1
|
Borstein SR, Hammer MP, O'Meara BC, McGee MD. The macroevolutionary dynamics of pharyngognathy in fishes fail to support the key innovation hypothesis. Nat Commun 2024; 15:10325. [PMID: 39609375 PMCID: PMC11605008 DOI: 10.1038/s41467-024-53141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/30/2024] [Indexed: 11/30/2024] Open
Abstract
Key innovations, traits that provide species access to novel niches, are thought to be a major generator of biodiversity. One commonly cited example of key innovation is pharyngognathy, a set of modifications to the pharyngeal jaws found in some highly species-rich fish clades such as cichlids and wrasses. Here, using comparative phylogenomics and phylogenetic comparative methods, we investigate the genomic basis of pharyngognathy and the impact of this innovation on diversification. Whole genomes resolve the relationships of fish clades with this innovation and their close relatives, but high levels of topological discordance suggest the innovation may have evolved fewer times than previously thought. Closer examination of the topology of noncoding elements accelerated in clades with the pharyngognathy innovation reveals hidden patterns of shared ancestry across putatively independent transitions to pharyngognathy. When our updated phylogenomic relationships are used alongside large-scale phylogenetic and ecological datasets, we find no evidence pharyngognathy consistently modifies the macroevolutionary landscape of trophic ecology nor does it increase diversification. Our results highlight the necessity of incorporating genomic information in studies of key innovation.
Collapse
Affiliation(s)
- Samuel R Borstein
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Michael P Hammer
- Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory, Australia
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Museums Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Katneni VK, Krishnan K, Prabhudas SK, Jayaraman R, Quraishi N, Vasagam K, Jangam AK, Angel JRJ, Kaikkolante N, Jayaraman K, Mudagandur SS. Genome assembly at chromosome scale with telomere ends for Pearlspot, Etroplus suratensis. Sci Data 2024; 11:1226. [PMID: 39537670 PMCID: PMC11560961 DOI: 10.1038/s41597-024-04096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
The pearlspot, Etroplus suratensis is a climate resilient cichlid fish that exhibits unusual adaptation to salinity. The fish is able to complete full life cycle in diverse salinity habitats ranging from fresh water to marine environments. High-quality primary and phased genome assemblies were generated for pearlspot fish using PacBio HiFi and Arima HiC sequencing technologies, for the first time. The primary assembly is highly contiguous with contig N50 length of 36 Mb. The final assembly is of 1.247 Gb with N50 length of 51.57 Mb and 98% of the genome length anchored to 24 chromosomes. The genome was assessed to be 99.9% complete based on BUSCO evaluation and was predicted to contain 52.96% repeat elements. We have predicted 27,192 protein encoding genes, of which 21,580 were functionally annotated. The genome offers an invaluable resource to understand adaptation of pearlspot fish to diverse salinity habitats.
Collapse
Affiliation(s)
- Vinaya Kumar Katneni
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600 028, Tamil Nadu, India.
| | - Karthic Krishnan
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600 028, Tamil Nadu, India
| | - Sudheesh K Prabhudas
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600 028, Tamil Nadu, India
| | - Roja Jayaraman
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600 028, Tamil Nadu, India
| | - Nida Quraishi
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600 028, Tamil Nadu, India
| | - Kumaraguru Vasagam
- Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600 028, Tamil Nadu, India
| | - Ashok Kumar Jangam
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600 028, Tamil Nadu, India
| | - Jesudhas Raymond Jani Angel
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Nimisha Kaikkolante
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600 028, Tamil Nadu, India
| | - Kumaravel Jayaraman
- Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600 028, Tamil Nadu, India
| | - S Shekhar Mudagandur
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| |
Collapse
|
3
|
Martinez CM, Corn KA, Williamson S, Satterfield D, Roberts-Hugghis AS, Barley A, Borstein SR, McGee MD, Wainwright PC. Replicated Functional Evolution in Cichlid Adaptive Radiations. Am Nat 2024; 204:242-257. [PMID: 39179237 DOI: 10.1086/731477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractAdaptive radiations highlight the mechanisms by which species and traits diversify and the extent to which these patterns are predictable. We used 1,110 high-speed videos of suction feeding to study functional and morphological diversification in 300 cichlid species from three African Great Lake radiations of varying ages (Victoria, Malawi, and Tanganyika) and an older, spatially dispersed continental radiation in the Neotropics. Among African radiations, standing diversity was reflective of time. Morphological and functional variance in Lake Victoria, the youngest radiation, was a subset of that within Lake Malawi, which itself was nested within the older Tanganyikan radiation. However, functional diversity in Neotropical cichlids was often lower than that in Lake Tanganyika, despite being much older. These two radiations broadly overlapped, but each diversified into novel trait spaces not found in the youngest lake radiations. Evolutionary rates across radiations were inversely related to age, suggesting extremely rapid trait evolution at early stages, particularly in lake radiations. Despite this support for early bursts, other patterns of trait diversity were inconsistent with expectations of adaptive radiations. This work suggests that cichlid functional evolution has played out in strikingly similar fashion in different radiations, with contingencies eventually resulting in lineage-specific novelties.
Collapse
|
4
|
Massip-Veloso Y, Hoagstrom CW, McMahan CD, Matamoros WA. Biogeography of Greater Antillean freshwater fishes, with a review of competing hypotheses. Biol Rev Camb Philos Soc 2024; 99:901-927. [PMID: 38205676 DOI: 10.1111/brv.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In biogeography, vicariance and long-distance dispersal are often characterised as competing scenarios. However, they are related concepts, both relying on collective geological, ecological, and phylogenetic evidence. This is illustrated by freshwater fishes, which may immigrate to islands either when freshwater connections are temporarily present and later severed (vicariance), or by unusual means when ocean gaps are crossed (long-distance dispersal). Marine barriers have a strong filtering effect on freshwater fishes, limiting immigrants to those most capable of oceanic dispersal. The roles of vicariance and dispersal are debated for freshwater fishes of the Greater Antilles. We review three active hypotheses [Cretaceous vicariance, Greater Antilles-Aves Ridge (GAARlandia), long-distance dispersal] and propose long-distance dispersal to be an appropriate model due to limited support for freshwater fish use of landspans. Greater Antillean freshwater fishes have six potential source bioregions (defined from faunal similarity): Northern Gulf of México, Western Gulf of México, Maya Terrane, Chortís Block, Eastern Panamá, and Northern South America. Faunas of the Greater Antilles are composed of taxa immigrating from many of these bioregions, but there is strong compositional disharmony between island and mainland fish faunas (>90% of Antillean species are cyprinodontiforms, compared to <10% in Northern Gulf of México and Northern South America, and ≤50% elsewhere), consistent with a hypothesis of long-distance dispersal. Ancestral-area reconstruction analysis indicates there were 16 or 17 immigration events over the last 51 million years, 14 or 15 of these by cyprinodontiforms. Published divergence estimates and evidence available for each immigration event suggests they occurred at different times and by different pathways, possibly with rafts of vegetation discharged from rivers or washed to sea during storms. If so, ocean currents likely provide critical pathways for immigration when flowing from one landmass to another. On the other hand, currents create dispersal barriers when flowing perpendicularly between landmasses. In addition to high salinity tolerance, cyprinodontiforms collectively display a variety of adaptations that could enhance their ability to live with rafts (small body size, viviparity, low metabolism, amphibiousness, diapause, self-fertilisation). These adaptations likely also helped immigrants establish island populations after arrival and to persist long term thereafter. Cichlids may have used a pseudo bridge (Nicaragua Rise) to reach the Greater Antilles. Gars (Lepisosteidae) may have crossed the Straits of Florida to Cuba, a relatively short crossing that is not a barrier to gene flow for several cyprinodontiform immigrants. Indeed, widespread distributions of Quaternary migrants (Cyprinodon, Gambusia, Kryptolebias), within the Greater Antilles and among neighbouring bioregions, imply that long-distance dispersal is not necessarily inhibitory for well-adapted species, even though it appears to be virtually impossible for all other freshwater fishes.
Collapse
Affiliation(s)
- Yibril Massip-Veloso
- Programa de Doctorado en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, C.P. 29039, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | | | - Wilfredo A Matamoros
- Programa de Doctorado en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, C.P. 29039, Tuxtla Gutiérrez, Chiapas, Mexico
- Field Museum of Natural History, Chicago, IL, 60605, USA
- Laboratorio de Diversidad Acuática y Biogeografía, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, C.P. 29039, Tuxtla Gutiérrez, Chiapas, Mexico
| |
Collapse
|
5
|
Sommer-Trembo C, Santos ME, Clark B, Werner M, Fages A, Matschiner M, Hornung S, Ronco F, Oliver C, Garcia C, Tschopp P, Malinsky M, Salzburger W. The genetics of niche-specific behavioral tendencies in an adaptive radiation of cichlid fishes. Science 2024; 384:470-475. [PMID: 38662824 DOI: 10.1126/science.adj9228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Abstract
Behavior is critical for animal survival and reproduction, and possibly for diversification and evolutionary radiation. However, the genetics behind adaptive variation in behavior are poorly understood. In this work, we examined a fundamental and widespread behavioral trait, exploratory behavior, in one of the largest adaptive radiations on Earth, the cichlid fishes of Lake Tanganyika. By integrating quantitative behavioral data from 57 cichlid species (702 wild-caught individuals) with high-resolution ecomorphological and genomic information, we show that exploratory behavior is linked to macrohabitat niche adaptations in Tanganyikan cichlids. Furthermore, we uncovered a correlation between the genotypes at a single-nucleotide polymorphism upstream of the AMPA glutamate-receptor regulatory gene cacng5b and variation in exploratory tendency. We validated this association using behavioral predictions with a neural network approach and CRISPR-Cas9 genome editing.
Collapse
Affiliation(s)
- Carolin Sommer-Trembo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marco Werner
- Leibniz-Institute for Polymer Research Dresden, Dresden, Germany
| | - Antoine Fages
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | - Simon Hornung
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Chantal Oliver
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Cody Garcia
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Patrick Tschopp
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Milan Malinsky
- Department of Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Duque-Correa MJ, Clements KD, Meloro C, Ronco F, Boila A, Indermaur A, Salzburger W, Clauss M. Diet and habitat as determinants of intestine length in fishes. REVIEWS IN FISH BIOLOGY AND FISHERIES 2024; 34:1017-1034. [PMID: 39104557 PMCID: PMC11297901 DOI: 10.1007/s11160-024-09853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/19/2024] [Indexed: 08/07/2024]
Abstract
Fish biologists have long assumed a link between intestinal length and diet, and relative gut length or Zihler's index are often used to classify species into trophic groups. This has been done for specific fish taxa or specific ecosystems, but not for a global fish dataset. Here, we assess these relationships across a dataset of 468 fish species (254 marine, 191 freshwater, and 23 that occupy both habitats) in relation to body mass and fish length. Herbivores had significantly relatively stouter bodies and longer intestines than omni- and faunivores. Among faunivores, corallivores had longer intestines than invertivores, with piscivores having the shortest. There were no detectable differences between herbivore groups, possibly due to insufficient understanding of herbivorous fish diets. We propose that reasons for long intestines in fish include (i) difficult-to-digest items that require a symbiotic microbiome, and (ii) the dilution of easily digestible compounds with indigestible material (e.g., sand, wood, exoskeleton). Intestinal indices differed significantly between dietary groups, but there was substantial group overlap. Counter-intuitively, in the largest dataset, marine species had significantly shorter intestines than freshwater fish. These results put fish together with mammals as vertebrate taxa with clear convergence in intestine length in association with trophic level, in contrast to reptiles and birds, even if the peculiar feeding ecology of herbivorous fish is probably more varied than that of mammalian herbivores. Supplementary Information The online version contains supplementary material available at 10.1007/s11160-024-09853-3.
Collapse
Affiliation(s)
- Maria J. Duque-Correa
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse, 260, 8057 Zurich, Switzerland
| | - Kendall D. Clements
- School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Carlo Meloro
- Research Center in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK
| | - Fabrizia Ronco
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
- Natural History Museum Oslo, 0562 Oslo, Norway
| | - Anna Boila
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Adrian Indermaur
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse, 260, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Vernygora OV, Sperling FAH, Dupuis JR. Toward transparent taxonomy: an interactive web-tool for evaluating competing taxonomic arrangements. Cladistics 2024; 40:181-191. [PMID: 37824277 DOI: 10.1111/cla.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Informative and consistent taxonomy above the species level is essential to communication about evolution, biodiversity and conservation, and yet the practice of taxonomy is considered opaque and subjective by non-taxonomist scientists and the public alike. While various proposals have tried to make the basis for the ranking and inclusiveness of taxa more transparent and objective, widespread adoption of these ideas has lagged. Here, we present TaxonomR, an interactive online decision-support tool to evaluate alternative taxonomic classifications. This tool implements an approach that quantifies the criteria commonly used in taxonomic treatments and allows the user to interactively manipulate weightings for different criteria to compare scores for taxonomic groupings under those weights. We use the butterfly taxon Argynnis to demonstrate how different weightings applied to common taxonomic criteria result in fundamentally different genus-level classifications that are predominantly used in different continents and geographic regions. These differences are objectively compared and quantified using TaxonomR to evaluate the kinds of criteria that have been emphasized in earlier classifications, and the nature of the support for current alternative taxonomic arrangements. The main role of TaxonomR is to make taxonomic decisions transparent via an explicit prioritization scheme. TaxonomR is not a prescriptive application. Rather, it aims to be a tool for facilitating our understanding of alternative taxonomic classifications that can, in turn, potentially support global harmony in biodiversity assessments through evidence-based discussion and community-wide resolution of historically entrenched taxonomic tensions.
Collapse
Affiliation(s)
- Oksana V Vernygora
- Department of Entomology, University of Kentucky, S225 Ag Science Center North, Lexington, KY, 40546, USA
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Julian R Dupuis
- Department of Entomology, University of Kentucky, S225 Ag Science Center North, Lexington, KY, 40546, USA
| |
Collapse
|
8
|
Costa VA, Ronco F, Mifsud JCO, Harvey E, Salzburger W, Holmes EC. Host adaptive radiation is associated with rapid virus diversification and cross-species transmission in African cichlid fishes. Curr Biol 2024; 34:1247-1257.e3. [PMID: 38428417 DOI: 10.1016/j.cub.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Adaptive radiations are generated through a complex interplay of biotic and abiotic factors. Although adaptive radiations have been widely studied in the context of animal and plant evolution, little is known about how they impact the evolution of the viruses that infect these hosts, which in turn may provide insights into the drivers of cross-species transmission and hence disease emergence. We examined how the rapid adaptive radiation of the cichlid fishes of African Lake Tanganyika over the last 10 million years has shaped the diversity and evolution of the viruses they carry. Through metatranscriptomic analysis of 2,242 RNA sequencing libraries, we identified 121 vertebrate-associated viruses among various tissue types that fell into 13 RNA and 4 DNA virus groups. Host-switching was commonplace, particularly within the Astroviridae, Metahepadnavirus, Nackednavirus, Picornaviridae, and Hepacivirus groups, occurring more frequently than in other fish communities. A time-calibrated phylogeny revealed that hepacivirus diversification was not constant throughout the cichlid radiation but accelerated 2-3 million years ago, coinciding with a period of rapid cichlid diversification and niche packing in Lake Tanganyika, thereby providing more closely related hosts for viral infection. These data depict a dynamic virus ecosystem within the cichlids of Lake Tanganyika, characterized by rapid virus diversification and frequent host jumping, and likely reflecting their close phylogenetic relationships that lower the barriers to cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Fabrizia Ronco
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
9
|
Böhne A, Oğuzhan Z, Chrysostomakis I, Vitt S, Meuthen D, Martin S, Kukowka S, Thünken T. Evidence for selfing in a vertebrate from whole-genome sequencing. Genome Res 2023; 33:2133-2142. [PMID: 38190641 PMCID: PMC10760518 DOI: 10.1101/gr.277368.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2023] [Indexed: 01/10/2024]
Abstract
A growing number of recent genomic studies report asexual parthenogenetic reproduction in a wide range of taxa, including vertebrate species from the reptile, bird, and fish lineages. Yet, self-fertilization (selfing) has been recorded only in a single vertebrate, the mangrove killifish Kryptolebias marmoratus In cichlid fishes, sex determination is notably diverse and can be influenced by the environment, and sequential hermaphroditism has been reported for some species. Here, we present evidence for a case of facultative selfing in the cichlid fish Benitochromis nigrodorsalis, which is otherwise known as biparentally reproducing ovophilic mouthbrooder from Western Africa. Our laboratory observations revealed that a wild-caught individual produced repeatedly viable offspring in absence of a mating partner. By analyzing genome-wide single-nucleotide polymorphism (SNP) data, we compare that individual and two of its offspring to shed light on its reproductive mode. First, our results confirm uniparental reproduction. Second, overall heterozygosity is reduced in the offspring compared with outbred individuals. Retained maternal heterozygosity in the offspring is ∼51%, which is close to the theoretically expected value of a heterozygosity reduction of 50% by selfing. Heterozygosity patterns along individual chromosomes do not point to alternative parthenogenetic reproductive mechanisms like automixis by terminal or central fusion. Facultative selfing may represent an adaptive strategy ensuring reproduction when mating partners are absent and, hence, contribute to the cichlids' enormous evolutionary success.
Collapse
Affiliation(s)
- Astrid Böhne
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany;
| | - Zeynep Oğuzhan
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Ioannis Chrysostomakis
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Simon Vitt
- Bonn Institute of Organismic Biology (BIOB), Department of Animal Biodiversity, University of Bonn, 53121 Bonn, Germany
| | - Denis Meuthen
- Bonn Institute of Organismic Biology (BIOB), Department of Animal Biodiversity, University of Bonn, 53121 Bonn, Germany
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Sebastian Martin
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Sandra Kukowka
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Timo Thünken
- Bonn Institute of Organismic Biology (BIOB), Department of Animal Biodiversity, University of Bonn, 53121 Bonn, Germany;
| |
Collapse
|
10
|
Roberts-Hugghis AS, Burress ED, Lam B, Wainwright PC. The cichlid pharyngeal jaw novelty enhances evolutionary integration in the feeding apparatus. Evolution 2023; 77:1917-1929. [PMID: 37326103 DOI: 10.1093/evolut/qpad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
The modified pharyngeal jaw system of cichlid fishes is widely viewed as a key innovation that substantially facilitated the evolutionary exuberance of this iconic evolutionary radiation. We conduct comparative phylogenetic analyses of integration, disparity, and rate of evolution among feeding-related, skeletal structures in Neotropical cichlids and North American centrarchids, which lack the specialized pharyngeal jaw. Contrasting evolutionary patterns in these two continental radiations, we test a classic decoupling hypothesis. Specifically, we ask whether the modified pharyngeal jaw in cichlids resulted in enhanced evolutionary independence of the oral and pharyngeal jaws, leading to increased diversity of trophic structures. Contrary to this prediction, we find significantly stronger evolutionary integration between the oral and pharyngeal jaws in cichlids compared to centrarchids, although the two groups do not differ in patterns of integration within each jaw system. Further, though we find no significant differences in disparity, centrarchids show faster rates of morphological evolution. Our results suggest that the modified pharyngeal jaw resulted in less evolutionary independence and slower rates of evolution within the feeding system. Thus, we raise the possibility that the cichlid novelty enhances feeding performance, but does not prompt increased morphological diversification within the feeding apparatus, as has long been thought.
Collapse
Affiliation(s)
| | - Edward D Burress
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Brian Lam
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, United States
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, United States
| |
Collapse
|
11
|
Kundu S, De Alwis PS, Kim AR, Lee SR, Kang HE, Go Y, Gietbong FZ, Wibowo A, Kim HW. Mitogenomic Characterization of Cameroonian Endemic Coptodon camerunensis (Cichliformes: Cichlidae) and Matrilineal Phylogeny of Old-World Cichlids. Genes (Basel) 2023; 14:1591. [PMID: 37628642 PMCID: PMC10454717 DOI: 10.3390/genes14081591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The mitogenomic evolution of old-world cichlids is still largely incomplete in Western Africa. In this present study, the complete mitogenome of the Cameroon endemic cichlid, Coptodon camerunensis, was determined by next-generation sequencing. The mitogenome was 16,557 bp long and encoded with 37 genes (13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region). The C. camerunensis mitogenome is AT-biased (52.63%), as exhibited in its congener, Coptodon zillii (52.76% and 53.04%). The majority of PCGs start with an ATG initiation codon, except COI, which starts with a GTG codon and five PCGs and ends with the TAA termination codon and except seven PCGs with an incomplete termination codon. In C. camerunensis mitogenome, most tRNAs showed classical cloverleaf secondary structures, except tRNA-serine with a lack of DHU stem. Comparative analyses of the conserved blocks of two Coptodonini species control regions revealed that the CSB-II block was longer than other blocks and contained highly variable sites. Using 13 concatenated PCGs, the mitogenome-based Bayesian phylogeny easily distinguished all the examined old-world cichlids. Except for Oreochromini and Coptodinini tribe members, the majority of the taxa exhibited monophyletic clustering within their respective lineages. C. camerunensis clustered closely with Heterotilapia buttikoferi (tribe Heterotilapiini) and had paraphyletic clustering with its congener, C. zillii. The Oreochromini species also displayed paraphyletic grouping, and the genus Oreochromis showed a close relationship with Coptodinini and Heterotilapiini species. In addition, illustrating the known distribution patterns of old-world cichlids, the present study is congruent with the previous hypothesis and proclaims that prehistoric geological evolution plays a key role in the hydroclimate of the African continent during Mesozoic, which simultaneously disperses and/or colonizes cichlids in different ichthyological provinces and Rift Lake systems in Africa. The present study suggests that further mitogenomes of cichlid species are required, especially from western Africa, to understand their unique evolution and adaptation.
Collapse
Affiliation(s)
- Shantanu Kundu
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
| | - Piyumi S. De Alwis
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
| | - Ah Ran Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Soo Rin Lee
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Yunji Go
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | | | - Arif Wibowo
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia;
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| |
Collapse
|
12
|
Burguera D, Dionigi F, Kverková K, Winkler S, Brown T, Pippel M, Zhang Y, Shafer M, Nichols ALA, Myers E, Němec P, Musilova Z. Expanded olfactory system in ray-finned fishes capable of terrestrial exploration. BMC Biol 2023; 21:163. [PMID: 37525196 PMCID: PMC10392011 DOI: 10.1186/s12915-023-01661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Smell abilities differ greatly among vertebrate species due to distinct sensory needs, with exceptional variability reported in the number of olfactory genes and the size of the odour-processing regions of the brain. However, key environmental factors shaping genomic and phenotypic changes linked to the olfactory system remain difficult to identify at macroevolutionary scales. Here, we investigate the association between diverse ecological traits and the number of olfactory chemoreceptors in approximately two hundred ray-finned fishes. RESULTS We found independent expansions producing large gene repertoires in several lineages of nocturnal amphibious fishes, generally able to perform active terrestrial exploration. We reinforced this finding with on-purpose genomic and transcriptomic analysis of Channallabes apus, a catfish species from a clade with chemosensory-based aerial orientation. Furthermore, we also detected an augmented information-processing capacity in the olfactory bulb of nocturnal amphibious fishes by estimating the number of cells contained in this brain region in twenty-four actinopterygian species. CONCLUSIONS Overall, we report a convergent genomic and phenotypic magnification of the olfactory system in nocturnal amphibious fishes. This finding suggests the possibility of an analogous evolutionary event in fish-like tetrapod ancestors during the first steps of the water-to-land transition, favouring terrestrial adaptation through enhanced aerial orientation.
Collapse
Affiliation(s)
- Demian Burguera
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Francesco Dionigi
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristina Kverková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Yicheng Zhang
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
13
|
Bista I, Wood JMD, Desvignes T, McCarthy SA, Matschiner M, Ning Z, Tracey A, Torrance J, Sims Y, Chow W, Smith M, Oliver K, Haggerty L, Salzburger W, Postlethwait JH, Howe K, Clark MS, William Detrich H, Christina Cheng CH, Miska EA, Durbin R. Genomics of cold adaptations in the Antarctic notothenioid fish radiation. Nat Commun 2023; 14:3412. [PMID: 37296119 PMCID: PMC10256766 DOI: 10.1038/s41467-023-38567-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023] Open
Abstract
Numerous novel adaptations characterise the radiation of notothenioids, the dominant fish group in the freezing seas of the Southern Ocean. To improve understanding of the evolution of this iconic fish group, here we generate and analyse new genome assemblies for 24 species covering all major subgroups of the radiation, including five long-read assemblies. We present a new estimate for the onset of the radiation at 10.7 million years ago, based on a time-calibrated phylogeny derived from genome-wide sequence data. We identify a two-fold variation in genome size, driven by expansion of multiple transposable element families, and use the long-read data to reconstruct two evolutionarily important, highly repetitive gene family loci. First, we present the most complete reconstruction to date of the antifreeze glycoprotein gene family, whose emergence enabled survival in sub-zero temperatures, showing the expansion of the antifreeze gene locus from the ancestral to the derived state. Second, we trace the loss of haemoglobin genes in icefishes, the only vertebrates lacking functional haemoglobins, through complete reconstruction of the two haemoglobin gene clusters across notothenioid families. Both the haemoglobin and antifreeze genomic loci are characterised by multiple transposon expansions that may have driven the evolutionary history of these genes.
Collapse
Affiliation(s)
- Iliana Bista
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK.
- Naturalis Biodiversity Center, Leiden, 2333 CR, the Netherlands.
| | - Jonathan M D Wood
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Thomas Desvignes
- University of Oregon, Institute of Neuroscience, 1254 University of Oregon, 13th Avenue, Eugene, OR, 97403, USA
| | - Shane A McCarthy
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Michael Matschiner
- University of Oslo, Natural History Museum, University of Oslo, Sars' gate 1, 0562, Oslo, Norway
- University of Zurich, Department of Palaeontology and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland
| | - Zemin Ning
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alan Tracey
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - James Torrance
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Ying Sims
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - William Chow
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Michelle Smith
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Karen Oliver
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Walter Salzburger
- University of Basel, Zoological Institute, Department of Environmental Sciences, Vesalgasse 1, 4051, Basel, Switzerland
| | - John H Postlethwait
- University of Oregon, Institute of Neuroscience, 1254 University of Oregon, 13th Avenue, Eugene, OR, 97403, USA
| | - Kerstin Howe
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Melody S Clark
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - H William Detrich
- Northeastern University, Department of Marine and Environmental Sciences, Marine Science Centre, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behaviour, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Eric A Miska
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK
| | - Richard Durbin
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
14
|
Lozano-Martín C, Bracamonte SE, Barluenga M. Evolution of MHC IIB Diversity Across Cichlid Fish Radiations. Genome Biol Evol 2023; 15:evad110. [PMID: 37314153 PMCID: PMC10306275 DOI: 10.1093/gbe/evad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in vertebrates and crucial for their adaptive immune response. These genes frequently show inconsistencies between allelic genealogies and species phylogenies. This phenomenon is thought to be the result of parasite-mediated balancing selection maintaining ancient alleles through speciation events (trans-species polymorphism [TSP]). However, allele similarities may also arise from postspeciation mechanisms, such as convergence or introgression. Here, we investigated the evolution of MHC class IIB diversity in the cichlid fish radiations across Africa and the Neotropics by a comprehensive review of available MHC IIB DNA sequence information. We explored what mechanism explains the MHC allele similarities found among cichlid radiations. Our results showed extensive allele similarity among cichlid fish across continents, likely due to TSP. Functionality at MHC was also shared among species of the different continents. The maintenance of MHC alleles for long evolutionary times and their shared functionality may imply that certain MHC variants are essential in immune adaptation, even in species that diverged millions of years ago and occupy different environments.
Collapse
|
15
|
Zafirah Ghazali S, Lavoué S, Sukmono T, Habib A, Min Pau T, Azizah Mohd Nor S. Cenozoic colonisation of the Indian Ocean region by the Australian freshwater originating glassperch family Ambassidae (Teleostei). Mol Phylogenet Evol 2023:107832. [PMID: 37263456 DOI: 10.1016/j.ympev.2023.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/29/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
We examined the phylogeny and biogeography of the glassperch family Ambassidae (Teleostei), which is widely distributed in the freshwater, brackish and marine coastal habitats across the Indo-West Pacific region. We first built a comprehensive time-calibrated phylogeny of Ambassidae using five genes. We then used this tree to reconstruct the evolution of the salinity preference and ancestral areas. Our results indicate that the two largest genera of Ambassidae, Ambassis and Parambassis, are each not monophyletic. The most recent common ancestor of Ambassidae was freshwater adapted and lived in Australia about 56 million years ago. Three independent freshwater-to-marine transitions are inferred, but no marine-to-freshwater ones. To explain the distribution of ambassids, we hypothesise two long-distance marine dispersal events from Australia. A first event was towards Southeast Asia during the early Cenozoic, followed by a second one towards Africa during mid-Cenozoic. The phylogenetic signal associated with the salinity adaptation of these events was not detected, possibly because of the selective extinction of intermediate marine lineages. The Ambassidae shares two characteristics with other freshwater fish groups distributed in continental regions surrounding the Indian Ocean: They are too young to support the hypothesis that their distribution is the result of the fragmentation of Gondwana, but they did not retain the phylogenetic signal of their marine dispersal.
Collapse
Affiliation(s)
- Siti Zafirah Ghazali
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Sébastien Lavoué
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
| | - Tedjo Sukmono
- Department of Biology, Universitas Jambi, Jalan Lintas Jambi - Muara Bulian Km15, 36122 Jambi, Sumatra, Indonesia
| | - Ahasan Habib
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia; Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Tan Min Pau
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia; School of Biological Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
16
|
Mitochondriomics of Clarias Fishes (Siluriformes: Clariidae) with a New Assembly of Clarias camerunensis: Insights into the Genetic Characterization and Diversification. Life (Basel) 2023; 13:life13020482. [PMID: 36836839 PMCID: PMC9960581 DOI: 10.3390/life13020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The mitogenome of an endemic catfish Clarias camerunensis was determined from the Cameroon water. This circular mitogenome was 16,511 bp in length and comprised 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a single AT-rich control region. The heavy strand accommodates 28 genes, whereas the light strand is constituted by ND6 and eight transfer RNA (tRNA) genes. The C. camerunensis mitochondrial genome is AT biased (56.89%), as showcased in other Clarias species. The comparative analyses revealed that most of the Clarias species have 6 overlapping and 11 intergenic spacer regions. Most of the PCGs were initiated and terminated with the ATG start codon and TAA stop codon, respectively. The tRNAs of C. camerunensis folded into the distinctive cloverleaf secondary structure, except trnS1. The placement of the conserved domains in the control region was similar in all the Clarias species with highly variable nucleotides in CSB-I. Both maximum likelihood and Bayesian-based matrilineal phylogenies distinctly separated all Clarias species into five clades on the basis of their known distributions (South China, Sundaland, Indochina, India, and Africa). The TimeTree analysis revealed that the two major clades (Indo-Africa and Asia) of Clarias species might have diverged during the Paleogene (≈28.66 MYA). Our findings revealed the separation of Indian species (C. dussumieri) and African species (C. camerunensis and Clarias gariepinus) took place during the Paleogene, as well as the South Chinese species (Clarias fuscus) and Sundaland species (Clarias batrachus) splits from the Indochinese species (Clarias macrocephalus) during the Neogene through independent colonization. This pattern of biotic relationships highlights the influence of topography and geological events in determining the evolutionary history of Clarias species. The enrichment of mitogenomic data and multiple nuclear loci from their native range or type locality will confirm the true diversification of Clarias species in African and Asian countries.
Collapse
|
17
|
Santos ME, Lopes JF, Kratochwil CF. East African cichlid fishes. EvoDevo 2023; 14:1. [PMID: 36604760 PMCID: PMC9814215 DOI: 10.1186/s13227-022-00205-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cichlid fishes are a very diverse and species-rich family of teleost fishes that inhabit lakes and rivers of India, Africa, and South and Central America. Research has largely focused on East African cichlids of the Rift Lakes Tanganyika, Malawi, and Victoria that constitute the biodiversity hotspots of cichlid fishes. Here, we give an overview of the study system, research questions, and methodologies. Research on cichlid fishes spans many disciplines including ecology, evolution, physiology, genetics, development, and behavioral biology. In this review, we focus on a range of organismal traits, including coloration phenotypes, trophic adaptations, appendages like fins and scales, sensory systems, sex, brains, and behaviors. Moreover, we discuss studies on cichlid phylogenies, plasticity, and general evolutionary patterns, ranging from convergence to speciation rates and the proximate and ultimate mechanisms underlying these processes. From a methodological viewpoint, the last decade has brought great advances in cichlid fish research, particularly through the advent of affordable deep sequencing and advances in genetic manipulations. The ability to integrate across traits and research disciplines, ranging from developmental biology to ecology and evolution, makes cichlid fishes a fascinating research system.
Collapse
Affiliation(s)
- M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - João F Lopes
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
18
|
da Silva MA, Ottoni FP, Mattos JLO, Indermaur A, Katz AM, Salzburger W. Species diversity and phylogeography of the Australoheros autrani group (Teleostei, Cichlidae) in eastern Brazil. ICHTHYOLOGICAL RESEARCH 2022; 70:378-385. [PMID: 37384314 PMCID: PMC10293369 DOI: 10.1007/s10228-022-00888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/30/2023]
Abstract
Cichlid fishes are an important model system in evolutionary biology, primarily because of their exceptional diversity. However, while some cichlid assemblages, such as the ones of the African Great Lakes, have received considerable attention, others are not well studied, including many riverine species. Here, we focus on the Australoheros autrani species group and first report a new record of Australoheros in the upper Paranaíba River drainage, extending the known distribution range of this genus. Through Bayesian inference and maximum likelihood phylogenetic analyses of the mitochondrial cytochrome b gene of these specimens as well as available sequences, we assigned the newly discovered population to Australoheros barbosae. We corroborate the monophyly of the A. autrani species group and the presence of three species in the upper/middle Paraíba do Sul River basin as well as molecular diagnostic characters for each. Finally, we provide evidence for a recent expansion of A. barbosae. Supplementary Information The online version contains supplementary material available at 10.1007/s10228-022-00888-9.
Collapse
Affiliation(s)
- Marcos A. da Silva
- Zoological Institute, Department of Environmental Sciences, Universität Basel, Basel, Switzerland
| | - Felipe P. Ottoni
- Laboratório de Sistemática e Ecologia de Organismos Aquáticos, Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Brazil
| | - José L. O. Mattos
- Laboratório de Sistemática e Evolução de Peixes Teleósteos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adrian Indermaur
- Zoological Institute, Department of Environmental Sciences, Universität Basel, Basel, Switzerland
| | - Axel M. Katz
- Laboratório de Sistemática e Evolução de Peixes Teleósteos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, Universität Basel, Basel, Switzerland
| |
Collapse
|
19
|
Astudillo-Clavijo V, Stiassny MLJ, Ilves KL, Musilova Z, Salzburger W, López-Fernández H. Exon-based phylogenomics and the relationships of African cichlid fishes: tackling the challenges of reconstructing phylogenies with repeated rapid radiations. Syst Biol 2022; 72:134-149. [PMID: 35880863 DOI: 10.1093/sysbio/syac051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
African cichlids (subfamily: Pseudocrenilabrinae) are among the most diverse vertebrates, and their propensity for repeated rapid radiation has made them a celebrated model system in evolutionary research. Nonetheless, despite numerous studies, phylogenetic uncertainty persists, and riverine lineages remain comparatively underrepresented in higher-level phylogenetic studies. Heterogeneous gene histories resulting from incomplete lineage sorting (ILS) and hybridization are likely sources of uncertainty, especially during episodes of rapid speciation. We investigate relationships of Pseudocrenilabrinae and its close relatives while accounting for multiple sources of genetic discordance using species tree and hybrid network analyses with hundreds of single-copy exons. We improve sequence recovery for distant relatives, thereby extending the taxonomic reach of our probes, with a hybrid reference guided/de novo assembly approach. Our analyses provide robust hypotheses for most higher-level relationships and reveal widespread gene heterogeneity, including in riverine taxa. ILS and past hybridization are identified as sources of genetic discordance in different lineages. Sampling of various Blenniiformes (formerly Ovalentaria) adds strong phylogenomic support for convict blennies (Pholidichthyidae) as sister to Cichlidae, and points to other potentially useful protein-coding markers across the order. A reliable phylogeny with representatives from diverse environments will support ongoing taxonomic and comparative evolutionary research in the cichlid model system.
Collapse
Affiliation(s)
- Viviana Astudillo-Clavijo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, M5S 2C6, Canada.,Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, 48109, USA
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, 10024-5102, USA
| | - Katriina L Ilves
- Research & Collections, Zoology, Canadian Museum of Nature, Ottawa, K1P 6P4, Canada
| | - Zuzana Musilova
- Department of Zoology, Charles University in Prague, Vinicna 7, Prague, CZ-128 44, Czech Republic
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, M5S 2C6, Canada.,Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, 48109, USA
| |
Collapse
|
20
|
Abstract
General rules are useful tools for understanding how organisms evolve. Cope’s rule (tendency to increase in size over evolutionary time) and Bergmann’s rule (tendency to grow to larger sizes in cooler climates) both relate to body size, an important factor that affects the biology, ecology, and physiology of organisms. These rules are well studied in endotherms but remain poorly understood among ectotherms. Here, we show that paleoclimatic changes strongly shaped the trajectory of body size evolution in tetraodontiform fishes. Their body size evolution is explained by both Cope’s and Bergmann’s rules, highlighting the impact of paleoclimatic changes on aquatic organisms, which rely on their environment for temperature regulation and are likely more susceptible than terrestrial vertebrates to climatic changes. Body size is an important species trait, correlating with life span, fecundity, and other ecological factors. Over Earth’s geological history, climate shifts have occurred, potentially shaping body size evolution in many clades. General rules attempting to summarize body size evolution include Bergmann’s rule, which states that species reach larger sizes in cooler environments and smaller sizes in warmer environments, and Cope’s rule, which poses that lineages tend to increase in size over evolutionary time. Tetraodontiform fishes (including pufferfishes, boxfishes, and ocean sunfishes) provide an extraordinary clade to test these rules in ectotherms owing to their exemplary fossil record and the great disparity in body size observed among extant and fossil species. We examined Bergmann’s and Cope’s rules in this group by combining phylogenomic data (1,103 exon loci from 185 extant species) with 210 anatomical characters coded from both fossil and extant species. We aggregated data layers on paleoclimate and body size from the species examined, and inferred a set of time-calibrated phylogenies using tip-dating approaches for downstream comparative analyses of body size evolution by implementing models that incorporate paleoclimatic information. We found strong support for a temperature-driven model in which increasing body size over time is correlated with decreasing oceanic temperatures. On average, extant tetraodontiforms are two to three times larger than their fossil counterparts, which otherwise evolved during periods of warmer ocean temperatures. These results provide strong support for both Bergmann’s and Cope’s rules, trends that are less studied in marine fishes compared to terrestrial vertebrates and marine invertebrates.
Collapse
|
21
|
The macroparasite fauna of cichlid fish from Nicaraguan lakes, a model system for understanding host-parasite diversification and speciation. Sci Rep 2022; 12:3944. [PMID: 35273219 PMCID: PMC8913791 DOI: 10.1038/s41598-022-07647-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/15/2022] [Indexed: 01/28/2023] Open
Abstract
The Nicaraguan lakes represent an ideal continent-island-like setting to study the colonization patterns of both fish and their parasites. The dominant fish fauna are cichlids, particularly the Midas cichlid species complex Amphilophus spp., a well-studied model for recent sympatric speciation. Here, we characterized the Midas cichlid macroparasite diversity in Nicaraguan lakes. We evaluated patterns of parasite diversity across host populations. Morphological and molecular analyses were conducted, revealing a macroparasite fauna composed by 37 taxa, including platyhelminths, nematodes, copepods, branchiurans, hirudineans and oribatids. Three invasive species are reported for the first time. The Midas cichlid was infected by 22 parasite taxa, 18 shared with other cichlids. Eight taxa conformed the core parasite fauna of the Midas cichlid. The large lakes had higher parasite diversity than the smaller and isolated crater lakes, although parasite infracommunity diversity was lower. Environmental factors along with the differential distribution of intermediate hosts, the potential resistance gained by their hosts after colonization of new lakes, competitive exclusion among parasites, or the introduction of exotic fish, may determine the observed pattern of parasite heterogeneous distribution. Our study provides a ground to explore the evolutionary history of both, hosts and parasites within the context of speciation and diversification processes.
Collapse
|
22
|
Kmentová N, Cruz-Laufer AJ, Pariselle A, Smeets K, Artois T, Vanhove MPM. Dactylogyridae 2022: a meta-analysis of phylogenetic studies and generic diagnoses of parasitic flatworms using published genetic and morphological data. Int J Parasitol 2022; 52:427-457. [PMID: 35245493 DOI: 10.1016/j.ijpara.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Dactylogyridae is one of the most studied families of parasitic flatworms with more than 1000 species and 166 genera described to date including ecto- and endoparasites. Dactylogyrid monogeneans were suggested as model organisms for host-parasite macroevolutionary and biogeographical studies due to the scientific and economic importance of some of their host lineages. Consequently, an array of phylogenetic research into different dactylogyrid lineages has been produced over the past years but the last family-wide study was published 16 years ago. Here, we provide a meta-analysis of the phylogenetic relationships of Dactylogyridae including representatives of all genera with available molecular data (n=67). First, we investigate the systematic informativeness of morphological characters widely used to diagnose dactylogyrid genera through a parsimony analysis of the characters, character mapping, and phylogenetic comparative methods. Second, we provide an overview of the current state of the systematics of the family and its subfamilies, and summarise potentially poly- and paraphyletic genera. Third, we elaborate on the implications of taxonomic, citation, and confirmation bias in past studies. Fourth, we discuss host range, biogeographical, and freshwater-marine patterns. We found two well-supported macroclades which we assigned to the subfamilies Dactylogyrinae and Ancyrocephalinae. These subfamilies further include 16 well-supported clades with only a few synapomorphies that could be deduced from generic diagnoses in the literature. Furthermore, few morphological characters considered systematically informative at the genus level display a strong phylogenetic signal. However, the parsimony analysis suggests that these characters provide little information on the relationships between genera. We conclude that a strong taxonomic bias and low coverage of DNA sequences and regions limit knowledge on morphological and biogeographical evolutionary patterns that can be inferred from these results. We propose addressing potential citation and confirmation biases through a 'level playing field' multiple sequence alignment as provided by this study.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Armando J Cruz-Laufer
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Antoine Pariselle
- ISEM, CNRS, Université de Montpellier, IRD, Montpellier, France; Laboratory "Biodiversity, Ecology and Genome", Mohammed V University in Rabat, Faculty of Sciences, 4 avenue Ibn Batouta, BP 1014, Rabat, Morocco
| | - Karen Smeets
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Tom Artois
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| |
Collapse
|
23
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6534254. [DOI: 10.1093/femsec/fiac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
|
24
|
Abstract
Whole genome sequences are beginning to revolutionize our understanding of phylogenetic relationships. Yet, even whole genome sequences can fail to resolve the evolutionary history of the most rapidly radiating lineages, where incomplete lineage sorting, standing genetic variation, introgression, and other factors obscure the phylogenetic history of the group. To overcome such challenges, one emerging strategy is to integrate results across different methods. Most such approaches have been implemented on reduced representation genomic data sets, but whole genomes should provide the maximum possible evidence approach. Here, we test the ability of single nucleotide polymorphisms extracted from whole genome resequencing data, implemented in an integrative genomic approach, to resolve key nodes in the phylogeny of the mbuna, rock-dwelling cichlid fishes of Lake Malaŵi, which epitomize the phylogenetic intractability that often accompanies explosive lineage diversification. This monophyletic radiation has diversified at an unparalleled rate into several hundred species in less than 2 million years. Using an array of phylogenomic methods, we consistently recovered four major clades of mbuna, but a large basal polytomy among them. Although introgression between clades apparently contributed to the challenge of phylogenetic reconstruction, reduction of the data set to nonintrogressed sites still did not help to resolve the basal polytomy. On the other hand, relationships among six congeneric species pairs were resolved without ambiguity, even in one case where existing data led us to predict that resolution would be difficult. We conclude that the bursts of diversification at the earliest stages of the mbuna radiation may be phylogenetically unresolvable, but other regions of the tree are phylogenetically clearly supported. Integration of multiple phylogenomic approaches will continue to increase confidence in relationships inferred from these and other whole-genome data sets. [Incomplete lineage sorting; introgression; linkage disequilibrium; multispecies coalescence; rapid radiation; soft polytomy.]
Collapse
|
25
|
Tao W, Cao J, Xiao H, Zhu X, Dong J, Kocher TD, Lu M, Wang D. A Chromosome-Level Genome Assembly of Mozambique Tilapia ( Oreochromis mossambicus) Reveals the Structure of Sex Determining Regions. Front Genet 2021; 12:796211. [PMID: 34956335 PMCID: PMC8692795 DOI: 10.3389/fgene.2021.796211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The Mozambique tilapia (Oreochromis mossambicus) is a fascinating taxon for evolutionary and ecological research. It is an important food fish and one of the most widely distributed tilapias. Because males grow faster than females, genetically male tilapia are preferred in aquaculture. However, studies of sex determination and sex control in O. mossambicus have been hindered by the limited characterization of the genome. To address this gap, we assembled a high-quality genome of O. mossambicus, using a combination of high coverage of Illumina and Nanopore reads, coupled with Hi-C and RNA-Seq data. Our genome assembly spans 1,007 Mb with a scaffold N50 of 11.38 Mb. We successfully anchored and oriented 98.6% of the genome on 22 linkage groups (LGs). Based on re-sequencing data for male and female fishes from three families, O. mossambicus segregates both an XY system on LG14 and a ZW system on LG3. The sex-patterned SNPs shared by two XY families narrowed the sex determining regions to ∼3 Mb on LG14. The shared sex-patterned SNPs included two deleterious missense mutations in ahnak and rhbdd1, indicating the possible roles of these two genes in sex determination. This annotated chromosome-level genome assembly and identification of sex determining regions represents a valuable resource to help understand the evolution of genetic sex determination in tilapias.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianmeng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xi Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Junjian Dong
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, Rockville, MD, United States
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
26
|
Conith AJ, Albertson RC. The cichlid oral and pharyngeal jaws are evolutionarily and genetically coupled. Nat Commun 2021; 12:5477. [PMID: 34531386 PMCID: PMC8445992 DOI: 10.1038/s41467-021-25755-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Evolutionary constraints may significantly bias phenotypic change, while "breaking" from such constraints can lead to expanded ecological opportunity. Ray-finned fishes have broken functional constraints by developing two jaws (oral-pharyngeal), decoupling prey capture (oral jaw) from processing (pharyngeal jaw). It is hypothesized that the oral and pharyngeal jaws represent independent evolutionary modules and this facilitated diversification in feeding architectures. Here we test this hypothesis in African cichlids. Contrary to our expectation, we find integration between jaws at multiple evolutionary levels. Next, we document integration at the genetic level, and identify a candidate gene, smad7, within a pleiotropic locus for oral and pharyngeal jaw shape that exhibits correlated expression between the two tissues. Collectively, our data show that African cichlid evolutionary success has occurred within the context of a coupled jaw system, an attribute that may be driving adaptive evolution in this iconic group by facilitating rapid shifts between foraging habitats, providing an advantage in a stochastic environment such as the East African Rift-Valley.
Collapse
Affiliation(s)
- Andrew J Conith
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - R Craig Albertson
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
27
|
Lichilín N, El Taher A, Böhne A. Sex-biased gene expression and recent sex chromosome turnover. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200107. [PMID: 34304591 PMCID: PMC8310714 DOI: 10.1098/rstb.2020.0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cichlids are well known for their propensity to radiate generating arrays of morphologically and ecologically diverse species in short evolutionary time. Following this rapid evolutionary pace, cichlids show high rates of sex chromosome turnover. We here studied the evolution of sex-biased gene (SBG) expression in 14 recently diverged taxa of the Lake Tanganyika Tropheini cichlids, which show different XY sex chromosomes. Across species, sex chromosome sequence divergence predates divergence in expression between the sexes. Only one sex chromosome, the oldest, showed signs of demasculinization in gene expression and potentially contribution to the resolution of sexual conflict. SBGs in general showed high rates of turnovers and evolved mostly under drift. Sexual selection did not shape the rapid evolutionary changes of SBGs. Male-biased genes evolved faster than female-biased genes, which seem to be under more phylogenetic constraint. We found a relationship between the degree of sex bias and sequence evolution driven by sequence differences among the sexes. Consistent with other species, strong sex bias towards sex-limited expression contributes to resolving sexual conflict in cichlids. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Nicolás Lichilín
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Athimed El Taher
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| |
Collapse
|
28
|
El Taher A, Ronco F, Matschiner M, Salzburger W, Böhne A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. SCIENCE ADVANCES 2021; 7:eabe8215. [PMID: 34516923 PMCID: PMC8442896 DOI: 10.1126/sciadv.abe8215] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sex is a fundamental trait determined by environmental and/or genetic factors, including sex chromosomes. Sex chromosomes are studied in species scattered across the tree of life, yet little is known about tempo and mode of sex chromosome evolution among closely related species. Here, we examine sex chromosome evolution in the adaptive radiation of cichlid fishes in Lake Tanganyika. Through the analysis of male and female genomes from 244 cichlid taxa (189 described species with 5 represented with two local variants/populations; 50 undescribed species) and of 396 multitissue transcriptomes from 66 taxa, we identify signatures of sex chromosomes in 79 taxa, involving 12 linkage groups. We find that Tanganyikan cichlids have the highest rates of sex chromosome turnover and heterogamety transitions known to date. We show that sex chromosome recruitment is not at random. Moreover convergently emerged sex chromosomes in cichlids support the “limited options” hypothesis of sex chromosome evolution.
Collapse
Affiliation(s)
- Athimed El Taher
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Michael Matschiner
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Paleontology and Museum, University of Zurich, Zurich, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Corresponding author.
| |
Collapse
|
29
|
Viertler A, Salzburger W, Ronco F. Comparative scale morphology in the adaptive radiation of cichlid fishes (Perciformes: Cichlidae) from Lake Tanganyika. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The morphology of fish scales has been investigated for > 200 years, but research on evolutionary patterns of scale morphology is scarce. Here, we study scale morphology and its evolution in the adaptive radiation of cichlid fishes from Lake Tanganyika, which are known for their exceptional diversity in habitat use, feeding ecology and morphology. Based on a geometric morphometric approach on eight scales per specimen (covering different body regions), we quantify scale types and morphology across nearly all ~240 species of the cichlid adaptive radiation in Lake Tanganyika. We first show that scale type, shape and ctenii coverage vary along the body, which is probably attributable to adaptations to different functional demands on the respective scales. Our comparative analyses reveal that flank scale size is tightly linked to phylogeny, whereas scale shape and ctenii coverage can be explained only in part by phylogenetic history and/or our proxy for ecology (stable isotopes and body shape), suggesting an additional adaptive component. We also show that our measured scale characteristics can help to assign an individual scale to a taxonomic group or ecotype. Thus, our data may serve as a valuable resource for taxonomic studies and to interpret fossil finds.
Collapse
Affiliation(s)
- Alexandra Viertler
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Alda F, Ludt WB, Elías DJ, McMahan CD, Chakrabarty P. Comparing Ultraconserved Elements and Exons for Phylogenomic Analyses of Middle American Cichlids: When Data Agree to Disagree. Genome Biol Evol 2021; 13:evab161. [PMID: 34272856 PMCID: PMC8369075 DOI: 10.1093/gbe/evab161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Choosing among types of genomic markers to be used in a phylogenomic study can have a major influence on the cost, design, and results of a study. Yet few attempts have been made to compare categories of next-generation sequence markers limiting our ability to compare the suitability of these different genomic fragment types. Here, we explore properties of different genomic markers to find if they vary in the accuracy of component phylogenetic trees and to clarify the causes of conflict obtained from different data sets or inference methods. As a test case, we explore the causes of discordance between phylogenetic hypotheses obtained using a novel data set of ultraconserved elements (UCEs) and a recently published exon data set of the cichlid tribe Heroini. Resolving relationships among heroine cichlids has historically been difficult, and the processes of colonization and diversification in Middle America and the Greater Antilles are not yet well understood. Despite differences in informativeness and levels of gene tree discordance between UCEs and exons, the resulting phylogenomic hypotheses generally agree on most relationships. The independent data sets disagreed in areas with low phylogenetic signal that were overwhelmed by incomplete lineage sorting and nonphylogenetic signals. For UCEs, high levels of incomplete lineage sorting were found to be the major cause of gene tree discordance, whereas, for exons, nonphylogenetic signal is most likely caused by a reduced number of highly informative loci. This paucity of informative loci in exons might be due to heterogeneous substitution rates that are problematic to model (i.e., computationally restrictive) resulting in systematic errors that UCEs (being less informative individually but more uniform) are less prone to. These results generally demonstrate the robustness of phylogenomic methods to accommodate genomic markers with different biological and phylogenetic properties. However, we identify common and unique pitfalls of different categories of genomic fragments when inferring enigmatic phylogenetic relationships.
Collapse
Affiliation(s)
- Fernando Alda
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, Tennessee, USA
| | - William B Ludt
- Department of Ichthyology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Diego J Elías
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Prosanta Chakrabarty
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
31
|
Rossi AR. Fish Cytogenetics: Present and Future. Genes (Basel) 2021; 12:genes12070983. [PMID: 34203124 PMCID: PMC8305243 DOI: 10.3390/genes12070983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Anna Rita Rossi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza-Università di Roma, Via Alfonso Borelli 50, 00161 Rome, Italy
| |
Collapse
|
32
|
Ronco F, Salzburger W. The non-gradual nature of adaptive radiation. ZOOLOGY 2021; 146:125925. [PMID: 33895461 DOI: 10.1016/j.zool.2021.125925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Adaptive radiation is a major source of biodiversity. Still, many aspects of this evolutionary process remain poorly understood. Our recent integrative examination of the cichlid adaptive radiation in African Lake Tanganyika provides new insights into the process of explosive diversification. The in-depth phylogenetic comparative analysis of nearly all species occurring in that lake permitted us to trace patterns of eco-morphological evolution throughout the phylogenetic history of the radiation and revealed that it occurred in a non-gradual manner, in the form of time-shifted bursts of accelerated evolution. The temporal pattern of divergence along different axes of morphological evolution provides empirical support for a scenario that potentially unifies two popular models of adaptive radiation, the "early burst model" and the "stages model".
Collapse
Affiliation(s)
- Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
33
|
El Taher A, Böhne A, Boileau N, Ronco F, Indermaur A, Widmer L, Salzburger W. Gene expression dynamics during rapid organismal diversification in African cichlid fishes. Nat Ecol Evol 2021; 5:243-250. [PMID: 33230257 PMCID: PMC7610457 DOI: 10.1038/s41559-020-01354-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Changes in gene expression play a fundamental role in phenotypic evolution. Transcriptome evolutionary dynamics have so far mainly been compared among distantly related species and remain largely unexplored during rapid organismal diversification, in which gene regulatory changes have been suggested as particularly effective drivers of phenotypic divergence. Here we studied gene expression evolution in a model system of adaptive radiation, the cichlid fishes of African Lake Tanganyika. By comparing gene expression profiles of 6 different organs in 74 cichlid species representing all subclades of this radiation, we demonstrate that the rate of gene expression evolution varies among organs, transcriptome parts and the subclades of the radiation, indicating different strengths of selection. We found that the noncoding part of the transcriptome evolved more rapidly than the coding part, and that the gonadal transcriptomes evolved more rapidly than the somatic ones, with the exception of liver. We further show that the rate of gene expression change was not constant over the course of the radiation but accelerated at its later phase. Finally, we show that-at the per-gene level-the evolution of expression patterns is dominated by stabilizing selection.
Collapse
Affiliation(s)
- Athimed El Taher
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Nicolas Boileau
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Adrian Indermaur
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Lukas Widmer
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
34
|
Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 2020; 589:76-81. [DOI: 10.1038/s41586-020-2930-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/20/2020] [Indexed: 12/29/2022]
|
35
|
Svardal H, Salzburger W, Malinsky M. Genetic Variation and Hybridization in Evolutionary Radiations of Cichlid Fishes. Annu Rev Anim Biosci 2020; 9:55-79. [PMID: 33197206 DOI: 10.1146/annurev-animal-061220-023129] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolutionary radiations are responsible for much of the variation in biodiversity across taxa. Cichlid fishes are well known for spectacular evolutionary radiations, as they have repeatedly evolved into large and phenotypically diverse arrays of species. Cichlid genomes carry signatures of past events and, at the same time, are the substrate for ongoing evolution. We survey genome-wide data and the available literature covering 438 cichlid populations (412 species) across multiple radiations to synthesize information about patterns and sharing of genetic variation. Nucleotide diversity within species is low in cichlids, with 92% of surveyed populations having less diversity than the median value found in other vertebrates. Divergence within radiations is also low, and a large proportion of variation is shared among species due to incomplete lineage sorting and widespread hybridization. Population genetics therefore provides a suitable conceptual framework for evolutionary genomic studies of cichlid radiations. We focus in detail on the roles of hybridization in shaping the patterns of genetic variation and in promoting cichlid diversification.
Collapse
Affiliation(s)
- Hannes Svardal
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium; .,Naturalis Biodiversity Center, 2333 Leiden, The Netherlands
| | - Walter Salzburger
- Zoological Institute, University of Basel, 4051 Basel, Switzerland; ,
| | - Milan Malinsky
- Zoological Institute, University of Basel, 4051 Basel, Switzerland; ,
| |
Collapse
|