1
|
Wang L, Hu R, Xu P, Gao P, Mo B, Dong L, Hu F. CD90's role in vascularization and healing of rib fractures: insights from Dll4/notch regulation. Inflamm Res 2024; 73:2263-2277. [PMID: 39455438 PMCID: PMC11632021 DOI: 10.1007/s00011-024-01962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Vascularization after rib fracture is a crucial physiological process that is essential for the repair and healing of the rib. Studies have shown that CD90 plays a critical role in regulating rib fracture healing, but the underlying mechanism of its role has not been fully elucidated. METHODS CD90 adenovirus knockout mice were used to construct a rib injury model. The bone healing was observed by micro-CT. CD31/EMCN immunofluorescence staining was performed on bone tissue to observe the density of H-shaped and L-shaped blood vessels at the site of bone injury. CD31 and EMCN dual-stained single cells from the rib fracture sites were detected by flow cytometry. The periosteal stem cells transfected with CD90 or Notch1 overexpression and silencing vector were co-cultured with osteoblast MC3T3-E1 in osteogenic induction medium. Moreover, bone microvascular endothelial cells were extracted from the rib injury and co-cultured with the periosteal stem cells transfected with CD90. CCK-8 was used to detect cell viability, RT-qPCR and Western blot were used to detect Notch1, Notch2, Notch3, Notch4, CD31, HIF-1α, CD90, RUNX2, OCN and OPN expression. Alkaline phosphatase (ALP) staining and alizarin red staining were used to observe mineralized nodules. Immunofluorescence staining was used to detect the expression of Dll4, Notch, and CD90 in each group of cells. The angiogenesis experiment was conducted to observe cellular vascular formation. RESULTS Compared with the Adsh-NC group, the bone healing in the Adsh-CD90 group was significantly impaired, with a marked reduction in the number and volume of blood vessels at the rib fracture site, as evidenced by CD31/EMCN immunofluorescence staining, which showed a reduction in the number of H type vessels at the site of bone injury. It was found that CD90 depletion can inhibit the signaling of Dll4/Notch in the rib fracture site. Furthermore, we found that overexpression of Notch1 reverses the impairment of tubule formation in bone microvascular endothelial cells caused by CD90 suppression.r.Dll4 protein reverses the inhibitory effect of CD90 deletion on periosteal stem cells and MC3T3-E1 cell viability and osteogenesis. In the end, we found that overexpression of Notch1 and CD90 can promote angiogenesis of bone microvascular endothelial cells and Notch pathway activation. CONCLUSION CD90 can affect vascular formation in mouse rib fractures, and CD90 may be regulated by Dll4/Notch.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Pei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Pengkai Gao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Bin Mo
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Liya Dong
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
2
|
Tang X, Zhu M, Zhu Z, Tang W, Zhang H, Chen Y, Liu F, Zhang Y. Ginsenoside Re inhibits non-small cell lung cancer progression by suppressing macrophage M2 polarization induced by AMPKα1/STING positive feedback loop. Phytother Res 2024; 38:5088-5106. [PMID: 39119862 DOI: 10.1002/ptr.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Tumor-associated macrophages (TAMs) in non-small cell lung cancer (NSCLC) promote tumor cell metastasis by interacting with cancer cells. Ginsenoside Re is capable of modulating the host immune system and exerts anticancer effects through multiple pathways. Both AMPK and STING are involved in the regulation of MΦ polarization, thereby affecting tumor progression. However, whether there is a regulatory relationship between them and its effect on MΦ polarization and tumor progression is unclear. The aim of this study was to provide mechanistic evidence that ginsenoside Re modulates MΦ phenotype through inhibition of the AMPKα1/STING positive feedback loop and thus exerts an antimetastatic effect in NSCLC immunotherapy. Cell culture models and conditioned media (CM) systems were constructed, and the treated MΦ were analyzed by database analysis, RT-PCR, Western blotting, flow cytometry, and immunofluorescence to determine the regulatory relationship between AMPK and STING and the effects of ginsenoside Re on MΦ polarization and tumor cells migration. The effects of ginsenoside Re (10, 20 mg/kg/day) on TAMs phenotype as well as tumor progression in mice were assessed by HE staining, immunohistochemical staining, and Western blotting. In this study, AMPKα1/STING positive feedback loop in NSCLC TAMs induced M2 type polarization, which in turn promoted NSCLC cell migration. In addition, ginsenoside Re was discovered to inhibit M2-like MΦ polarization, thereby inhibiting NSCLC cell migration. Mechanistically, Re was able to inhibit the formation of the AMPKα1/STING positive feedback loop, thereby inhibiting its induction of M2-like MΦ and consequently inhibiting the epithelial-mesenchymal transition (EMT) process of NSCLC cells. Furthermore, in mouse models, Re was found to suppress LLC tumor growth and colonization by inhibiting M2-type polarization of TAMs. Our finding indicates that ginsenoside Re can effectively modulate MΦ polarization and thus play an important role in antimetastatic immunotherapy of NSCLC.
Collapse
Affiliation(s)
- Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yanbin Chen
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an, China
| | - Feng Liu
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Yi Y, Suo L, Ma H, Ma R, Zhao J, Zhai S, Wang H, Su Z. The role of MDM2 in angiogenesis: implications for endothelial tip cell formation. In Vitro Cell Dev Biol Anim 2024; 60:983-995. [PMID: 39134872 DOI: 10.1007/s11626-024-00946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/17/2024] [Indexed: 11/06/2024]
Abstract
In the present study, we examined the role of MDM2 in the angiogenesis process and its potential association with the sprouting of endothelial tip cells. To address this, we performed hypoxia-treated gastric cancer cells (HGC-27) to quantitative RT-PCR and Western blot analysis to measure the levels of MDM2 and VEGF-A mRNA and protein expression. Subsequently, we employed siRNA to disrupt MDM2 expression, followed by hypoxia treatment. The expression levels of MDM2 and VEGF-A mRNA and protein were subsequently reassessed. Additionally, ELISA was utilized to quantify the secretion levels of VEGF-A in each experimental group. A conditioned medium derived from HGC-27 cells treated with different agents was employed to assess its influence on the formation of EA.hy926 endothelial tip cells, using various techniques including Transwell plates migration assays, wound healing experiments, vascular formation assays, scanning electron microscopy, and immunofluorescence staining. These findings demonstrated that the in vitro knockdown of MDM2 in the conditioned medium exhibited significant inhibitory effects on endothelial cell migration, wound healing, and vascular formation. Additionally, the intervention led to a reduction in the presence of CD34+ tip cells and the formation of filopodia in endothelial cells, while partially restoring the integrity of tight junctions. Subsequent examination utilizing RNA-seq revealed that the suppression of MDM2 in HGC-27 cells resulted in the downregulation of the PI3K/AKT signaling pathway. Consequently, this downregulation led to an elevation in angiogenic effects induced by hypoxia.
Collapse
Affiliation(s)
- Yi Yi
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Lina Suo
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Haixiu Ma
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Ronghua Ma
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Jing Zhao
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Shaoqian Zhai
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Haiyan Wang
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China.
| | - Zhanhai Su
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China.
| |
Collapse
|
4
|
Zhang D, Zhu Z, Wen K, Zhang S, Liu J. Netrin‑4 promotes VE‑cadherin expression in endothelial cells through the NF‑κB signaling pathway. Exp Ther Med 2024; 28:351. [PMID: 39071904 PMCID: PMC11273250 DOI: 10.3892/etm.2024.12640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Netrin-4 (NTN4), a secreted protein from the Netrin family, has been recognized for its role in vascular development, endothelial homeostasis and angiogenesis. Vascular endothelial (VE)-cadherin is a specialized adhesion protein located at the intercellular junctions of endothelial cells (ECs), and regulates migration, proliferation and permeability. To date, the relationship between NTN4 and VE-cadherin in ECs remains unclear. In the present study, human umbilical vein ECs (HUVECs) were transfected with NTN4 overexpression plasmid, resulting in NTN4 overexpression. Reverse transcription-quantitative PCR and western blotting were used to determine gene and protein expression. CCK8, wound healing, and Transwell assays were performed to evaluate cell proliferation, migration and permeability. NTN4 overexpression decreased HUVEC viability and migration. In addition, NTN4 overexpression increased the expression of VE-cadherin and decreased the permeability of HUVECs. Subsequent studies showed that NTN4 overexpression increased the NF-κB protein level and decreased IκB-α protein expression in HUVECs. In HUVECs treated with NF-κB inhibitor pyrrolidine dithiocarbamate, the expression of VE-cadherin failed to increase with NTN4 overexpression. Taken together, the results indicated that NTN4 overexpression increased VE-cadherin expression through the activation of the NF-κB signaling pathway in HUVECs. The present findings revealed a novel regulatory mechanism for VE-cadherin expression and suggested a novel avenue for future research on the role of NTN4 in endothelial barrier-related diseases.
Collapse
Affiliation(s)
- Datong Zhang
- Department of Orthodontics, School of Dentistry, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Zhiying Zhu
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Keting Wen
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Shijie Zhang
- Department of Orthodontics, School of Dentistry, Shandong University, Jinan, Shandong 250100, P.R. China
- Department of Stomatology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
5
|
Hoffmann H, Wartenberg M, Vorlova S, Karl-Schöller F, Kallius M, Reinhardt O, Öztürk A, Schuhmair LS, Burkhardt V, Gätzner S, Scheld D, Nandigama R, Zernecke A, Herterich S, Ergün S, Rosenwald A, Henke E. Normalization of Snai1-mediated vessel dysfunction increases drug response in cancer. Oncogene 2024; 43:2661-2676. [PMID: 39095583 PMCID: PMC11347376 DOI: 10.1038/s41388-024-03113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/10/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Blood vessels in tumors are often dysfunctional. This impairs the delivery of therapeutic agents to and distribution among the cancer cells. Subsequently, treatment efficacy is reduced, and dose escalation can increase adverse effects on non-malignant tissues. The dysfunctional vessel phenotypes are attributed to aberrant pro-angiogenic signaling, and anti-angiogenic agents can ameliorate traits of vessel dysfunctionality. However, they simultaneously reduce vessel density and thereby impede drug delivery and distribution. Exploring possibilities to improve vessel functionality without compromising vessel density in the tumor microenvironment, we evaluated transcription factors (TFs) involved in epithelial-mesenchymal transition (EMT) as potential targets. Based on similarities between EMT and angiogenic activation of endothelial cells, we hypothesized that these TFs, Snai1 in particular, might serve as key regulators of vessel dysfunctionality. In vitro, experiments demonstrated that Snai1 (similarly Slug and Twist1) regulates endothelial permeability, permissiveness for tumor cell transmigration, and tip/stalk cell formation. Endothelial-specific, heterozygous knock-down of Snai1 in mice improved vascular quality in implanted tumors. This resulted in better oxygenation and reduced metastasis. Notably, the tumors in Snai1KD mice responded significantly better to chemotherapeutics as drugs were transported into the tumors at strongly increased rates and more homogeneously distributed. Thus, we demonstrate that restoring vessel homeostasis without affecting vessel density is feasible in malignant tumors. Combining such vessel re-engineering with anti-cancer drugs allows for strategic treatment approaches that reduce treatment toxicity on non-malignant tissues.
Collapse
Affiliation(s)
- Helene Hoffmann
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
- Graduate School of Life Science, Universität Würzburg, Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
| | - Martin Wartenberg
- Institute of Pathology, Universität Würzburg, and Comprehensive Cancer Center Mainfranken (CCCMF), Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
- Institute of Tissue Medicine and Pathology (ITMP), Universität Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Sandra Vorlova
- Institute of Experimental Biomedicine II, Universitätsklinikum Würzburg, Josef-Schneider-Strasse 2/D16, 97082, Würzburg, Germany
| | - Franziska Karl-Schöller
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Matthias Kallius
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
- Graduate School of Life Science, Universität Würzburg, Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
| | - Oliver Reinhardt
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Asli Öztürk
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Leah S Schuhmair
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Verena Burkhardt
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Sabine Gätzner
- Chair Tissue Engineering and Regenerative Medicine (TERM), Universitätsklinikum Würzburg, Roentgenring 11, 97070, Würzburg, Germany
| | - Daniela Scheld
- Zentrallabor, Universitätsklinikum Würzburg, Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
| | - Rajender Nandigama
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine II, Universitätsklinikum Würzburg, Josef-Schneider-Strasse 2/D16, 97082, Würzburg, Germany
| | - Sabine Herterich
- Zentrallabor, Universitätsklinikum Würzburg, Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg, and Comprehensive Cancer Center Mainfranken (CCCMF), Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
| | - Erik Henke
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany.
- Graduate School of Life Science, Universität Würzburg, Josef-Schneider-Strasse 2, 97082, Würzburg, Germany.
| |
Collapse
|
6
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Panara V, Yu H, Peng D, Staxäng K, Hodik M, Filipek-Gorniok B, Kazenwadel J, Skoczylas R, Mason E, Allalou A, Harvey NL, Haitina T, Hogan BM, Koltowska K. Multiple cis-regulatory elements control prox1a expression in distinct lymphatic vascular beds. Development 2024; 151:dev202525. [PMID: 38722096 PMCID: PMC11128278 DOI: 10.1242/dev.202525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2024] [Indexed: 05/15/2024]
Abstract
During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.
Collapse
Affiliation(s)
- Virginia Panara
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala 75185, Sweden
| | - Hujun Yu
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Di Peng
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Karin Staxäng
- BioVis Core Facility, Platform EM, Uppsala University, Uppsala 75185, Sweden
| | - Monika Hodik
- BioVis Core Facility, Platform EM, Uppsala University, Uppsala 75185, Sweden
| | - Beata Filipek-Gorniok
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Elizabeth Mason
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Amin Allalou
- Uppsala University, Department of Information Technology, Division of Visual Information and Interaction, and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala 75185, Sweden
| | - Natasha L. Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala 75236, Sweden
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala 75185, Sweden
| |
Collapse
|
8
|
Choi SH, Jang J, Kim Y, Park CG, Lee SY, Kim H, Kim H. ID1 high/activin A high glioblastoma cells contribute to resistance to anti-angiogenesis therapy through malformed vasculature. Cell Death Dis 2024; 15:292. [PMID: 38658527 PMCID: PMC11043395 DOI: 10.1038/s41419-024-06678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junseok Jang
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Cheol Gyu Park
- MEDIFIC Inc, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Shepley BR, Bain AR. Is Notch1 a neglected vascular mechanosensor? Physiol Rev 2024; 104:655-658. [PMID: 37943247 DOI: 10.1152/physrev.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Brooke R Shepley
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| | - Anthony R Bain
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
10
|
Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res 2024; 120:223-236. [PMID: 38385523 PMCID: PMC10939465 DOI: 10.1093/cvr/cvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 02/23/2024] Open
Abstract
Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Franceska Kishta
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht 6229ER, The Netherlands
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
- St. Vincent’s Clinical School and University of New South Wales, 390 Victoria St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
11
|
Fang Z, Zhao G, Zhao S, Yu X, Feng R, Zhang YE, Li H, Huang L, Guo Z, Zhang Z, Abdurahman M, Hong H, Li P, Wu B, Zhu J, Zhong X, Huang D, Lu H, Zhao X, Chen Z, Zhang W, Guo J, Zheng H, He Y, Qin S, Lu H, Zhao Y, Wang X, Ge J, Li H. GTF2H4 regulates partial EndMT via NF-κB activation through NCOA3 phosphorylation in ischemic diseases. Innovation (N Y) 2024; 5:100565. [PMID: 38379791 PMCID: PMC10876913 DOI: 10.1016/j.xinn.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 01/01/2024] [Indexed: 02/22/2024] Open
Abstract
Partial endothelial-to-mesenchymal transition (EndMT) is an intermediate phenotype observed in endothelial cells (ECs) undergoing a transition toward a mesenchymal state to support neovascularization during (patho)physiological angiogenesis. Here, we investigated the occurrence of partial EndMT in ECs under hypoxic/ischemic conditions and identified general transcription factor IIH subunit 4 (GTF2H4) as a positive regulator of this process. In addition, we discovered that GTF2H4 collaborates with its target protein excision repair cross-complementation group 3 (ERCC3) to co-regulate partial EndMT. Furthermore, by using phosphorylation proteomics and site-directed mutagenesis, we demonstrated that GTF2H4 was involved in the phosphorylation of receptor coactivator 3 (NCOA3) at serine 1330, which promoted the interaction between NCOA3 and p65, resulting in the transcriptional activation of NF-κB and the NF-κB/Snail signaling axis during partial EndMT. In vivo experiments confirmed that GTF2H4 significantly promoted partial EndMT and angiogenesis after ischemic injury. Collectively, our findings reveal that targeting GTF2H4 is promising for tissue repair and offers potential opportunities for treating hypoxic/ischemic diseases.
Collapse
Affiliation(s)
- Zheyan Fang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Gang Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuang Zhao
- Department of Medical Examination, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Xueting Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Runyang Feng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - You-en Zhang
- Department of Cardiology and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Haomin Li
- Clinical Data Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Lei Huang
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhentao Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Mukaddas Abdurahman
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hangnan Hong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Bing Wu
- Department of Cardiology and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jinhang Zhu
- Bio-X Institute, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, affiliated with Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hongchao Zheng
- Department of Cardiology, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Yue He
- Department of Cardiology, Shanghai Eighth People’s Hospital, Shanghai 200235, China
| | - Shengying Qin
- Bio-X Institute, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
12
|
Wang F, Li S, Kong L, Feng K, Zuo R, Zhang H, Yu Y, Zhang K, Cao Y, Chai Y, Kang Q, Xu J. Tensile Stress-Activated and Exosome-Transferred YAP/TAZ-Notch Circuit Specifies Type H Endothelial Cell for Segmental Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309133. [PMID: 38225729 DOI: 10.1002/advs.202309133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/03/2024] [Indexed: 01/17/2024]
Abstract
The Ilizarov technique has been continuously innovated to utilize tensile stress (TS) for inducing a bone development-like regenerative process, aiming to achieve skeletal elongation and reconstruction. However, it remains uncertain whether this distraction osteogenesis (DO) process induced by TS involves the pivotal coupling of angiogenesis and osteogenesis mediated by type H endothelial cells (THECs). In this study, it is demonstrated that the Ilizarov technique induces the formation of a metaphysis-like architecture composed of THECs, leading to segmental bone regeneration during the DO process. Mechanistically, cell-matrix interactions-mediated activation of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcriptionally upregulates the expression of Notch1 and Delta-like ligand 4, which act as direct positive regulators of THECs phenotype, in bone marrow endothelial cells (BMECs) upon TS stimulation. Simultaneously, the Notch intracellular domain enhances YAP/TAZ activity by transcriptionally upregulating YAP expression and stabilizing TAZ protein, thus establishing the YAP/TAZ-Notch circuit. Additionally, TS-stimulated BMECs secrete exosomes enriched with vital molecules in this positive feedback pathway, which can be utilized to promote segmental bone defect healing, mimicking the therapeutic effects of Ilizarov technique. The findings advance the understanding of TS-induced segmental bone regeneration and establish the foundation for innovative biological therapeutic strategies aimed at activating THECs.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shanyu Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kai Feng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Rongtai Zuo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hanzhe Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yifan Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kunqi Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuting Cao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yimin Chai
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jia Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
13
|
Bréchot N, Rutault A, Marangon I, Germain S. Blood endothelium transition and phenotypic plasticity: A key regulator of integrity/permeability in response to ischemia. Semin Cell Dev Biol 2024; 155:16-22. [PMID: 37479554 DOI: 10.1016/j.semcdb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
In the human body, the 1013 blood endothelial cells (ECs) which cover a surface of 500-700 m2 (Mai et al., 2013) are key players of tissue homeostasis, remodeling and regeneration. Blood vessel ECs play a major role in the regulation of metabolic and gaz exchanges, cell trafficking, blood coagulation, vascular tone, blood flow and fluid extravasation (also referred to as blood vascular permeability). ECs are heterogeneous in various capillary beds and have the exquisite capacity to cope with environmental changes by regulating their gene expression. Ischemia has major detrimental effects on the endothelium and ischemia-induced regulation of vascular integrity is of paramount importance for human health, as small amounts of fluid accumulation in the interstitium may be responsible for major effects on organ functions and patients outcome. In this review, we will here focus on the stimuli and the molecular mechanisms that control blood endothelium maintenance and phenotypic plasticity/transition involved in controlling blood capillary leakage that might open new avenues for therapeutic applications.
Collapse
Affiliation(s)
- Nicolas Bréchot
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France; Intensive Care Medicine Department, Université de Paris Cité, Hôpital européen Georges-Pompidou, AP-HP, AP-HP.CUP, 75015 Paris, France.
| | - Alexandre Rutault
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France
| | - Iris Marangon
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France.
| |
Collapse
|
14
|
Takahashi K, Kobayashi M, Katsumata H, Tokizaki S, Anzai T, Ikeda Y, Alcaide DM, Maeda K, Ishihara M, Tahara K, Kubota Y, Itoh F, Park J, Takahashi K, Matsunaga YT, Yoshimatsu Y, Podyma‐Inoue KA, Watabe T. CD40 is expressed in the subsets of endothelial cells undergoing partial endothelial-mesenchymal transition in tumor microenvironment. Cancer Sci 2024; 115:490-506. [PMID: 38111334 PMCID: PMC10859613 DOI: 10.1111/cas.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Tumor progression and metastasis are regulated by endothelial cells undergoing endothelial-mesenchymal transition (EndoMT), a cellular differentiation process in which endothelial cells lose their properties and differentiate into mesenchymal cells. The cells undergoing EndoMT differentiate through a spectrum of intermediate phases, suggesting that some cells remain in a partial EndoMT state and exhibit an endothelial/mesenchymal phenotype. However, detailed analysis of partial EndoMT has been hampered by the lack of specific markers. Transforming growth factor-β (TGF-β) plays a central role in the induction of EndoMT. Here, we showed that inhibition of TGF-β signaling suppressed EndoMT in a human oral cancer cell xenograft mouse model. By using genetic labeling of endothelial cell lineage, we also established a novel EndoMT reporter cell system, the EndoMT reporter endothelial cells (EMRECs), which allow visualization of sequential changes during TGF-β-induced EndoMT. Using EMRECs, we characterized the gene profiles of multiple EndoMT stages and identified CD40 as a novel partial EndoMT-specific marker. CD40 expression was upregulated in the cells undergoing partial EndoMT, but decreased in the full EndoMT cells. Furthermore, single-cell RNA sequencing analysis of human tumors revealed that CD40 expression was enriched in the population of cells expressing both endothelial and mesenchymal cell markers. Moreover, decreased expression of CD40 in EMRECs enhanced TGF-β-induced EndoMT, suggesting that CD40 expressed during partial EndoMT inhibits transition to full EndoMT. The present findings provide a better understanding of the mechanisms underlying TGF-β-induced EndoMT and will facilitate the development of novel therapeutic strategies targeting EndoMT-driven cancer progression and metastasis.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | - Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Hisae Katsumata
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shiori Tokizaki
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Tatsuhiko Anzai
- Department of Biostatistics, M&D Data Science CenterTokyo Medical and Dental UniversityTokyoJapan
| | - Yukinori Ikeda
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | | | - Kentaro Maeda
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Makoto Ishihara
- Scientific Affairs Section, Life Science Sales Department, Life Science Business Division, Medical Business GroupSony CorporationKanagawaJapan
| | - Katsutoshi Tahara
- Section 1, Product Design Department 2, Medical Product Design Division, Medical Business GroupSony CorporationKanagawaJapan
| | - Yoshiaki Kubota
- Department of AnatomyKeio University School of MedicineTokyoJapan
| | - Fumiko Itoh
- Laboratory of Stem Cells RegulationsTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Jihwan Park
- School of Life SciencesGwangju Institute of Science and Technology (GIST)GwangjuSouth Korea
| | - Kunihiko Takahashi
- Department of Biostatistics, M&D Data Science CenterTokyo Medical and Dental UniversityTokyoJapan
| | | | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
- Division of Pharmacology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Katarzyna A. Podyma‐Inoue
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
15
|
Guo Y, Zhang S, Wang D, Heng BC, Deng X. Role of cell rearrangement and related signaling pathways in the dynamic process of tip cell selection. Cell Commun Signal 2024; 22:24. [PMID: 38195565 PMCID: PMC10777628 DOI: 10.1186/s12964-023-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/25/2023] [Indexed: 01/11/2024] Open
Abstract
Angiogenesis is a complex, highly-coordinated and multi-step process of new blood vessel formation from pre-existing blood vessels. When initiated, the sprouting process is spearheaded by the specialized endothelial cells (ECs) known as tip cells, which guide the organization of accompanying stalk cells and determine the function and morphology of the finally-formed blood vessels. Recent studies indicate that the orchestration and coordination of angiogenesis involve dynamic tip cell selection, which is the competitive selection of cells to lead the angiogenic sprouts. Therefore, this review attempt to summarize the underlying mechanisms involved in tip cell specification in a dynamic manner to enable readers to gain a systemic and overall understanding of tip cell formation, involving cooperative interaction of cell rearrangement with Notch and YAP/TAZ signaling. Various mechanical and chemical signaling cues are integrated to ensure the right number of cells at the right place during angiogenesis, thereby precisely orchestrating morphogenic functions that ensure correct patterning of blood vessels. Video Abstract.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Dandan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
- Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
16
|
Suzuki T, Sakai S, Ota K, Yoshida M, Uchida C, Niida H, Suda T, Kitagawa M, Ohhata T. Expression of Tumor Suppressor FHIT Is Regulated by the LINC00173-SNAIL Axis in Human Lung Adenocarcinoma. Int J Mol Sci 2023; 24:17011. [PMID: 38069335 PMCID: PMC10707390 DOI: 10.3390/ijms242317011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in a variety of human diseases such as cancer. Here, to elucidate a novel function of a lncRNA called LINC00173, we investigated its binding partner, target gene, and its regulatory mechanism in lung adenocarcinoma, including the A549 cell line and patients. In the A549 cell line, RNA immunoprecipitation (RIP) assays revealed that LINC00173 efficiently binds to SNAIL. RNA-seq and RT-qPCR analyses revealed that the expression of FHIT was decreased upon LINC00173 depletion, indicating that FHIT is a target gene of LINC00173. Overexpression of SNAIL suppressed and depletion of SNAIL increased the expression of FHIT, indicating that SNAIL negatively regulates FHIT. The downregulation of FHIT expression upon LINC00173 depletion was restored by additional SNAIL depletion, revealing a LINC00173-SNAIL-FHIT axis for FHIT regulation. Data from 501 patients with lung adenocarcinoma also support the existence of a LINC00173-SNAIL-FHIT axis, as FHIT expression correlated positively with LINC00173 (p = 1.75 × 10-6) and negatively with SNAIL (p = 7.00 × 10-5). Taken together, we propose that LINC00173 positively regulates FHIT gene expression by binding to SNAIL and inhibiting its function in human lung adenocarcinoma. Thus, this study sheds light on the LINC00173-SNAIL-FHIT axis, which may be a key mechanism for carcinogenesis and progression in human lung adenocarcinoma.
Collapse
Grants
- 19H03501 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22H02901 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K07569 Ministry of Education, Culture, Sports, Science and Technology of Japan
- NA Project Mirai Cancer Research Grants, the Princes Takamatsu Cancer Research Foundation
- NA The Smoking Research Foundation
- NA Hamamatsu University School of Medicine Grant-in-Aid
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kosuke Ota
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mika Yoshida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
17
|
Vacondio D, Nogueira Pinto H, Coenen L, Mulder IA, Fontijn R, van Het Hof B, Fung WK, Jongejan A, Kooij G, Zelcer N, Rozemuller AJ, de Vries HE, de Wit NM. Liver X receptor alpha ensures blood-brain barrier function by suppressing SNAI2. Cell Death Dis 2023; 14:781. [PMID: 38016947 PMCID: PMC10684660 DOI: 10.1038/s41419-023-06316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
In Alzheimer's disease (AD) more than 50% of the patients are affected by capillary cerebral amyloid-angiopathy (capCAA), which is characterized by localized hypoxia, neuro-inflammation and loss of blood-brain barrier (BBB) function. Moreover, AD patients with or without capCAA display increased vessel number, indicating a reactivation of the angiogenic program. The molecular mechanism(s) responsible for BBB dysfunction and angiogenesis in capCAA is still unclear, preventing a full understanding of disease pathophysiology. The Liver X receptor (LXR) family, consisting of LXRα and LXRβ, was reported to inhibit angiogenesis and particularly LXRα was shown to secure BBB stability, suggesting a major role in vascular function. In this study, we unravel the regulatory mechanism exerted by LXRα to preserve BBB integrity in human brain endothelial cells (BECs) and investigate its role during pathological conditions. We report that LXRα ensures BECs identity via constitutive inhibition of the transcription factor SNAI2. Accordingly, deletion of brain endothelial LXRα is associated with impaired DLL4-NOTCH signalling, a critical signalling pathway involved in vessel sprouting. A similar response was observed when BECs were exposed to hypoxia, with concomitant LXRα decrease and SNAI2 increase. In support of our cell-based observations, we report a general increase in vascular SNAI2 in the occipital cortex of AD patients with and without capCAA. Importantly, SNAI2 strongly associated with vascular amyloid-beta deposition and angiopoietin-like 4, a marker for hypoxia. In hypoxic capCAA vessels, the expression of LXRα may decrease leading to an increased expression of SNAI2, and consequently BECs de-differentiation and sprouting. Our findings indicate that LXRα is essential for BECs identity, thereby securing BBB stability and preventing aberrant angiogenesis. These results uncover a novel molecular pathway essential for BBB identity and vascular homeostasis providing new insights on the vascular pathology affecting AD patients.
Collapse
Affiliation(s)
- D Vacondio
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - H Nogueira Pinto
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - L Coenen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Biomedical Primate Research Centre, Department of Neurobiology and Aging, Rijswijk, the Netherlands
| | - I A Mulder
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - R Fontijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - B van Het Hof
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - W K Fung
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - A Jongejan
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - G Kooij
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - N Zelcer
- Amsterdam UMC location University of Amsterdam Department of Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Cardiovascular Sciences and Gastroenterology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - A J Rozemuller
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pathology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - H E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - N M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Lundø K, Dmytriyeva O, Spøhr L, Goncalves-Alves E, Yao J, Blasco LP, Trauelsen M, Ponniah M, Severin M, Sandelin A, Kveiborg M, Schwartz TW, Pedersen SF. Lactate receptor GPR81 drives breast cancer growth and invasiveness through regulation of ECM properties and Notch ligand DLL4. BMC Cancer 2023; 23:1136. [PMID: 37993804 PMCID: PMC10666402 DOI: 10.1186/s12885-023-11631-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The lactate receptor GPR81 contributes to cancer development through unclear mechanisms. Here, we investigate the roles of GPR81 in three-dimensional (3D) and in vivo growth of breast cancer cells and study the molecular mechanisms involved. METHODS GPR81 was stably knocked down (KD) in MCF-7 human breast cancer cells which were subjected to RNA-seq analysis, 3D growth, in situ- and immunofluorescence analyses, and cell viability- and motility assays, combined with KD of key GPR81-regulated genes. Key findings were additionally studied in other breast cancer cell lines and in mammary epithelial cells. RESULTS GPR81 was upregulated in multiple human cancer types and further upregulated by extracellular lactate and 3D growth in breast cancer spheroids. GPR81 KD increased spheroid necrosis, reduced invasion and in vivo tumor growth, and altered expression of genes related to GO/KEGG terms extracellular matrix, cell adhesion, and Notch signaling. Single cell in situ analysis of MCF-7 cells revealed that several GPR81-regulated genes were upregulated in the same cell clusters. Notch signaling, particularly the Notch ligand Delta-like-4 (DLL4), was strikingly downregulated upon GPR81 KD, and DLL4 KD elicited spheroid necrosis and inhibited invasion in a manner similar to GPR81 KD. CONCLUSIONS GPR81 supports breast cancer aggressiveness, and in MCF-7 cells, this occurs at least in part via DLL4. Our findings reveal a new GPR81-driven mechanism in breast cancer and substantiate GPR81 as a promising treatment target.
Collapse
Affiliation(s)
- Kathrine Lundø
- Faculty of Health, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Faculty of Health, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Spøhr
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eliana Goncalves-Alves
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jiayi Yao
- The Bioinformatics Centre, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Laia P Blasco
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Mette Trauelsen
- Faculty of Health, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Muthulakshmi Ponniah
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Faculty of Health, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
LoPilato RK, Kroeger H, Mohan SK, Lauderdale JD, Grimsey N, Haltiwanger RS. Two NOTCH1 O-fucose sites have opposing functions in mouse retinal angiogenesis. Glycobiology 2023; 33:661-672. [PMID: 37329502 PMCID: PMC10560083 DOI: 10.1093/glycob/cwad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
Previous in vitro studies demonstrated that Fringe glycosylation of the NOTCH1 extracellular domain at O-fucose residues in Epidermal Growth Factor-like Repeats (EGFs) 6 and 8 is a significant contributor to suppression of NOTCH1 activation by JAG1 or enhancement of NOTCH1 activation by DLL1, respectively. In this study, we sought to evaluate the significance of these glycosylation sites in a mammalian model by generating 2 C57BL/6J mouse lines carrying NOTCH1 point mutations, which eliminate O-fucosylation and Fringe activity at EGFs 6 (T232V) or 8 (T311V). We assessed changes to morphology during retinal angiogenesis, a process in which expression of Notch1, Jag1, Dll4, Lfng, Mfng, and Rfng genes coordinate cell-fate decisions to grow vessel networks. In the EGF6 O-fucose mutant (6f/6f) retinas, we observed reduced vessel density and branching, suggesting that this mutant is a Notch1 hypermorph. This finding agrees with prior cell-based studies showing that the 6f mutation increased JAG1 activation of NOTCH1 during co-expression with inhibitory Fringes. Although we predicted that the EGF8 O-fucose mutant (8f/8f) would not complete embryonic development due to the direct involvement of the O-fucose in engaging ligand, the 8f/8f mice were viable and fertile. In the 8f/8f retina, we measured increased vessel density consistent with established Notch1 hypomorphs. Overall, our data support the importance of NOTCH1 O-fucose residues for pathway function and confirms that single O-glycan sites are rich in signaling instructions for mammalian development.
Collapse
Affiliation(s)
- Rachel K LoPilato
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Heike Kroeger
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, United States
| | - Sneha K Mohan
- Neuroscience Division of Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, United States
| | - James D Lauderdale
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, United States
- Neuroscience Division of Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, United States
| | - Neil Grimsey
- Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
20
|
Yuwen Y, Wang X, Liu J, Liu Z, Zhu H. Delta- like ligand 4- expressing macrophages and human diseases: Insights into pathophysiology and therapeutic opportunities. Heliyon 2023; 9:e20777. [PMID: 37842562 PMCID: PMC10569996 DOI: 10.1016/j.heliyon.2023.e20777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/20/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
Macrophages are key players in the immune response and have been implicated in various human diseases, including atherosclerosis, cancer, and chronic inflammatory disorders. While numerous studies have delved into the nuances of macrophage behavior in these conditions, there remains a gap in understanding the specific role of Delta-like ligand 4 (Dll4)-expressing macrophages and their overarching implications across these diseases. Among the plethora of factors expressed by macrophages, Dll4 has emerged as a molecule of particular interest. Recent studies have highlighted its unique role in modulating macrophage functions and its potential implications in various diseases. This review seeks to consolidate existing knowledge, address this gap, and present a comprehensive overview of Dll4-expressing macrophages in the context of these disorders and highlight their potential as therapeutic targets. We examined the involvement of Dll4-expressing macrophages in multiple human diseases such as atherosclerosis, cancer and chronic inflammatory diseases, emphasizing their influence on disease progression. We also discussed the challenges, limitations, and emerging research areas in targeting Dll4-expressing macrophages and provide an outlook on potential therapeutic strategies for the treatment of these diseases. By addressing the previously existing research gap, we've provided a roadmap that brings together fragmented insights, paving the way for more holistic research and potentially more effective therapeutic strategies centered on Dll4-expressing macrophages.
Collapse
Affiliation(s)
- Ya Yuwen
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Medical School, Xizang Minzu University, Xianyang, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Jing Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Haitao Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an, China
| |
Collapse
|
21
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
22
|
Wang L, Li J, Wang Y, Ge C, Huang Q, Li L, Wang N, Chen Y, Zhou X, Chang D, Li D, Hou J. Dan-Deng-Tong-Nao softgel capsule promotes angiogenesis of cerebral microvasculature to protect cerebral ischemia reperfusion injury via activating HIF-1α-VEGFA-Notch1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154966. [PMID: 37487254 DOI: 10.1016/j.phymed.2023.154966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND A proprietary Chinese herbal product called Dan-Deng-Tong-Nao softgel capsule (DDTNC) is used to treat ischemic stroke. However, the preventive mechanisms of DDTNC against cerebral ischemia reperfusion injury (CIRI) haven not been characterized. OBJECTIVE To explore the mechanisms of protective effects of DDTNC against CIRI from both internal and external levels. METHODS Chemical characterization was performed using UPLC. The potential protective mechanisms of DDTNC against CIRI were predicted using network pharmacology. Model of middle cerebral artery occlusion/reperfusion (MCAO/R) was established in rats. An model of brain microvascular endothelial cells (BMECs) induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was also established. We evaluated neurological deficits, cerebral infarct volume, cortical neuron damage, and mitochondrial swelling in vivo. We evaluated the expression of VEGFR2, VEGFA, HIF-1α, CD31, and CD34 in ischemic cortex, and VEGF, bFGF, BDNF, angiostatin, and endostatin in serum of rats and in BMEC supernatants. We also evaluated cell viability, cytotoxicity, intracellular ROS, apoptosis, and migration ability in vitro. RESULTS Seven components were detected in DDTNC. KEGG enrichment analysis showed that DDTNC may modulate angiogenesis via the HIF-1 signaling pathway. DDTNC treatment reduced neurological score and infarct volume, and improved cell morphology of damaged neurons. Transmission electron microscopy showed that DDTNC reduced mitochondria swelling in cortical neurons. Furthermore, DDTNC reduced intracellular ROS and inhibited apoptosis. DDTNC boosted the expression of CD31, CD34, VEGFR2, VEGFA and HIF-1α, highlighting its involvement in angiogenesis, according to immunofluorescence studies. Furthermore, DDTNC enhanced tube formation and migration of BMECs in vitro. ELISA and western blotting indicated that DDTNCCSF induced the expression of VEGF, BDNF and bFGF, reduced the level of angiostatin and endostatin, increased the protein expression of VEGFA, Notch1 and HIF-1α in vitro and in vivo. CONCLUSIONS DDTNC promoted angiogenesis to protect brain tissue against MCAO/R, and exerted protective effects against OGD/R in BMECs via activating HIF-1α-VEGFA-NOTCH1 signal transduction pathway.
Collapse
Affiliation(s)
- Lei Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Jiacheng Li
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Yang Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Chaowen Ge
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Qi Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China.
| | - Lili Li
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China.
| | - Yuang Chen
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead(,) NSW 2145(,) Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead(,) NSW 2145(,) Australia
| | - Dan Li
- Shineway Pharmaceutical Group Co. Ltd. Shijiazhuang 51430(,) China
| | - Jincai Hou
- Shineway Pharmaceutical Group Co. Ltd. Shijiazhuang 51430(,) China
| |
Collapse
|
23
|
Zhang Y, Dong P, Yang L. The role of nanotherapy in head and neck squamous cell carcinoma by targeting tumor microenvironment. Front Immunol 2023; 14:1189323. [PMID: 37292204 PMCID: PMC10244756 DOI: 10.3389/fimmu.2023.1189323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) refers to a group of highly malignant and pathogenically complex tumors. Traditional treatment methods include surgery, radiotherapy, and chemotherapy. However, with advancements in genetics, molecular medicine, and nanotherapy, more effective and safer treatments have been developed. Nanotherapy, in particular, has the potential to be an alternative therapeutic option for HNSCC patients, given its advantageous targeting capabilities, low toxicity and modifiability. Recent research has highlighted the important role of the tumor microenvironment (TME) in the development of HNSCC. The TME is composed of various cellular components, such as fibroblasts, vascular endothelial cells, and immune cells, as well as non-cellular agents such as cytokines, chemokines, growth factors, extracellular matrix (ECM), and extracellular vesicles (EVs). These components greatly influence the prognosis and therapeutic efficacy of HNSCC, making the TME a potential target for treatment using nanotherapy. By regulating angiogenesis, immune response, tumor metastasis and other factors, nanotherapy can potentially alleviate HNSCC symptoms. This review aims to summarize and discuss the application of nanotherapy that targets HNSCC's TME. We highlight the therapeutic value of nanotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Pengbo Dong
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
24
|
Lu P, Wu B, Wang Y, Russell M, Liu Y, Bernard DJ, Zheng D, Zhou B. Prerequisite endocardial-mesenchymal transition for murine cardiac trabecular angiogenesis. Dev Cell 2023; 58:791-805.e4. [PMID: 37023750 PMCID: PMC10656710 DOI: 10.1016/j.devcel.2023.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/01/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Coronary heart disease damages the trabecular myocardium, and the regeneration of trabecular vessels may alleviate ischemic injury. However, the origins and developmental mechanisms of trabecular vessels remain unknown. Here, we show that murine ventricular endocardial cells generate trabecular vessels through an "angioEMT" mechanism. Time course fate mapping defined a specific wave of trabecular vascularization by ventricular endocardial cells. Single-cell transcriptomics and immunofluorescence identified a subpopulation of ventricular endocardial cells that underwent endocardial-mesenchymal transition (EMT) before these cells generated trabecular vessels. Ex vivo pharmacological activation and in vivo genetic inactivation experiments identified an EMT signal in ventricular endocardial cells involving SNAI2-TGFB2/TGFBR3, which was a prerequisite for later trabecular-vessel formation. Additional loss- and gain-of-function genetic studies showed that VEGFA-NOTCH1 signaling regulated post-EMT trabecular angiogenesis by ventricular endocardial cells. Our finding that trabecular vessels originate from ventricular endocardial cells through a two-step angioEMT mechanism could inform better regeneration medicine for coronary heart disease.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Yidong Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cardiovascular Research Center, School of Basic Medical Sciences, Jiaotong University, Xi'an 710061, China
| | - Megan Russell
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Departments of Pediatrics and Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| |
Collapse
|
25
|
Li X, Souilhol C, Canham L, Jia X, Diagbouga M, Ayllon BT, Serbanovic-Canic J, Evans PC. DLL4 promotes partial endothelial-to-mesenchymal transition at atherosclerosis-prone regions of arteries. Vascul Pharmacol 2023; 150:107178. [PMID: 37137436 DOI: 10.1016/j.vph.2023.107178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Flowing blood regulates vascular development, homeostasis and disease by generating wall shear stress which has major effects on endothelial cell (EC) physiology. Low oscillatory shear stress (LOSS) induces a form of cell plasticity called endothelial-to-mesenchymal transition (EndMT). This process has divergent effects; in embryos LOSS-induced EndMT drives the development of atrioventricular valves, whereas in adult arteries it is associated with inflammation and atherosclerosis. The Notch ligand DLL4 is essential for LOSS-dependent valve development; here we investigated whether DLL4 is required for responses to LOSS in adult arteries. Analysis of cultured human coronary artery EC revealed that DLL4 regulates the transcriptome to induce markers of EndMT and inflammation under LOSS conditions. Consistently, genetic deletion of Dll4 from murine EC reduced SNAIL (EndMT marker) and VCAM-1 (inflammation marker) at a LOSS region of the murine aorta. We hypothesized that endothelial Dll4 is pro-atherogenic but this analysis was confounded because endothelial Dll4 negatively regulated plasma cholesterol levels in hyperlipidemic mice. We conclude that endothelial DLL4 is required for LOSS-induction of EndMT and inflammation regulators at atheroprone regions of arteries, and is also a regulator of plasma cholesterol.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; School of Pharmacy, Southwest Medical University, LuZhou, Sichuan 646000, PR China; Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK.
| | - Lindsay Canham
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Xueqi Jia
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Mannekomba Diagbouga
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Blanca Tardajos Ayllon
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK; Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts and The London, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
26
|
Parab S, Setten E, Astanina E, Bussolino F, Doronzo G. The tissue-specific transcriptional landscape underlines the involvement of endothelial cells in health and disease. Pharmacol Ther 2023; 246:108418. [PMID: 37088448 DOI: 10.1016/j.pharmthera.2023.108418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Endothelial cells (ECs) that line vascular and lymphatic vessels are being increasingly recognized as important to organ function in health and disease. ECs participate not only in the trafficking of gases, metabolites, and cells between the bloodstream and tissues but also in the angiocrine-based induction of heterogeneous parenchymal cells, which are unique to their specific tissue functions. The molecular mechanisms regulating EC heterogeneity between and within different tissues are modeled during embryogenesis and become fully established in adults. Any changes in adult tissue homeostasis induced by aging, stress conditions, and various noxae may reshape EC heterogeneity and induce specific transcriptional features that condition a functional phenotype. Heterogeneity is sustained via specific genetic programs organized through the combinatory effects of a discrete number of transcription factors (TFs) that, at the single tissue-level, constitute dynamic networks that are post-transcriptionally and epigenetically regulated. This review is focused on outlining the TF-based networks involved in EC specialization and physiological and pathological stressors thought to modify their architecture.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elisa Setten
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elena Astanina
- Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| |
Collapse
|
27
|
Zhou Q, Li B, Li J. DLL4-Notch signalling in acute-on-chronic liver failure: State of the art and perspectives. Life Sci 2023; 317:121438. [PMID: 36709913 DOI: 10.1016/j.lfs.2023.121438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome characterized by acute decompensation of chronic liver disease associated with multiple-organ failures and high short-term mortality. Acute insults to patients with chronic liver disease can lead to ACLF, among which, hepatitis B virus-related ACLF is the most common type of liver failure in the Asia-Pacific region. Currently, immune-metabolism disorders and systemic inflammation are proposed to be the main mechanisms of ACLF. The resulting cholestasis and intrahepatic microcirculatory dysfunction accelerate the development of ACLF. Treatments targeting immune regulation, metabolic balance, microcirculation maintenance and bile duct repair can alleviate inflammation and restore the tissue structure. An increasing number of studies have demonstrated that delta-like ligand 4 (DLL4), one of the Notch signalling ligands, plays a vital role in immune regulation, metabolism, angiogenesis, and biliary regeneration, which participate in liver pathological and physiological processes. The detailed mechanism of the DLL4-Notch signalling pathway in ACLF has rarely been investigated. Here, we review the evidence showing that DLL4-Notch signalling is involved in ACLF and analyse the potential role of DLL4 in the treatment of ACLF.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Bingqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Precision Medicine Center of Taizhou Central Hospital, Taizhou University Medical School, Taizhou, China.
| |
Collapse
|
28
|
Abstract
The endothelium is one of the largest organ systems in the body, and data continue to emerge regarding the importance of endothelial cell (EC) dysfunction in vascular aging and a range of cardiovascular diseases (CVDs). Over the last two decades and as a process intimately related to EC dysfunction, an increasing number of studies have also implicated endothelial to mesenchymal transition (EndMT) as a potentially disease-causal pathobiologic process that is involved in a multitude of differing CVDs. However, EndMT is also involved in physiologic processes (e.g., cardiac development), and transient EndMT may contribute to vascular regeneration in certain contexts. Given that EndMT involves a major alteration in the EC-specific molecular program, and that it potentially contributes to CVD pathobiology, the clinical translation opportunities are significant, but further molecular and translational research is needed to see these opportunities realized.
Collapse
Affiliation(s)
- Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; .,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
29
|
Angiotensin-converting enzyme inhibitor promotes angiogenesis through Sp1/Sp3-mediated inhibition of notch signaling in male mice. Nat Commun 2023; 14:731. [PMID: 36759621 PMCID: PMC9911748 DOI: 10.1038/s41467-023-36409-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Angiogenesis is a critical pathophysiological process involved in organ growth and various diseases. Transcription factors Sp1/Sp3 are necessary for fetal development and tumor growth. Sp1/Sp3 proteins were downregulated in the capillaries of the gastrocnemius in patients with critical limb ischemia samples. Endothelial-specific Sp1/Sp3 knockout reduces angiogenesis in retinal, pathological, and tumor models and induced activation of the Notch1 pathway. Further, the inactivation of VEGFR2 signaling by Notch1 contributes to the delayed angiogenesis phenotype. Mechanistically, endothelial Sp1 binds to the promoter of Notch1 and inhibits its transcription, which is enhanced by Sp3. The proangiogenic effect of ACEI is abolished in Sp1/Sp3-deletion male mice. We identify USP7 as an ACEI-activated deubiquitinating enzyme that translocated into the nucleus binding to Sp1/Sp3, which are deacetylated by HDAC1. Our findings demonstrate a central role for endothelial USP7-Sp1/Sp3-Notch1 signaling in pathophysiological angiogenesis in response to ACEI treatment.
Collapse
|
30
|
Sun Q, Ma H, Zhang J, You B, Gong X, Zhou X, Chen J, Zhang G, Huang J, Huang Q, Yang Y, Ai K, Bai Y. A Self-Sustaining Antioxidant Strategy for Effective Treatment of Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204999. [PMID: 36567266 PMCID: PMC9929116 DOI: 10.1002/advs.202204999] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Indexed: 05/13/2023]
Abstract
Myocardial infarction (MI) is the leading cause of death worldwide and can lead to the loss of cardiac function and heart failure. Reactive oxygen species (ROS) play a key role in the pathological progression of MI. The levels and effects of ROS are significantly different in three unique pathological stages of MI, and most antioxidants cannot make corresponding adjustments to eliminate ROS, which leads to a great compromise to treat MI with antioxidants. Herein, an innovative self-sustaining antioxidant strategy is developed to treat MI with self-sustaining selenium-embedded nanoparticles (SSSe NPs). SSSe NPs possess unique self-sustaining antioxidant effects at different pathological stages of MI. This strategy of on-demand ROS elimination during different pathological stages demonstrated excellent MI treatment efficacy and effectively reversed heart failure to normal heart function. The therapeutic mechanism of SSSe NPs is intensively investigated through a series of experiments and mainly involved five critical aspects of myocardial repair: protecting mitochondria, reducing cardiomyocyte apoptosis and ferroptosis, reducing inflammation and fibrosis, and promoting angiogenesis. This strategy not only provides a promising treatment option for MI but also offers inspiration for other ischemic diseases.
Collapse
Affiliation(s)
- Quan Sun
- Department of Geriatric MedicineCoronary Circulation CenterXiangya HospitalCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hongqin Ma
- Department of Geriatric MedicineCoronary Circulation CenterXiangya HospitalCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Jiaxiong Zhang
- Department of Geriatric MedicineCoronary Circulation CenterXiangya HospitalCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Baiyang You
- Cardiac Rehabilitation CenterDepartment of RehabilitationXiangya Hospital of Central South UniversityChangshaHunanP.R. China
| | - Xiaohui Gong
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Department of CardiologyThe Third Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Xiaolin Zhou
- Department of Geriatric MedicineCoronary Circulation CenterXiangya HospitalCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Jin Chen
- Department of Geriatric MedicineCoronary Circulation CenterXiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Guogang Zhang
- Department of Geriatric MedicineCoronary Circulation CenterXiangya HospitalCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Department of CardiologyThe Third Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Jia Huang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunanP.R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunanP.R. China
| | - Qiong Huang
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Department of PharmacyXiangya HospitalCentral South UniversityChangsha410008China
| | - Yurong Yang
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Department of PharmacyXiangya HospitalCentral South UniversityChangsha410008China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunanP.R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunanP.R. China
| | - Yongping Bai
- Department of Geriatric MedicineCoronary Circulation CenterXiangya HospitalCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP.R. China
| |
Collapse
|
31
|
Zhang R, Meng Z, Wu X, Zhang M, Piao Z, Jin T. PD‐L1
/
p‐STAT3
promotes the progression of
NSCLC
cells by regulating
TAM
polarization. J Cell Mol Med 2022; 26:5872-5886. [DOI: 10.1111/jcmm.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rui Zhang
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Ziqi Meng
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Xuwei Wu
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Meihua Zhang
- Department of Health Examination Centre Yanbian University Hospital Yanji China
| | - Zhengri Piao
- Department of radiology Yanbian University Hospital Yanji China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| |
Collapse
|
32
|
Da Vitoria Lobo ME, Weir N, Hardowar L, Al Ojaimi Y, Madden R, Gibson A, Bestall SM, Hirashima M, Schaffer CB, Donaldson LF, Bates DO, Hulse RP. Hypoxia-induced carbonic anhydrase mediated dorsal horn neuron activation and induction of neuropathic pain. Pain 2022; 163:2264-2279. [PMID: 35353768 PMCID: PMC9578530 DOI: 10.1097/j.pain.0000000000002627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Neuropathic pain, such as that seen in diabetes mellitus, results in part from central sensitisation in the dorsal horn. However, the mechanisms responsible for such sensitisation remain unclear. There is evidence that disturbances in the integrity of the spinal vascular network can be causative factors in the development of neuropathic pain. Here we show that reduced blood flow and vascularity of the dorsal horn leads to the onset of neuropathic pain. Using rodent models (type 1 diabetes and an inducible endothelial-specific vascular endothelial growth factor receptor 2 knockout mouse) that result in degeneration of the endothelium in the dorsal horn, we show that spinal cord vasculopathy results in nociceptive behavioural hypersensitivity. This also results in increased hypoxia in dorsal horn neurons, depicted by increased expression of hypoxia markers such as hypoxia inducible factor 1α, glucose transporter 3, and carbonic anhydrase 7. Furthermore, inducing hypoxia through intrathecal delivery of dimethyloxalylglycine leads to the activation of dorsal horn neurons as well as mechanical and thermal hypersensitivity. This shows that hypoxic signalling induced by reduced vascularity results in increased hypersensitivity and pain. Inhibition of carbonic anhydrase activity, through intraperitoneal injection of acetazolamide, inhibited hypoxia-induced pain behaviours. This investigation demonstrates that induction of a hypoxic microenvironment in the dorsal horn, as occurs in diabetes, is an integral process by which neurons are activated to initiate neuropathic pain states. This leads to the conjecture that reversing hypoxia by improving spinal cord microvascular blood flow could reverse or prevent neuropathic pain.
Collapse
Affiliation(s)
- Marlene E. Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nick Weir
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Yara Al Ojaimi
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ryan Madden
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Alex Gibson
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Samuel M. Bestall
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - Masanori Hirashima
- Division of Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, United States
| | - Lucy F. Donaldson
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Richard Philip Hulse
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
33
|
Role of Snai2 and Notch signaling in salivary gland myoepithelial cell fate. J Transl Med 2022; 102:1245-1256. [PMID: 36775450 DOI: 10.1038/s41374-022-00814-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Myoepithelial (ME) cells in exocrine glands exhibit both epithelial and mesenchymal features, contributing to fluid secretion through contraction. However, the regulation mechanism of behind this unique phenotype in salivary glands remains unclear. We established a flow cytometry-based purification method using cell surface molecules, epithelial cell adhesion molecule (EpCAM) and alpha 6 integrin (CD49f), to characterize ME cells. EpCAM+CD49fhigh cells showed relatively high expression of ME cell-marker genes, such as alpha-smooth muscle actin (α-SMA). For lineage tracing and strict isolation, tdTomato+EpCAM+CD49fhigh-ME cells were obtained from myosin heavy chain 11 (Myh11) -CreERT2/tdTomato mice. Transcriptome analysis revealed that expression of genes involved in the epithelial-mesenchymal transition, including Snai2, were upregulated in the ME cell-enriched subset. Snai2 suppression in stable ME cells decreased α-SMA and increased Krt14 expression, suggesting that ME cell features may be controlled by the epithelial-mesenchymal balance regulated by Snai2. In contrast, ME cells showed reduced ME properties and expressed the ductal markers Krt18/19 under sphere culture conditions. Notch signaling was activated under sphere culture conditions; excessive activation of Notch signaling accelerated Krt18/19 expression, but reduced α-SMA and Snai2 expression, suggesting that the behavior of Snai2-expressing ME cells may be controlled by Notch signaling.
Collapse
|
34
|
Beloglazova I, Zubkova E, Dergilev K, Goltseva Y, Parfyonova Y. New Insight on 2D In Vitro Angiogenesis Models: All That Stretches Is Not a Tube. Cells 2022; 11:cells11203278. [PMID: 36291145 PMCID: PMC9600603 DOI: 10.3390/cells11203278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights Abstract A Matrigel-based tube formation assay is a simple and widely accepted 2D angiogenesis model in vitro. Extracellular matrix (EM) proteins and growth factors (GFs) from MatrigelTM exclusively trigger endothelial cell (EC) tubular network (ETN) formation. Co-culture of ECs with mesenchymal stromal cells (MSCs) is another and more reliable in vitro angiogenesis assay. MSCs modulate ETN formation through intercellular interactions and as a supplier of EM and GFs. The aim of the present study was to compare the expression profile of ECs in both models. We revealed upregulation of the uPA, uPAR, Jagged1, and Notch2 genes in dividing/migrating ECs and for ECs in both experimental models at 19 h. The expression of endothelial–mesenchymal transition genes largely increased in co-cultured ECs whereas Notch and Hippo signaling pathway genes were upregulated in ECs on MatrigelTM. We showed that in the co-culture model, basement membrane (BM) deposition is limited only to cell-to-cell contacts in contrast to MatrigelTM, which represents by itself fully pre-assembled BM matrix. We suggest that ETN in a co-culture model is still in a dynamic process due to immature BM whereas ECs in the MatrigelTM assay seem to be at the final stage of ETN formation.
Collapse
Affiliation(s)
- Irina Beloglazova
- Laboratory of Angiogenesis, Chazov National Medical Research Center of Cardiology, Moscow 121552, Russia
- Correspondence:
| | - Ekaterina Zubkova
- Laboratory of Angiogenesis, Chazov National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Konstantin Dergilev
- Laboratory of Angiogenesis, Chazov National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Yulia Goltseva
- Laboratory of Angiogenesis, Chazov National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Yelena Parfyonova
- Laboratory of Angiogenesis, Chazov National Medical Research Center of Cardiology, Moscow 121552, Russia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119192, Russia
| |
Collapse
|
35
|
Sun Z, Zhao H, Fang D, Davis CT, Shi DS, Lei K, Rich BE, Winter JM, Guo L, Sorensen LK, Pryor RJ, Zhu N, Lu S, Dickey LL, Doty DJ, Tong Z, Thomas KR, Mueller AL, Grossmann AH, Zhang B, Lane TE, Fujinami RS, Odelberg SJ, Zhu W. Neuroinflammatory disease disrupts the blood-CNS barrier via crosstalk between proinflammatory and endothelial-to-mesenchymal-transition signaling. Neuron 2022; 110:3106-3120.e7. [PMID: 35961320 PMCID: PMC9547934 DOI: 10.1016/j.neuron.2022.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/09/2022] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
Breakdown of the blood-central nervous system barrier (BCNSB) is a hallmark of many neuroinflammatory disorders, such as multiple sclerosis (MS). Using a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), we show that endothelial-to-mesenchymal transition (EndoMT) occurs in the CNS before the onset of clinical symptoms and plays a major role in the breakdown of BCNSB function. EndoMT can be induced by an IL-1β-stimulated signaling pathway in which activation of the small GTPase ADP ribosylation factor 6 (ARF6) leads to crosstalk with the activin receptor-like kinase (ALK)-SMAD1/5 pathway. Inhibiting the activation of ARF6 both prevents and reverses EndoMT, stabilizes BCNSB function, reduces demyelination, and attenuates symptoms even after the establishment of severe EAE, without immunocompromising the host. Pan-inhibition of ALKs also reduces disease severity in the EAE model. Therefore, multiple components of the IL-1β-ARF6-ALK-SMAD1/5 pathway could be targeted for the treatment of a variety of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Zhonglou Sun
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Helong Zhao
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel Fang
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Chadwick T Davis
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Dallas S Shi
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kachon Lei
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Bianca E Rich
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob M Winter
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Li Guo
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Lise K Sorensen
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert J Pryor
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Nina Zhu
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Samuel Lu
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Laura L Dickey
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Zongzhong Tong
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Kirk R Thomas
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230039, China
| | - Thomas E Lane
- Navigen Inc., Salt Lake City, UT 84112, USA; Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Shannon J Odelberg
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| | - Weiquan Zhu
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
36
|
Feeney L, Hapuarachi B, Adderley H, Rack S, Morgan D, Walker R, Rauch R, Herz E, Kaye J, Harrington K, Metcalf R. Clinical disease course and survival outcomes following disease recurrence in adenoid cystic carcinoma with and without NOTCH signaling pathway activation. Oral Oncol 2022; 133:106028. [PMID: 35952580 DOI: 10.1016/j.oraloncology.2022.106028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) is a rare salivary cancer. The highest rates of disease recurrence are in patients with NOTCH pathway activation, reported in up to 20%. Novel drugs targeting NOTCH signaling are under investigation in the recurrent/metastatic (R/M) setting. To understand their clinical utility, there is an urgent need to better characterize the disease course and outcomes following current standard of care treatment. METHODS 120 patients with R/M ACC underwent clinical review at a single UK Cancer Centre. Patients were retrospectively assessed for tumor NOTCH pathway activation using next generation sequencing (NGS) targeting NOTCH1/2/3 genes and/or NOTCH1 intra-cellular domain (NICD1) immunohistochemistry. Demographic and treatment data were extracted from the clinical notes. Kaplan-Meier survival analysis was performed using log rank test. RESULTS NOTCH pathway activation was identified in 13/120 patients (11 %). In 12/101 patients analyzed by NGS, NOTCH1/3 activating somatic mutations were identified, and a further patient was identified with NICD1 diffuse nuclear staining in whom NGS testing was not possible. Patients with NOTCH pathway activation had shorter median RFS (1.1 vs 3.4 years, p = 0.2032) and significantly reduced median OS from diagnosis (4.0 vs 16.3 years, p < 0.0001). There was significantly reduced median OS from time of disease recurrence/metastasis (1.9 vs 9.6 years, p < 0.0001). CONCLUSION This study clearly demonstrates a reduction in OS from time of first confirmed disease recurrence/metastasis for patients with NOTCH pathway activated ACC. This provides support for developing new drugs for this sub-group of patients, for whom clinical outcomes are significantly worse and effective treatments are lacking.
Collapse
Affiliation(s)
- Laura Feeney
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | | | - Helen Adderley
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Sam Rack
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - David Morgan
- The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Russell Walker
- Ayala Pharmaceuticals, 4 Oppenheimer Street, Rehovot 7670104, Israel
| | - Rami Rauch
- Ayala Pharmaceuticals, 4 Oppenheimer Street, Rehovot 7670104, Israel
| | - Elad Herz
- Ayala Pharmaceuticals, 4 Oppenheimer Street, Rehovot 7670104, Israel
| | - Joel Kaye
- Ayala Pharmaceuticals, 4 Oppenheimer Street, Rehovot 7670104, Israel
| | - Kevin Harrington
- The Royal Marsden NHS Foundation Trust, Clyde Road, Wallington, London SM6, UK
| | - Robert Metcalf
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK.
| |
Collapse
|
37
|
Zheng K, Wang Y, Wang J, Wang C, Chen J. Integrated analysis of Helicobacter pylori-related prognostic gene modification patterns in the tumour microenvironment of gastric cancer. Front Surg 2022; 9:964203. [PMID: 36248367 PMCID: PMC9561901 DOI: 10.3389/fsurg.2022.964203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Helicobacter pylori (HP) infection is one of the leading causes of gastric cancer (GC). However, the interaction between HP and the TME, and its carcinogenic mechanism remains unknown. Methods The HP-related prognostic genes were identified based on HP infection-related gene markers and HP infection sample datasets by risk method and NMF algorithm. Principal component analysis (PCA) algorithm was used to constructed the HPscore system. The “limma” R package was employed to determine differentially expressed genes. In addition, the R packages, such as “xCell” and “GSVA”, was used to analyze the relationship between the HPscore and tumor microenvironment. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to verify the expression levels of 28 HP-related prognostic genes in tissues. Results We successfully identified 28 HP-related prognostic genes that accurately classified the GC population. There are significant differences in survival between different subgroups (high-, low-risk and cluster_1,2). Thereafter, the HPscore system was constructed to evaluate the signatures of the 28 HP-related prognostic genes. The overall survival rate in the high-HPscore group was poor and immunological surveillance was reduced, whereas the low-HPscore group had a survival advantage and was related to the inflammatory response. HPscore was also strongly correlated with the tumour stage, TME cell infiltration and stemness. The qRT-PCR results showed that DOCK4 expression level of 28 HP-related prognostic genes was higher in gastric cancer tissues than in adjacent tissues. Conclusions HP signatures play a crucial role in the TME and tumourigenesis. HPscore evaluation of a single tumour sample can help identify the TME characteristics and the carcinogenic mechanism of GC patients infected with HP, based on which personalized treatment can be administered.
Collapse
Affiliation(s)
- Kaitian Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiancheng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Congjun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Correspondence: Jun-Qiang Chen
| |
Collapse
|
38
|
Jiang N, Hu Y, Wang M, Zhao Z, Li M. The Notch Signaling Pathway Contributes to Angiogenesis and Tumor Immunity in Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022; 14:291-309. [PMID: 36193236 PMCID: PMC9526507 DOI: 10.2147/bctt.s376873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Breast cancer in women is the first leading tumor in terms of incidence worldwide. Some subtypes of BC lack distinct molecular targets and exhibit therapeutic resistance; these patients have a poor prognosis. Thus, the search for new molecular targets is an ongoing challenge for BC therapy. The Notch signaling pathway is found in both vertebrates and invertebrates, and it is a highly conserved in the evolution of the species, controlling cellular fates such as death, proliferation, and differentiation. Numerous studies have shown that improper activation of Notch signaling may lead to excessive cell proliferation and cancer, with tumor-promoting and tumor-suppressive effects in various carcinomas. Thus, inhibitors of Notch signaling are actively being investigated for the treatment of various tumors. The role of Notch signaling in BC has been widely studied in recent years. There is a growing body of evidence suggesting that Notch signaling has a pro-oncogenic role in BC, and the tumor-promoting effect is largely a result of the diverse nature of tumor immunity. Immunological abnormality is also a factor involved in the pathogenesis of BC, suggesting that Notch signaling could be a target for BC immunotherapies. Furthermore, angiogenesis is essential for BC growth and metastasis, and the Notch signaling pathway has been implicated in angiogenesis, so studying the role of Notch signaling in BC angiogenesis will provide new prospects for the treatment of BC. We summarize the potential roles of the current Notch signaling pathway and its inhibitors in BC angiogenesis and the immune response in this review and describe the pharmacological targets of Notch signaling in BC, which may serve as a theoretical foundation for future research into exploring this pathway for novel BC therapies.
Collapse
Affiliation(s)
- Nina Jiang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Ye Hu
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Meiling Wang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Zuowei Zhao
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Correspondence: Zuowei Zhao, Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| | - Man Li
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Man Li, Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| |
Collapse
|
39
|
Lania G, Franzese M, Noritaka A, Bilio M, Flore G, Russo A, D'Agostino E, Angelini C, Kelly RG, Baldini A. A phenotypic rescue approach identifies lineage regionalization defects in a mouse model of DiGeorge syndrome. Dis Model Mech 2022; 15:276264. [PMID: 35946435 PMCID: PMC9555768 DOI: 10.1242/dmm.049415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
TBX1 is a key regulator of pharyngeal apparatus (PhAp) development. Vitamin B12 (vB12) treatment partially rescues aortic arch patterning defects of Tbx1+/− embryos. Here, we show that it also improves cardiac outflow tract septation and branchiomeric muscle anomalies of Tbx1 hypomorphic mutants. At the molecular level, in vivo vB12 treatment enabled us to identify genes that were dysregulated by Tbx1 haploinsufficiency and rescued by treatment. We found that SNAI2, also known as SLUG, encoded by the rescued gene Snai2, identified a population of mesodermal cells that was partially overlapping with, but distinct from, ISL1+ and TBX1+ populations. In addition, SNAI2+ cells were mislocalized and had a greater tendency to aggregate in Tbx1+/− and Tbx1−/− embryos, and vB12 treatment restored cellular distribution. Adjacent neural crest-derived mesenchymal cells, which do not express TBX1, were also affected, showing enhanced segregation from cardiopharyngeal mesodermal cells. We propose that TBX1 regulates cell distribution in the core mesoderm and the arrangement of multiple lineages within the PhAp.
Collapse
Affiliation(s)
- Gabriella Lania
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Monica Franzese
- Istituto per le Applicazione del Calcolo, National Research Council (CNR), Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Adachi Noritaka
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Marchesa Bilio
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Gemma Flore
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Annalaura Russo
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Erika D'Agostino
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Claudia Angelini
- Istituto per le Applicazione del Calcolo, National Research Council (CNR), Naples, Italy
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Antonio Baldini
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| |
Collapse
|
40
|
Zhang W, Li QQ, Gao HY, Wang YC, Cheng M, Wang YX. The regulation of yes-associated protein/transcriptional coactivator with PDZ-binding motif and their roles in vascular endothelium. Front Cardiovasc Med 2022; 9:925254. [PMID: 35935626 PMCID: PMC9354077 DOI: 10.3389/fcvm.2022.925254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022] Open
Abstract
Normal endothelial function plays a pivotal role in maintaining cardiovascular homeostasis, while endothelial dysfunction causes the occurrence and development of cardiovascular diseases. Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) serve as crucial nuclear effectors in the Hippo signaling pathway, which are regulated by mechanical stress, extracellular matrix stiffness, drugs, and other factors. Increasing evidence supports that YAP/TAZ play an important role in the regulation of endothelial-related functions, including oxidative stress, inflammation, and angiogenesis. Herein, we systematically review the factors affecting YAP/TAZ, downstream target genes regulated by YAP/TAZ and the roles of YAP/TAZ in regulating endothelial functions, in order to provide novel potential targets and effective approaches to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Wen Zhang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Qian-qian Li
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Han-yi Gao
- Department of Rehabilitation Medicine, Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Yong-chun Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Cheng
- School of Basic Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Min Cheng,
| | - Yan-Xia Wang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
- Yan-Xia Wang,
| |
Collapse
|
41
|
刘 俊, 石 宇, 吴 敏, 徐 梦, 张 凤, 何 志, 唐 敏. [JAG1 promotes migration, invasion, and adhesion of triple-negative breast cancer cells by promoting angiogenesis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1100-1108. [PMID: 35869777 PMCID: PMC9308863 DOI: 10.12122/j.issn.1673-4254.2022.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of JAG1 on the malignant phenotype of triple-negative breast cancer (TNBC) and its role in angiogenesis in breast cancer microenvironment. METHODS The expressions of Notch molecules were detected in human TNBC 231 and 231B cells using RT-qPCR. Five female nude mice were inoculated with 231 cells and another 5 with 231B cells into the mammary fat pads, and 4-6 weeks later, the tumors were collected for immunohistochemical and immunofluorescence tests. 231 cells and 231B cells were treated with recombinant JAG (rJAG) protein and DAPT, respectively, and changes in their malignant phenotypes were assessed using CCK-8 assay, Hoechst 33258 staining, wound healing assay, Transwell chamber assay and endothelial cell adhesion assay. Western blotting was used to detect the changes in the expressions of proteins related with the malignant phenotypes of 231 and 231B cells. The effects of conditioned medium (CM) derived from untreated 231 and 231 B cells, rJAG1-treated 231 cells and DAPT-treated 231B cells on proliferation and tube formation ability of cultured human umbilical vein endothelial cells (HUVECs) were evaluated using CCK-8 assay and tube-forming assay. RESULTS The expression of JAG1 was higher in 231B cells than in 231 cells (P < 0.05). Tumor 231B showed higher expression of VEGFA and CD31. Compared with 231-Blank group, the migration, invasion and adhesion of 231 cells in 231-rJAG1 were significantly enhanced (P < 0.05). Protein levels of Twist1 and Snail increased (P < 0.01), anti-apoptotic protein Bcl-2 increased (P < 0.05), while DAPT inhibited the related phenomena and indicators of 231B. The 231-rJAG1-CM increased the cell number and tubule number of HUVEC (P < 0.05). CONCLUSION JAG1 may affect the malignant phenotype of TNBC and promote angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- 俊平 刘
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 宇彤 石
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 敏敏 吴
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 梦岐 徐
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 凤梅 张
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 志强 何
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 敏 唐
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
42
|
Arconada-Luque E, Jiménez-Suarez J, Pascual-Serra R, Nam-Cha SH, Moline T, Cimas FJ, Fliquete G, Ortega-Muelas M, Roche O, Fernández-Aroca DM, Muñoz Velasco R, García-Flores N, Garnés-García C, Sánchez-Fdez A, Matilla-Almazán S, Sánchez-Arévalo Lobo VJ, Hernández-Losa J, Belandia B, Pandiella A, Esparís-Ogando A, Ramón y Cajal S, del Peso L, Sánchez-Prieto R, Ruiz-Hidalgo MJ. ERK5 Is a Major Determinant of Chemical Sarcomagenesis: Implications in Human Pathology. Cancers (Basel) 2022; 14:cancers14143509. [PMID: 35884568 PMCID: PMC9316148 DOI: 10.3390/cancers14143509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Sarcoma is a heterogeneous group of tumors poorly studied with few therapeutic opportunities. Interestingly, the role of MAPKs still remains unclear in sarcomatous pathology. Here, we describe for the first time the critical role of ERK5 in the biology of soft tissue sarcoma by using in vitro and in vivo approaches in a murine experimental model of chemical sarcomagenesis. Indeed, our observations were extrapolated to a short series of human leiomyosarcoma and rhabdomyosarcomas. Furthermore, transcriptome analysis allows us to demonstrate the critical role of KLF2 in the biological effects of ERK5. Therefore, the data presented here open new windows in the diagnosis and therapy of soft tissue sarcomas. Abstract Sarcomas are a heterogeneous group of tumors in which the role of ERK5 is poorly studied. To clarify the role of this MAPK in sarcomatous pathology, we used a murine 3-methyl-cholanthrene (3MC)-induced sarcoma model. Our data show that 3MC induces pleomorphic sarcomas with muscle differentiation, showing an increased expression of ERK5. Indeed, this upregulation was also observed in human sarcomas of muscular origin, such as leiomyosarcoma or rhabdomyosarcoma. Moreover, in cell lines derived from these 3MC-induced tumors, abrogation of Mapk7 expression by using specific shRNAs decreased in vitro growth and colony-forming capacity and led to a marked loss of tumor growth in vivo. In fact, transcriptomic profiling in ERK5 abrogated cell lines by RNAseq showed a deregulated gene expression pattern for key biological processes such as angiogenesis, migration, motility, etc., correlating with a better prognostic in human pathology. Finally, among the various differentially expressed genes, Klf2 is a key mediator of the biological effects of ERK5 as indicated by its specific interference, demonstrating that the ERK5–KLF2 axis is an important determinant of sarcoma biology that should be further studied in human pathology.
Collapse
Affiliation(s)
- Elena Arconada-Luque
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Jaime Jiménez-Suarez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Raquel Pascual-Serra
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Syong Hyun Nam-Cha
- Servicio de Anatomía Patológica, Hospital General de Albacete, 02008 Albacete, Spain;
| | - Teresa Moline
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Francisco J. Cimas
- Unidad de Bioquímica y Biología Molecular, Servicio de Instrumentación Biomédica, Universidad de Castilla-La Mancha, 02008 Albacete, Spain;
| | - Germán Fliquete
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Marta Ortega-Muelas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Olga Roche
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Raúl Muñoz Velasco
- Grupo de Oncología Molecular, Facultad de Ciencias Experimentales, Instituto de Investigación Biosanitaria, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.M.V.); (V.J.S.-A.L.)
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain
| | - Natalia García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Cristina Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Adrián Sánchez-Fdez
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Sofía Matilla-Almazán
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Víctor J. Sánchez-Arévalo Lobo
- Grupo de Oncología Molecular, Facultad de Ciencias Experimentales, Instituto de Investigación Biosanitaria, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.M.V.); (V.J.S.-A.L.)
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Hernández-Losa
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain;
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Santiago Ramón y Cajal
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Luis del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain;
- Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias CIBERES, 28029 Madrid, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior de Investigaciones Científicas (IIBM-CSIC)-Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Correspondence:
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
43
|
Chen S, Zhang J, Li M, Zhou J, Zhang Y. Danhong injection combined with tPA protects the BBB through Notch-VEGF signaling pathway on long-term outcomes of thrombolytic therapy. Biomed Pharmacother 2022; 153:113288. [PMID: 35717787 DOI: 10.1016/j.biopha.2022.113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Current therapy for ischemic stroke primarily relies on tissue plasminogen activator (tPA), but it is limited by narrow treatment time window, bleeding complications and neurotoxicity. The preliminary study of tPA plus Danhong injection (DHI) shows that it can significantly reduce the side effects of tPA and improve its thrombolytic effect, but the mechanism of this action has not been further studied. In this study, the rats were randomly divided into sham group, vehicle group, DHI group (4 mL/kg), tPA group (5 mg/kg) and DHI+tPA group (4 mL/kg+ 2.5 mg/kg), administered intravenously 4.5 h since focal embolic stroke modeling. After 3 days and 7 days of cerebral ischemia, the neurological function of each treatment group was significantly improved compared with the vehicle group. The combination of DHI and tPA significantly reduced Evans blue (EB) penetration as well as the expressions of the proteins MMP-9, PAI-1 and P-selectin, while upregulating the expressions of claudin-5, occludin, and ZO-1 mRNA. Furthermore, the effect of continuous 7-day treatment was more conspicuous than 3-day treatment. Then, it significantly reduced the expressions of the proteins DLL-4 and VEGFR-2, increased the expressions of Notch-1, HIF-1α and HES-1 mRNA, and promoted the expressions of VEGF/HIF-1α-positive cells at 14 days following stroke. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) also showed that it improved pathological changes of ischemic brain tissue and the cerebral cortex micro-structure. These indicate that DHI combined with tPA may significantly ameliorate blood-brain barrier (BBB) disruption by activating Notch-VEGF signaling pathway to promote angiogenesis for long-term outcomes.
Collapse
Affiliation(s)
- Simiao Chen
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| | - Jinghui Zhang
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| | - Min Li
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| | - Jing Zhou
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| | - Yuyan Zhang
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| |
Collapse
|
44
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
45
|
Liu L, Sun Q, Davis F, Mao J, Zhao H, Ma D. Epithelial-mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. BURNS & TRAUMA 2022; 10:tkac011. [PMID: 35402628 PMCID: PMC8990740 DOI: 10.1093/burnst/tkac011] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Organ fibrosis is a process in which cellular homeostasis is disrupted and extracellular matrix is excessively deposited. Fibrosis can lead to vital organ failure and there are no effective treatments yet. Although epithelial–mesenchymal transition (EMT) may be one of the key cellular mechanisms, the underlying mechanisms of fibrosis remain largely unknown. EMT is a cell phenotypic process in which epithelial cells lose their cell-to-cell adhesion and polarization, after which they acquire mesenchymal features such as infiltration and migration ability. Upon injurious stimulation in different organs, EMT can be triggered by multiple signaling pathways and is also regulated by epigenetic mechanisms. This narrative review summarizes the current understanding of the underlying mechanisms of EMT in fibrogenesis and discusses potential strategies for attenuating EMT to prevent and/or inhibit fibrosis. Despite better understanding the role of EMT in fibrosis development, targeting EMT and beyond in developing therapeutics to tackle fibrosis is challenging but likely feasible.
Collapse
Affiliation(s)
- Lexin Liu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.,Department of Nephrology and Urology, Pediatric Urolith Center, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, 310003, China
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Frank Davis
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Jianhua Mao
- Department of Nephrology, The Children Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| |
Collapse
|
46
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 398] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
47
|
Shang Y, Zhang H, Cheng Y, Cao P, Cui J, Yin X, Fan S, Li Y. Fluorescent Imaging-Guided Chemo- and Photodynamic Therapy of Hepatocellular Carcinoma with HCPT@NMOFs-RGD Nanocomposites. Int J Nanomedicine 2022; 17:1381-1395. [PMID: 35369034 PMCID: PMC8964448 DOI: 10.2147/ijn.s353803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), arising from hepatocytes, is the most common primary liver cancer. It is urgent to develop novel therapeutic approaches to improve the grim prognosis of advanced HCC. 10-hydroxycamptothecin (HCPT) has good antitumor activity in cells; however, its hydrophobicity limits its application in the chemotherapy of HCC. Recently, nanoscale porphyrin metal-organic frameworks have been used as drug carriers due to their low biotoxicity and photodynamic properties. Methods Nanoscale zirconium porphyrin metal-organic frameworks (NMOFs) were coated with arginine-glycine-aspartic acid (RGD) peptide to prepare NMOFs-RGD first. The HepG2 cell line, zebrafish embryos and larvae were used to test the biotoxicity and fluorescence imaging capability of NMOFs-RGD both in vitro and in vivo. Then, NMOFs were used as the skeleton, HCPT was assembled into the pores of NMOFs, while RGD peptide was wrapped around to synthesize a novel kind of nanocomposites, HCPT@NMOFs-RGD. The tissue distribution and chemo- and photodynamic therapeutic effects of HCPT@NMOFs-RGD were evaluated in a doxycycline-induced zebrafish HCC model and xenograft mouse model. Results NMOFs-RGD had low biotoxicity, good biocompatibility and excellent imaging capability. In HCC-bearing zebrafish, HCPT@NMOFs-RGD were specifically enriched in the tumor by binding specifically to integrin αvβ3 and led to a reduction in tumor volume. Moreover, the xenografts in mice were eliminated remarkably following HCPT@NMOFs-RGD treatment with laser irradiation, while little morphological change was found in other main organs. Conclusion The nanocomposites HCPT@NMOFs-RGD accomplish tumor targeting and play synergistic chemo- and photodynamic therapeutic effects on HCC, offering a novel imaging-guided drug delivery and theranostic platform.
Collapse
Affiliation(s)
- Yue Shang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People’s Republic of China
| | - Hui Zhang
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai, People’s Republic of China
| | - Yajia Cheng
- Department of Pathology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Peipei Cao
- Department of Pathology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Jianlin Cui
- Department of Pathology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Xuebo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People’s Republic of China
| | - Yuhao Li
- Beijing Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Yuhao Li, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China, Tel +86-10-83198269, Email
| |
Collapse
|
48
|
Chen W, Gard JMC, Epshtein Y, Camp SM, Garcia JGN, Jacobson JR, Cress AE. Integrin Beta 4E Promotes Endothelial Phenotypic Changes and Attenuates Lung Endothelial Cell Inflammatory Responses. Front Physiol 2022; 13:769325. [PMID: 35250607 PMCID: PMC8895044 DOI: 10.3389/fphys.2022.769325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
We previously reported integrin beta 4 (ITGB4) is an important mediator of lung vascular protection by simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A-reductase inhibitor. In this study, we report increased endothelial cell (EC) expression specifically of ITGB4E, an ITGB4 mRNA splice variant, by simvastatin with effects on EC protein expression and inflammatory responses. In initial experiments, human pulmonary artery ECs were treated using simvastatin (5 μM, 24 h) prior to immunoprecipitation of integrin alpha 6 (ITGA6), which associates with ITGB4, and Western blotting for full-length ITGB4 and ITGB4E, uniquely characterized by a truncated 114 amino acid cytoplasmic domain. These experiments confirmed a significant increase in both full-length ITGB4 and ITGB4E. To investigate the effects of increased ITGB4E expression alone, ECs were transfected with ITGB4E or control vector, and cells were seeded in wells containing Matrigel to assess effects on angiogenesis or used for scratch assay to assess migration. Decreased angiogenesis and migration were observed in ITGB4E transfected ECs compared with controls. In separate experiments, PCR and Western blots from transfected cells demonstrated significant changes in EC protein expression associated with increased ITGB4E, including marked decreases in platelet endothelial cell adhesion molecule-1 (PECAM-1) and vascular endothelial-cadherin (VE-cadherin) as well as increased expression of E-cadherin and N-cadherin along with increased expression of the Slug and Snail transcription factors that promote endothelial-to-mesenchymal transition (EndMT). We, then, investigated the functional effects of ITGB4E overexpression on EC inflammatory responses and observed a significant attenuation of lipopolysaccharide (LPS)-induced mitogen-activated protein kinase (MAPK) activation, including decreased phosphorylation of both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), as well as reduced inflammatory cytokines (IL-6 and IL-8), expressed in the media of EC after either LPS or excessive cyclic stretch (CS). Finally, EC expression-increased ITGB4E demonstrated decreased barrier disruption induced by thrombin as measured by transendothelial electrical resistance. Our data support distinct EC phenotypic changes induced by ITGB4E that are also associated with an attenuation of cellular inflammatory responses. These findings implicate ITGB4E upregulation as an important mediator of lung EC protection by statins and may lead to novel therapeutic strategies for patients with or at risk for acute lung injury (ALI).
Collapse
Affiliation(s)
- Weiguo Chen
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Jamie M. C. Gard
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Yulia Epshtein
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jeffrey R. Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Jeffrey R. Jacobson,
| | - Anne E. Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
49
|
Azad AK, Farhan MA, Murray CR, Suzuki K, Eitzen G, Touret N, Moore RB, Murray AG. FGD5 regulates endothelial cell PI3 kinase-β to promote neo-angiogenesis. FASEB J 2021; 36:e22080. [PMID: 34882832 DOI: 10.1096/fj.202100554r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022]
Abstract
Angiogenesis is required in embryonic development and tissue repair in the adult. Vascular endothelial growth factor (VEGF) initiates angiogenesis, and VEGF or its receptor is targeted therapeutically to block pathological angiogenesis. Additional pro-angiogenic cues, such as CXCL12 acting via the CXCR4 receptor, co-operate with VEGF/VEGFR2 to cue vascular patterning. We studied the role of FGD5, an endothelial Rho GTP/GDP exchange factor (RhoGEF), to regulate CXCR4-dependent signals in the endothelial cell (EC). Patient-derived renal cell carcinomas produce a complex milieu of growth factors that stimulated sprouting angiogenesis and endothelial tip cell differentiation ex vivo that was blocked by EC FGD5 loss. In a simplified model, CXCL12 augmented sprouting and tip gene expression under conditions where VEGF was limiting. CXCL12-stimulated tip cell differentiation was dependent on PI3 kinase (PI3K)-β activity. Knockdown of EC FGD5 abolished CXCR4 signaling to PI3K-β and Akt. Further, inhibition of Rac1, a Rho GTPase required for PI3K-β activity, recapitulated the signaling defects of FGD5 deficiency, suggesting that FGD5 may regulate PI3K-β activity through Rac1. Overexpression of a RhoGEF deficient, Dbl domain-deleted FGD5 mutant reduced CXCL12-stimulated Akt phosphorylation and failed to rescue PI3K signaling in native FGD5-deficient EC, indicating that FGD5 RhoGEF activity is required for FDG5 function. Endothelial expression of mutant PI3K-β with an inactivated Rho binding domain confirmed that CXCL12-stimulated PI3K activity in EC requires Rac1-GTP co-regulation. Together, this data identify the role of FGD5 to generate Rac1-GTP to regulate pro-angiogenic CXCR4-dependent PI3K-β signaling in EC. Inhibition of FGD5 activity may complement current angiogenesis inhibitor drugs.
Collapse
Affiliation(s)
- Abul K Azad
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Maikel A Farhan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R Murray
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ronald B Moore
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Allan G Murray
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
50
|
Song X, An Y, Chen D, Zhang W, Wu X, Li C, Wang S, Dong W, Wang B, Liu T, Zhong W, Sun T, Cao H. Microbial metabolite deoxycholic acid promotes vasculogenic mimicry formation in intestinal carcinogenesis. Cancer Sci 2021; 113:459-477. [PMID: 34811848 PMCID: PMC8819290 DOI: 10.1111/cas.15208] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
A high-fat diet (HFD) leads to long-term exposure to gut microbial metabolite secondary bile acids, such as deoxycholic acid (DCA), in the intestine, which is closely linked to colorectal cancer (CRC). Evidence reveals that vasculogenic mimicry (VM) is a critical event for the malignant transformation of cancer. Therefore, this study investigated the crucial roles of DCA in the regulation of VM and the progression of intestinal carcinogenesis. The effects of an HFD on VM formation and epithelial-mesenchymal transition (EMT) in human CRC tissues were investigated. The fecal DCA level was detected in HFD-treated Apcmin/+ mice. Then the effects of DCA on VM formation, EMT, and vascular endothelial growth factor receptor 2 (VEGFR2) signaling were evaluated in vitro and in vivo. Here we demonstrated that compared with a normal diet, an HFD exacerbated VM formation and EMT in CRC patients. An HFD could alter the composition of the gut microbiota and significantly increase the fecal DCA level in Apcmin/+ mice. More importantly, DCA promoted tumor cell proliferation, induced EMT, increased VM formation, and activated VEGFR2, which led to intestinal carcinogenesis. In addition, DCA enhanced the proliferation and migration of HCT-116 cells, and induced EMT process and vitro tube formation. Furthermore, the silence of VEGFR2 reduced DCA-induced EMT, VM formation, and migration. Collectively, our results indicated that microbial metabolite DCA promoted VM formation and EMT through VEGFR2 activation, which further exacerbated intestinal carcinogenesis.
Collapse
Affiliation(s)
- Xueli Song
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Chuqiao Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University, Tianjin, China
| |
Collapse
|