1
|
Alshammari OAO, Alhar MSO, Al-Otaibi A, AlRashidi AA, Alshammari AF, Alzahrani EA, Elsayed NH, Monier M, Youssef I. Synthesis of photo-responsive κ-carrageenan-based hydrogels for drug delivery application. Int J Biol Macromol 2024; 289:138797. [PMID: 39689806 DOI: 10.1016/j.ijbiomac.2024.138797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Natural polymer-based hydrogels may act as versatile platforms in controlled drug delivery. In this regard, photoactive κ-carrageenan (κ-Crg) hydrogels modified with cinnamate (CN) groups are developed for pH-sensitive release of drugs. κ-Crg-CN derivatives containing 17 %, 33 %, and 49 % cinnamate contents, named κ-Crg-CN1, κ-Crg-CN2, and κ-Crg-CN3, respectively, are prepared and cross-linked by UV-induced [2π + 2π] cycloaddition. Fourier transform infrared (FTIR) spectroscopy, Nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and elemental analysis are conducted for structural characterization. Rheological measurements showed an increased degree of cross-linking density with the increase in cinnamate content, as represented by storage modulus (G') values of 226 Pa for κ-Crg-CN1, 631 Pa for κ-Crg-CN2, and 967 Pa for κ-Crg-CN3. Also, drug encapsulation efficiency using theophylline was significantly improved: 48 % for κ-Crg-CN1, 63 % for κ-Crg-CN2, and 85 % for κ-Crg-CN3. Theophylline release studies showed that at pH 1.2, it was slower than pH 7.2, with a release rate inversely proportional to the cinnamate content. Kinetic modeling showed a non-Fickian transport mechanism that involved diffusion and polymer relaxation. These results show that κ-Crg-CN hydrogels can act as tunable, pH-sensitive drug delivery systems, with mechanical properties and release profiles precisely tailored by cinnamate functionalization for applications in controlled drug delivery.
Collapse
Affiliation(s)
- Odeh A O Alshammari
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Munirah S O Alhar
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Ahmed Al-Otaibi
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | | | - Ahlam F Alshammari
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Elham A Alzahrani
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia.
| | - M Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Ibrahim Youssef
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Thijssen Q, Carroll JA, Feist F, Beil A, Grützmacher H, Wegener M, Van Vlierberghe S, Barner-Kowollik C. Beyond absorption maxima: the impact of wavelength-resolved photochemistry on materials science. MATERIALS HORIZONS 2024; 11:6184-6191. [PMID: 39295487 DOI: 10.1039/d4mh00976b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Reflecting on Giacomo Ciamician's revolutionary vision of harnessing sunlight to drive photochemical transformations, the field of materials science has evolved significantly, yet it has been constrained by the misconception that the highest reactivity in photochemical systems is achieved at the absorption maxima. Here, we explore this notion further with evidence from photochemical action plots, demonstrating that reactivity can indeed be maximal at wavelengths significantly separated from the absorption peak. By examining the implications of the disparity between absorptivity and photochemical reactivitiy, we explore its impact for the enhanced penetration depth of light in photoresists, the reduction of energy requirements for photochemical reactions, and its transformative potential for volumetric 3D printing. Ultimately, we argue for a renewed appreciation of light's capability to facilitate photochemical reactions across the entire volume of a material.
Collapse
Affiliation(s)
- Quinten Thijssen
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000, Ghent, Belgium
| | - Joshua A Carroll
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| | - Florian Feist
- Institute of Nanotechnology (INT) and Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andreas Beil
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Martin Wegener
- Institute of Nanotechnology (INT) and Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000, Ghent, Belgium
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
- Institute of Nanotechnology (INT) and Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Vo Y, Raveendran R, Cao C, Lai RY, Lossa M, Foster H, Stenzel MH. Solvent Choice during Flow Assembly of Photocross-Linked Single-Chain Nanoparticles and Micelles Affects Cellular Uptake. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59833-59848. [PMID: 39450994 DOI: 10.1021/acsami.4c12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Polymeric micelles have widely been used as drug delivery carriers, and recently, single-chain nanoparticles (SCNPs) emerged as potential, smaller-sized, alternatives. In this work, we are comparing both NPs side by side and evaluate their ability to be internalized by breast cancer cells (MCF-7) and macrophages (RAW 264.7). To be able to generate these NPs on demand, the polymers were assembled by flow, followed by the stabilization of the structures by photocross-linking using blue light. The central aim of this work is to evaluate how the type of solvent affects self-assembly and ultimately the structure of the final NP. Therefore, a library of copolymers with different sequences, including block copolymers (AB, ABA, BAB), and statistical copolymers (rAB and rAC) was synthesized using PET-RAFT with A denoting poly(ethylene glycol) methyl ether acrylate (PEGMEA), B as 2-hydroxyethyl acrylate (HEA), and C as 4-hydroxybutyl acrylate (HBA). The polymers were conjugated with a quinoline derivative to enable the formation of cross-linked structures by photocross-linking during flow assembly. Using water as the dispersant for photocross-linking led to the preassembly of these amphiphilic polymers into compact SCNPs and cross-linked micelles, resulting in a quick photoreaction. In contrast, acetonitrile led to fully dissolved polymers but a low rate of the photoreaction. These intramolecularly cross-linked polymers were then placed in water to result in more dynamic micelles and looser SCNPs. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and size exclusion chromatography (SEC) coupled with a viscosity detector show that cross-linking in acetonitrile results in better-defined NPs with a shell rich in PEGMEA. Cross-linking in acetonitrile led to NPs with significantly higher cellular uptake. Interestingly, passive transport was identified as the main pathway for the delivery of our NPs on MCF-7 cells, confirmed by the uptake of NPs on cells treated with inhibitors and by red blood cells. This work underscored the importance of the polymer precursor's structure and the choice of solvent during intramolecular cross-linking in determining the drug delivery efficiency and biological behavior of SCNPs.
Collapse
Affiliation(s)
- Yen Vo
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rebecca Y Lai
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Miriam Lossa
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Henry Foster
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Koay WL, Gao C, Vu QT, Oh XY, Lin H, Mondal S, Singh NDP, Loh XJ, Le MTN, Truong VX. Light Switchable Bioorthogonal Reaction Manifold for Modulation of Hydrogel Properties. Biomacromolecules 2024; 25:6635-6644. [PMID: 39163639 DOI: 10.1021/acs.biomac.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemical reaction systems that can occur via multiple pathways in a controllable fashion are highly attractive for advanced materials applications and biological research. In this report, we introduce a bioorthogonal reaction manifold based on a chalcone pyrene (CPyr) moiety that can undergo either red-shifted photoreversible [2 + 2] cycloaddition or thiol-Michael addition click reaction. By coupling the CPyr to a water-soluble poly(ethylene glycol) end group, we demonstrate the efficient polymer dimerization and cleavage by blue light (λ = 450 nm) and UV light (λ = 340 nm), respectively. In the absence of light, CPyr rapidly reacts with thiols in aqueous environments, enabling fast and efficient polymer end-group functionalization. The chemical reaction manifold was further employed in polymer cross-linking for the preparation of hydrogels whose stiffness and morphology can be modulated by different photonic fields or the addition of a thiol cross-linker. The photoreversible cycloaddition and thiol-Michael addition click reaction can be used in conjunction for spatial and temporal conjugation of a streptavidin protein. Both cross-linking conditions are nontoxic to various cell lines, highlighting their potential in biomaterials applications.
Collapse
Affiliation(s)
- Wai Lean Koay
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Chang Gao
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Quyen Thi Vu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xin Yi Oh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Huihui Lin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Saugat Mondal
- Department of Chemistry, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302, India
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Vinh Xuan Truong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| |
Collapse
|
5
|
Hobich J, Feist F, Werner P, Carroll JA, Fuhr O, Blasco E, Mutlu H, Barner-Kowollik C. Quantification of Synergistic Two-Color Covalent Bond Formation. Angew Chem Int Ed Engl 2024:e202413530. [PMID: 39352041 DOI: 10.1002/anie.202413530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Indexed: 11/08/2024]
Abstract
The emergence of highly wavelength resolved reactivity information for complex photochemical reaction processes allows the establishment of multi-color reaction modes. One particularly powerful mode is the synergistic two-color reaction, where two colors of light have to be present in the same volume element to either enable or enhance photochemical reactivity that leads to a specific photoproduct. Herein, we introduce a two-color synergistic photochemical reaction system based on a diaryl indenone epoxide (DIO) photoswitch and the cis-to-trans isomerization of a bridged ring-strained azobenzene (SA), which respond to ultraviolet (365 nm) and visible light (430 nm), respectively, with different rates, forming a well-defined heterocyclic photoadduct, DIOSA, that we structurally confirm via single crystal x-ray diffraction (SXRD). To quantitatively capture the effectiveness of the dual-color irradiation as a function of the reaction conditions such as light intensity and starting material ratio as a function of product yield, we introduce a parameter, the photochemical synergistic ratioφ s y n ${{\phi{} }_{syn}}$ . A reducedφ s y n ${{\phi{} }_{syn}}$ termedφ s y n 0 ${{\phi{} }_{syn}^{0}}$ -that extrapolates to conditions of infinitesimal conversions-allows to compare the efficiency of the synergistic photochemistry at varying reaction conditions.
Collapse
Affiliation(s)
- Jan Hobich
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Florian Feist
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Phillip Werner
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Joshua A Carroll
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, Heidelberg, 69120, Germany
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/Université de Haute Alsace (UHA), 15 rue Jean Starcky, Mulhouse Cedex, 68057, France
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
6
|
Fu Y, Simeth NA, Szymanski W, Feringa BL. Visible and near-infrared light-induced photoclick reactions. Nat Rev Chem 2024; 8:665-685. [PMID: 39112717 DOI: 10.1038/s41570-024-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Göttingen, Germany.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Sbordone F, Frisch H. Plenty of Space in the Backbone: Radical Ring-Opening Polymerization. Chemistry 2024; 30:e202401547. [PMID: 38818742 DOI: 10.1002/chem.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Radical polymerization is the most widely applied technique in both industry and fundamental science. However, its major drawback is that it typically yields polymers with non-functional, non-degradable all-carbon backbones-a limitation that radical ring-opening polymerization (rROP) allows to overcome. The last decade has seen a surge in rROP, primarily focused on creating degradable polymers. This pursuit has resulted in the creation of the first readily degradable materials through radical polymerization. Recent years have witnessed innovations in new monomers that address previous design limitations, such as ring strain and reactivity ratios. Furthermore, advances in integrating rROP with reversible deactivation radical polymerization (RDRP) have facilitated the incorporation of complex, customizable chemical payloads into the main polymer chain. This short review discusses the latest developments in monomer design with a focused analysis of their limitations in a broader historical context. Recently evolving strategies for compatibility of rROP monomers with RDRP are discussed, which are key to precision polymer synthesis. The latest chemistry surveyed expands the horizon beyond mere hydrolytic degradation. Now is the time to explore the chemical potential residing in the previously inaccessible polymer backbone.
Collapse
Affiliation(s)
- Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
8
|
Michenfelder RT, Pashley‐Johnson F, Guschin V, Delafresnaye L, Truong VX, Wagenknecht H, Barner‐Kowollik C. Photochemical Action Plots Map Orthogonal Reactivity in Photochemical Release Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402011. [PMID: 38852174 PMCID: PMC11304248 DOI: 10.1002/advs.202402011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Indexed: 06/11/2024]
Abstract
The wavelength-by-wavelength resolved photoreactivity of two photo-caged carboxylic acids, i. e. 7-(diethylamino)-coumarin- and 3-perylene-modified substrates, is investigated via photochemical action plots. The observed wavelength-dependent reactivity of the chromophores is contrasted with their absorption profile. The photochemical action plots reveal a remarkable mismatch between the maximum reactivity and the absorbance. Through the action plot data, the study is able to uncover photochemical reactivity maxima at longer and shorter wavelengths, where the molar absorptivity of the chromophores is strongly reduced. Finally, the laser experiments are translated to light emitting diode (LED) irradiation and show efficient visible-light-induced release in a near fully wavelength-orthogonal, sequence-independent fashion (λLED1 = 405 nm, λLED2 = 505 nm) with both chromophores in the same reaction solution. The herein pioneered wavelength orthogonal release systems open an avenue for releasing two different molecular cargos with visible light in a fully orthogonal fashion.
Collapse
Affiliation(s)
- Rita T. Michenfelder
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Fred Pashley‐Johnson
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC) and Laboratory of Organic SynthesisDepartment of Organic and Macromolecular ChemistryFaculty of SciencesGhent UniversityKrijgslaan 281‐S4Ghent9000Belgium
| | - Viktor Guschin
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Laura Delafresnaye
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
| | - Vinh X. Truong
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for Science, Technology and Research (A*STAR)1 Pesek Round, Jurong IslandSingapore627833Republic of Singapore
| | - Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
9
|
Aljuaid M, Chang Y, Haddleton DM, Wilson P, Houck HA. Thermoreversible [2 + 2] Photodimers of Monothiomaleimides and Intrinsically Recyclable Covalent Networks Thereof. J Am Chem Soc 2024; 146:19177-19182. [PMID: 38953610 PMCID: PMC11258687 DOI: 10.1021/jacs.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The development of intrinsically recyclable cross-linked materials remains challenged by the inherently unfavorable chemical equilibrium that dictates the efficiency of the reversible covalent bonding/debonding chemistry. Rather than having to (externally) manipulate the bonding equilibrium, we here introduce a new reversible chemistry platform based on monosubstituted thiomaleimides that can undergo complete and independent light-activated covalent bonding and on-demand thermal debonding above 120 °C. Specifically, repeated bonding/debonding of a small-molecule thiomaleimide [2 + 2] photodimer is demonstrated over five heat/light cycles with full conversion in both directions, thereby regenerating its initial monothiomaleimide constituents. This motivated the synthesis of multifunctional thiomaleimide reagents as precursors for the design of covalently cross-linked networks that display intrinsic switching between a monomeric and polymeric state. The resulting materials are shown to covalently dissociate and depolymerize upon heating both in solution and in bulk, thus transforming the densely photo-cross-linked material back into a viscous liquid. Temperature-regulated photorheology evidenced the intrinsic recyclability of the thiomaleimide-based thermosets during multiple cycles of UV cross-linking and thermal de-cross-linking. The thermally reversible photodimerization of thiomaleimides presents a new addition to the designer playground of dynamic polymer networks, providing interesting opportunities for the reprocessing and closed-loop recycling of covalently cross-linked materials.
Collapse
Affiliation(s)
- Mohammed Aljuaid
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
- Department
of Chemistry, Turabah University College,
Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yujing Chang
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - David M. Haddleton
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - Paul Wilson
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - Hannes A. Houck
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
10
|
Zhou S, Zhang M, Yuan Y, Ren L, Chen Y, Li W, Zhang A, Yan J. Visible Light [2 + 2] Cycloadditions of Thermoresponsive Dendronized Styryltriazines To Exhibit Tunable Microconfinement. ACS Macro Lett 2024; 13:866-873. [PMID: 38935045 DOI: 10.1021/acsmacrolett.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Visible light-triggered photochemical reactions in aqueous media are highly valuable to tailor molecular structures and properties in an ecofriendly manner. Here we report visible light-induced catalyst-free [2 + 2] cycloadditions of thermoresponsive dendronized styryltriazines, which show tunable microconfinement to guest dyes in aqueous media. These dendronized styryltriazines are constituted of conjugated mono- or tristyryltriazines, which carry hydrophilic dendritic oligoethylene glycol (OEG) pendants. They underwent efficient [2 + 2] cycloadditions to form dendronized cyclobutane dimers or oligomers in water through irradiation with visible light of 400 nm, and their cycloaddition behavior was dominated by dendritic architectures and solvent conditions. Dendronization with dendritic OEGs also afforded them characteristic thermoresponsive properties with tunable phase transition temperatures in the range 36-65 °C, which can be further modulated through photocycloaddition of styryltriazine chromophores. Importantly, dendronized styryltriazines can form tunable microenvironments in aqueous media, which encapsulate hydrophobic solvatochromic Nile red to exhibit variable photophysical properties. The encapsulated guest dye can be simultaneously released through noninvasive visible light-induced [2 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Sijie Zhou
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Mengjie Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Yue Yuan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Yuqiang Chen
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| |
Collapse
|
11
|
Hoenders D, Ludwanowski S, Barner-Kowollik C, Walther A. Cyclodextrin 'Chaperones' Enable Quasi-Ideal Supramolecular Network Formation and Enhanced Photodimerization of Hydrophobic, Red-shifted Photoswitches in Water. Angew Chem Int Ed Engl 2024; 63:e202405582. [PMID: 38640085 DOI: 10.1002/anie.202405582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Precision-engineered light-triggered hydrogels are important for a diversity of applications. However, fields such as biomaterials require wavelength outside the harsh UV regime to prevent photodamage, typically requiring chromophores with extended π-conjugation that suffer from poor water solubility. Herein, we demonstrate how cyclodextrins can be used as auxiliary agents to not only solubilize such chromophores, but even to preorganize them in a 2 : 2 host-guest inclusion complex to facilitate photodimerization. We apply our concept to styrylpyrene-end-functionalized star-shaped polyethylene glycols (sPEGs). We initially unravel details of the host-guest inclusion complex using spectroscopy and mass spectrometry to give clear evidence of a 2 : 2 complex formation. Subsequently, we show that the resultant supramolecularly linked hydrogels conform to theories of supramolecular quasi-ideal model networks, and derive details on their association dynamics using in-depth rheological measurements and kinetic models. By comparing sPEGs of different arm length, we further elucidate the model network topology and the accessible mechanical property space. The photo-mediated dimerization proceeds smoothly, allowing to transform the supramolecular model networks into covalent ones. We submit that our strategy opens avenues for executing hydrophobic photochemistry in aqueous environments with enhanced control over reactivity, hydrogel topology or programmable mechanical properties.
Collapse
Affiliation(s)
- Daniel Hoenders
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Simon Ludwanowski
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000 Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Walther
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
12
|
Wu Y, Bei Y, Li W, Lu W, Zhu J, Zhang Z, Zhang T, Liu S, Chen K, Jin H, Li L, Li M, Gao J, Pan X. Advanced Multifunctional Hydrogels for Enhanced Wound Healing through Ultra-Fast Selenol-S NAr Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400898. [PMID: 38647422 DOI: 10.1002/advs.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Fabrication of versatile hydrogels in a facile and effective manner represents a pivotal challenge in the field of biomaterials. Herein, a novel strategy is presented for preparing on-demand degradable hydrogels with multilevel responsiveness. By employing selenol-dichlorotetrazine nucleophilic aromatic substitution (SNAr) to synthesize hydrogels under mild conditions in a buffer solution, the necessity of additives or posttreatments can be obviated. The nucleophilic and redox reactions between selenol and tetrazine culminate in the formation of three degradable chemical bonds-diselenide, aryl selenide, and dearomatized selenide-in a single, expeditious step. The resultant hydrogel manifests exceptional adaptability to intricate environments in conjunction with self-healing and on-demand degradation properties. Furthermore, the resulting material demonstrated light-triggered antibacterial activity. Animal studies further underscore the potential of integrating metformin into Se-Tz hydrogels under green light irradiation, as it effectively stimulates angiogenesis and collagen deposition, thereby fostering efficient wound healing. In comparison to previously documented hydrogels, Se-Tz hydrogels exhibit controlled degradation and drug release, outstanding antibacterial activity, mechanical robustness, and bioactivity, all without the need for costly and intricate preparation procedures. These findings underscore Se-Tz hydrogels as a safe and effective therapeutic option for diabetic wound dressings.
Collapse
Affiliation(s)
- Yan Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ying Bei
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, 571199, China
| | - Wenjing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weihong Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Hong Jin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Meng Li
- Department of Dermatology Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200010, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
13
|
Carroll JA, Pashley-Johnson F, Frisch H, Barner-Kowollik C. Photochemical Action Plots Reveal Red-shifted Wavelength-dependent Photoproduct Distributions. Chemistry 2024; 30:e202304174. [PMID: 38267371 DOI: 10.1002/chem.202304174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Photochemical action plots are a powerful tool for mapping photochemical reaction outcomes wavelength-by-wavelength. Typically, they map either the depletion of a reactant or the formation of a specific product as a function of wavelength. Herein, we exploit action plots to simultaneously map the formation of several photochemical products from a single chromophore. We demonstrate that the wavelength-resolved mapping of two reaction products formed during the irradiation of a chalcone species not only shows wavelength dependence - exhibiting the typical strong red-shift of the photochemical reactivity compared to the absorbance spectrum of the chromophore - but also a strong wavelength selectivity with remarkably different product distributions resulting from different irradiation wavelengths.
Collapse
Affiliation(s)
- Joshua A Carroll
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Fred Pashley-Johnson
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Faculty of Science, Ghent University, Krijgslaan 281 (S4-Bis), 9000, Ghent, Belgium
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Insitute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Zhang H, Tang B, Zhang B, Huang K, Li S, Zhang Y, Zhang H, Bai L, Wu Y, Cheng Y, Yang Y, Han G. X-ray-activated polymerization expanding the frontiers of deep-tissue hydrogel formation. Nat Commun 2024; 15:3247. [PMID: 38622169 PMCID: PMC11018743 DOI: 10.1038/s41467-024-47559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Photo-crosslinking polymerization stands as a fundamental pillar in the domains of chemistry, biology, and medicine. Yet, prevailing strategies heavily rely on ultraviolet/visible (UV/Vis) light to elicit in situ crosslinking. The inherent perils associated with UV radiation, namely the potential for DNA damage, coupled with the limited depth of tissue penetration exhibited by UV/Vis light, severely restrict the scope of photo-crosslinking within living organisms. Although near-infrared light has been explored as an external excitation source, enabling partial mitigation of these constraints, its penetration depth remains insufficient, particularly within bone tissues. In this study, we introduce an approach employing X-ray activation for deep-tissue hydrogel formation, surpassing all previous boundaries. Our approach harnesses a low-dose X-ray-activated persistent luminescent phosphor, triggering on demand in situ photo-crosslinking reactions and enabling the formation of hydrogels in male rats. A breakthrough of our method lies in its capability to penetrate deep even within thick bovine bone, demonstrating unmatched potential for bone penetration. By extending the reach of hydrogel formation within such formidable depths, our study represents an advancement in the field. This application of X-ray-activated polymerization enables precise and safe deep-tissue photo-crosslinking hydrogel formation, with profound implications for a multitude of disciplines.
Collapse
Affiliation(s)
- Hailei Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China.
| | - Boyan Tang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Bo Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, 01605, USA
| | - Shanshan Li
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yuangong Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Haisong Zhang
- Affiliated Hospital of Hebei University, Baoding, 071000, P. R. China
| | - Libin Bai
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yonggang Wu
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yongqiang Cheng
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yanmin Yang
- College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei Key Lab of Optic-electronic Information and Materials, Hebei University, Baoding, 071002, P. R. China.
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, 01605, USA.
| |
Collapse
|
15
|
Gauci SC, Vranic A, Blasco E, Bräse S, Wegener M, Barner-Kowollik C. Photochemically Activated 3D Printing Inks: Current Status, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306468. [PMID: 37681744 DOI: 10.1002/adma.202306468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Indexed: 09/09/2023]
Abstract
3D printing with light is enabled by the photochemistry underpinning it. Without fine control over the ability to photochemically gate covalent bond formation by the light at a certain wavelength and intensity, advanced photoresists with functions spanning from on-demand degradability, adaptability, rapid printing speeds, and tailored functionality are impossible to design. Herein, recent advances in photoresist design for light-driven 3D printing applications are critically assessed, and an outlook of the outstanding challenges and opportunities is provided. This is achieved by classing the discussed photoresists in chemistries that function photoinitiator-free and those that require a photoinitiator to proceed. Such a taxonomy is based on the efficiency with which photons are able to generate covalent bonds, with each concept featuring distinct advantages and drawbacks.
Collapse
Affiliation(s)
- Steven C Gauci
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Aleksandra Vranic
- Institute of Organic Chemistry (IOC), Karlsruhe institute of Technology (KIT), Fritz-Haber-Weg 6, 76133, Karlsruhe, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, 69120, Heidelberg, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe institute of Technology (KIT), Fritz-Haber-Weg 6, 76133, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76133, Karlsruhe, Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Walden SL, Carroll JA, Unterreiner A, Barner‐Kowollik C. Photochemical Action Plots Reveal the Fundamental Mismatch Between Absorptivity and Photochemical Reactivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306014. [PMID: 37937391 PMCID: PMC10797470 DOI: 10.1002/advs.202306014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 11/09/2023]
Abstract
Over the last years, the authors' laboratory has employed monochromatic tuneable laser systems to reveal a fundamental mismatch between the absorptivity of a chromophore and its photochemical reactivity for the vast majority of covalent bond forming reactions as well as specific bond cleavage reactions. In the general chemistry community, however, the long-held assumption pervades that effective photochemical reactions are obtained in situations where there is strong overlap between the absorption spectrum and the excitation wavelength. The current Perspective illustrates that the absorption spectrum of a molecule only provides information about electronic excitations and remains entirely silent on other energy redistribution mechanisms that follow, which critically influence photochemical reactivity. Future avenues of enquiry on how action plots can be understood are proposed and the importance of action plots for tailoring photochemical applications with never-before-seen precision is explored.
Collapse
Affiliation(s)
- Sarah L. Walden
- School of Chemistry and Physics, Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Institute of Solid State Physics and Institute of Applied PhysicsAbbe Centre of PhotonicsFriedrich Schiller University JenaHelmholtzweg 307743JenaGermany
| | - Joshua A. Carroll
- School of Chemistry and Physics, Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Andreas‐Neil Unterreiner
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 276131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- School of Chemistry and Physics, Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
17
|
Lee YH, Song WJ, Park JM, Sung G, Lee MG, Kim M, Park S, Lee JS, Kim M, Kim WS, Sun JY. Full-Color Generation via Phototunable Mono Ink for Fast and Elaborate Printings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307165. [PMID: 37945054 DOI: 10.1002/adma.202307165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Unlike pigment-based colors, which are determined by their molecular structure, diverse colors can be expressed by a regular arrangement of nanomaterials. However, existing techniques for constructing such nanostructures have struggled to combine high precision and speed, resulting in a narrow gamut, and prolonged color fabrication time. Here, this work reports a phototunable mono ink that can generate a wide range of colors by controlling regularly arranged nanostructure. Core-shell growth controlled by polymerization time precisely regulates the distance between arranged particles at a nanometer-scale, enabling the generation of various colors. Moreover, the wide and thin arrangement induces constrained out-of-plane growth, thus facilitating the intricate color generation at the desired location via photopolymerization. Upon terminating polymerization by oxygen gas, the generated colors are readily fixed and kept stable. Utilizing programmed ultraviolet illumination, large-scale and high-resolution (≈1 µm) full-color printings are demonstrated at high speed (100 mm2 s-1 ).
Collapse
Affiliation(s)
- Yun Hyeok Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Jun Song
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Man Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gimin Sung
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Gyu Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miji Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungeun Park
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Ju Sang Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miyoung Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wook Sung Kim
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
18
|
Gauci SC, Du Prez FE, Holloway JO, Houck HA, Barner-Kowollik C. The Power of Action Plots: Unveiling Reaction Selectivity of Light-Stabilized Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2023; 62:e202310274. [PMID: 37551836 DOI: 10.1002/anie.202310274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
Exploiting the optimum wavelength of reactivity for efficient photochemical reactions has been well-established based on the development of photochemical action plots. We herein demonstrate the power of such action plots by a remarkable example of the wavelength-resolved photochemistry of two triazolinedione (TAD) substrates, i.e., aliphatic and aromatic substituted, that exhibit near identical absorption spectra yet possess vastly disparate photoreactivity. We present our findings in carefully recorded action plots, from which reaction selectivity is identified. The profound difference in photoreactivity is exploited by designing a 'hybrid' bisfunctional TAD molecule, enabling the formation of a dual-gated reaction manifold that demonstrates the exceptional and site-selective (photo)chemical behavior of both TAD substrates within a single small molecule.
Collapse
Affiliation(s)
- Steven C Gauci
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium
| | - Joshua O Holloway
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Hannes A Houck
- Department of Chemistry and Institute of Advanced Study, University of Warwick, Library Road, Coventry, CV4 7AL, UK
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Richardson BJ, Zhang C, Rauthe P, Unterreiner AN, Golberg DV, Poad BLJ, Frisch H. Peptide Self-Assembly Controlled Photoligation of Polymers. J Am Chem Soc 2023. [PMID: 37433011 DOI: 10.1021/jacs.3c03961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves─avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation "ON" or "OFF" under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.
Collapse
Affiliation(s)
- Bailey J Richardson
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Chao Zhang
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Pascal Rauthe
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Dmitri V Golberg
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
20
|
Michenfelder RT, Delafresnaye L, Truong VX, Barner-Kowollik C, Wagenknecht HA. DNA labelling in live cells via visible light-induced [2+2] photocycloaddition. Chem Commun (Camb) 2023; 59:4012-4015. [PMID: 36920883 DOI: 10.1039/d3cc00817g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
We introduce a visible light-driven (λmax = 451 nm) photo-chemical strategy for labelling of DNA in living HeLa cells via the [2+2] cycloaddition of a styrylquinoxaline moiety, which we incorporate into both the DNA and the fluorescent label. Our methodology offers advanced opportunities for the mild remote labelling of DNA in water while avoiding UV light activation.
Collapse
Affiliation(s)
- Rita T Michenfelder
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, Karlsruhe 76131, Germany.
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
| | - Laura Delafresnaye
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
| | - Vinh X Truong
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, Karlsruhe 76131, Germany.
| |
Collapse
|
21
|
Do PT, Poad BLJ, Frisch H. Programming Photodegradability into Vinylic Polymers via Radical Ring-Opening Polymerization. Angew Chem Int Ed Engl 2023; 62:e202213511. [PMID: 36535898 PMCID: PMC10108003 DOI: 10.1002/anie.202213511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Incorporation of photolabile moieties into the polymer backbone holds promise to remotely-control polymer degradation. However, suitable synthetic avenues are limited, especially for radical polymerizations. Here we report a strategy to program photodegradability into vinylic polymers by exploiting the wavelength selectivity of photocycloadditions for radical ring-opening polymerization (rROP). Irradiation of coumarin terminated allylic sulfides with UVA light initiated intramolecular [2+2] photocycloaddition producing cyclic macromonomers. Subsequent RAFT-mediated rROP with methyl acrylate yielded copolymers that inherited the photoreactivity of the cyclic parent monomer. Irradiation with UVB initiated efficient photocycloreversion of the coumarin dimers, causing polymer degradation within minutes under UVB light or days under sunlight exposure. Our synthetic strategy may pave the way to insert photolabile linkages into vinylic polymers, tuning degradation for specific wavelengths.
Collapse
Affiliation(s)
- Phuong T Do
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia
| |
Collapse
|
22
|
Hobich J, Blasco E, Wegener M, Mutlu H, Barner‐Kowollik C. Synergistic, Orthogonal, and Antagonistic Photochemistry for Light‐Induced 3D Printing. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Hobich
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Eva Blasco
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
- Organic Chemistry Institute Heidelberg University im Neuenheimer Feld 270 69120 Heidelberg Germany
- Institute for Molecular Systems Engineering and Advanced Materials Heidelberg University im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
- Institute of Applied Physics Karlsruhe Institute of Technology (KIT) 76128 Karlsruhe Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory (SML) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Christopher Barner‐Kowollik
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
- School of Chemistry and Physics, Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
23
|
Liu J, Lou X, Schotman MJG, Marín San Román PP, Sijbesma RP. Photo-Crosslinked Coumarin-Containing Bis-Urea Amphiphile Hydrogels. Gels 2022; 8:gels8100615. [PMID: 36286116 PMCID: PMC9601853 DOI: 10.3390/gels8100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The design of photo-responsive supramolecular hydrogels based on coumarin dimerization and de-dimerization is described. The photo-responsive coumarin unit is chemically incorporated into an oligo(ethylene glycol) (OEG) bis-urea amphiphile that is capable of co-assembling with non-functionalized OEG amphiphile, to form supramolecular fibers. UV light with two different wavelengths (365 nm and 254 nm) is employed to induce a photo-reversible dimerization and de-dimerization process of coumarin units, respectively. The co-assembled solutions could be photo-crosslinked to induce a sol-to-gel transition through dimerization of coumarin with 365 nm UV light, and de-dimerization occurs with 254 nm UV light, to provide a weaker gel. In this system, the mechanical strength of supramolecular hydrogels can be tuned using the irradiation time, providing precise control of gelation in a supramolecular hydrogelator.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Xianwen Lou
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Maaike J. G. Schotman
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Patricia P. Marín San Román
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Rint P. Sijbesma
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Correspondence:
| |
Collapse
|
24
|
Abstract
We introduce a photochemical bond forming system, where two colours of light are required to trigger covalent bond formation. Specifically, we exploit a visible light cis/trans isomerization of chlorinated azobenzene, which can only undergo reaction with a photochemically generated ketene in its cis state. Detailed photophysical mapping of the reaction efficiencies at a wide range of monochromatic wavelengths revealed the optimum irradiation conditions. Subsequent small molecule and polymer ligation experiments illustrated that only the application of both colours of light affords the reaction product. We further extend the functionality to a photo reversible ketene moiety and translate the concept into material science. The presented reaction system holds promise to be employed as a two-colour resist. Dual-wavelength photochemical systems open up new avenues for novel lithographic techniques but currently only few wavelength-orthogonal photoreactive compounds undergoing reversible photoreaction are known. Here, the authors exploit cis/trans photoisomerization of azobenzenes and demonstrate photoligation of the cis state with a photochemically generated ketene.
Collapse
|
25
|
Truong VX, Ehrmann K, Seifermann M, Levkin PA, Barner-Kowollik C. Wavelength Orthogonal Photodynamic Networks. Chemistry 2022; 28:e202104466. [PMID: 35213069 PMCID: PMC9310740 DOI: 10.1002/chem.202104466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light‐induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light‐driven adaptation of 3D printed structures on the macro‐ and micro‐scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non‐conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non‐fluorescent, and cell adhesive vs. cell repellent properties.
Collapse
Affiliation(s)
- Vinh X Truong
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Katharina Ehrmann
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Maximilian Seifermann
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| |
Collapse
|
26
|
Chambers LC, Barner-Kowollik C, Barner L, Michalek L, Frisch H. Photostationary State in Dynamic Covalent Networks. ACS Macro Lett 2022; 11:532-536. [PMID: 35575324 DOI: 10.1021/acsmacrolett.2c00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We explore a cross-linked polymer network based on a visible light photodynamic [2 + 2] cycloaddition driven by styrylpyrene chemistry. Based on a polymer backbone with pendent styrylpyrene units, the network can be formed by using λ = 450 nm irradiation. Upon irradiation with λ = 340 nm, a photostationary state is generated within the network with ∼17% of the styrylpyrene units open compared to close to 2% in the visible light cured state. The limited fraction of open [2 + 2] couples is caused by their proximity and is in sharp contrast to solution experiments on the photoreactive moiety. Thus, the polymer network retains its mechanical properties even at the photostationary point. We hypothesize that the application of an additional stimulus could serve as a second gate for inducing network disintegration by spacing the [2 + 2] units during ultraviolet irradiation.
Collapse
Affiliation(s)
- Lewis C. Chambers
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Leonie Barner
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| | - Lukas Michalek
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| | - Hendrik Frisch
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| |
Collapse
|
27
|
Liarou E, Houck HA, Du Prez FE. Reversible Transformations of Polymer Topologies through Visible Light and Darkness. J Am Chem Soc 2022; 144:6954-6963. [DOI: 10.1021/jacs.2c01622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Evelina Liarou
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| | - Hannes A. Houck
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| |
Collapse
|
28
|
Truong VX, Bachmann J, Unterreiner A, Blinco JP, Barner‐Kowollik C. Wavelength-Orthogonal Stiffening of Hydrogel Networks with Visible Light. Angew Chem Int Ed Engl 2022; 61:e202113076. [PMID: 35029002 PMCID: PMC9305448 DOI: 10.1002/anie.202113076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 01/05/2023]
Abstract
Herein, we introduce the wavelength-orthogonal crosslinking of hydrogel networks using two red-shifted chromophores, i.e. acrylpyerene (AP, λactivation =410-490 nm) and styrylpyrido[2,3-b]pyrazine (SPP, λactivation =400-550 nm), able to undergo [2+2] photocycloaddition in the visible-light regime. The photoreactivity of the SPP moiety is pH-dependent, whereby an acidic environment inhibits the cycloaddition. By employing a spiropyran-based photoacid generator with suitable absorption wavelength, we are able to restrict the activation wavelength of the SPP moiety to the green light region (λactivation =520-550 nm), enabling wavelength-orthogonal activation of the AP group. Our wavelength-orthogonal photochemical system was successfully applied in the design of hydrogels whose stiffness can be tuned independently by either green or blue light.
Collapse
Affiliation(s)
- Vinh X. Truong
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
| | - Julian Bachmann
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Andreas‐Neil Unterreiner
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - James P. Blinco
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
| | - Christopher Barner‐Kowollik
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
29
|
Kodura D, Rodrigues LL, Walden SL, Goldmann AS, Frisch H, Barner-Kowollik C. Orange-Light-Induced Photochemistry Gated by pH and Confined Environments. J Am Chem Soc 2022; 144:6343-6348. [PMID: 35364816 DOI: 10.1021/jacs.2c00156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce a new photochemically active compound, i.e., pyridinepyrene (PyPy), entailing a pH-active moiety that effects a significant halochromic shift into orange-light (λ = 590 nm) activatable photoreactivity while concomitantly exerting control over its reaction pathways. With blue light (λ = 450 nm) in neutral to basic pH, a [2 + 2] photocycloaddition can be triggered to form a cyclobutene ring in a reversible fashion. If the pH is decreased to acidic conditions, resulting in a halochromic absorption shift, photocycloaddition on the small-molecule level is blocked due to repulsive interactions and exclusive trans-cis isomerization is observed. Through implementation of PyPy into the confined environment of a single-chain nanoparticle (SCNP) design, one can overcome the repulsive forces and exploit the halochromic shift for orange light (λ = 590 nm)-induced cycloaddition and formation of macromolecular three-dimensional (3D) architectures.
Collapse
Affiliation(s)
- Daniel Kodura
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Leona L Rodrigues
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Sarah L Walden
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Anja S Goldmann
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
30
|
|
31
|
Truong VX, Bachmann J, Unterreiner A, Blinco JP, Barner‐Kowollik C. Wellenlängen‐Orthogonale Versteifung von Hydrogel‐Netzwerken mit sichtbarem Licht. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vinh X. Truong
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
| | - Julian Bachmann
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Deutschland
| | - Andreas‐Neil Unterreiner
- Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Deutschland
| | - James P. Blinco
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
| | - Christopher Barner‐Kowollik
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
32
|
Truong VX, Barner-Kowollik C. Photodynamic covalent bonds regulated by visible light for soft matter materials. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Nakagawa S, Yoshie N. Star polymer networks: a toolbox for cross-linked polymers with controlled structure. Polym Chem 2022. [DOI: 10.1039/d1py01547h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of precisely controlled polymer networks has been a long-cherished dream of polymer scientists. Traditional random cross-linking strategies often lead to uncontrolled networks with various kinds of defects. Recent...
Collapse
|
34
|
Fugolin AP, Pfeifer CS. Engineering a new generation of thermoset self-healing polymers based on intrinsic approaches. JADA FOUNDATIONAL SCIENCE 2022; 1:100014. [PMID: 36721425 PMCID: PMC9885846 DOI: 10.1016/j.jfscie.2022.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objectives The development of thermosetting polymers with autonomic reparability has become an important research topic since it has the potential to benefit several fields such as biomaterials, tissue engineering, paint and coating technologies, electronics, and soft robotics. In dentistry, the development of restorative materials capable of inhibiting the propagation of microcracks caused by masticatory forces and thermal stress may represent a crucial expansion of the limited clinical lifespan of dental restorations, which is a pressing challenge. Biological systems have inspired the underlying concepts and designs of synthetic polymeric self-healing systems, and different strategies have been used to impart autonomous repair capability in polymers. In this review, the most relevant intrinsic strategies are categorized based on the reaction mechanisms. In general, these strategies rely on the incorporation of latent functionalities capable of undergoing reversible chemical bonds within the polymeric structure (chemically or compositionally tuned). Search Strategy The searches were conducted in the databases Scopus, PubMed, and Google Scholar and limited to articles that were written in English and published during the last ten years. A few additional articles were included by complementing the database searches with manual review of the reference lists. Overall Conclusions Although intrinsic approaches remain underexplored in dentistry, a wide variety of elegant chemistries with tremendous translational potential employed in other fields to promote autonomic repair are highlighted in this review.
Collapse
Affiliation(s)
- Ana P. Fugolin
- Division of Biomaterials and Biomechanics, Restorative Dentistry Department, Oregon Health & Science University, Portland, OR
| | - Carmem S. Pfeifer
- Division of Biomaterials and Biomechanics, Restorative Dentistry Department, Oregon Health & Science University, Portland, OR
| |
Collapse
|
35
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Stimuli-responsive destructible polymeric hydrogels based on irreversible covalent bond dissociation. Polym Chem 2022. [DOI: 10.1039/d1py01066b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Covalently crosslinked stimuli-destructible hydrogels with the ability of irreversible bond dissociation have attracted great attentions due to their biodegradability, stability against hydrolysis, and controlled solubility upon insertion of desired triggers.
Collapse
Affiliation(s)
- Sina Shahi
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Saeid Talebi
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Hanieh Mardani
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| |
Collapse
|
36
|
Kalayci K, Frisch H, Barner-Kowollik C, Truong VX. Green Light Enabled Staudinger-Bertozzi Ligation. Chem Commun (Camb) 2022; 58:6397-6400. [DOI: 10.1039/d2cc00911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a visible light-induced Staudinger-Bertozzi ligation via photo-uncaging of a triphenylphosphine moiety with a photolabile coumarin derivative. Our action plot study examines the conversion as the function of wavelength,...
Collapse
|
37
|
Irshadeen IM, Walden SL, Wegener M, Truong VX, Frisch H, Blinco JP, Barner-Kowollik C. Action Plots in Action: In-Depth Insights into Photochemical Reactivity. J Am Chem Soc 2021; 143:21113-21126. [PMID: 34859671 DOI: 10.1021/jacs.1c09419] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Predicting wavelength-dependent photochemical reactivity is challenging. Herein, we revive the well-established tool of measuring action spectra and adapt the technique to map wavelength-resolved covalent bond formation and cleavage in what we term "photochemical action plots". Underpinned by tunable lasers, which allow excitation of molecules with near-perfect wavelength precision, the photoinduced reactivity of several reaction classes have been mapped in detail. These include photoinduced cycloadditions and bond formation based on photochemically generated o-quinodimethanes and 1,3-dipoles such as nitrile imines as well as radical photoinitiator cleavage. Organized by reaction class, these data demonstrate that UV/vis spectra fail to act as a predictor for photochemical reactivity at a given wavelength in most of the examined reactions, with the photochemical reactivity being strongly red shifted in comparison to the absorption spectrum. We provide an encompassing perspective of the power of photochemical action plots for bond-forming reactions and their emerging applications in the design of wavelength-selective photoresists and photoresponsive soft-matter materials.
Collapse
Affiliation(s)
- Ishrath Mohamed Irshadeen
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Sarah L Walden
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Martin Wegener
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Vinh X Truong
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - James P Blinco
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
38
|
Pelloth JL, Tran PA, Walther A, Goldmann AS, Frisch H, Truong VX, Barner-Kowollik C. Wavelength-Selective Softening of Hydrogel Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102184. [PMID: 34365684 DOI: 10.1002/adma.202102184] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Photoresponsive hydrogels hold key potential in advanced biomedical applications including tissue engineering, regenerative medicine, and drug delivery, as well as intricately engineered functions such as biosensing, soft robotics, and bioelectronics. Herein, the wavelength-dependent degradation of bio-orthogonal poly(ethylene glycol) hydrogels is reported, using three selective activation levels. Specifically, three chromophores are exploited, that is, ortho-nitrobenzene, dimethyl aminobenzene, and bimane, each absorbing light at different wavelengths. By examining their photochemical action plots, the wavelength-dependent reactivity of the photocleavable moieties is determined. The wavelength-selective addressability of individual photoreactive units is subsequently translated into hydrogel design, enabling wavelength-dependent cleavage of the hydrogel networks on-demand. Critically, this platform technology allows for the fabrication of various hydrogels, whose mechanical properties can be fine-tuned using different colors of light to reach a predefined value, according to the chromophore ratios used. The softening is shown to influence the spreading of pre-osteoblastic cells adhering to the gels as a demonstration of their potential utility. Furthermore, the materials and photodegradation processes are non-toxic to cells, making this platform attractive for biomaterials engineering.
Collapse
Affiliation(s)
- Jessica L Pelloth
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Phong A Tran
- Centre for Biomedical Technologies and Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Andreas Walther
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Department for Chemistry, Chemistry, Pharmacy, Geography and Geosciences, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Anja S Goldmann
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Vinh X Truong
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
39
|
Marshall DL, Menzel JP, McKinnon BI, Blinco JP, Trevitt AJ, Barner-Kowollik C, Blanksby SJ. Laser Photodissociation Action Spectroscopy for the Wavelength-Dependent Evaluation of Photoligation Reactions. Anal Chem 2021; 93:8091-8098. [PMID: 34019383 DOI: 10.1021/acs.analchem.1c01584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nitrile imine-mediated tetrazole-ene cycloaddition is a widely used class of photoligation. Optimizing the reaction outcome requires detailed knowledge of the tetrazole photoactivation profile, which can only partially be ascertained from absorption spectroscopy, or otherwise involves laborious reaction monitoring in solution. Photodissociation action spectroscopy (PDAS) combines the advantages of optical spectroscopy and mass spectrometry in that only absorption events resulting in a mass change are recorded, thus revealing the desired wavelength dependence of product formation. Moreover, the sensitivity and selectivity afforded by the mass spectrometer enable reliable assessment of the photodissociation profile even on small amounts of crude material, thus accelerating the design and synthesis of next-generation substrates. Using this workflow, we demonstrate that the photodissociation onset for nitrile imine formation is red-shifted by ca. 50 nm with a novel N-ethylcarbazole derivative relative to a phenyl-substituted archetype. Benchmarked against solution-phase tunable laser experiments and supported by quantum chemical calculations, these discoveries demonstrate that PDAS is a powerful tool for rapidly screening the efficacy of new substrates in the quest toward efficient visible light-triggered ligation for biological applications.
Collapse
Affiliation(s)
- David L Marshall
- Central Analytical Research Facility, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Jan P Menzel
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Benjamin I McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - James P Blinco
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
40
|
Geiselhart CM, Mutlu H. The Vibrant Interplay of Light and Self‐Reporting Macromolecular Architectures. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis Laboratory (SML) Institute for Biological Interfaces 3 (IBG 3) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein Leopoldshafen 76344 Germany
- Macromolecular Architectures Institute for Technical Chemistry and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 Karlsruhe 76131 Germany
- School of Chemistry and Physics Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory (SML) Institute for Biological Interfaces 3 (IBG 3) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein Leopoldshafen 76344 Germany
| |
Collapse
|
41
|
Jiao D, Lossada F, Guo J, Skarsetz O, Hoenders D, Liu J, Walther A. Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nat Commun 2021; 12:1312. [PMID: 33637751 PMCID: PMC7910463 DOI: 10.1038/s41467-021-21599-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Nature fascinates with living organisms showing mechanically adaptive behavior. In contrast to gels or elastomers, it is profoundly challenging to switch mechanical properties in stiff bioinspired nanocomposites as they contain high fractions of immobile reinforcements. Here, we introduce facile electrical switching to the field of bioinspired nanocomposites, and show how the mechanical properties adapt to low direct current (DC). This is realized for renewable cellulose nanofibrils/polymer nanopapers with tailor-made interactions by deposition of thin single-walled carbon nanotube electrode layers for Joule heating. Application of DC at specific voltages translates into significant electrothermal softening via dynamization and breakage of the thermo-reversible supramolecular bonds. The altered mechanical properties are reversibly switchable in power on/power off cycles. Furthermore, we showcase electricity-adaptive patterns and reconfiguration of deformation patterns using electrode patterning techniques. The simple and generic approach opens avenues for bioinspired nanocomposites for facile application in adaptive damping and structural materials, and soft robotics.
Collapse
Affiliation(s)
- Dejin Jiao
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Francisco Lossada
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Jiaqi Guo
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Oliver Skarsetz
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Daniel Hoenders
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Jin Liu
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany.
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany.
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
42
|
Truong VX, Barner-Kowollik C. Red-Light Driven Photocatalytic Oxime Ligation for Bioorthogonal Hydrogel Design. ACS Macro Lett 2021; 10:78-83. [PMID: 35548995 DOI: 10.1021/acsmacrolett.0c00767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Light-mediated polymer cross-linking is frequently employed for the preparation of hydrogels for biomedical applications. However, most photopolymerization processes require activation by UV light or short wavelength visible light, which are highly absorbed by skin and tissue, limiting their uses in transdermal initiation. Herein, we introduce red light-enabled oxime ligation by the in situ photogeneration of aldehydes, which rapidly react with hydroxylamines. We demonstrate efficient polymer cross-linking behind a dermal tissue model by red light initiation. Optimization of the photopolymerization conditions allows for 3D encapsulation of human foreskin fibroblasts with good cell viability postencapsulation.
Collapse
Affiliation(s)
- Vinh X. Truong
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia
| |
Collapse
|
43
|
Ludwanowski S, Hoenders D, Kalayci K, Frisch H, Barner-Kowollik C, Walther A. Modular functionalization and hydrogel formation via red-shifted and self-reporting [2+2] cycloadditions. Chem Commun (Camb) 2021; 57:805-808. [DOI: 10.1039/d0cc07429b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a modular photodynamic covalent crosslinker, named qStyPy, with an increased water-solubility that undergoes [2+2] cycloadditions upon irradiation with 470 nm and directly self-reports on its cycloadduct formation.
Collapse
Affiliation(s)
- Simon Ludwanowski
- Institute for Macromolecular Chemistry
- University of Freiburg
- Stefan-Meier-Straße 31
- 79104 Freiburg
- Germany
| | - Daniel Hoenders
- Institute for Macromolecular Chemistry
- University of Freiburg
- Stefan-Meier-Straße 31
- 79104 Freiburg
- Germany
| | - Kubra Kalayci
- Centre for Materials Science
- Queensland University of Technology (QUT), 2 George Street
- Brisbane
- Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street
| | - Hendrik Frisch
- Centre for Materials Science
- Queensland University of Technology (QUT), 2 George Street
- Brisbane
- Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street
| | - Christopher Barner-Kowollik
- Centre for Materials Science
- Queensland University of Technology (QUT), 2 George Street
- Brisbane
- Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street
| | - Andreas Walther
- Institute for Macromolecular Chemistry
- University of Freiburg
- Stefan-Meier-Straße 31
- 79104 Freiburg
- Germany
| |
Collapse
|
44
|
Irshadeen IM, De Bruycker K, Micallef AS, Walden SL, Frisch H, Barner-Kowollik C. Green light LED activated ligation of a scalable, versatile chalcone chromophore. Polym Chem 2021. [DOI: 10.1039/d1py00533b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we present a photoreactive chalcone moiety that can be synthesized at a scale of several grams with ease, and can efficiently undergo a [2 + 2] photocycloaddition with light close to 500 nm as determined by an action plot.
Collapse
Affiliation(s)
- Ishrath Mohamed Irshadeen
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Kevin De Bruycker
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Aaron S. Micallef
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Sarah L. Walden
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
45
|
Michalek L, Krappitz T, Mundsinger K, Walden SL, Barner L, Barner-Kowollik C. Mapping Photochemical Reactivity Profiles on Surfaces. J Am Chem Soc 2020; 142:21651-21655. [PMID: 33337866 DOI: 10.1021/jacs.0c11485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, we introduce a comprehensive methodology to map the reactivity of photochemical systems on surfaces. The reactivity of photoreactive groups in solution often departs from their corresponding solution absorption spectra. On surfaces, the relationship between the surface absorption spectra and reactivity remains unexplored. Thus, herein, the reactivity of an o-methylbenzaldehyde and a tetrazole, as ligation partners for maleimide functionalized polymers, was investigated when the reactive moieties are tethered to a surface. The ligation reaction of tetrazole functionalized surfaces was found to proceed rapidly leading to high grafting densities, while o-methylbenzaldehyde functionalized substrates required longer irradiation times and resulted in lower surface coverage at the same wavelength (330 nm). Critically, wavelength resolved reactivity profiles were found to closely match the surface absorption spectra, contrary to previously reported red shifts in solution for the same chromophores.
Collapse
Affiliation(s)
- Lukas Michalek
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Tim Krappitz
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Kai Mundsinger
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Sarah L Walden
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Leonie Barner
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| |
Collapse
|