity labeling techniques have been developed in the past decade. Although the application of this methodology to cardiovascular research is still in its infancy, the field is developing rapidly, and the promise is substantial. In this review, we outline important concepts and discuss how proximity proteomics has been applied to study physiological and pathophysiological processes relevant to the cardiovascular system.
Collapse
Affiliation(s)
- Jared S. Kushner
- Division of Cardiology, Department of Medicine; Columbia University, Vagelos College of Physicians and Surgeons
| | - Guoxia Liu
- Division of Cardiology, Department of Medicine; Columbia University, Vagelos College of Physicians and Surgeons
| | - Robyn J. Eisert
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School
| | - Gary A. Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College
| | - J. Travis Hinson
- Cardiology Center, UConn Health, Farmington, CT
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Marian Kalocsay
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine; Columbia University, Vagelos College of Physicians and Surgeons
- Department of Molecular Pharmacology and Therapeutics, Columbia University, Vagelos College of Physicians and Surgeons
| |
Collapse
|
20
|
Yamanaka S, Horiuchi Y, Matsuoka S, Kido K, Nishino K, Maeno M, Shibata N, Kosako H, Sawasaki T. A proximity biotinylation-based approach to identify protein-E3 ligase interactions induced by PROTACs and molecular glues. Nat Commun 2022; 13:183. [PMID: 35013300 PMCID: PMC8748630 DOI: 10.1038/s41467-021-27818-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Proteolysis-targeting chimaeras (PROTACs) as well as molecular glues such as immunomodulatory drugs (IMiDs) and indisulam are drugs that induce interactions between substrate proteins and an E3 ubiquitin ligases for targeted protein degradation. Here, we develop a workflow based on proximity-dependent biotinylation by AirID to identify drug-induced neo-substrates of the E3 ligase cereblon (CRBN). Using AirID-CRBN, we detect IMiD-dependent biotinylation of CRBN neo-substrates in vitro and identify biotinylated peptides of well-known neo-substrates by mass spectrometry with high specificity and selectivity. Additional analyses reveal ZMYM2 and ZMYM2-FGFR1 fusion protein-responsible for the 8p11 syndrome involved in acute myeloid leukaemia-as CRBN neo-substrates. Furthermore, AirID-DCAF15 and AirID-CRBN biotinylate neo-substrates targeted by indisulam and PROTACs, respectively, suggesting that this approach has the potential to serve as a general strategy for characterizing drug-inducible protein-protein interactions in cells.
Collapse
Affiliation(s)
- Satoshi Yamanaka
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuto Horiuchi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Saya Matsuoka
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Kohki Kido
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Mayaka Maeno
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan.
| |
Collapse
|
21
|
Chuykin I, Sokol SY. Analysis of Planar Cell Polarity Complexes by Proximity Biotinylation in Xenopus Embryos. Methods Mol Biol 2022; 2438:97-106. [PMID: 35147937 DOI: 10.1007/978-1-0716-2035-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding signaling processes operating in cells during development and disease requires extensive knowledge of protein interactions. Proximity-dependent biotinylation mediated by a promiscuous bacterial biotin ligase is a sensitive approach for evaluating protein interactions under physiological conditions. This technique allows for assessing protein association when conventional pull-down assays are not applicable due to high background or transient nature of the interaction. In contrast to many studies of proximity biotinylation in cultured cells, this protocol has been adapted to detect protein interactions in Xenopus embryos. Here, we apply this technique to evaluate planar cell polarity (PCP) complexes formed by Prickle3 and Vangl2, and show that Prickle3 fused to the N-terminal fragment of the biotin ligase from Aquifex aeolicus efficiently biotinylates Vangl2 in vivo. We present our step-by-step proximity biotinylation protocol that provides a reliable semiquantitative assay for protein interactions and highlights the use of Xenopus embryos as a model for biochemical studies.
Collapse
Affiliation(s)
- Ilya Chuykin
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Murata K, Mimura A, Suzuki H, Mikami N, Hamada Y, Kato K, Iki N, Ishida M, Daitoku Y, Tanimoto Y, Okiyoneda T, Fujiyama T, Dinh TTH, Mizuno S, Sugiyama F. Efficient induction of proximity-dependent labelling by biotin feeding in BMAL1-BioID knock-in mice. J Biochem 2021; 170:453-461. [PMID: 33982090 DOI: 10.1093/jb/mvab059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Proximity-dependent biotin identification (BioID) is a useful method to identify unknown protein-protein interactions. Few reports have described genetically engineered knock-in mouse models for in vivo BioID. Thus, little is known about the proper method for biotin administration and which tissues are applicable. Here, we established a BioID knock-in mouse model of Brain and Muscle ARNT-Like 1 (BMAL1) and the BirA biotin ligase with R118G mutation (BirA*). The BMAL1-BioID mouse model was used to investigate the effect of biotin diet feeding on protein biotinylation in several tissues. The BMAL1-BirA* fusion protein-retained proper intracellular localization of BMAL1 and binding to CLOCK protein in HEK293T cells. A biotin labelling assay in mouse embryonic fibroblasts revealed the protein biotinylation activity of BMAL1-BirA* expressed in knock-in mouse cells depending on biotin supplementation. Lastly, feeding a 0.5% biotin diet for 7 days induced protein biotinylation in the brain, heart, testis and liver of BMAL1-BioID mice without adverse effects on spermatogenesis. In the kidney, the biotin diet increased biotinylated protein levels in BMAL1-BioID and control mice, suggesting the existence of endogenous biotinylation activity. These results provide valuable information to optimize the in vivo BioID procedure.
Collapse
Affiliation(s)
- Kazuya Murata
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Asuka Mimura
- College of Biological Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hayate Suzuki
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Natsuki Mikami
- School of Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuko Hamada
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Natsumi Iki
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miyuki Ishida
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
23
|
Wang LT, Proulx MÈ, Kim AD, Lelarge V, McCaffrey L. A proximity proteomics screen in three-dimensional spheroid cultures identifies novel regulators of lumen formation. Sci Rep 2021; 11:22807. [PMID: 34815476 PMCID: PMC8610992 DOI: 10.1038/s41598-021-02178-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Apical-basal cell polarity and lumen formation are essential features of many epithelial tissues, which are disrupted in diseases like cancer. Here, we describe a proteomics-based screen to identify proteins involved in lumen formation in three-dimensional spheroid cultures. We established a suspension-based culture method suitable for generating polarized cysts in sufficient quantities for proteomic analysis. Using this approach, we identified several known and unknown proteins proximally associated with PAR6B, an apical protein involved in lumen formation. Functional analyses of candidates identified PARD3B (a homolog of PARD3), RALB, and HRNR as regulators of lumen formation. We also identified PTPN14 as a component of the Par-complex that is required for fidelity of apical-basal polarity. Cells transformed with KRASG12V exhibit lumen collapse/filling concomitant with disruption of the Par-complex and down-regulation of PTPN14. Enforced expression of PTPN14 maintained the lumen and restricted the transformed phenotype in KRASG12V-expressing cells. This represents an applicable approach to explore protein–protein interactions in three-dimensional culture and to identify proteins important for lumen maintenance in normal and oncogene-expressing cells.
Collapse
Affiliation(s)
- Li-Ting Wang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Marie-Ève Proulx
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Anne D Kim
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Virginie Lelarge
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada. .,Division of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1, Canada. .,Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada. .,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, H4A 3T2, Canada.
| |
Collapse
|
24
|
Crocini C, Gotthardt M. Cardiac sarcomere mechanics in health and disease. Biophys Rev 2021; 13:637-652. [PMID: 34745372 PMCID: PMC8553709 DOI: 10.1007/s12551-021-00840-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The sarcomere is the fundamental structural and functional unit of striated muscle and is directly responsible for most of its mechanical properties. The sarcomere generates active or contractile forces and determines the passive or elastic properties of striated muscle. In the heart, mutations in sarcomeric proteins are responsible for the majority of genetically inherited cardiomyopathies. Here, we review the major determinants of cardiac sarcomere mechanics including the key structural components that contribute to active and passive tension. We dissect the molecular and structural basis of active force generation, including sarcomere composition, structure, activation, and relaxation. We then explore the giant sarcomere-resident protein titin, the major contributor to cardiac passive tension. We discuss sarcomere dynamics exemplified by the regulation of titin-based stiffness and the titin life cycle. Finally, we provide an overview of therapeutic strategies that target the sarcomere to improve cardiac contraction and filling.
Collapse
Affiliation(s)
- Claudia Crocini
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- BioFrontiers Institute & Department of Molecular and Cellular Development, University of Colorado Boulder, Boulder, USA
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
25
|
Ladha FA, Thakar K, Pettinato AM, Legere N, Ghahremani S, Cohn R, Romano R, Meredith E, Chen YS, Hinson JT. Actinin BioID reveals sarcomere crosstalk with oxidative metabolism through interactions with IGF2BP2. Cell Rep 2021; 36:109512. [PMID: 34380038 PMCID: PMC8447243 DOI: 10.1016/j.celrep.2021.109512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/16/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023] Open
Abstract
Actinins are strain-sensing actin cross-linkers that are ubiquitously expressed and harbor mutations in human diseases. We utilize CRISPR, pluripotent stem cells, and BioID to study actinin interactomes in human cardiomyocytes. We identify 324 actinin proximity partners, including those that are dependent on sarcomere assembly. We confirm 19 known interactors and identify a network of RNA-binding proteins, including those with RNA localization functions. In vivo and biochemical interaction studies support that IGF2BP2 localizes electron transport chain transcripts to actinin neighborhoods through interactions between its K homology (KH) domain and actinin’s rod domain. We combine alanine scanning mutagenesis and metabolic assays to disrupt and functionally interrogate actinin-IGF2BP2 interactions, which reveal an essential role in metabolic responses to pathological sarcomere activation using a hypertrophic cardiomyopathy model. This study expands our functional knowledge of actinin, uncovers sarcomere interaction partners, and reveals sarcomere crosstalk with IGF2BP2 for metabolic adaptation relevant to human disease. Ladha et al. combine BioID, human cardiomyocytes, and CRISPR-Cas9 to interrogate the actinin interactome. This reveals 324 actinin proximity partners, including RNA-binding proteins that bind transcripts encoding ETC functional components. Among these RNA-binding proteins, IGF2BP2 directly binds actinin, and actinin-IGF2BP2 interactions regulate ETC transcript localization and metabolic adaptation to sarcomere function.
Collapse
Affiliation(s)
- Feria A Ladha
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Rachel Cohn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Robert Romano
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Emily Meredith
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yu-Sheng Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - J Travis Hinson
- University of Connecticut Health Center, Farmington, CT 06030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Cardiology Center, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
26
|
Rosenthal SM, Misra T, Abdouni H, Branon TC, Ting AY, Scott IC, Gingras AC. A Toolbox for Efficient Proximity-Dependent Biotinylation in Zebrafish Embryos. Mol Cell Proteomics 2021; 20:100128. [PMID: 34332124 PMCID: PMC8383115 DOI: 10.1016/j.mcpro.2021.100128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding how proteins are organized in compartments is essential to elucidating their function. While proximity-dependent approaches such as BioID have enabled a massive increase in information about organelles, protein complexes, and other structures in cell culture, to date there have been only a few studies on living vertebrates. Here, we adapted proximity labeling for protein discovery in vivo in the vertebrate model organism, zebrafish. Using lamin A (LMNA) as bait and green fluorescent protein (GFP) as a negative control, we developed, optimized, and benchmarked in vivo TurboID and miniTurbo labeling in early zebrafish embryos. We developed both an mRNA injection protocol and a transgenic system in which transgene expression is controlled by a heat shock promoter. In both cases, biotin is provided directly in the egg water, and we demonstrate that 12 h of labeling are sufficient for biotinylation of prey proteins, which should permit time-resolved analysis of development. After statistical scoring, we found that the proximal partners of LMNA detected in each system were enriched for nuclear envelope and nuclear membrane proteins and included many orthologs of human proteins identified as proximity partners of lamin A in mammalian cell culture. The tools and protocols developed here will allow zebrafish researchers to complement genetic tools with powerful proteomics approaches.
Collapse
Affiliation(s)
- Shimon M Rosenthal
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Tvisha Misra
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hala Abdouni
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Tess C Branon
- Department of Genetics, Stanford University, Stanford, California, USA; Department of Biology, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, California, USA; Department of Biology, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Ian C Scott
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Chavez JD, Wippel HH, Tang X, Keller A, Bruce JE. In-Cell Labeling and Mass Spectrometry for Systems-Level Structural Biology. Chem Rev 2021; 122:7647-7689. [PMID: 34232610 PMCID: PMC8966414 DOI: 10.1021/acs.chemrev.1c00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological systems have evolved to utilize proteins to accomplish nearly all functional roles needed to sustain life. A majority of biological functions occur within the crowded environment inside cells and subcellular compartments where proteins exist in a densely packed complex network of protein-protein interactions. The structural biology field has experienced a renaissance with recent advances in crystallography, NMR, and CryoEM that now produce stunning models of large and complex structures previously unimaginable. Nevertheless, measurements of such structural detail within cellular environments remain elusive. This review will highlight how advances in mass spectrometry, chemical labeling, and informatics capabilities are merging to provide structural insights on proteins, complexes, and networks that exist inside cells. Because of the molecular detection specificity provided by mass spectrometry and proteomics, these approaches provide systems-level information that not only benefits from conventional structural analysis, but also is highly complementary. Although far from comprehensive in their current form, these approaches are currently providing systems structural biology information that can uniquely reveal how conformations and interactions involving many proteins change inside cells with perturbations such as disease, drug treatment, or phenotypic differences. With continued advancements and more widespread adaptation, systems structural biology based on in-cell labeling and mass spectrometry will provide an even greater wealth of structural knowledge.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
28
|
Kushner J, Papa A, Marx SO. Use of Proximity Labeling in Cardiovascular Research. JACC Basic Transl Sci 2021; 6:598-609. [PMID: 34368510 PMCID: PMC8326230 DOI: 10.1016/j.jacbts.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 10/31/2022]
Abstract
Protein-protein interactions are of paramount importance in regulating normal cardiac physiology. Methodologies to elucidate these interactions in vivo have been limited. Recently, proximity-dependent biotinylation, with the use of BioID, TurboID, and ascorbate peroxidase, has been developed to uncover cellular neighborhoods and novel protein-protein interactions. These cutting-edge techniques have enabled the identification of subcellular localizations of specific proteins and the neighbors or interacting proteins within these subcellular regions. In contrast to classic methods such as affinity purification and subcellular fractionation, these techniques add covalently bound tags in living cells, such that spatial relationships and interaction networks are not disrupted. Recently, these methodologies have been used to identify novel protein-protein interactions relevant to the cardiovascular system. In this review, we discuss the development and current use of proximity biotin-labeling for cardiovascular research.
Collapse
Affiliation(s)
- Jared Kushner
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Arianne Papa
- Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
29
|
Pronobis MI, Zheng S, Singh SP, Goldman JA, Poss KD. In vivo proximity labeling identifies cardiomyocyte protein networks during zebrafish heart regeneration. eLife 2021; 10:e66079. [PMID: 33764296 PMCID: PMC8034980 DOI: 10.7554/elife.66079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Strategies have not been available until recently to uncover interacting protein networks specific to key cell types, their subcellular compartments, and their major regulators during complex in vivo events. Here, we apply BioID2 proximity labeling to capture protein networks acting within cardiomyocytes during a key model of innate heart regeneration in zebrafish. Transgenic zebrafish expressing a promiscuous BirA2 localized to the entire myocardial cell or membrane compartment were generated, each identifying distinct proteomes in adult cardiomyocytes that became altered during regeneration. BioID2 profiling for interactors with ErbB2, a co-receptor for the cardiomyocyte mitogen Nrg1, implicated Rho A as a target of ErbB2 signaling in cardiomyocytes. Blockade of Rho A during heart regeneration, or during cardiogenic stimulation by the mitogenic influences Nrg1, Vegfaa, or vitamin D, disrupted muscle creation. Our findings reveal proximity labeling as a useful resource to interrogate cell proteomes and signaling networks during tissue regeneration in zebrafish.
Collapse
Affiliation(s)
- Mira I Pronobis
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Regeneration Next, Duke UniversityDurhamUnited States
| | - Susan Zheng
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | | | - Joseph A Goldman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical CenterColumbusUnited States
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Regeneration Next, Duke UniversityDurhamUnited States
| |
Collapse
|
30
|
Russell B, Solís C. Mechanosignaling pathways alter muscle structure and function by post-translational modification of existing sarcomeric proteins to optimize energy usage. J Muscle Res Cell Motil 2021; 42:367-380. [PMID: 33595762 DOI: 10.1007/s10974-021-09596-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
A transduced mechanical signal arriving at its destination in muscle alters sarcomeric structure and function. A major question addressed is how muscle mass and tension generation are optimized to match actual performance demands so that little energy is wasted. Three cases for improved energy efficiency are examined: the troponin complex for tuning force production, control of the myosin heads in a resting state, and the Z-disc proteins for sarcomere assembly. On arrival, the regulation of protein complexes is often controlled by post-translational modification (PTM), of which the most common are phosphorylation by kinases, deacetylation by histone deacetylases and ubiquitination by E3 ligases. Another branch of signals acts not through peptide covalent bonding but via ligand interactions (e.g. Ca2+ and phosphoinositide binding). The myosin head and the regulation of its binding to actin by the troponin complex is the best and earliest example of signal destinations that modify myofibrillar contractility. PTMs in the troponin complex regulate both the efficiency of the contractile function to match physiologic demand for work, and muscle mass via protein degradation. The regulation of sarcomere assembly by integration of incoming signaling pathways causing the same PTMs or ligand binding are discussed in response to mechanical loading and unloading by the Z-disc proteins CapZ, α-actinin, telethonin, titin N-termini, and others. Many human mutations that lead to cardiomyopathy and heart disease occur in the proteins discussed above, which often occur at their PTM or ligand binding sites.
Collapse
Affiliation(s)
- Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
31
|
Basu A, Ash PEA, Wolozin B, Emili A. Protein Interaction Network Biology in Neuroscience. Proteomics 2021; 21:e1900311. [PMID: 33314619 PMCID: PMC7900949 DOI: 10.1002/pmic.201900311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Indexed: 01/04/2023]
Abstract
Mapping the intricate networks of cellular proteins in the human brain has the potential to address unsolved questions in molecular neuroscience, including the molecular basis of cognition, synaptic plasticity, long-term potentiation, learning, and memory. Perturbations to the protein-protein interaction networks (PPIN) present in neurons, glia, and other cell-types have been linked to multifactorial neurological disorders. Yet while knowledge of brain PPINs is steadily improving, the complexity and dynamic nature of the heterogeneous central nervous system in normal and disease contexts poses a formidable experimental challenge. In this review, the recent applications of functional proteomics and systems biology approaches to study PPINs central to normal neuronal function, during neurodevelopment, and in neurodegenerative disorders are summarized. How systematic PPIN analysis offers a unique mechanistic framework to explore intra- and inter-cellular functional modules governing neuronal activity and brain function is also discussed. Finally, future technological advancements needed to address outstanding questions facing neuroscience are outlined.
Collapse
Affiliation(s)
- Avik Basu
- Center for Network Systems BiologyBoston UniversityBostonMA02118USA
- Department of BiochemistryBoston University School of MedicineBostonMA02118USA
| | - Peter EA Ash
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMA02118USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMA02118USA
| | - Andrew Emili
- Center for Network Systems BiologyBoston UniversityBostonMA02118USA
- Department of BiochemistryBoston University School of MedicineBostonMA02118USA
- Department of BiologyBoston UniversityBostonMA02215USA
| |
Collapse
|
32
|
Xu Y, Fan X, Hu Y. In vivo interactome profiling by enzyme-catalyzed proximity labeling. Cell Biosci 2021; 11:27. [PMID: 33514425 PMCID: PMC7847152 DOI: 10.1186/s13578-021-00542-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Enzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.
Collapse
Affiliation(s)
- Yangfan Xu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.,Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
33
|
Zheng J, Chen X, Yang Y, Tan CSH, Tian R. Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Anal Chem 2020; 93:598-619. [DOI: 10.1021/acs.analchem.0c04332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Yang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|