1
|
Kang Y, Chang R, Ju SY. Pressure-Dependent Shape and Edge Configurations of MoS 2 by Kinetic Monte Carlo Simulation. ACS NANO 2024; 18:31495-31505. [PMID: 39485867 DOI: 10.1021/acsnano.4c12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Understanding the influence of precursor pressures is crucial for optimizing the properties of MoS2 grown through the chemical vapor deposition (CVD) process. In this study, we use kinetic Monte Carlo (KMC) simulations to investigate how varying the pressures of molybdenum (PMo) and sulfur (PS) impacts the structural properties of MoS2, such as grain shape and edge configurations. The simulations differentiate three distinct regimes─growth, steady-state, and etching─each defined by specific PMo, PS, and the most probable atomic sites for filling or etching. We further explore how these regimes influence the atomic configuration of MoS2, particularly the formation of different edge structures like sulfur zigzag (ZZS), molybdenum zigzag (ZZMo), and their respective derivatives. A pressure diagram based on the equations of state and most probable atomic sites was constructed for each regime and validated by comparing predicted ZZ-derived edges to experimental observations. Additionally, the study examines the impact of etching on various line defects, providing insights into the evolution of the MoS2 edges during the CVD process. These findings underscore the importance of controlling both growth and cessation phases in the CVD process to customize edge configurations, with significant implications for chemical functionalization, catalysis, and the electronic properties of transition metal dichalcogenides.
Collapse
Affiliation(s)
- Yoonbeen Kang
- Department of Chemistry, Yonsei University, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Rakwoo Chang
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| | - Sang-Yong Ju
- Department of Chemistry, Yonsei University, Seodaemun-Gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Astié V, Wasem Klein F, Makhlouf H, Paillet M, Huntzinger JR, Sauvajol JL, Zahab AA, Juillaguet S, Contreras S, Voiry D, Landois P, Decams JM. Direct liquid injection pulsed-pressure MOCVD of large area MoS 2 on Si/SiO 2. Phys Chem Chem Phys 2024; 26:25772-25779. [PMID: 39370957 DOI: 10.1039/d4cp00603h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Large-scale, high-quality growth of transition metal dichalcogenides (TMD) of controlled thickness is paramount for many applications in opto- and microelectronics. This paper describes the direct growth of well-controlled large area molybdenum disulfide (MoS2) on Si/SiO2 substrates by direct liquid injection pulsed-pressure metal-organic chemical vapor deposition (DLI-PP-MOCVD) using low-toxicity precursors. It is shown that control of the deposited thickness can be achieved by carefully tuning the amount of molybdenum precursor evaporated and that continuous layers are routinely obtained. Homogeneity and reproducibility have also been examined, as well as the average size of the grains. When targeting monolayer thickness, the MoS2 showed near stoichiometry (S/Mo = 1.93-1.95), low roughness and high photoluminescence (PL) quantum yield, equivalent to exfoliated monolayers and CVD MoS2 grown on the same substrates.
Collapse
Affiliation(s)
- Vincent Astié
- Annealsys, 139 Rue des Walkyries, 34000 Montpellier, France.
| | - Felipe Wasem Klein
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, F-34095, France
| | - Houssin Makhlouf
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, F-34095, France
| | - Matthieu Paillet
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, F-34095, France
| | - Jean-Roch Huntzinger
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, F-34095, France
| | - Jean-Louis Sauvajol
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, F-34095, France
| | - Ahmed-Azmi Zahab
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, F-34095, France
| | - Sandrine Juillaguet
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, F-34095, France
| | - Sylvie Contreras
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, F-34095, France
| | - Damien Voiry
- Institut Européen des Membranes, CNRS UMR 5635 Université de Montpellier, 34000 Montpellier, France
| | - Périne Landois
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, F-34095, France
| | | |
Collapse
|
3
|
Li T, Zhang C, Cai Y, Yue W, Liu J, Huang C, Guo Q, Jia T, Yu S. Sodium chloride-assisted CVD enables controlled synthesis of large single-layered MoS 2. RSC Adv 2024; 14:30982-30989. [PMID: 39351408 PMCID: PMC11440350 DOI: 10.1039/d4ra02510e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024] Open
Abstract
Thin-layer MoS2 has attracted much interest because of its potential in diverse technologies, including electronics, optoelectronics and catalysis these few years. In particular, finding a simple and effective solution for large-scale growth of thin-layer semiconductor nanosheets is a prerequisite for achieving their excellent performance. In this paper, we investigated four different substrates under identical conditions for MoS2 film growth and observed a strong correlation between substrate surface conditions and MoS2 growth. To enhance substrate performance, a low-concentration NaCl water solution (25 mg mL-1) was employed for pre-treating the substrate surface, thereby modifying its initial state. In the chemical vapor deposition (CVD) growth environment, the introduced halide ions served as surface dangling bonds. The pre-treated led to a remarkable 90% increase in the growth rate of MoS2 on the substrate surface, facilitating the production of large monolayer MoS2 sheets (∼200 μm). This growth mechanism further enabled the manufacturing of ultra-large single crystals (∼1 mm). Consequently, our research presents a straightforward and cost-effective approach for the large-scale production of nanosheets. Field-effect transistors (FETs) based on the pre-treated monolayer MoS2 exhibited high mobility (12 cm2 V-1 s-1) and a large on/off ratio (104). Therefore, our research provides a simple and low-cost approach for large-scale production of nanosheets for use in high-quality electronics over large areas.
Collapse
Affiliation(s)
- Ting Li
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Chong Zhang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering, Hubei University Wuhan 430062 China
| | - Yali Cai
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering, Hubei University Wuhan 430062 China
| | - Wenfeng Yue
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Jie Liu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Chuanwei Huang
- School of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Quansheng Guo
- School of Materials Science and Engineering, Hubei University Wuhan 430062 China
| | - Tingting Jia
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering, Hubei University Wuhan 430062 China
| | - Shuhui Yu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
4
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
5
|
Liu X, Yang Y, Huang Z, Jiang Z, Zhou J, Li B, Ma Z, Zhang Y, Huang Y, Li X. Enhanced Optoelectronic Performance of p-WSe 2/Re 0.12W 0.42Mo 0.46S 2 Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42588-42596. [PMID: 39083669 DOI: 10.1021/acsami.4c05146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Stacking of van der Waals (vdW) heterostructures and chemical element doping have emerged as crucial methods for enhancing the performance of semiconductors. This study proposes a novel strategy for modifying heterostructures by codoping MoS2 with two elements, Re and W, resulting in the construction of a RexWyMo1-x-yS2/WSe2 heterostructure for the preparation of photodetectors. This approach incorporates multiple strategies to enhance the performance, including hybrid stacking of materials, type-II band alignment, and regulation of element doping. As a result, the RexWyMo1-x-yS2/WSe2 devices demonstrate exceptional performance, including high photoresponsivity (1550.22 A/W), high detectivity (8.17 × 1013 Jones), and fast response speed (rise/fall time, 190 ms/1.42 s). Moreover, the ability to tune the band gap through element doping enables spectral response in the ultraviolet (UV), visible light, and near-infrared (NIR) regions. This heterostructure fabrication scheme highlights the high sensitivity and potential applications of vdW heterostructure (vdWH) in optoelectronic devices.
Collapse
Affiliation(s)
- Xinke Liu
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Yongkai Yang
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Zheng Huang
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Zhongwei Jiang
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Jie Zhou
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Bo Li
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Zhengweng Ma
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Yating Zhang
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Yeying Huang
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Xiaohua Li
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Tripathi M, Deokar G, Casanova-Chafer J, Jin J, Sierra-Castillo A, Ogilvie SP, Lee F, Iyengar SA, Biswas A, Haye E, Genovese A, Llobet E, Colomer JF, Jurewicz I, Gadhamshetty V, Ajayan PM, Schwingenschlögl U, Costa PMFJ, Dalton AB. Vertical heterostructure of graphite-MoS 2 for gas sensing. NANOSCALE HORIZONS 2024; 9:1330-1340. [PMID: 38808602 DOI: 10.1039/d4nh00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
2D materials, given their form-factor, high surface-to-volume ratio, and chemical functionality have immense use in sensor design. Engineering 2D heterostructures can result in robust combinations of desirable properties but sensor design methodologies require careful considerations about material properties and orientation to maximize sensor response. This study introduces a sensor approach that combines the excellent electrical transport and transduction properties of graphite film with chemical reactivity derived from the edge sites of semiconducting molybdenum disulfide (MoS2) through a two-step chemical vapour deposition method. The resulting vertical heterostructure shows potential for high-performance hybrid chemiresistors for gas sensing. This architecture offers active sensing edge sites across the MoS2 flakes. We detail the growth of vertically oriented MoS2 over a nanoscale graphite film (NGF) cross-section, enhancing the adsorption of analytes such as NO2, NH3, and water vapor. Raman spectroscopy, density functional theory calculations and scanning probe methods elucidate the influence of chemical doping by distinguishing the role of MoS2 edge sites relative to the basal plane. High-resolution imaging techniques confirm the controlled growth of highly crystalline hybrid structures. The MoS2/NGF hybrid structure exhibits exceptional chemiresistive responses at both room and elevated temperatures compared to bare graphitic layers. Quantitative analysis reveals that the sensitivity of this hybrid sensor surpasses other 2D material hybrids, particularly in parts per billion concentrations.
Collapse
Affiliation(s)
- M Tripathi
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
| | - G Deokar
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955 - 6900, Saudi Arabia
| | - J Casanova-Chafer
- Universitat Rovira i Virgili, MINOS, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - J Jin
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955 - 6900, Saudi Arabia
| | - A Sierra-Castillo
- Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur, 5000 Namur, Belgium
| | - S P Ogilvie
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
| | - F Lee
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV47AL, UK
| | - S A Iyengar
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - A Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - E Haye
- Laboratoire d'Analyse par Réactions Nucléaires (LARN), Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - A Genovese
- King Abdullah University of Science and Technology, Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - E Llobet
- Universitat Rovira i Virgili, MINOS, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - J-F Colomer
- Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur, 5000 Namur, Belgium
| | - I Jurewicz
- Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - V Gadhamshetty
- Department of Civil and Environmental Engineering, and 2D-Materials for Biofilm Engineering, Science, and Technology Center, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| | - P M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Udo Schwingenschlögl
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955 - 6900, Saudi Arabia
| | - Pedro M F J Costa
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955 - 6900, Saudi Arabia
| | - A B Dalton
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
| |
Collapse
|
7
|
Nan K, Chen Q, Wang Z, Cheng L, Liu D, Du H, Lin L. Spatially confined synthesis of large-sized MoS 2nanosheets in molten KSCN toward efficient hydrogen evolution. NANOTECHNOLOGY 2024; 35:395402. [PMID: 38955176 DOI: 10.1088/1361-6528/ad5dc3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Low-temperature KSCN molten salt is a promising technique to synthesize defect-rich MoS2catalysts for hydrogen evolution reaction (HER). However, owing to the fast ion diffusion rate for rapid crystal growth, the resultant catalysts show a morphology of microsphere, which aggregates from MoS2nanosheets, to suppress the catalytic performance. In this work, large-sized few-layer MoS2nanosheets are synthesized via a spatial confinement strategy by adding inert NaCl into the KSCN molten salt. With the NaCl spacer to physically block the long-distance ion diffusion and isolate the chemical reaction, the MoS2nucleation and subsequent crystal growth could be controlled, guiding the nanosheets to grow along the narrow gap between the NaCl crystals to avoid aggregation. As a result, ultrathin MoS2nanosheets with a large geometry size are constructed. Profiting from the architecture to expose active sites and boost charge transfer kinetics, the large-sized few-layer MoS2nanosheets exhibit an impressive HER performance, showing a smallη10of 160 mV and a low Tafel slope of 53 mV dec-1with excellent stability. This work provides not only an efficient HER catalyst but also a facile spatial confinement technique to design and synthesize a large spectrum of transition metal sulfides for broad uses.
Collapse
Affiliation(s)
- Kaikai Nan
- Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang 441000, Hubei, People's Republic of China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
- New Powertrain R&D Institute, Chongqing Changan Automobile Co. Ltd, Chongqing 401133, People's Republic of China
| | - Qing Chen
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| | - Zuhao Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| | - Long Cheng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| | - Dezheng Liu
- Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang 441000, Hubei, People's Republic of China
| | - Hongfang Du
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| | - Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| |
Collapse
|
8
|
Liu C, Liu T, Zhang Z, Sun Z, Zhang G, Wang E, Liu K. Understanding epitaxial growth of two-dimensional materials and their homostructures. NATURE NANOTECHNOLOGY 2024; 19:907-918. [PMID: 38987649 DOI: 10.1038/s41565-024-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The exceptional physical properties of two-dimensional (2D) van der Waals (vdW) materials have been extensively researched, driving advances in material synthesis. Epitaxial growth, a prominent synthesis strategy, enables the production of large-area, high-quality 2D films compatible with advanced integrated circuits. Typical 2D single crystals, such as graphene, transition metal dichalcogenides and hexagonal boron nitride, have been epitaxially grown at a wafer scale. A systematic summary is required to offer strategic guidance for the epitaxy of emerging 2D materials. Here we focus on the epitaxy methodologies for 2D vdW materials in two directions: the growth of in-plane single-crystal monolayers and the fabrication of out-of-plane homostructures. We first discuss nucleation control of a single domain and orientation control over multiple domains to achieve large-scale single-crystal monolayers. We analyse the defect levels and measures of crystalline quality of typical 2D vdW materials with various epitaxial growth techniques. We then outline technical routes for the growth of homogeneous multilayers and twisted homostructures. We further summarize the current strategies to guide future efforts in optimizing on-demand fabrication of 2D vdW materials, as well as subsequent device manufacturing for their industrial applications.
Collapse
Affiliation(s)
- Can Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing, China
| | - Tianyao Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Espoo, Finland
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Enge Wang
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
| |
Collapse
|
9
|
Man P, Jiang S, Leung KH, Lai KH, Guang Z, Chen H, Huang L, Chen T, Gao S, Peng YK, Lee CS, Deng Q, Zhao J, Ly TH. Salt-Induced High-Density Vacancy-Rich 2D MoS 2 for Efficient Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304808. [PMID: 37505096 DOI: 10.1002/adma.202304808] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Emerging non-noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post-treatment processes. Here, a novel salt-assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh-density vacancy-rich 2H-MoS2, with a controllable sulfur vacancy density of up to 3.35 × 1014 cm-2. This approach involves a pre-sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2-K-H2O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post-treatment methods. The vacancy-rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm-2) and a Tafel slope of 54.3 mV dec-1 in 0.5 m H2SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt-assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials.
Collapse
Affiliation(s)
- Ping Man
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Chemistry Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Shan Jiang
- Department of Applied Physics, The Hong Kong Polytechnic University Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Ka Ho Leung
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Chemistry Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Ka Hei Lai
- Department of Applied Physics, The Hong Kong Polytechnic University Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Zhiqiang Guang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Chemistry Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Honglin Chen
- Department of Applied Physics, The Hong Kong Polytechnic University Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Lingli Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Chemistry Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Tianren Chen
- Department of Applied Physics, The Hong Kong Polytechnic University Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Shan Gao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Chemistry Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Chemistry Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Qingming Deng
- Physics department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, 223300, P. R. China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Thuc Hue Ly
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Chemistry Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
10
|
Xin Z, Zhang X, Guo J, Wu Y, Wang B, Shi R, Liu K. Dual-Limit Growth of Large-Area Monolayer Transition Metal Dichalcogenides. ACS NANO 2024; 18:7391-7401. [PMID: 38408193 DOI: 10.1021/acsnano.3c09222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The large-scale growth of monolayer transition metal dichalcogenide (TMDC) films is a determinant for the implementation of two-dimensional materials in industrial applications. However, the simultaneous realization of uniform monolayer thickness and large-area coverage is still a challenge, because it requires precise control of reaction kinetics in both space and time dimensions. Herein, we achieve a variety of large-area monolayer TMDCs films by a dual-limit growth (DLG) that is realized through nanoporous carbon nanotube (CNT) films. In the DLG, a precursor-loaded CNT film placed face-to-face with a substrate provides a space-limited environment facilitating the monolayer growth, while the byproducts formed in the CNT film timely limits the supply of precursors released from nanopores of the CNT film, inhibiting the growth of multilayer TMDCs on the substrate. Consequently, large-area monolayer TMDC films are grown in a wide range of reaction times and show good homogeneity in thickness, optical properties, and device performance over the entire substrate. The DLG strategy is widely applicable for the growth of a variety of TMDC films including WSe2, MoS2, MoSe2, WS2, and ReS2. Our work provides a universal strategy to attain large-area monolayer TMDC films that can be used in practical applications of integrated circuits.
Collapse
Affiliation(s)
- Zeqin Xin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolong Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jing Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Run Shi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
11
|
Li S, Ouyang D, Zhang N, Zhang Y, Murthy A, Li Y, Liu S, Zhai T. Substrate Engineering for Chemical Vapor Deposition Growth of Large-Scale 2D Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211855. [PMID: 37095721 DOI: 10.1002/adma.202211855] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The large-scale production of 2D transition metal dichalcogenides (TMDs) is essential to realize their industrial applications. Chemical vapor deposition (CVD) has been considered as a promising method for the controlled growth of high-quality and large-scale 2D TMDs. During a CVD process, the substrate plays a crucial role in anchoring the source materials, promoting the nucleation and stimulating the epitaxial growth. It thus significantly affects the thickness, microstructure, and crystal quality of the products, which are particularly important for obtaining 2D TMDs with expected morphology and size. Here, an insightful review is provided by focusing on the recent development associated with the substrate engineering strategies for CVD preparation of large-scale 2D TMDs. First, the interaction between 2D TMDs and substrates, a key factor for the growth of high-quality materials, is systematically discussed by combining the latest theoretical calculations. Based on this, the effect of various substrate engineering approaches on the growth of large-area 2D TMDs is summarized in detail. Finally, the opportunities and challenges of substrate engineering for the future development of 2D TMDs are discussed. This review might provide deep insight into the controllable growth of high-quality 2D TMDs toward their industrial-scale practical applications.
Collapse
Affiliation(s)
- Shaohua Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Akshay Murthy
- Superconducting Quantum Materials and Systems Division, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, 60510, USA
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
12
|
Xiao J, Chen K, Zhang X, Liu X, Yu H, Gao L, Hong M, Gu L, Zhang Z, Zhang Y. Approaching Ohmic Contacts for Ideal Monolayer MoS 2 Transistors Through Sulfur-Vacancy Engineering. SMALL METHODS 2023; 7:e2300611. [PMID: 37551044 DOI: 10.1002/smtd.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/29/2023] [Indexed: 08/09/2023]
Abstract
Field-effect transistors (FETs) made of monolayer 2D semiconductors (e.g., MoS2 ) are among the basis of the future modern wafer chip industry. However, unusually high contact resistances at the metal-semiconductor interfaces have seriously limited the improvement of monolayer 2D semiconductor FETs so far. Here, a high-scale processable strategy is reported to achieve ohmic contact between the metal and monolayer MoS2 with a large number of sulfur vacancies (SVs) by using simple sulfur-vacancy engineering. Due to the successful doping of the contact regions by introducing SVs, the contact resistance of monolayer MoS2 FET is as low as 1.7 kΩ·µm. This low contact resistance enables high-performance MoS2 FETs with ultrahigh carrier mobility of 153 cm2 V-1 s-1 , a large on/off ratio of 4 × 109 , and high saturation current of 342 µA µm-1 . With the comprehensive investigation of different SV concentrations by adjusting the plasma duration, it is also demonstrated that the SV-increased electron doping, with its resulting reduced Schottky barrier, is the dominant factor driving enhanced electrical performance. The work provides a simple method to promote the development of industrialized atomically thin integrated circuits.
Collapse
Affiliation(s)
- Jiankun Xiao
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kuanglei Chen
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiankun Zhang
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaozhi Liu
- Collaborative Innovation Center of Quantum Matter, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huihui Yu
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Li Gao
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengyu Hong
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lin Gu
- Collaborative Innovation Center of Quantum Matter, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
13
|
Fu W, John M, Maddumapatabandi TD, Bussolotti F, Yau YS, Lin M, Johnson Goh KE. Toward Edge Engineering of Two-Dimensional Layered Transition-Metal Dichalcogenides by Chemical Vapor Deposition. ACS NANO 2023; 17:16348-16368. [PMID: 37646426 DOI: 10.1021/acsnano.3c04581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The manipulation of edge configurations and structures in atomically-thin transition metal dichalcogenides (TMDs) for versatile functionalization has attracted intensive interest in recent years. The chemical vapor deposition (CVD) approach has shown promise for TMD edge engineering of atomic edge configurations (1H, 1T or 1T'-zigzag or armchair edges) as well as diverse edge morphologies (1D nanoribbons, 2D dendrites, 3D spirals, etc.). These edge-rich TMD layers offer versatile candidates for probing the physical and chemical properties and exploring potential applications in electronics, optoelectronics, catalysis, sensing, and quantum technologies. In this Review, we present an overview of the current state-of-the-art in the manipulation of TMD atomic edges and edge-rich structures using CVD. We highlight the vast range of distinct properties associated with these edge configurations and structures and provide insights into the opportunities afforded by such edge-functionalized crystals. The objective of this Review is to motivate further research and development efforts to use CVD as a scalable approach to harness the benefits of such crystal-edge engineering.
Collapse
Affiliation(s)
- Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Mark John
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
| | - Thathsara D Maddumapatabandi
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Fabio Bussolotti
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Yong Sean Yau
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| |
Collapse
|
14
|
Mondal A, Biswas C, Park S, Cha W, Kang SH, Yoon M, Choi SH, Kim KK, Lee YH. Low Ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01497-x. [PMID: 37666942 DOI: 10.1038/s41565-023-01497-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/01/2023] [Indexed: 09/06/2023]
Abstract
Beyond-silicon technology demands ultrahigh performance field-effect transistors. Transition metal dichalcogenides provide an ideal material platform, but the device performances such as the contact resistance, on/off ratio and mobility are often limited by the presence of interfacial residues caused by transfer procedures. Here, we show an ideal residue-free transfer approach using polypropylene carbonate with a negligible residue coverage of ~0.08% for monolayer MoS2 at the centimetre scale. By incorporating a bismuth semimetal contact with an atomically clean monolayer MoS2 field-effect transistor on hexagonal boron nitride substrate, we obtain an ultralow Ohmic contact resistance of ~78 Ω µm, approaching the quantum limit, and a record-high on/off ratio of ~1011 at 15 K. Such an ultra-clean fabrication approach could be the ideal platform for high-performance electrical devices using large-area semiconducting transition metal dichalcogenides.
Collapse
Affiliation(s)
- Ashok Mondal
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chandan Biswas
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Sehwan Park
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wujoon Cha
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seoung-Hun Kang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mina Yoon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Kang Kim
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
15
|
Li X, Yang J, Sun H, Huang L, Li H, Shi J. Controlled Synthesis and Accurate Doping of Wafer-Scale 2D Semiconducting Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305115. [PMID: 37406665 DOI: 10.1002/adma.202305115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
2D semiconducting transition metal dichalcogenide (TMDCs) possess atomically thin thickness, a dangling-bond-free surface, flexible band structure, and silicon-compatible feature, making them one of the most promising channels for constructing state-of-the-art field-effect transistors in the post-Moore's era. However, the existing 2D semiconducting TMDCs fall short of meeting the industry criteria for practical applications in electronics due to their small domain size and the lack of an effective approach to modulate intrinsic physical properties. Therefore, it is crucial to prepare and dope 2D semiconducting TMDCs single crystals with wafer size. In this review, the up-to-date progress regarding the wafer-scale growth of 2D semiconducting TMDC polycrystalline and single-crystal films is systematically summarized. The domain orientation control of 2D TMDCs and the seamless stitching of unidirectionally aligned 2D islands by means of substrate design are proposed. In addition, the accurate and uniform doping of 2D semiconducting TMDCs and the effect on electronic device performances are also discussed. Finally, the dominating challenges pertaining to the enhancement of the electronic device performances of TMDCs are emphasized, and further development directions are put forward. This review provides a systematic and in-depth summary of high-performance device applications of 2D semiconducting TMDCs.
Collapse
Affiliation(s)
- Xiaohui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Junbo Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hang Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Ling Huang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
16
|
Li H, Yang J, Li X, Luo Q, Cheng M, Feng W, Du R, Wang Y, Song L, Wen X, Wen Y, Xiao M, Liao L, Zhang Y, Shi J, He J. Bridging Synthesis and Controllable Doping of Monolayer 4 in. Length Transition-Metal Dichalcogenides Single Crystals with High Electron Mobility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211536. [PMID: 36929175 DOI: 10.1002/adma.202211536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/07/2023] [Indexed: 06/09/2023]
Abstract
Epitaxial growth and controllable doping of wafer-scale atomically thin semiconductor single crystals are two central tasks to tackle the scaling challenge of transistors. Despite considerable efforts are devoted, addressing such crucial issues simultaneously under 2D confinement is yet to be realized. Here, an ingenious strategy to synthesize record-breaking 4 in. length Fe-doped transition-metal dichalcogenides (TMDCs) single crystals on industry-compatible c-plane sapphire without special miscut angle is designed. Atomically thin transistors with high electron mobility (≈146 cm2 V-1 s-1 ) and remarkable on/off current ratio (≈109 ) are fabricated based on 4 in. length Fe-MoS2 single crystals, due to the ultralow contact resistance (≈489 Ω µm). In-depth characterizations and theoretical calculations reveal that the introduction of Fe significantly decreases the formation energy of parallel steps on sapphire surfaces and contributes to the edge-nucleation of unidirectional alignment TMDCs domains (>99%). This work represents a substantial leap in terms of bridging synthesis and doping of wafer-scale 2D semiconductor single crystals, which should promote the further device downscaling and extension of Moore's law.
Collapse
Affiliation(s)
- Hui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Junbo Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaohui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Quankun Luo
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Mo Cheng
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Wang Feng
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruofan Du
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuzhu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Luying Song
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Xia Wen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Lei Liao
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
17
|
Kim M, Son M, Seo DB, Kim J, Jang M, Kim DI, Lee S, Yim S, Song W, Myung S, Yoo JW, Lee SS, An KS. Dual Catalytic and Self-Assembled Growth of Two-Dimensional Transition Metal Dichalcogenides Through Simultaneous Predeposition Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206350. [PMID: 36866498 DOI: 10.1002/smll.202206350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/10/2023] [Indexed: 06/02/2023]
Abstract
The recent introduction of alkali metal halide catalysts for chemical vapor deposition (CVD) of transition metal dichalcogenides (TMDs) has enabled remarkable two-dimensional (2D) growth. However, the process development and growth mechanism require further exploration to enhance the effects of salts and understand the principles. Herein, simultaneous predeposition of a metal source (MoO3 ) and salt (NaCl) by thermal evaporation is adopted. As a result, remarkable growth behaviors such as promoted 2D growth, easy patterning, and potential diversity of target materials can be achieved. Step-by-step spectroscopy combined with morphological analyses reveals a reaction path for MoS2 growth in which NaCl reacts separately with S and MoO3 to form Na2 SO4 and Na2 Mo2 O7 intermediates, respectively. These intermediates provide a favorable environment for 2D growth, including an enhanced source supply and liquid medium. Consequently, large grains of monolayer MoS2 are formed by self-assembly, indicating the merging of small equilateral triangular grains on the liquid intermediates. This study is expected to serve as an ideal reference for understanding the principles of salt catalysis and evolution of CVD in the preparation of 2D TMDs.
Collapse
Affiliation(s)
- Minsu Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Minkyun Son
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Dong-Bum Seo
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jin Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Moonjeong Jang
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Dong In Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Seunghun Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Soonmin Yim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Wooseok Song
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sung Myung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jung-Woo Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Sun Sook Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Ki-Seok An
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| |
Collapse
|
18
|
Guo J, Peng R, Zhang X, Xin Z, Wang E, Wu Y, Li C, Fan S, Shi R, Liu K. Perforated Carbon Nanotube Film Assisted Growth of Uniform Monolayer MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300766. [PMID: 36866500 DOI: 10.1002/smll.202300766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
Scaling up the chemical vapor deposition (CVD) of monolayer transition metal dichalcogenides (TMDCs) is in high demand for practical applications. However, for CVD-grown TMDCs on a large scale, there are many existing factors that result in their poor uniformity. In particular, gas flow, which usually leads to inhomogeneous distributions of precursor concentrations, has yet to be well controlled. In this work, the growth of uniform monolayer MoS2 on a large scale by the delicate control of gas flows of precursors, which is realized by vertically aligning a well-designed perforated carbon nanotube (p-CNT) film face-to-face with the substrate in a horizontal tube furnace, is achieved. The p-CNT film releases gaseous Mo precursor from the solid part and allows S vapor to pass through the hollow part, resulting in uniform distributions of both gas flow rate and precursor concentrations near the substrate. Simulation results further verify that the well-designed p-CNT film guarantees a steady gas flow and a uniform spatial distribution of precursors. Consequently, the as-grown monolayer MoS2 shows quite good uniformity in geometry, density, structure, and electrical properties. This work provides a universal pathway for the synthesis of large-scale uniform monolayer TMDCs, and will advance their applications in high-performance electronic devices.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruixuan Peng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaolong Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zeqin Xin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chenyu Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Shoushan Fan
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, P. R. China
| | - Run Shi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
19
|
Chang WJ, Jang S, Kim M, Kim Y, Jeong DY, Kim B, Kim JM, Nam S, Park WI. MoS 2 Passivated Multilayer Graphene Membranes for Li-Ion Extraction From Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207020. [PMID: 36642853 DOI: 10.1002/smll.202207020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Indexed: 05/04/2023]
Abstract
Abundant Li resources in the ocean are promising alternatives to refining ore, whose supplies are limited by the total amount and geopolitical imbalance of reserves in Earth's crust. Despite advances in Li+ extraction using porous membranes, they require screening other cations on a large scale due to the lack in precise control of pore size and inborn defects. Herein, MoS2 nanoflakes on a multilayer graphene membrane (MFs-on-MGM) that possess ion channels comprising i) van der Waals interlayer gaps for optimal Li+ extraction and ii) negatively charged vertical inlets for cation attraction, are reported. Ion transport measurements across the membrane reveal ≈6- and 13-fold higher selectivity for Li+ compared to Na+ and Mg2+ , respectively. Furthermore, continuous, stable Li+ extraction from seawater is demonstrated by integrating the membrane into a H2 and Cl2 evolution system, enabling more than 104 -fold decrease in the Na+ concentration and near-complete elimination of other cations.
Collapse
Affiliation(s)
- Won Jun Chang
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Suhee Jang
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Minjoo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yelim Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dae Yeop Jeong
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Beomju Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin Myung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - SungWoo Nam
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Won Il Park
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
20
|
Yang P, Liu F, Li X, Hu J, Zhou F, Zhu L, Chen Q, Gao P, Zhang Y. Highly Reproducible Epitaxial Growth of Wafer-Scale Single-Crystal Monolayer MoS 2 on Sapphire. SMALL METHODS 2023:e2300165. [PMID: 37035951 DOI: 10.1002/smtd.202300165] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
2D semiconducting transition-metal dichalcogenides (TMDs) have attracted considerable attention as channel materials for next-generation transistors. To meet the industry needs, large-scale production of single-crystal monolayer TMDs in highly reproducible and energy-efficient manner is critically significant. Herein, it is reported that the high-reproducible, high-efficient epitaxial growth of wafer-scale monolayer MoS2 single crystals on the industry-compatible sapphire substrates, by virtue of a deliberately designed "face-to-face" metal-foil-based precursor supply route, carbon-cloth-filter based precursor concentration decay strategy, and the precise optimization of the chalcogenides and metal precursor ratio (i.e., S/Mo ratio). This unique growth design can concurrently guarantee the uniform release, short-distance transport, and moderate deposition of metal precursor on a wafer-scale substrate, affording high-efficient and high-reproducible growth of wafer-scale single crystals (over two inches, six times faster than usual). Moreover, the S/Mo precursor ratio is found as a key factor for the epitaxial growth of MoS2 single crystals with rather high crystal quality, as convinced by the relatively high electronic performances of related devices. This work demonstrates a reliable route for the batch production of wafer-scale single-crystal 2D materials, thus propelling their practical applications in highly integrated high-performance nanoelectronics and optoelectronics.
Collapse
Affiliation(s)
- Pengfei Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Fachen Liu
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Xuan Li
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Jingyi Hu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Fan Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Lijie Zhu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qing Chen
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Peng Gao
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
21
|
Wang QB, Xu QQ, Yang MZ, Wu ZS, Xia XC, Yin JZ, Han ZH. Vapor-Liquid-Solid Growth of Site-Controlled Monolayer MoS 2 Films Via Pressure-Induc ed Supercritical Phase Nucleation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17396-17405. [PMID: 36950967 DOI: 10.1021/acsami.3c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, a novel pressure-induced supercritical phase nucleation method is proposed to synthesize monolayer MoS2 films, which is promoter free and can avoid contamination of films derived from these heterogeneous promoters in most of the existing techniques. The low-crystallinity and size-controlled MoO2(acac)2 particles are recrystallized on the substrate via the pressure-sensitive solvent capacity of supercritical CO2 and these particles are used as growth sites. The size of single-crystal MoS2 on the substrate is found to be dependent on the wetting area of the pyrolyzed precursor droplets (MoO2) on the surface, and the formation of continuous films with high coverage is mainly controlled by the coalescence of MoO2 droplets. It is enhanced by the increase of the nucleation site density, which can be adjusted by the supersaturation of the supercritical fluid solution. Our findings pave a new way for the controllable growth of MoS2 and other two-dimensional materials and provide sufficient and valuable evidence for vapor-liquid-solid growth.
Collapse
Affiliation(s)
- Qi-Bo Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, 116024 Dalian, China
| | - Qin-Qin Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, 116024 Dalian, China
| | - Ming-Zhe Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, 116024 Dalian, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116024 Dalian, China
| | - Xiao-Chuan Xia
- School of Physics & School of Microelectronics, Dalian University of Technology, 2 Ling Gong Road, 116024 Dalian, China
| | - Jian-Zhong Yin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, 116024 Dalian, China
| | - Zhen-Hua Han
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, 116024 Dalian, China
| |
Collapse
|
22
|
Ho PH, Chang JR, Chen CH, Hou CH, Chiang CH, Shih MC, Hsu HC, Chang WH, Shyue JJ, Chiu YP, Chen CW. Hysteresis-Free Contact Doping for High-Performance Two-Dimensional Electronics. ACS NANO 2023; 17:2653-2660. [PMID: 36716244 DOI: 10.1021/acsnano.2c10631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Contact doping is considered crucial for reducing the contact resistance of two-dimensional (2D) transistors. However, a process for achieving robust contact doping for 2D electronics is lacking. Here, we developed a two-step doping method for effectively doping 2D materials through a defect-repairing process. The method achieves strong and hysteresis-free doping and is suitable for use with the most widely used transition-metal dichalcogenides. Through our method, we achieved a record-high sheet conductance (0.16 mS·sq-1 without gating) of monolayer MoS2 and a high mobility and carrier concentration (4.1 × 1013 cm-2). We employed our robust method for the successful contact doping of a monolayer MoS2 Au-contact device, obtaining a contact resistance as low as 1.2 kΩ·μm. Our method represents an effective means of fabricating high-performance 2D transistors.
Collapse
Affiliation(s)
- Po-Hsun Ho
- Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 106, Taiwan
| | - Jun-Ru Chang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Hsiang Chen
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Cheng-Hung Hou
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Min-Chuan Shih
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Hung-Chang Hsu
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Hao Chang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Ping Chiu
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 106, Taiwan
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
23
|
Wadhwa R, Thapa S, Deswal S, Kumar P, Kumar M. Wafer-scale controlled growth of MoS 2by magnetron sputtering: from in-plane to inter-connected vertically-aligned flakes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:124002. [PMID: 36657174 DOI: 10.1088/1361-648x/acb4d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Recently, Molybdenum disulfide (MoS2) has attracted great attention due to its unique characteristics and potential applications in various fields. The advancements in the field have substantially improved at the laboratory scale however, a synthesis approach that produces large area growth of MoS2on a wafer scale is the key requirement for the realization of commercial two-dimensional (2D) technology. Herein, we report tunable MoS2growth with varied morphologies via radio frequency magnetron sputtering by controlling growth parameters. The controlled growth from in-plane to vertically-aligned (VA) MoS2flakes has been achieved on a variety of substrates (Si, Si/SiO2, sapphire, quartz, and carbon fiber). Moreover, the growth of VA MoS2is highly reproducible and is fabricated on a wafer scale. The flakes synthesized on the wafer show high uniformity, which is corroborated by the spatial mapping using Raman over the entire 2-inch Si/SiO2wafer. The detailed morphological, structural, and spectroscopic analysis reveals the transition from in-plane MoS2to VA MoS2flakes. This work presents a facile approach to directly synthesize layered materials by sputtering technique on wafer scale. This paves the way for designing mass production of high-quality 2D materials, which will advance their practical applications by integration into device architectures in various fields.
Collapse
Affiliation(s)
- Riya Wadhwa
- Functional and Renewable Energy Materials Laboratory, Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sanjeev Thapa
- Functional and Renewable Energy Materials Laboratory, Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
- Department of Electronics and Computer Engineering, Institute of Engineering, Tribhuvan University, Lalitpur 284403, Nepal
| | - Sonia Deswal
- School of Physical Sciences Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Pradeep Kumar
- School of Physical Sciences Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Mukesh Kumar
- Functional and Renewable Energy Materials Laboratory, Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
24
|
Liu F. Time- and angle-resolved photoemission spectroscopy (TR-ARPES) of TMDC monolayers and bilayers. Chem Sci 2023; 14:736-750. [PMID: 36755720 PMCID: PMC9890651 DOI: 10.1039/d2sc04124c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Many unique properties in two-dimensional (2D) materials and their heterostructures rely on charge excitation, scattering, transfer, and relaxation dynamics across different points in the momentum space. Understanding these dynamics is crucial in both the fundamental study of 2D physics and their incorporation in optoelectronic and quantum devices. A direct method to probe charge carrier dynamics with momentum resolution is time- and angle-resolved photoemission spectroscopy (TR-ARPES). Such measurements have been challenging, since photoexcited carriers in many 2D monolayers reside at high crystal momenta, requiring probe photon energies in the extreme UV (EUV) regime. These challenges have been recently addressed by development of table-top pulsed EUV sources based on high harmonic generation, and the successful integration into a TR-ARPES and/or time-resolved momentum microscope. Such experiments will allow direct imaging of photoelectrons with superior time, energy, and crystal momentum resolution, with unique advantage over traditional optical measurements. Recently, TR-ARPES experiments of 2D transition metal dichalcogenide (TMDC) monolayers and bilayers have created unprecedented opportunities to reveal many intrinsic dynamics of 2D materials, such as bandgap renormalization, charge carrier scattering, relaxation, and wavefunction localization in moiré patterns. This perspective aims to give a short review of recent discoveries and discuss the challenges and opportunities of such techniques in the future.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry and the PULSE Institute, Stanford University Stanford California 94305 USA
| |
Collapse
|
25
|
Ye Z, Tan C, Huang X, Ouyang Y, Yang L, Wang Z, Dong M. Emerging MoS 2 Wafer-Scale Technique for Integrated Circuits. NANO-MICRO LETTERS 2023; 15:38. [PMID: 36652150 PMCID: PMC9849648 DOI: 10.1007/s40820-022-01010-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
As an outstanding representative of layered materials, molybdenum disulfide (MoS2) has excellent physical properties, such as high carrier mobility, stability, and abundance on earth. Moreover, its reasonable band gap and microelectronic compatible fabrication characteristics makes it the most promising candidate in future advanced integrated circuits such as logical electronics, flexible electronics, and focal-plane photodetector. However, to realize the all-aspects application of MoS2, the research on obtaining high-quality and large-area films need to be continuously explored to promote its industrialization. Although the MoS2 grain size has already improved from several micrometers to sub-millimeters, the high-quality growth of wafer-scale MoS2 is still of great challenge. Herein, this review mainly focuses on the evolution of MoS2 by including chemical vapor deposition, metal-organic chemical vapor deposition, physical vapor deposition, and thermal conversion technology methods. The state-of-the-art research on the growth and optimization mechanism, including nucleation, orientation, grain, and defect engineering, is systematically summarized. Then, this review summarizes the wafer-scale application of MoS2 in a transistor, inverter, electronics, and photodetectors. Finally, the current challenges and future perspectives are outlined for the wafer-scale growth and application of MoS2.
Collapse
Affiliation(s)
- Zimeng Ye
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chao Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaolei Huang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yi Ouyang
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
26
|
Hu J, Quan W, Yang P, Cui F, Liu F, Zhu L, Pan S, Huan Y, Zhou F, Fu J, Zhang G, Gao P, Zhang Y. Epitaxial Growth of High-Quality Monolayer MoS 2 Single Crystals on Low-Symmetry Vicinal Au(101) Facets with Different Miller Indices. ACS NANO 2023; 17:312-321. [PMID: 36573957 DOI: 10.1021/acsnano.2c07978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Epitaxial growth of wafer-scale monolayer semiconducting transition metal dichalcogenide single crystals is essential for advancing their applications in next-generation transistors and highly integrated circuits. Several efforts have been made for the growth of monolayer MoS2 single crystals on high-symmetry Au(111) and sapphire substrates, while more prototype growth systems still need to be discovered for clarifying the internal mechanisms. Herein, we report the epitaxial growth of unidirectionally aligned monolayer MoS2 domains and single-crystal films on low-symmetry Au(101) vicinal facets via a facile chemical vapor deposition method. On-site scanning tunneling microscopy observations reveal the formation of a specific rectangular Moiré pattern along the [101̅] step edge of Au(101) and along its perpendicular direction. The perfect lattice constant matching of MoS2/Au(101) along the substrate high-symmetry directions (i.e., Au[101̅], Au [010]) as well as the step-edge-guiding effect are proposed to facilitate the robust epitaxy. Multiscale characterizations further confirm the domain-boundary-free feature of the monolayer MoS2 films merged by unidirectionally aligned monolayer domains. This work hereby puts forward a symmetry mismatched epitaxial system for the direct synthesis of monolayer MoS2 single crystals, which should deepen our understanding about the epitaxy of 2D layered materials and propel their applications in various fields.
Collapse
Affiliation(s)
- Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Wenzhi Quan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Pengfei Yang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Fangfang Cui
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Fachen Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Lijie Zhu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Shuangyuan Pan
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yahuan Huan
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Fan Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jiatian Fu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Guanhua Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Peng Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Yanfeng Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
27
|
Wang Q, Wang S, Li J, Gan Y, Jin M, Shi R, Amini A, Wang N, Cheng C. Modified Spatially Confined Strategy Enabled Mild Growth Kinetics for Facile Growth Management of Atomically-Thin Tungsten Disulfides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205638. [PMID: 36446619 PMCID: PMC9875684 DOI: 10.1002/advs.202205638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Chemical vapor deposition (CVD) has been widely used to produce high quality 2D transitional metal dichalcogenides (2D TMDCs). However, violent evaporation and large diffusivity discrepancy of metal and chalcogen precursors at elevated temperatures often result in poor regulation on X:M molar ratio (M = Mo, W etc.; X = S, Se, and Te), and thus it is rather challenging to achieve the desired products of 2D TMDCs. Here, a modified spatially confined strategy (MSCS) is utilized to suppress the rising S vapor concentration between two aspectant substrates, upon which the lateral/vertical growth of 2D WS2 can be selectively regulated via proper S:W zones correspond to greatly broadened time/growth windows. An S:W-time (SW-T) growth diagram was thus proposed as a mapping guide for the general understanding of CVD growth of 2D WS2 and the design of growth routes for the desired 2D WS2 . Consequently, a comprehensive growth management of atomically thin WS2 is achieved, including the versatile controls of domain size, layer number, and lateral/vertical heterostructures (MoS2 -WS2 ). The lateral heterostructures show an enhanced hydrogen evolution reaction performance. This study advances the substantial understanding to the growth kinetics and provides an effective MSCS protocol for growth design and management of 2D TMDCs.
Collapse
Affiliation(s)
- Qun Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Shi Wang
- Department of Physics and Center for Quantum MaterialsHong Kong University of Science and TechnologyHong KongP. R. China
| | - Jingyi Li
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Yichen Gan
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Mengtian Jin
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Run Shi
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Abbas Amini
- Center for Infrastructure EngineeringWestern Sydney UniversityKingswoodNew South Wales2751Australia
| | - Ning Wang
- Department of Physics and Center for Quantum MaterialsHong Kong University of Science and TechnologyHong KongP. R. China
| | - Chun Cheng
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric PowerSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
28
|
Yang X, Li S, Sakuma Y. Highly Efficient Deposition of Centimeter-Scale MoS 2 Monolayer Film on Dragontrail Glass with Large Single-Crystalline Domains. SMALL METHODS 2022; 6:e2201079. [PMID: 36286955 DOI: 10.1002/smtd.202201079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Highly efficient growth of a centimeter-scale MoS2 monolayer film by oxide scale sublimation chemical vapor deposition (OSSCVD) in a time as short as 60 s is reported. Benefiting from the superior catalytic ability of Dragontrail glass (DT-glass) substrate and the controlled large vapor supersaturation of the molybdenum source, the ultrafast deposition of MoS2 is realized with maintaining large-sized single-crystalline domains over 20 µm at maximum in the film. It is comparable to those reported for MoS2 grown in tens of minutes and even hours. Similar to the face-to-face precursor feed route, the gas-controlled OSSCVD with a showerhead configuration facilitates a homogeneous and controllable source supply. It enables high-quality monolayer MoS2 film deposition on 2 × 2 cm2 DT-glass with centimeter-scale uniformity confirmed by microscopic, spectroscopic, and electrical characterizations. Back-gate MoS2 field-effect transistors fabricated on polycrystalline continuous film exhibit the maximum field-effect mobility of 5.1 cm2 V-1 s-1 and a peak Ion /Ioff ratio of 5 × 108 . They reach 40 cm2 V-1 s-1 and 1.2 × 109 , respectively, on single-crystalline domains. These results are even greater than those for MoS2 grown using 1-2 orders of magnitude longer deposition time and higher temperatures. This study highlights the opportunities for low-cost high-throughput production of large-area high-quality monolayer MoS2 .
Collapse
Affiliation(s)
- Xu Yang
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Shisheng Li
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Yoshiki Sakuma
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| |
Collapse
|
29
|
Wang C, Song Y, Huang H. Evolution Application of Two-Dimensional MoS 2-Based Field-Effect Transistors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183233. [PMID: 36145022 PMCID: PMC9504544 DOI: 10.3390/nano12183233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/12/2023]
Abstract
High-performance and low-power field-effect transistors (FETs) are the basis of integrated circuit fields, which undoubtedly require researchers to find better film channel layer materials and improve device structure technology. MoS2 has recently shown a special two-dimensional (2D) structure and superior photoelectric performance, and it has shown new potential for next-generation electronics. However, the natural atomic layer thickness and large specific surface area of MoS2 make the contact interface and dielectric interface have a great influence on the performance of MoS2 FET. Thus, we focus on its main performance improvement strategies, including optimizing the contact behavior, regulating the conductive channel, and rationalizing the dielectric layer. On this basis, we summarize the applications of 2D MoS2 FETs in key and emerging fields, specifically involving logic, RF circuits, optoelectronic devices, biosensors, piezoelectric devices, and synaptic transistors. As a whole, we discuss the state-of-the-art, key merits, and limitations of each of these 2D MoS2-based FET systems, and prospects in the future.
Collapse
Affiliation(s)
- Chunlan Wang
- School of Science, Xi’an Polytechnic University, Xi’an 710048, China
| | - Yongle Song
- School of Science, Xi’an Polytechnic University, Xi’an 710048, China
| | - Hao Huang
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Material, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
30
|
Xin X, Chen J, Zhang Y, Chen ML, Bao Y, Liu W, Liu Y, Xu H, Ren W. Ultrafast growth of submillimeter-scale single-crystal MoSe 2 by pre-alloying CVD. NANOSCALE HORIZONS 2022; 7:743-751. [PMID: 35482297 DOI: 10.1039/d2nh00105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The synthesis of large-scale monolayer single-crystal MX2 (M = Mo, W; X = S, Se), a typical transition metal dichalcogenide (TMD), is the premise for their future applications. Compared with insulating substrates such as SiO2 and sapphire, Au is more favourable for the fast growth of TMDs by chemical vapor deposition (CVD). Recently, large-scale single-crystal WX2 was successfully grown and transferred on Au. In sharp contrast, the growth and transfer for monolayer MoX2 is still very challenging, because Au has a higher solubility of Mo and stronger interaction with MoX2 than WX2. Compared with the most studied MoS2, MoSe2 is superior in many aspects because of the narrower band gap and tunable excitonic charging effects. However, the synthesis of large-scale single-crystal MoSe2 on Au has not been reported so far. Here, a pre-alloying CVD method was developed to solve the problems for the growth and non-destructive transfer of MoX2. It has realized the ultrafast growth (30 s) of submillimeter-scale (560 μm) single-crystal MoSe2 for the first time. As-grown samples are strictly monolayers with good optical and electrical properties, which can be easily transferred without sacrificing Au foils by the electrochemical bubbling method. It was found that pre-alloying not only passivates the energetically active sites on Au but also weakens the interaction between Au and MoSe2, which is responsible for the ultrafast growth and easy transfer of MoSe2. This method is also universal for the fast growth and non-destructive transfer of other 2D TMDs.
Collapse
Affiliation(s)
- Xing Xin
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, P. R. China.
| | - Jiamei Chen
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Yanmei Zhang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Mao-Lin Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan 03006, China
| | - Youzhe Bao
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Weizhen Liu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Yichun Liu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Haiyang Xu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, P. R. China.
- School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| |
Collapse
|
31
|
Tian X, Yi P, Sun J, Li C, Liu R, Sun JK. The Scalable Solid-State Synthesis of a Ni5P4/Ni2P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions. NANOMATERIALS 2022; 12:nano12111848. [PMID: 35683704 PMCID: PMC9182157 DOI: 10.3390/nano12111848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
The exploration of high-performance and low-cost electrocatalysts towards the oxygen evolution reaction (OER) is essential for large-scale water/seawater splitting. Herein, we develop a strategy involving the in situ generation of a template and pore-former to encapsulate a Ni5P4/Ni2P heterojunction and dispersive FeNi alloy hybrid particles into a three-dimensional hierarchical porous graphitic carbon framework (labeled as Ni5P4/Ni2P–FeNi@C) via a room-temperature solid-state grinding and sodium-carbonate-assisted pyrolysis method. The synergistic effect of the components and the architecture provides a large surface area with a sufficient number of active sites and a hierarchical porous pathway for efficient electron transfer and mass diffusion. Furthermore, a graphitic carbon coating layer restrains the corrosion of alloy particles to boost the long-term durability of the catalyst. Consequently, the Ni5P4/Ni2P–FeNi@C catalyst exhibits extraordinary OER activity with a low overpotential of 242 mV (10 mA cm−2), outperforming the commercial RuO2 catalyst in 1 M KOH. Meanwhile, a scale-up of the Ni5P4/Ni2P–FeNi@C catalyst created by a ball-milling method displays a similar level of activity to the above grinding method. In 1 M KOH + seawater electrolyte, Ni5P4/Ni2P–FeNi@C also displays excellent stability; it can continuously operate for 160 h with a negligible potential increase of 2 mV. This work may provide a new avenue for facile mass production of an efficient electrocatalyst for water/seawater splitting and diverse other applications.
Collapse
Affiliation(s)
- Xiangyun Tian
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (X.T.); (P.Y.); (C.L.)
| | - Peng Yi
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (X.T.); (P.Y.); (C.L.)
| | - Junwei Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
| | - Caiyun Li
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (X.T.); (P.Y.); (C.L.)
| | - Rongzhan Liu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (X.T.); (P.Y.); (C.L.)
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
- Correspondence: (R.L.); (J.-K.S.)
| | - Jian-Kun Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
- Correspondence: (R.L.); (J.-K.S.)
| |
Collapse
|
32
|
Kim TS, Dhakal KP, Park E, Noh G, Chai HJ, Kim Y, Oh S, Kang M, Park J, Kim J, Kim S, Jeong HY, Bang S, Kwak JY, Kim J, Kang K. Gas-Phase Alkali Metal-Assisted MOCVD Growth of 2D Transition Metal Dichalcogenides for Large-Scale Precise Nucleation Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106368. [PMID: 35451163 DOI: 10.1002/smll.202106368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Advances in large-area and high-quality 2D transition metal dichalcogenides (TMDCs) growth are essential for semiconductor applications. Here, the gas-phase alkali metal-assisted metal-organic chemical vapor deposition (GAA-MOCVD) of 2D TMDCs is reported. It is determined that sodium propionate (SP) is an ideal gas-phase alkali-metal additive for nucleation control in the MOCVD of 2D TMDCs. The grain size of MoS2 in the GAA-MOCVD process is larger than that in the conventional MOCVD process. This method can be applied to the growth of various TMDCs (MoS2 , MoSe2 , WSe2 , and WSe2 ) and the generation of large-scale continuous films. Furthermore, the growth behaviors of MoS2 under different SP and oxygen injection time conditions are systematically investigated to determine the effects of SP and oxygen on nucleation control in the GAA-MOCVD process. It is found that the combination of SP and oxygen increases the grain size and nucleation suppression of MoS2 . Thus, the GAA-MOCVD with a precise and controllable supply of a gas-phase alkali metal and oxygen allows achievement of optimum growth conditions that maximizes the grain size of MoS2 . It is expected that GAA-MOCVD can provide a way for batch fabrication of large-scale atomically thin electronic devices based on 2D semiconductors.
Collapse
Affiliation(s)
- Tae Soo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Krishna P Dhakal
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunpyo Park
- Center for Neuromorphic Engineering, Korea Institute Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Gichang Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Neuromorphic Engineering, Korea Institute Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyun-Jun Chai
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youngbum Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Saeyoung Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minsoo Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeongwon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaewoo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Suhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities (UCRF) and Departmet of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sunghwan Bang
- Materials & Production Engineering Research Institute, LG Electronics, Pyeongtaek-si, 17709, Republic of Korea
| | - Joon Young Kwak
- Center for Neuromorphic Engineering, Korea Institute Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongyong Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
33
|
Lei J, Xie Y, Kutana A, Bets KV, Yakobson BI. Salt-Assisted MoS 2 Growth: Molecular Mechanisms from the First Principles. J Am Chem Soc 2022; 144:7497-7503. [DOI: 10.1021/jacs.2c02497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jincheng Lei
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Yu Xie
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Alex Kutana
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Ksenia V. Bets
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Boris I. Yakobson
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
34
|
Li G, Zhang W, Zhang Y, Lee Y, Zhao Z, Song XZ, Tan Z, Kim K, Liu N. Ammonium Salts: New Synergistic Additive for Chemical Vapor Deposition Growth of MoS 2. J Phys Chem Lett 2021; 12:12384-12390. [PMID: 34939821 DOI: 10.1021/acs.jpclett.1c03742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Controllable and scalable fabrication is the precondition for realizing the large number of superior electronic and catalytic applications of MoS2. Here, we report a new type of synergistic additives, ammonium salts, for chemical vapor deposition (CVD) growth of MoS2. On the basis of the catalysis of ammonium salts, we can achieve layer and shape-controlled MoS2 domains and centimeter-scale MoS2 films. Compared to frequently used alkali metal ions as the catalysts, ammonium salts are decomposed completely at low temperature (below 513 °C), resulting in clean and nondestructive as-grown substrates. Thus, MoS2 electronic devices can be directly fabricated on them, and the redundant transfer step is no longer needed. This method can also promote the direct growth of MoS2 on the conductive substrate and boost the improvement of hydrogen evolution reaction (HER) performance. The ammonium salt-mediated CVD method will pave a new way for MoS2 toward real applications in modern electronics and catalysis.
Collapse
Affiliation(s)
- Guanmeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Fine Chemicals, Panjin Branch of School of Chemical Engineering, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Weifeng Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yangjin Lee
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Zihan Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xue-Zhi Song
- State Key Laboratory of Fine Chemicals, Panjin Branch of School of Chemical Engineering, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals, Panjin Branch of School of Chemical Engineering, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
35
|
Luo X, Peng Z, Wang Z, Dong M. Layer-by-Layer Growth of AA-Stacking MoS 2 for Tunable Broadband Phototransistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59154-59163. [PMID: 34856097 DOI: 10.1021/acsami.1c19906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The stacking configuration has been considered as an important additional degree of freedom to tune the physical property of layered materials, such as superconductivity and interlayer excitons. However, the facile growth of highly uniform stacking configuration is still a challenge. Herein, the AA-stacking MoS2 domains with a ratio up to 99.5% has been grown by using the modified chemical vapor deposition through introducing NaCl molecules in the confined space. By tuning the growth time, MoS2 domains would transit from an AA-stacking bilayer to an AAAAA-stacking five-layer. The epitaxial growth mechanism has been insightfully studied, revealing that the critical nucleation size of the AA-stacking bilayer is 5.0 ± 3.0 μm. Through investigation of the photoluminescence, the photoemission, especially the indirect photoexcitation, is dependent on both the stacking fashion and layer number. Furthermore, by studying the gate-tuned MoS2 phototransistors, we found a significant dependence on the stacking configuration of MoS2 of the photoexcitation and a different gate tunable photoresponse. The AAA-stacking trilayer MoS2 phototransistor delivers a photoresponse of 978.14 A W-1 at 550 nm. By correction of the external quantum efficiency with external field and illumination power density, it has been found that the photoresponse tunability is dependent on the layer number due to the strong photogating effect. This strategy provides a general avenue for the epitaxial growth of van der Waals film which will further facilitate the applications in a tunable photodetector.
Collapse
Affiliation(s)
- Xiai Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenghan Peng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
36
|
Wang Z, Xia H, Wang P, Zhou X, Liu C, Zhang Q, Wang F, Huang M, Chen S, Wu P, Chen Y, Ye J, Huang S, Yan H, Gu L, Miao J, Li T, Chen X, Lu W, Zhou P, Hu W. Controllable Doping in 2D Layered Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104942. [PMID: 34569099 DOI: 10.1002/adma.202104942] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Indexed: 06/13/2023]
Abstract
For each generation of semiconductors, the issue of doping techniques is always placed at the top of the priority list since it determines whether a material can be used in the electronic and optoelectronic industry or not. When it comes to 2D materials, significant challenges have been found in controllably doping 2D semiconductors into p- or n-type, let alone developing a continuous control of this process. Here, a unique self-modulated doping characteristic in 2D layered materials such as PtSSe, PtS0.8 Se1.2 , PdSe2 , and WSe2 is reported. The varying number of vertically stacked-monolayers is the critical factor for controllably tuning the same material from p-type to intrinsic, and to n-type doping. Importantly, it is found that the thickness-induced lattice deformation makes defects in PtSSe transit from Pt vacancies to anion vacancies based on dynamic and thermodynamic analyses, which leads to p- and n-type conductance, respectively. By thickness-modulated doping, WSe2 diode exhibits a high rectification ratio of 4400 and a large open-circuit voltage of 0.38 V. Meanwhile, the PtSSe detector overcomes the shortcoming of large dark-current in narrow-bandgap optoelectronic devices. All these findings provide a brand-new perspective for fundamental scientific studies and applications.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Xia
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohao Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunsen Liu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
- Frontier Institute of Chip and System, Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Menglin Huang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Shiyou Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peisong Wu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfeng Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiafu Ye
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenyang Huang
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai, 200433, China
| | - Hugen Yan
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai, 200433, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinshui Miao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 330106, China
| | - Tianxin Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 330106, China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 330106, China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
- Frontier Institute of Chip and System, Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 330106, China
| |
Collapse
|
37
|
Abstract
Salt-assisted chemical vapor deposition (SA-CVD), which uses halide salts (e.g., NaCl, KBr, etc.) and molten salts (e.g., Na2MoO4, Na2WO4, etc.) as precursors, is one of the most popular methods favored for the fabrication of two-dimensional (2D) materials such as atomically thin metal chalcogenides, graphene, and h-BN. In this review, the distinct functions of halogens (F, Cl, Br, I) and alkali metals (Li, Na, K) in SA-CVD are first clarified. Based on the current development in SA-CVD growth and its related reaction modes, the existing methods are categorized into the Salt 1.0 (halide salts-based) and Salt 2.0 (molten salts-based) techniques. The achievements, advantages, and limitations of each technique are discussed in detail. Finally, new perspectives are proposed for the application of SA-CVD in the synthesis of 2D transition metal dichalcogenides for advanced electronics.
Collapse
Affiliation(s)
- Shisheng Li
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|
38
|
Szoszkiewicz R. Local Interactions of Atmospheric Oxygen with MoS 2 Crystals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5979. [PMID: 34683567 PMCID: PMC8540515 DOI: 10.3390/ma14205979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
Thin and single MoS2 flakes are envisioned to contribute to the flexible nanoelectronics, particularly in sensing, optoelectronics and energy harvesting. Thus, it is important to study their stability and local surface reactivity. Their most straightforward surface reactions in this context pertain to thermally induced interactions with atmospheric oxygen. This review focuses on local and thermally induced interactions of MoS2 crystals and single MoS2 flakes. First, experimentally observed data for oxygen-mediated thermally induced morphological and chemical changes of the MoS2 crystals and single MoS2 flakes are presented. Second, state-of-the-art mechanistic insight from computer simulations and arising open questions are discussed. Finally, the properties and fate of the Mo oxides arising from thermal oxidation are reviewed, and future directions into the research of the local MoS2/MoOx interface are provided.
Collapse
Affiliation(s)
- Robert Szoszkiewicz
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
39
|
Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Abstract
Various eutectic systems have been proposed and studied over the past few decades. Most of the studies have focused on three typical types of eutectics: eutectic metals, eutectic salts, and deep eutectic solvents. On the one hand, they are all eutectic systems, and their eutectic principle is the same. On the other hand, they are representative of metals, inorganic salts, and organic substances, respectively. They have applications in almost all fields related to chemistry. Their different but overlapping applications stem from their very different properties. In addition, the proposal of new eutectic systems has greatly boosted the development of cross-field research involving chemistry, materials, engineering, and energy. The goal of this review is to provide a comprehensive overview of these typical eutectics and describe task-specific strategies to address growing demands.
Collapse
Affiliation(s)
- Dongkun Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| |
Collapse
|
41
|
Wang Q, Shi R, Zhao Y, Huang R, Wang Z, Amini A, Cheng C. Recent progress on kinetic control of chemical vapor deposition growth of high-quality wafer-scale transition metal dichalcogenides. NANOSCALE ADVANCES 2021; 3:3430-3440. [PMID: 36133721 PMCID: PMC9417528 DOI: 10.1039/d1na00171j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/04/2021] [Indexed: 06/14/2023]
Abstract
2D transition metal dichalcogenides (TMDs) have attracted significant attention due to their unique physical properties. Chemical vapor deposition (CVD) is generally a promising method to prepare ideal TMD films with high uniformity, large domain size, good single-crystallinity, etc., at wafer-scale for commercial uses. However, the CVD-grown TMD samples often suffer from poor quality due to the improper control of reaction kinetics and lack of understanding about the phenomenon. In this review, we focus on several key challenges in the controllable CVD fabrication of high-quality wafer-scale TMD films and highlight the importance of the control of precursor concentration, nucleation density, and oriented growth. The remaining difficulties in the field and prospective directions of the related topics are further summarized.
Collapse
Affiliation(s)
- Qun Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Run Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology Hong Kong People's Republic of China
| | - Yaxuan Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Runqing Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Zixu Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Abbas Amini
- Center for Infrastructure Engineering, Western Sydney University Kingswood NSW 2751 Australia
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| |
Collapse
|
42
|
Liu Y, Gu F. A wafer-scale synthesis of monolayer MoS 2 and their field-effect transistors toward practical applications. NANOSCALE ADVANCES 2021; 3:2117-2138. [PMID: 36133770 PMCID: PMC9419721 DOI: 10.1039/d0na01043j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 05/11/2023]
Abstract
Molybdenum disulfide (MoS2) has attracted considerable research interest as a promising candidate for downscaling integrated electronics due to the special two-dimensional structure and unique physicochemical properties. However, it is still challenging to achieve large-area MoS2 monolayers with desired material quality and electrical properties to fulfill the requirement for practical applications. Recently, a variety of investigations have focused on wafer-scale monolayer MoS2 synthesis with high-quality. The 2D MoS2 field-effect transistor (MoS2-FET) array with different configurations utilizes the high-quality MoS2 film as channels and exhibits favorable performance. In this review, we illustrated the latest research advances in wafer-scale monolayer MoS2 synthesis by different methods, including Au-assisted exfoliation, CVD, thin film sulfurization, MOCVD, ALD, VLS method, and the thermolysis of thiosalts. Then, an overview of MoS2-FET developments was provided based on large-area MoS2 film with different device configurations and performances. The different applications of MoS2-FET in logic circuits, basic memory devices, and integrated photodetectors were also summarized. Lastly, we considered the perspective and challenges based on wafer-scale monolayer MoS2 synthesis and MoS2-FET for developing practical applications in next-generation integrated electronics and flexible optoelectronics.
Collapse
Affiliation(s)
- Yuchun Liu
- Laboratory of Integrated Opto-Mechanics and Electronics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Fuxing Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
43
|
High-Performance CVD Bilayer MoS 2 Radio Frequency Transistors and Gigahertz Mixers for Flexible Nanoelectronics. MICROMACHINES 2021; 12:mi12040451. [PMID: 33923705 PMCID: PMC8072592 DOI: 10.3390/mi12040451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022]
Abstract
Two-dimensional (2D) MoS2 have attracted tremendous attention due to their potential applications in future flexible high-frequency electronics. Bilayer MoS2 exhibits the advantages of carrier mobility when compared with monolayer mobility, thus making the former more suitable for use in future flexible high-frequency electronics. However, there are fewer systematical studies of chemical vapor deposition (CVD) bilayer MoS2 radiofrequency (RF) transistors on flexible polyimide substrates. In this work, CVD bilayer MoS2 RF transistors on flexible substrates with different gate lengths and gigahertz flexible frequency mixers were constructed and systematically studied. The extrinsic cutoff frequency (fT) and maximum oscillation frequency (fmax) increased with reducing gate lengths. From transistors with a gate length of 0.3 μm, we demonstrated an extrinsic fT of 4 GHz and fmax of 10 GHz. Furthermore, statistical analysis of 14 flexible MoS2 RF transistors is presented in this work. The study of a flexible mixer demonstrates the dependence of conversion gain versus gate voltage, LO power and input signal frequency. These results present the potential of CVD bilayer MoS2 for future flexible high-frequency electronics.
Collapse
|
44
|
Wan X, Miao X, Yao J, Wang S, Shao F, Xiao S, Zhan R, Chen K, Zeng X, Gu X, Xu J. In Situ Ultrafast and Patterned Growth of Transition Metal Dichalcogenides from Inkjet-Printed Aqueous Precursors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100260. [PMID: 33734516 DOI: 10.1002/adma.202100260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Chemical vapor deposition (CVD) has been widely used to synthesize high-quality 2D transition-metal dichalcogenides (TMDCs) from different precursors. At present, quantitative control of the precursor with high precision and good repeatability is still challenging. Moreover, the process to synthesize TMDCs with designed patterns is complicated. Here, by using an industrial inkjet-printer, an in situ aqueous precursor with robust usage control at the picogram (10-12 g) level is achieved, and by precisely tuning the inkjet-printing parameters, followed by a rapid heating process, large-area patterned TMDC films with centimeter size and good thickness controllability, as well as heterostructures of the TMDCs, are achieved facilely, and high-quality single-domain monolayer TMDCs with millimeter-size can be easily synthesized within 30 s (corresponding to a growth rate up to 36.4 µm s-1 ). The resulting monolayer MoS2 and MoSe2 exhibits excellent electronic properties with carrier mobility up to 21 and 54 cm2 V-1 s-1 , respectively. The study paves a simple and robust way for the in situ ultrafast and patterned growth of high-quality TMDCs and heterostructures with promising industrialization prospects. Moreover, this ultrafast and green method can be easily used for synthesis of other 2D materials with slight modification.
Collapse
Affiliation(s)
- Xi Wan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xin Miao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jie Yao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shuai Wang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Feng Shao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Kun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaoliang Zeng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaofeng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
45
|
Zhang X, Liao Q, Kang Z, Liu B, Liu X, Ou Y, Xiao J, Du J, Liu Y, Gao L, Gu L, Hong M, Yu H, Zhang Z, Duan X, Zhang Y. Hidden Vacancy Benefit in Monolayer 2D Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007051. [PMID: 33448081 DOI: 10.1002/adma.202007051] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Monolayer 2D semiconductors (e.g., MoS2 ) are of considerable interest for atomically thin transistors but generally limited by insufficient carrier mobility or driving current. Minimizing the lattice defects in 2D semiconductors represents a common strategy to improve their electronic properties, but has met with limited success to date. Herein, a hidden benefit of the atomic vacancies in monolayer 2D semiconductors to push their performance limit is reported. By purposely tailoring the sulfur vacancies (SVs) to an optimum density of 4.7% in monolayer MoS2 , an unusual mobility enhancement is obtained and a record-high carrier mobility (>115 cm2 V-1 s-1 ) is achieved, realizing monolayer MoS2 transistors with an exceptional current density (>0.60 mA µm-1 ) and a record-high on/off ratio >1010 , and enabling a logic inverter with an ultrahigh voltage gain >100. The systematic transport studies reveal that the counterintuitive vacancy-enhanced transport originates from a nearest-neighbor hopping conduction model, in which an optimum SV density is essential for maximizing the charge hopping probability. Lastly, the vacancy benefit into other monolayer 2D semiconductors is further generalized; thus, a general strategy for tailoring the charge transport properties of monolayer materials is defined.
Collapse
Affiliation(s)
- Xiankun Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingliang Liao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhuo Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Baishan Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100190, China
| | - Yang Ou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiankun Xiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junli Du
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yihe Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Li Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100190, China
| | - Mengyu Hong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huihui Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|