1
|
Ning A, Li J, Du L, Yang X, Liu J, Yang Z, Zhong J, Saiz-Lopez A, Liu L, Francisco JS, Zhang X. Heterogenous Chemistry of I 2O 3 as a Critical Step in Iodine Cycling. J Am Chem Soc 2024. [PMID: 39546803 DOI: 10.1021/jacs.4c13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Global iodine emissions have been increasing rapidly in recent decades, further influencing the Earth's climate and human health. However, our incomplete understanding of the iodine chemical cycle, especially the fate of higher iodine oxides, introduces substantial uncertainties into atmospheric modeling. I2O3 was previously deemed a "dead end" in iodine chemistry; however, we provide atomic-level evidence that I2O3 can undergo rapid air-water or air-ice interfacial reactions within several picoseconds; these reactions are facilitated by prevalent chemicals on seawater such as amines and halide ions, to produce photolabile reactive iodine species such as HOI and IX (X = I, Br, and Cl). The heterogeneous chemistry of I2O3 leads to the rapid formation of iodate ions (IO3-), which is the predominant soluble iodine and its concentration cannot be well explained by current chemistry. These new loss pathways for atmospheric I2O3 can further explain its absence in field observations and its presence in laboratory experiments; furthermore, these pathways represent a heterogeneous recycling mechanism that can activate the release of reactive iodine from oceans, polar ice/snowpack, or aerosols. Rapid reactive adsorption of I2O3 can also promote the growth of marine aerosols. These findings provide novel insights into iodine geochemical cycling.
Collapse
Affiliation(s)
- An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lin Du
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaohua Yang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhi Yang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, 119, 28006 Madrid, Spain
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Fernandez RP, Berná L, Tomazzeli OG, Mahajan AS, Li Q, Kinnison DE, Wang S, Lamarque JF, Tilmes S, Skov H, Cuevas CA, Saiz-Lopez A. Arctic halogens reduce ozone in the northern mid-latitudes. Proc Natl Acad Sci U S A 2024; 121:e2401975121. [PMID: 39284062 PMCID: PMC11441494 DOI: 10.1073/pnas.2401975121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/08/2024] [Indexed: 10/02/2024] Open
Abstract
While the dominant role of halogens in Arctic ozone loss during spring has been widely studied in the last decades, the impact of sea-ice halogens on surface ozone abundance over the northern hemisphere (NH) mid-latitudes remains unquantified. Here, we use a state-of-the-art global chemistry-climate model including polar halogens (Cl, Br, and I), which reproduces Arctic ozone seasonality, to show that Arctic sea-ice halogens reduce surface ozone in the NH mid-latitudes (47°N to 60°N) by ~11% during spring. This background ozone reduction follows the southward export of ozone-poor and halogen-rich air masses from the Arctic through polar front intrusions toward lower latitudes, reducing the springtime tropospheric ozone column within the NH mid-latitudes by ~4%. Our results also show that the present-day influence of Arctic halogens on surface ozone destruction is comparatively smaller than in preindustrial times driven by changes in the chemical interplay between anthropogenic pollution and natural halogens. We conclude that the impact of Arctic sea-ice halogens on NH mid-latitude ozone abundance should be incorporated into global models to improve the representation of ozone seasonality.
Collapse
Affiliation(s)
- Rafael P Fernandez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid 28006, Spain
- Institute for Interdisciplinary Science, Argentine National Research Council, Mendoza 5501, Argentina
- School of Natural Sciences, National University of Cuyo, Mendoza 5501, Argentina
| | - Lucas Berná
- Institute for Interdisciplinary Science, Argentine National Research Council, Mendoza 5501, Argentina
- Atmospheric and Environmental Studies Group, National Technological University, Mendoza 5501, Argentina
| | - Orlando G Tomazzeli
- Institute for Interdisciplinary Science, Argentine National Research Council, Mendoza 5501, Argentina
- School of Natural Sciences, National University of Cuyo, Mendoza 5501, Argentina
| | - Anoop S Mahajan
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune 411008, India
| | - Qinyi Li
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid 28006, Spain
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Douglas E Kinnison
- Atmospheric Chemistry, Observations & Modelling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301
| | - Siyuan Wang
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80305
- National Oceanic and Atmospheric Administration, Chemical Sciences Laboratory, Boulder, CO 80305
| | - Jean-François Lamarque
- Atmospheric Chemistry, Observations & Modelling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301
| | - Simone Tilmes
- Atmospheric Chemistry, Observations & Modelling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301
| | - Henrik Skov
- Department of Environmental Science, iClimate, Aarhus University, Roskilde 4000, Denmark
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid 28006, Spain
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid 28006, Spain
| |
Collapse
|
3
|
Ning A, Shen J, Zhao B, Wang S, Cai R, Jiang J, Yan C, Fu X, Zhang Y, Li J, Ouyang D, Sun Y, Saiz-Lopez A, Francisco JS, Zhang X. Overlooked significance of iodic acid in new particle formation in the continental atmosphere. Proc Natl Acad Sci U S A 2024; 121:e2404595121. [PMID: 39047040 PMCID: PMC11295062 DOI: 10.1073/pnas.2404595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
New particle formation (NPF) substantially affects the global radiation balance and climate. Iodic acid (IA) is a key marine NPF driver that recently has also been detected inland. However, its impact on continental particle nucleation remains unclear. Here, we provide molecular-level evidence that IA greatly facilitates clustering of two typical land-based nucleating precursors: dimethylamine (DMA) and sulfuric acid (SA), thereby enhancing particle nucleation. Incorporating this mechanism into an atmospheric chemical transport model, we show that IA-induced enhancement could realize an increase of over 20% in the SA-DMA nucleation rate in iodine-rich regions of China. With declining anthropogenic pollution driven by carbon neutrality and clean air policies in China, IA could enhance nucleation rates by 1.5 to 50 times by 2060. Our results demonstrate the overlooked key role of IA in continental NPF nucleation and highlight the necessity for considering synergistic SA-IA-DMA nucleation in atmospheric modeling for correct representation of the climatic impacts of aerosols.
Collapse
Affiliation(s)
- An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Jiewen Shen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Bin Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Runlong Cai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Chao Yan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Joint International Research Laboratory of Atmospheric and Earth System Science, School of Atmospheric Sciences, Nanjing University, Nanjing210023, China
| | - Xiao Fu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, China
| | - Yunhong Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Daiwei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Yisheng Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid28006, Spain
| | - Joseph S. Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA19104-6316
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6316
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
4
|
Engsvang M, Wu H, Elm J. Iodine Clusters in the Atmosphere I: Computational Benchmark and Dimer Formation of Oxyacids and Oxides. ACS OMEGA 2024; 9:31521-31532. [PMID: 39072118 PMCID: PMC11270685 DOI: 10.1021/acsomega.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The contribution of iodine-containing compounds to atmospheric new particle formation is still not fully understood, but iodic acid and iodous acid are thought to be significant contributors. While several quantum chemical studies have been carried out on clusters containing iodine, there is no comprehensive benchmark study quantifying the accuracy of the applied methods. Here, we present the first study in a series that investigate the role of iodine species in atmospheric cluster formation. In this work, we have studied the iodic acid, iodous acid, iodine tetroxide, and iodine pentoxide monomers and their dimers formed with common atmospheric precursors. We have tested the accuracy of commonly applied methods for calculating the geometry of the monomers, thermal corrections of monomers and dimers, the contribution of spin-orbit coupling to monomers and dimers, and finally, the accuracy of the electronic energy correction calculated at different levels of theory. We find that optimizing the structures either at the ωB97X-D3BJ/aug-cc-pVTZ-PP or the M06-2X/aug-cc-pVTZ-PP level achieves the best thermal contribution to the binding free energy. The electronic energy correction can then be calculated at the ZORA-DLPNO-CCSD(T0) level with the SARC-ZORA-TZVPP basis for iodine and ma-ZORA-def2-TZVPP for non-iodine atoms. We applied this methodology to calculate the binding free energies of iodine-containing dimer clusters, where we confirm the qualitative trends observed in previous studies. However, we identify that previous studies overestimate the stability of the clusters by several kcal/mol due to the neglect of relativistic effects. This means that their contributions to the currently studied nucleation pathways of new particle formation are likely overestimated.
Collapse
Affiliation(s)
- Morten Engsvang
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Haide Wu
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
de Jonge RW, Xavier C, Olenius T, Elm J, Svenhag C, Hyttinen N, Nieradzik L, Sarnela N, Kristensson A, Petäjä T, Ehn M, Roldin P. Natural Marine Precursors Boost Continental New Particle Formation and Production of Cloud Condensation Nuclei. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10956-10968. [PMID: 38868859 PMCID: PMC11210206 DOI: 10.1021/acs.est.4c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Marine dimethyl sulfide (DMS) emissions are the dominant source of natural sulfur in the atmosphere. DMS oxidizes to produce low-volatility acids that potentially nucleate to form particles that may grow into climatically important cloud condensation nuclei (CCN). In this work, we utilize the chemistry transport model ADCHEM to demonstrate that DMS emissions are likely to contribute to the majority of CCN during the biological active period (May-August) at three different forest stations in the Nordic countries. DMS increases CCN concentrations by forming nucleation and Aitken mode particles over the ocean and land, which eventually grow into the accumulation mode by condensation of low-volatility organic compounds from continental vegetation. Our findings provide a new understanding of the exchange of marine precursors between the ocean and land, highlighting their influence as one of the dominant sources of CCN particles over the boreal forest.
Collapse
Affiliation(s)
| | - Carlton Xavier
- Department
of Physics, Lund University, Professorsgatan 1, Lund SE-22363, Sweden
- Swedish
Meteorological and Hydrological Institute (SMHI), Norrköping SE-60176, Sweden
| | - Tinja Olenius
- Swedish
Meteorological and Hydrological Institute (SMHI), Norrköping SE-60176, Sweden
| | - Jonas Elm
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus DK-8000, Denmark
| | - Carl Svenhag
- Department
of Physics, Lund University, Professorsgatan 1, Lund SE-22363, Sweden
| | - Noora Hyttinen
- Finnish
Meteorological Institute, Kuopio FI-70211, Finland
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Lars Nieradzik
- Department
of Physical Geography and Ecosystem Science, Lund University, Lund SE-22362, Sweden
| | - Nina Sarnela
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Adam Kristensson
- Department
of Physics, Lund University, Professorsgatan 1, Lund SE-22363, Sweden
| | - Tuukka Petäjä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
- Joint
International Research Laboratory of Atmospheric and Earth System
Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing CN-210023, China
| | - Mikael Ehn
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Pontus Roldin
- Department
of Physics, Lund University, Professorsgatan 1, Lund SE-22363, Sweden
- Swedish
Environmental Research Institute IVL, Malmö SE-21119, Sweden
| |
Collapse
|
6
|
Frederiks NC, Johnson CJ. Photochemical Mechanisms in Atmospherically Relevant Iodine Oxide Clusters. J Phys Chem Lett 2024; 15:6306-6314. [PMID: 38856106 DOI: 10.1021/acs.jpclett.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Atmospheric new particle formation events can be driven by iodine oxides or oxoacids via both neutral and ionic mechanisms. Photolysis of new particles likely plays a significant role in their growth mechanisms, but their spectra and photolysis mechanisms remain difficult to characterize. We recorded ultraviolet (UV) photodissociation spectra of (I2O5)0-3(IO3-) clusters, observing loss of an O atom, I2O4, and (I2O5)1,2 in the atmospherically relevant range of 300-340 nm. With increasing cluster size, the intensity of absorption red shifts and generally increases, suggesting particles photolyze more frequently as they grow. Estimates of the rates indicate that even relatively small clusters are likely to undergo photolysis under high-UV conditions. Vibrational spectra identify the covalent moiety I3O8- as the likely chromophore, not IO3-. The I2O5 loss pathway competes with particle growth, while the slower O loss pathway likely produces 3O + 3(cluster) products that could drive subsequent intraparticle chemistry, particularly with co-adsorbed organic or amine species.
Collapse
Affiliation(s)
- Nicoline C Frederiks
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
7
|
Vidović K, Hočevar S, Grgić I, Metarapi D, Dominović I, Mifka B, Gregorič A, Alfoldy B, Ciglenečki I. Do bromine and surface-active substances influence the coastal atmospheric particle growth? Heliyon 2024; 10:e31632. [PMID: 38828296 PMCID: PMC11140702 DOI: 10.1016/j.heliyon.2024.e31632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
New particle formation (NPF) is considered a major source of aerosol particles and cloud condensation nuclei (CCN); however, our understanding of NPF and the subsequent particle growth mechanisms in coastal areas remains limited. This study provides evidence of frequent NPF events followed by particle growth in the middle Adriatic Sea during the summer months at the coastal station of Rogoznica in Croatia. To our knowledge, this is the first study to report such events in this region. Our research aims to improve the understanding of NPF by investigating particle growth through detailed physicochemical characterization and event classification. We used a combination of online measurements and offline particle collection, followed by a thorough chemical analysis. Our results suggest the role of bromine in the particle growth process and provide evidence for its involvement in combination with organic compounds. In addition, we demonstrated the significant influence of surface-active substances (SAS) on particle growth. NPF and particle growth events have been observed in air masses originating from the Adriatic Sea, which can serve as an important source of volatile organic compounds (VOC). Our study shows an intricate interplay between bromine, organic carbon (OC), and SAS in atmospheric particle growth, contributing to a better understanding of coastal NPF processes. In this context, we also introduced a new approach using the semi-empirical 1st derivative method to determine the growth rate for each time point that is not sensitive to the nonlinear behavior of the particle growth over time. We observed that during NPF and particle growth event days, the OC concentration measured in the ultrafine mode particle fraction was higher compared to non-event days. Moreover, in contrast to non-event days, bromine compounds were detected in the ultrafine mode atmospheric particle fraction on nearly all NPF and particle growth event days. Regarding sulfuric acid, the measured sulfate concentration in the ultrafine mode atmospheric particle fraction on both NPF event and non-event days showed no significant differences. This suggests that sulfuric acid may not be the primary factor influencing the appearance of NPF and the particle growth process in the coastal region of Rogoznica.
Collapse
Affiliation(s)
- Kristijan Vidović
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Physical Oceanography Chemistry of Aquatic Systems, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Samo Hočevar
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Irena Grgić
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Dino Metarapi
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Iva Dominović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Physical Oceanography Chemistry of Aquatic Systems, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Boris Mifka
- Faculty of Physics University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Asta Gregorič
- Aerosol d.o.o., Kamniška 39A, 1000, Ljubljana, Slovenia
- University of Nova Gorica, Center for Atmospheric Research, Vipavska 11c, 5270 Ajdovščina, Slovenia
| | | | - Irena Ciglenečki
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Physical Oceanography Chemistry of Aquatic Systems, Bijenička cesta 54, 10000, Zagreb, Croatia
| |
Collapse
|
8
|
Prophet AM, Polley K, Van Berkel GJ, Limmer DT, Wilson KR. Iodide oxidation by ozone at the surface of aqueous microdroplets. Chem Sci 2024; 15:736-756. [PMID: 38179528 PMCID: PMC10762724 DOI: 10.1039/d3sc04254e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
The oxidation of iodide by ozone occurs at the sea-surface and within sea spray aerosol, influencing the overall ozone budget in the marine boundary layer and leading to the emission of reactive halogen gases. A detailed account of the surface mechanism has proven elusive, however, due to the difficulty in quantifying multiphase kinetics. To obtain a clearer understanding of this reaction mechanism at the air-water interface, we report pH-dependent oxidation kinetics of I- in single levitated microdroplets as a function of [O3] using a quadrupole electrodynamic trap and an open port sampling interface for mass spectrometry. A kinetic model, constrained by molecular simulations of O3 dynamics at the air-water interface, is used to understand the coupled diffusive, reactive, and evaporative pathways at the microdroplet surface, which exhibit a strong dependence on bulk solution pH. Under acidic conditions, the surface reaction is limited by O3 diffusion in the gas phase, whereas under basic conditions the reaction becomes rate limited on the surface. The pH dependence also suggests the existence of a reactive intermediate IOOO- as has previously been observed in the Br- + O3 reaction. Expressions for steady-state surface concentrations of reactants are derived and utilized to directly compute uptake coefficients for this system, allowing for an exploration of uptake dependence on reactant concentration. In the present experiments, reactive uptake coefficients of O3 scale weakly with bulk solution pH, increasing from 4 × 10-4 to 2 × 10-3 with decreasing solution pH from pH 13 to pH 3.
Collapse
Affiliation(s)
- Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Kritanjan Polley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | | | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
- Kavli Energy NanoScience Institute Berkeley California 94720 USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
9
|
Kolesnikov A, Krishnamoorthy A, Nomura KI, Wu Z, Abernathy DL, Huq A, Granroth GE, Christe KO, Haiges R, Kalia RK, Nakano A, Vashishta P. Inelastic Neutron Scattering Study of Phonon Density of States of Iodine Oxides and First-Principles Calculations. J Phys Chem Lett 2023; 14:10080-10087. [PMID: 37917420 PMCID: PMC10641886 DOI: 10.1021/acs.jpclett.3c02357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Iodine oxides I2Oy (y = 4, 5, 6) crystallize into atypical structures that fall between molecular- and framework-base types and exhibit high reactivity in an ambient environment, a property highly desired in the so-called "agent defeat materials". Inelastic neutron scattering experiments were performed to determine the phonon density of states of the newly synthesized I2O5 and I2O6 samples. First-principles calculations were carried out for I2O4, I2O5, and I2O6 to predict their thermodynamic properties and phonon density of states. Comparison of the INS data with the Raman and infrared measurements as well as the first-principles calculations sheds light on their distinctive, anisotropic thermomechanical properties.
Collapse
Affiliation(s)
- Alexander
I. Kolesnikov
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831-6473, United States
| | - Aravind Krishnamoorthy
- J.
Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ken-ichi Nomura
- Collaboratory
for Advanced Computing and Simulations, Department of Chemical Engineering
& Materials Science, Department of Physics & Astronomy, and
Department of Computer Science, University
of Southern California, Los Angeles, California 90089-0242, United States
| | - Zhongqing Wu
- School
of Earth and Space Sciences, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Douglas L. Abernathy
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831-6473, United States
| | - Ashfia Huq
- Sandia
National Laboratories, Livermore, California 94551, United States
| | - Garrett E. Granroth
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831-6473, United States
| | - Karl O. Christe
- Loker Research
Institute and Department of Chemistry, University
of Southern California, Los Angeles, California 90089-1661, United States
| | - Ralf Haiges
- Loker Research
Institute and Department of Chemistry, University
of Southern California, Los Angeles, California 90089-1661, United States
| | - Rajiv K. Kalia
- Collaboratory
for Advanced Computing and Simulations, Department of Chemical Engineering
& Materials Science, Department of Physics & Astronomy, and
Department of Computer Science, University
of Southern California, Los Angeles, California 90089-0242, United States
| | - Aiichiro Nakano
- Collaboratory
for Advanced Computing and Simulations, Department of Chemical Engineering
& Materials Science, Department of Physics & Astronomy, and
Department of Computer Science, University
of Southern California, Los Angeles, California 90089-0242, United States
| | - Priya Vashishta
- Collaboratory
for Advanced Computing and Simulations, Department of Chemical Engineering
& Materials Science, Department of Physics & Astronomy, and
Department of Computer Science, University
of Southern California, Los Angeles, California 90089-0242, United States
| |
Collapse
|
10
|
Wu N, Ning A, Liu L, Zu H, Liang D, Zhang X. Methanesulfonic acid and iodous acid nucleation: a novel mechanism for marine aerosols. Phys Chem Chem Phys 2023. [PMID: 37323049 DOI: 10.1039/d3cp01198d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
By seeding clouds, new particle formation (NPF) has a substantial impact on radiation balance, bio-geochemical cycles and global climate. Over oceans, both methanesulfonic acid (CH3S(O)2OH, MSA) and iodous acid (HIO2) have been reported to be closely associated with NPF events; however, much less is known about whether they can jointly nucleate to form nanoclusters. Hence, quantum chemical calculations and Atmospheric Cluster Dynamics Code (ACDC) simulations were performed to investigate the novel mechanism of MSA-HIO2 binary nucleation. The results indicate that MSA and HIO2 can form stable clusters via multiple interactions including hydrogen bonds, halogen bonds, and electrostatic forces between ion pairs after proton transfer, which are more diverse than those in MSA-iodic acid (HIO3) and MSA-dimethylamine (DMA) clusters. Interestingly, HIO2 can be protonated by MSA exhibiting base-like behavior, but it differs from base nucleation precursors by self-nucleation rather than solely binding to MSA. Due to the greater stability of MSA-HIO2 clusters, the formation rate of MSA-HIO2 clusters can be even higher than that of MSA-DMA clusters, suggesting that MSA-HIO2 nucleation is a non-negligible source of marine NPF. This work proposes a novel mechanism of MSA-HIO2 binary nucleation for marine aerosols and provides deeper insights into the distinctive nucleation characteristics of HIO2, which can help in constructing a more comprehensive sulfur- and iodine-bearing nucleation model for marine NPF.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Haotian Zu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Danli Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
11
|
Saiz-Lopez A, Fernandez RP, Li Q, Cuevas CA, Fu X, Kinnison DE, Tilmes S, Mahajan AS, Gómez Martín JC, Iglesias-Suarez F, Hossaini R, Plane JMC, Myhre G, Lamarque JF. Natural short-lived halogens exert an indirect cooling effect on climate. Nature 2023; 618:967-973. [PMID: 37380694 PMCID: PMC10307623 DOI: 10.1038/s41586-023-06119-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/21/2023] [Indexed: 06/30/2023]
Abstract
Observational evidence shows the ubiquitous presence of ocean-emitted short-lived halogens in the global atmosphere1-3. Natural emissions of these chemical compounds have been anthropogenically amplified since pre-industrial times4-6, while, in addition, anthropogenic short-lived halocarbons are currently being emitted to the atmosphere7,8. Despite their widespread distribution in the atmosphere, the combined impact of these species on Earth's radiative balance remains unknown. Here we show that short-lived halogens exert a substantial indirect cooling effect at present (-0.13 ± 0.03 watts per square metre) that arises from halogen-mediated radiative perturbations of ozone (-0.24 ± 0.02 watts per square metre), compensated by those from methane (+0.09 ± 0.01 watts per square metre), aerosols (+0.03 ± 0.01 watts per square metre) and stratospheric water vapour (+0.011 ± 0.001 watts per square metre). Importantly, this substantial cooling effect has increased since 1750 by -0.05 ± 0.03 watts per square metre (61 per cent), driven by the anthropogenic amplification of natural halogen emissions, and is projected to change further (18-31 per cent by 2100) depending on climate warming projections and socioeconomic development. We conclude that the indirect radiative effect due to short-lived halogens should now be incorporated into climate models to provide a more realistic natural baseline of Earth's climate system.
Collapse
Affiliation(s)
- Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain.
| | - Rafael P Fernandez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
- Institute for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza, Argentina
| | - Qinyi Li
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
| | - Xiao Fu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Douglas E Kinnison
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Simone Tilmes
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Anoop S Mahajan
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | | | - Fernando Iglesias-Suarez
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| | - Ryan Hossaini
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Gunnar Myhre
- CICERO Center for International Climate Research, Oslo, Norway
| | - Jean-François Lamarque
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| |
Collapse
|
12
|
Ning A, Zhong J, Li L, Li H, Liu J, Liu L, Liang Y, Li J, Zhang X, Francisco JS, He H. Chemical Implications of Rapid Reactive Absorption of I 2O 4 at the Air-Water Interface. J Am Chem Soc 2023; 145:10817-10825. [PMID: 37133920 DOI: 10.1021/jacs.3c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Marine aerosol formation involving iodine-bearing species significantly affects the global climate and radiation balance. Although recent studies outline the critical role of iodine oxide in nucleation, much less is known about its contribution to aerosol growth. This paper presents molecular-level evidence that the air-water interfacial reaction of I2O4 mediated by potent atmospheric chemicals, such as sulfuric acid (H2SO4) and amines [e.g., dimethylamine (DMA) and trimethylamine (TMA)], can occur rapidly on a picosecond time scale by Born-Oppenheimer molecular dynamics simulations. The interfacial water bridges the reactants while facilitating the DMA-mediated proton transfer and stabilizing the ionic products of H2SO4-involved reactions. The identified heterogeneous mechanisms exhibit the dual contribution to aerosol growth: (i) the ionic products (e.g., IO3-, DMAH+, TMAH+, and HSO4-) formed by reactive adsorption possess less volatility than the reactants and (ii) these ions, such as alkylammonium salts (e.g., DMAH+), are also highly hydrophilic, further facilitating hygroscopic growth. This investigation enhances not only our understanding of heterogeneous iodine chemistry but also the impact of iodine oxide on aerosol growth. Also, these findings can bridge the gap between the abundance of I2O4 in the laboratory and its absence in field-collected aerosols and provide an explanation for the missing source of IO3-, HSO4-, and DMAH+ in marine aerosols.
Collapse
Affiliation(s)
- An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Liwen Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Trace Gas Pollutants Led to New Particle Formation and a Strong Convective System Over Telangana, India. NATIONAL ACADEMY SCIENCE LETTERS 2023. [DOI: 10.1007/s40009-023-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
14
|
Mondal K, Rajakumar B. Kinetics of IO radicals with C1, C2 aliphatic alcohols in tropospherically relevant conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22590-22605. [PMID: 36303003 DOI: 10.1007/s11356-022-23494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Kinetics of the reaction of IO radicals with methanol (MeOH) and ethanol (EtOH) were experimentally studied in the gas phase using pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS). IO radicals were produced in situ at the reaction zone by photolysing a mixture of precursors (CH3I + O3 + N2) at 248 nm and thereby electronically excited at 445.04 nm. The rate coefficients for the reactions of (IO + MeOH) and (IO + EtOH) were measured at a total pressure of 60 Torr/N2 in the range of 258-360 K. At room temperature, the experimental rate coefficients of the title reactions were measured to be [Formula: see text] and [Formula: see text]. Dependencies of the kinetics with photolysis laser fluence and experimental pressures were verified. Effects of pressure over the kinetic behaviour of the studied systems were observed to be insignificant within the statistical uncertainties when studied in the range of ~ 30-150 Torr/N2, whereas a minor and linear fluence dependency was observed within the studied limit. From the measured kinetic parameters, the atmospheric lifetimes of MeOH and EtOH were calculated in the tropospherically relevant conditions regarding their reactions with important atmospheric oxidants like Cl atom, OH and IO radicals. To complement experimental results, kinetics and thermochemistry for the title reactions were investigated theoretically via canonical variational transition state (CVT) theory in combination with small curvature tunnelling (SCT) corrections with a dual-level Interpolated Single Point Energy (ISPE) approach at the CCSD(T)/def2-QZVPP//M06-2X/def2-TZVPP level of theory/basis set in the temperatures between 200 and 400 K. Good degree of agreement was encountered between experimentally measured and theoretically calculated rate coefficients. This article also discusses the thermochemical parameters and kinetic branching ratios (BRs) of all the pathways involved in the title reactions.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
15
|
Frederiks NC, Heaney DD, Kreinbihl JJ, Johnson CJ. The Competition between Hydrogen, Halogen, and Covalent Bonding in Atmospherically Relevant Ammonium Iodate Clusters. J Am Chem Soc 2023; 145:1165-1175. [PMID: 36595580 DOI: 10.1021/jacs.2c10841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Iodine-containing clusters are expected to be central to new particle formation (NPF) events in polar and midlatitude coastal regions. Iodine oxoacids and iodine oxides are observed in newly formed clusters, and in more polluted midlatitude settings, theoretical studies suggest ammonia may increase growth rates. Structural information was obtained via infrared (IR) spectroscopy and quantum chemical calculations for a series of clusters containing ammonia, iodic acid, and iodine pentoxide. Structures for five of the smallest cationic clusters present in the mass spectrum were identified, and four of the structures were found to preferentially form halogen and/or covalent bonds over hydrogen bonds. Ammonia is important in proton transfer from iodic acid components and also provides a scaffold to template the formation of a halogen and covalent bonded backbone. The calculations executed for the two largest clusters studied suggested the formation of a covalent I3O8- anion within the clusters.
Collapse
Affiliation(s)
- Nicoline C Frederiks
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - Danika D Heaney
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - John J Kreinbihl
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| |
Collapse
|
16
|
The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nat Chem 2023; 15:129-135. [PMID: 36376388 PMCID: PMC9836935 DOI: 10.1038/s41557-022-01067-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O3 surface concentrations. Although iodic acid (HIO3) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO3 via reactions (R1) IOIO + O3 → IOIO4 and (R2) IOIO4 + H2O → HIO3 + HOI + (1)O2. The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation.
Collapse
|
17
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
18
|
Zhang R, Xie HB, Ma F, Chen J, Iyer S, Simon M, Heinritzi M, Shen J, Tham YJ, Kurtén T, Worsnop DR, Kirkby J, Curtius J, Sipilä M, Kulmala M, He XC. Critical Role of Iodous Acid in Neutral Iodine Oxoacid Nucleation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14166-14177. [PMID: 36126141 PMCID: PMC9536010 DOI: 10.1021/acs.est.2c04328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleation of neutral iodine particles has recently been found to involve both iodic acid (HIO3) and iodous acid (HIO2). However, the precise role of HIO2 in iodine oxoacid nucleation remains unclear. Herein, we probe such a role by investigating the cluster formation mechanisms and kinetics of (HIO3)m(HIO2)n (m = 0-4, n = 0-4) clusters with quantum chemical calculations and atmospheric cluster dynamics modeling. When compared with HIO3, we find that HIO2 binds more strongly with HIO3 and also more strongly with HIO2. After accounting for ambient vapor concentrations, the fastest nucleation rate is predicted for mixed HIO3-HIO2 clusters rather than for pure HIO3 or HIO2 ones. Our calculations reveal that the strong binding results from HIO2 exhibiting a base behavior (accepting a proton from HIO3) and forming stronger halogen bonds. Moreover, the binding energies of (HIO3)m(HIO2)n clusters show a far more tolerant choice of growth paths when compared with the strict stoichiometry required for sulfuric acid-base nucleation. Our predicted cluster formation rates and dimer concentrations are acceptably consistent with those measured by the Cosmic Leaving Outdoor Droplets (CLOUD) experiment. This study suggests that HIO2 could facilitate the nucleation of other acids beyond HIO3 in regions where base vapors such as ammonia or amines are scarce.
Collapse
Affiliation(s)
- Rongjie Zhang
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- . Phone: +86-411-84707251
| | - Fangfang Ma
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Siddharth Iyer
- Aerosol
Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Mario Simon
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Martin Heinritzi
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Jiali Shen
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yee Jun Tham
- School
of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Douglas R. Worsnop
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Aerodyne
Research, Inc., Billerica, Massachusetts 01821, United States
| | - Jasper Kirkby
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
- CERN,
the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
| | - Joachim Curtius
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Mikko Sipilä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Kulmala
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Joint
International Research Laboratory of Atmospheric and Earth System
Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Xu-Cheng He
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
19
|
Abstract
The gas-phase formation of new particles less than 1 nm in size and their subsequent growth significantly alters the availability of cloud condensation nuclei (CCN, >30-50 nm), leading to impacts on cloud reflectance and the global radiative budget. However, this growth cannot be accounted for by condensation of typical species driving the initial nucleation. Here, we present evidence that nucleated iodine oxide clusters provide unique sites for the accelerated growth of organic vapors to overcome the coagulation sink. Heterogeneous reactions form low-volatility organic acids and alkylaminium salts in the particle phase, while further oligomerization of small α-dicarbonyls (e.g., glyoxal) drives the particle growth. This identified heterogeneous mechanism explains the occurrence of particle production events at organic vapor concentrations almost an order of magnitude lower than those required for growth via condensation alone. A notable fraction of iodine associated with these growing particles is recycled back into the gas phase, suggesting an effective transport mechanism for iodine to remote regions, acting as a "catalyst" for nucleation and subsequent new particle production in marine air.
Collapse
|
20
|
Guo J, Jiang Y, Hu Y, Jiang Z, Dong Y, Shi L. The Roles of DmsEFAB and MtrCAB in Extracellular Reduction of Iodate by Shewanella oneidensis MR-1 with Lactate as the Sole Electron Donor. Environ Microbiol 2022; 24:5039-5050. [PMID: 35837844 DOI: 10.1111/1462-2920.16130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
To investigate their roles in extracellular reduction of iodate (IO3 - ) with lactate as an electron donor, the gene clusters of dmsEFAB, mtrCAB, mtrDEF, and so4360-4357 in Shewanella oneidensis MR-1were systematically deleted. Deletions of dmsEFAB and/or mtrCAB gene clusters diminished the bacterial ability to reduce IO3 - . Furthermore, DmsEFAB and MtrCAB worked collaboratively to reduce IO3 - of which DmsEFAB played a more dominant role than MtrCAB. MtrCAB was involved in detoxifying the reaction intermediate hydrogen peroxide (H2 O2 ). The reaction intermediate hypoiodous acid (HIO) was also found to inhibit microbial IO3 - reduction. SO4360-4357 and MtrDEF, however, were not involved in IO3 - reduction. Collectively, these results suggest a novel mechanism of extracellular reduction of IO3 - at molecular level, in which DmsEFAB reduces IO3 - to HIO and H2 O2 . The latter is further reduced to H2 O by MtrCAB to facilitate the DmsEFAB-mediated IO3 - reduction. The extracellular electron transfer pathway of S. oneidensis MR-1is believed to mediate electron transfer from bacterial cytoplasmic membrane, across the cell envelope to the DmsEFAB and MtrCAB on the bacterial outer membrane.
Collapse
Affiliation(s)
- Jinzhi Guo
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Zhou Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China.,State Key Laboratory of Biogeology and Environmental Geology, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China.,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China.,State Key Laboratory of Biogeology and Environmental Geology, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China.,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China.,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| |
Collapse
|
21
|
Gómez Martín JC, Lewis TR, James AD, Saiz-Lopez A, Plane JMC. Insights into the Chemistry of Iodine New Particle Formation: The Role of Iodine Oxides and the Source of Iodic Acid. J Am Chem Soc 2022; 144:9240-9253. [PMID: 35604404 PMCID: PMC9164234 DOI: 10.1021/jacs.1c12957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Iodine chemistry
is an important driver of new particle formation
in the marine and polar boundary layers. There are, however, conflicting
views about how iodine gas-to-particle conversion proceeds. Laboratory
studies indicate that the photooxidation of iodine produces iodine
oxides (IxOy), which are well-known particle precursors. By contrast, nitrate
anion chemical ionization mass spectrometry (CIMS) observations in
field and environmental chamber studies have been interpreted as evidence
of a dominant role of iodic acid (HIO3) in iodine-driven
particle formation. Here, we report flow tube laboratory experiments
that solve these discrepancies by showing that both IxOy and HIO3 are involved in atmospheric new particle formation. I2Oy molecules (y = 2,
3, and 4) react with nitrate core ions to generate mass spectra similar
to those obtained by CIMS, including the iodate anion. Iodine pentoxide
(I2O5) produced by photolysis of higher-order
IxOy is hydrolyzed,
likely by the water dimer, to yield HIO3, which also contributes
to the iodate anion signal. We estimate that ∼50% of the iodate
anion signals observed by nitrate CIMS under atmospheric water vapor
concentrations originate from I2Oy. Under such conditions, iodine-containing clusters and particles
are formed by aggregation of I2Oy and HIO3, while under dry laboratory conditions,
particle formation is driven exclusively by I2Oy. An updated mechanism for iodine gas-to-particle
conversion is provided. Furthermore, we propose that a key iodine
reservoir species such as iodine nitrate, which we observe as a product
of the reaction between iodine oxides and the nitrate anion, can also
be detected by CIMS in the atmosphere.
Collapse
Affiliation(s)
| | - Thomas R Lewis
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, Madrid 28006, Spain.,School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | | | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, Madrid 28006, Spain
| | - John M C Plane
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
22
|
Marzouk S, Ajili Y, Ben El Hadj Rhouma M, Ben Said R, Hochlaf M. Theoretical treatment of IO-X (X = N 2, CO, CO 2, H 2O) complexes. Phys Chem Chem Phys 2022; 24:7203-7213. [PMID: 35266935 DOI: 10.1039/d1cp05536d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodine monoxide (IO) is an important component of the biogeochemical cycle of iodine. For instance, it is present in the troposphere, where it plays a crucial role in the physical chemical processes involving iodine containing compounds. Here, we present a theoretical study on a series of atmospherically relevant complexes of IO with N2, CO, CO2 and H2O, where their structural and spectroscopic properties and their interaction energies are computed. Calculations are carried out by means of ab initio post Hartree-Fock (RCCSD(T) and RMP2) methods and density functional theory DFT (PBE0 and M05-2X) based approaches with and without the inclusion of dispersion correction. After comparison to RCCSD(T), we highlight the good performance of M05-2X(+D3) DFT in describing the bonding between IO and X (X = N2, CO, CO2, H2O). Moreover, we found that the IO-X (X = N2, CO, CO2, H2O) complexes are formed by non-covalent interactions between the two monomers. In sum, we characterized two types of complexes: I-bonded and O-bonded, where the former is more stable. The atmospheric implications of the present findings are also discussed such as in the formation of the iodine oxide particles (IOPs).
Collapse
Affiliation(s)
- S Marzouk
- Laboratoire de Recherche d'Etude des Milieux Ionisés et Réactifs (EMIR), Institut Préparatoire aux Etudes d'Ingénieurs de Monastir, Université de Monastir, Tunisia.,Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes 77454, Champs sur Marne, France.
| | - Y Ajili
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Université de Tunis-El Manar, Tunis, Tunisia
| | - M Ben El Hadj Rhouma
- Laboratoire de Recherche d'Etude des Milieux Ionisés et Réactifs (EMIR), Institut Préparatoire aux Etudes d'Ingénieurs de Monastir, Université de Monastir, Tunisia
| | - R Ben Said
- Department of Chemistry, College of Science and Arts, Qassim University, ArRass, Saudi Arabia
| | - M Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes 77454, Champs sur Marne, France.
| |
Collapse
|
23
|
Gómez Martín JC, Saiz‐Lopez A, Cuevas CA, Baker AR, Fernández RP. On the Speciation of Iodine in Marine Aerosol. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2021JD036081. [PMID: 35865333 PMCID: PMC9286534 DOI: 10.1029/2021jd036081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 05/20/2023]
Abstract
We have compiled and analyzed a comprehensive data set of field observations of iodine speciation in marine aerosol. The soluble iodine content of fine aerosol (PM1) is dominated by soluble organic iodine (SOI; ∼50%) and iodide (∼30%), while the coarse fraction is dominated by iodate (∼50%), with nonnegligible amounts of iodide (∼20%). The SOI fraction shows an equatorial maximum and minima coinciding with the ocean "deserts," which suggests a link between soluble iodine speciation in aerosol and ocean productivity. Among the major aerosol ions, organic anions and non-sea-salt sulfate show positive correlations with SOI in PM1. Alkali cations are positively correlated to iodate and negatively correlated with SOI and iodide in coarse aerosol. These relationships suggest that under acidic conditions iodate is reduced to HOI, which reacts with organic matter to form SOI, a possible source of iodide. In less acidic sea-salt or dust-rich coarse aerosols, HOI oxidation to iodate and reaction with organic matter likely compete.
Collapse
Affiliation(s)
| | - Alfonso Saiz‐Lopez
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSICMadridSpain
| | - Carlos A. Cuevas
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSICMadridSpain
| | - Alex R. Baker
- Centre for Ocean and Atmospheric ScienceSchool of Environmental SciencesUniversity of East AngliaNorwichUK
| | - Rafael P. Fernández
- Institute for Interdisciplinary ScienceNational Research Council (ICB‐CONICET)FCEN‐UNCuyoMendozaArgentina
| |
Collapse
|
24
|
Corella JP, Maffezzoli N, Spolaor A, Vallelonga P, Cuevas CA, Scoto F, Müller J, Vinther B, Kjær HA, Cozzi G, Edwards R, Barbante C, Saiz-Lopez A. Climate changes modulated the history of Arctic iodine during the Last Glacial Cycle. Nat Commun 2022; 13:88. [PMID: 35013214 PMCID: PMC8748508 DOI: 10.1038/s41467-021-27642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Iodine has a significant impact on promoting the formation of new ultrafine aerosol particles and accelerating tropospheric ozone loss, thereby affecting radiative forcing and climate. Therefore, understanding the long-term natural evolution of iodine, and its coupling with climate variability, is key to adequately assess its effect on climate on centennial to millennial timescales. Here, using two Greenland ice cores (NEEM and RECAP), we report the Arctic iodine variability during the last 127,000 years. We find the highest and lowest iodine levels recorded during interglacial and glacial periods, respectively, modulated by ocean bioproductivity and sea ice dynamics. Our sub-decadal resolution measurements reveal that high frequency iodine emission variability occurred in pace with Dansgaard/Oeschger events, highlighting the rapid Arctic ocean-ice-atmosphere iodine exchange response to abrupt climate changes. Finally, we discuss if iodine levels during past warmer-than-present climate phases can serve as analogues of future scenarios under an expected ice-free Arctic Ocean. We argue that the combination of natural biogenic ocean iodine release (boosted by ongoing Arctic warming and sea ice retreat) and anthropogenic ozone-induced iodine emissions may lead to a near future scenario with the highest iodine levels of the last 127,000 years.
Collapse
Affiliation(s)
- Juan Pablo Corella
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain.
- CIEMAT, Environmental Department, Av. Complutense 40, 28040, Madrid, Spain.
| | - Niccolo Maffezzoli
- Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen, Tagensvej 16, Copenhagen N, 2200, Denmark
- Institute of Polar Sciences, CNR- ISP, Via Torino 155, 30172, Venice, Italy
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172, Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences, CNR- ISP, Via Torino 155, 30172, Venice, Italy
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172, Venice, Italy
| | - Paul Vallelonga
- Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen, Tagensvej 16, Copenhagen N, 2200, Denmark
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Federico Scoto
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172, Venice, Italy
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, S.P Lecce-Monteroni km1.2, 73100, Lecce, Italy
| | - Juliane Müller
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Alten Hafen 26, 27568, Bremerhaven, Germany
- MARUM Research Faculty, University of Bremen, Leobener Strasse 8, 28359, Bremen, Germany
| | - Bo Vinther
- Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen, Tagensvej 16, Copenhagen N, 2200, Denmark
| | - Helle A Kjær
- Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen, Tagensvej 16, Copenhagen N, 2200, Denmark
| | - Giulio Cozzi
- Institute of Polar Sciences, CNR- ISP, Via Torino 155, 30172, Venice, Italy
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172, Venice, Italy
| | - Ross Edwards
- Physics and Astronomy, Curtin University, Kent St, Bentley, WA, 6102, Australia
- Department of Civil and Environmental Engineering, UW-Madison, Madison, WI, 53706, USA
| | - Carlo Barbante
- Institute of Polar Sciences, CNR- ISP, Via Torino 155, 30172, Venice, Italy
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172, Venice, Italy
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
25
|
Abstract
Recycling of reactive iodine from heterogeneous processes on sea-salt aerosol was hypothesized over two decades ago to play an important role in the atmospheric cleansing capacity. However, the understanding of this mechanism has been limited to laboratory studies and has not been confirmed in the atmosphere until now. We present atmospheric measurement of gas-phase iodine interhalogen species and show that their production via heterogeneous processing on marine aerosols is remarkably fast. These observations reveal that the atmospheric recycling of atomic iodine through photolysis of iodine interhalogen species is more efficient than previously thought, which is ultimately expected to lead to higher ozone loss and faster new particle formation in the marine environment. Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.e., iodine monochloride [ICl] and iodine monobromide [IBr]) in a midlatitude coastal environment. Significant levels of ICl and IBr with mean daily maxima of 4.3 and 3.0 parts per trillion by volume (1-min average), respectively, have been observed throughout the campaign. We show that the heterogeneous reaction of HOI on marine aerosol and subsequent production of iodine interhalogens are much faster than previously thought. These results indicate that the fast formation of iodine interhalogens, together with their rapid photolysis, results in more efficient recycling of atomic iodine than currently considered in models. Photolysis of the observed ICl and IBr leads to a 32% increase in the daytime average of atomic iodine production rate, thereby enhancing the average daytime iodine-catalyzed ozone loss rate by 10 to 20%. Our findings provide direct field evidence that the autocatalytic mechanism of iodine release from marine aerosol is important in the atmosphere and can have significant impacts on atmospheric oxidation capacity.
Collapse
|
26
|
Carpenter LJ, Chance RJ, Sherwen T, Adams TJ, Ball SM, Evans MJ, Hepach H, Hollis LDJ, Hughes C, Jickells TD, Mahajan A, Stevens DP, Tinel L, Wadley MR. Marine iodine emissions in a changing world. Proc Math Phys Eng Sci 2021; 477:20200824. [PMID: 35153549 PMCID: PMC8300602 DOI: 10.1098/rspa.2020.0824] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/28/2021] [Indexed: 11/12/2022] Open
Abstract
Iodine is a critical trace element involved in many diverse and important processes in the Earth system. The importance of iodine for human health has been known for over a century, with low iodine in the diet being linked to goitre, cretinism and neonatal death. Research over the last few decades has shown that iodine has significant impacts on tropospheric photochemistry, ultimately impacting climate by reducing the radiative forcing of ozone (O3) and air quality by reducing extreme O3 concentrations in polluted regions. Iodine is naturally present in the ocean, predominantly as aqueous iodide and iodate. The rapid reaction of sea-surface iodide with O3 is believed to be the largest single source of gaseous iodine to the atmosphere. Due to increased anthropogenic O3, this release of iodine is believed to have increased dramatically over the twentieth century, by as much as a factor of 3. Uncertainties in the marine iodine distribution and global cycle are, however, major constraints in the effective prediction of how the emissions of iodine and its biogeochemical cycle may change in the future or have changed in the past. Here, we present a synthesis of recent results by our team and others which bring a fresh perspective to understanding the global iodine biogeochemical cycle. In particular, we suggest that future climate-induced oceanographic changes could result in a significant change in aqueous iodide concentrations in the surface ocean, with implications for atmospheric air quality and climate.
Collapse
Affiliation(s)
- Lucy J Carpenter
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK
| | - Rosie J Chance
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK
| | - Tomás Sherwen
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK.,National Centre for Atmospheric Science (NCAS), University of York, York YO10 5DD, UK
| | - Thomas J Adams
- School of Chemistry, University of Leicester, Leicester, UK
| | - Stephen M Ball
- School of Chemistry, University of Leicester, Leicester, UK
| | - Mat J Evans
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK.,National Centre for Atmospheric Science (NCAS), University of York, York YO10 5DD, UK
| | - Helmke Hepach
- Department of Environment and Geography, University of York, Wentworth Way, Heslington, York, UK
| | | | - Claire Hughes
- Department of Environment and Geography, University of York, Wentworth Way, Heslington, York, UK
| | - Timothy D Jickells
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Anoop Mahajan
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune 411008, India
| | - David P Stevens
- Centre for Ocean and Atmospheric Sciences, School of Mathematics, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Liselotte Tinel
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK
| | - Martin R Wadley
- Centre for Ocean and Atmospheric Sciences, School of Mathematics, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
27
|
He XC, Tham YJ, Dada L, Wang M, Finkenzeller H, Stolzenburg D, Iyer S, Simon M, Kürten A, Shen J, Rörup B, Rissanen M, Schobesberger S, Baalbaki R, Wang DS, Koenig TK, Jokinen T, Sarnela N, Beck LJ, Almeida J, Amanatidis S, Amorim A, Ataei F, Baccarini A, Bertozzi B, Bianchi F, Brilke S, Caudillo L, Chen D, Chiu R, Chu B, Dias A, Ding A, Dommen J, Duplissy J, El Haddad I, Gonzalez Carracedo L, Granzin M, Hansel A, Heinritzi M, Hofbauer V, Junninen H, Kangasluoma J, Kemppainen D, Kim C, Kong W, Krechmer JE, Kvashin A, Laitinen T, Lamkaddam H, Lee CP, Lehtipalo K, Leiminger M, Li Z, Makhmutov V, Manninen HE, Marie G, Marten R, Mathot S, Mauldin RL, Mentler B, Möhler O, Müller T, Nie W, Onnela A, Petäjä T, Pfeifer J, Philippov M, Ranjithkumar A, Saiz-Lopez A, Salma I, Scholz W, Schuchmann S, Schulze B, Steiner G, Stozhkov Y, Tauber C, Tomé A, Thakur RC, Väisänen O, Vazquez-Pufleau M, Wagner AC, Wang Y, Weber SK, Winkler PM, Wu Y, Xiao M, Yan C, Ye Q, Ylisirniö A, Zauner-Wieczorek M, Zha Q, Zhou P, Flagan RC, Curtius J, Baltensperger U, Kulmala M, Kerminen VM, Kurtén T, Donahue NM, Volkamer R, Kirkby J, Worsnop DR, Sipilä M. Role of iodine oxoacids in atmospheric aerosol nucleation. Science 2021; 371:589-595. [PMID: 33542130 DOI: 10.1126/science.abe0298] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/06/2021] [Indexed: 11/02/2022]
Abstract
Iodic acid (HIO3) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO3 particles are rapid, even exceeding sulfuric acid-ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO3 - and the sequential addition of HIO3 and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO2) followed by HIO3, showing that HIO2 plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO3, which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere.
Collapse
Affiliation(s)
- Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland.
| | - Yee Jun Tham
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Lubna Dada
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Mingyi Wang
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Henning Finkenzeller
- Department of Chemistry and Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Dominik Stolzenburg
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Siddharth Iyer
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33014 Tampere, Finland
| | - Mario Simon
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Andreas Kürten
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jiali Shen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Birte Rörup
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Matti Rissanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33014 Tampere, Finland
| | | | - Rima Baalbaki
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Dongyu S Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Theodore K Koenig
- Department of Chemistry and Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Tuija Jokinen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nina Sarnela
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Lisa J Beck
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - João Almeida
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
| | - Stavros Amanatidis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - António Amorim
- CENTRA and Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Farnoush Ataei
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany
| | - Andrea Baccarini
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Barbara Bertozzi
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Sophia Brilke
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| | - Lucía Caudillo
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Dexian Chen
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Randall Chiu
- Department of Chemistry and Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Biwu Chu
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - António Dias
- CENTRA and Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| | - Josef Dommen
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Jonathan Duplissy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | | | - Manuel Granzin
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Armin Hansel
- Institute of Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Ionicon Analytik Ges.m.b.H., 6020 Innsbruck, Austria
| | - Martin Heinritzi
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Victoria Hofbauer
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Heikki Junninen
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Deniz Kemppainen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Changhyuk Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- School of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Weimeng Kong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Aleksander Kvashin
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Totti Laitinen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Houssni Lamkaddam
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Chuan Ping Lee
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Katrianne Lehtipalo
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Finnish Meteorological Institute, 00560 Helsinki, Finland
| | - Markus Leiminger
- Institute of Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Ionicon Analytik Ges.m.b.H., 6020 Innsbruck, Austria
| | - Zijun Li
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Vladimir Makhmutov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Hanna E Manninen
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
| | - Guillaume Marie
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Ruby Marten
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Serge Mathot
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
| | - Roy L Mauldin
- Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Bernhard Mentler
- Institute of Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ottmar Möhler
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tatjana Müller
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| | - Antti Onnela
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Joschka Pfeifer
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
| | - Maxim Philippov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain
| | - Imre Salma
- Institute of Chemistry, Eötvös University, H-1117 Budapest, Hungary
| | - Wiebke Scholz
- Institute of Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Ionicon Analytik Ges.m.b.H., 6020 Innsbruck, Austria
| | - Simone Schuchmann
- Institute of Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Benjamin Schulze
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gerhard Steiner
- Institute of Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Yuri Stozhkov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - António Tomé
- Institute Infante Dom Luíz, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Roseline C Thakur
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Olli Väisänen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | | | - Andrea C Wagner
- Department of Chemistry and Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Yonghong Wang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Stefan K Weber
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
| | - Paul M Winkler
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| | - Yusheng Wu
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Mao Xiao
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Qing Ye
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Arttu Ylisirniö
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Marcel Zauner-Wieczorek
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Qiaozhi Zha
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Putian Zhou
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Richard C Flagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joachim Curtius
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Helsinki Institute of Physics, University of Helsinki, 00014 Helsinki, Finland
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rainer Volkamer
- Department of Chemistry and Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jasper Kirkby
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland.
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerodyne Research, Inc., Billerica, MA 01821, USA
| | - Mikko Sipilä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
28
|
Shi X, Qiu X, Chen Q, Chen S, Hu M, Rudich Y, Zhu T. Organic Iodine Compounds in Fine Particulate Matter from a Continental Urban Region: Insights into Secondary Formation in the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1508-1514. [PMID: 33443418 DOI: 10.1021/acs.est.0c06703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atmospheric iodine chemistry can significantly affect the atmospheric oxidation capacity in certain regions. In such processes, particle-phase organic iodine compounds (OICs) are key reservoir species in their loss processes. However, their presence and formation mechanism remain unclear, especially in continental regions. Using gas chromatography and time-of-flight mass spectrometry coupled with both electron capture negative ionization and electron impact sources, this study systematically identified unknown OICs in 2-year samples of ambient fine particulate matter (PM2.5) collected in Beijing, an inland city. We determined the molecular structure of 37 unknown OICs, among which six species were confirmed by reference standards. The higher concentrations for ∑37OICs (median: 280 pg m-3; range: 49.0-770 pg m-3) measured in the heating season indicate intensive coal combustion sources of atmospheric iodine. 1-Iodo-2-naphthol and 4-iodoresorcinol are the most abundant species mainly from primary combustion emission and secondary formation, respectively. The detection of 2- and 4-iodoresorcinols, but not of iodine-substituted catechol/hydroquinone or 5-iodoresorcinol, suggests that they are formed via the electrophilic substitution of resorcinol by hypoiodous acid, a product of the reaction of iodine with ozone. This study reports isomeric information on OICs in continental urban PM2.5 and provides valuable evidence on the formation mechanism of OICs in ambient particles.
Collapse
Affiliation(s)
- Xiaodi Shi
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Qi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Shiyi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Min Hu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|