1
|
Miller RC, Temenoff JS. Biomaterials for Cell Manufacturing. ACS Macro Lett 2024:1521-1530. [PMID: 39466845 DOI: 10.1021/acsmacrolett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Cell therapies, potent populations of cells used to treat disease and injury, can be strategically manufactured with biomaterial intervention to improve clinical translation. In this viewpoint, we discuss biomaterial design and integration into cell manufacturing steps to achieve three main goals: scale-up, phenotype control, and selection of potent cells. Material properties can be engineered to influence the cell-biomaterial interface and, therefore, impart desirable cell behavior such as growth, secretory activity, and differentiation. Future directions for the field should capitalize on the combinatorial design of biomaterial properties to yield highly specific and potent cell populations. Furthermore, future biomaterials could contribute to novel high-throughput cell separation technologies that can individually select the most therapeutically relevant cells within a produced batch.
Collapse
Affiliation(s)
- Ryan C Miller
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Ivanov IE, Hirata-Miyasaki E, Chandler T, Cheloor-Kovilakam R, Liu Z, Pradeep S, Liu C, Bhave M, Khadka S, Arias C, Leonetti MD, Huang B, Mehta SB. Mantis: High-throughput 4D imaging and analysis of the molecular and physical architecture of cells. PNAS NEXUS 2024; 3:pgae323. [PMID: 39282007 PMCID: PMC11393572 DOI: 10.1093/pnasnexus/pgae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/17/2024] [Indexed: 09/18/2024]
Abstract
High-throughput dynamic imaging of cells and organelles is essential for understanding complex cellular responses. We report Mantis, a high-throughput 4D microscope that integrates two complementary, gentle, live-cell imaging technologies: remote-refocus label-free microscopy and oblique light-sheet fluorescence microscopy. Additionally, we report shrimPy (Smart High-throughput Robust Imaging and Measurement in Python), an open-source software for high-throughput imaging, deconvolution, and single-cell phenotyping of 4D data. Using Mantis and shrimPy, we achieved high-content correlative imaging of molecular dynamics and the physical architecture of 20 cell lines every 15 min over 7.5 h. This platform also facilitated detailed measurements of the impacts of viral infection on the architecture of host cells and host proteins. The Mantis platform can enable high-throughput profiling of intracellular dynamics, long-term imaging and analysis of cellular responses to perturbations, and live-cell optical screens to dissect gene regulatory networks.
Collapse
Affiliation(s)
- Ivan E Ivanov
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | | | - Talon Chandler
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | - Rasmi Cheloor-Kovilakam
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ziwen Liu
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | - Soorya Pradeep
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | - Chad Liu
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | - Madhura Bhave
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | - Sudip Khadka
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | - Carolina Arias
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | | | - Bo Huang
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shalin B Mehta
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Wang Y, Zhao J, Xu H, Han C, Tao Z, Zhou D, Geng T, Liu D, Ji Z. A systematic evaluation of computational methods for cell segmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577670. [PMID: 38352578 PMCID: PMC10862744 DOI: 10.1101/2024.01.28.577670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cell segmentation is a fundamental task in analyzing biomedical images. Many computational methods have been developed for cell segmentation and instance segmentation, but their performances are not well understood in various scenarios. We systematically evaluated the performance of 18 segmentation methods to perform cell nuclei and whole cell segmentation using light microscopy and fluorescence staining images. We found that general-purpose methods incorporating the attention mechanism exhibit the best overall performance. We identified various factors influencing segmentation performances, including image channels, choice of training data, and cell morphology, and evaluated the generalizability of methods across image modalities. We also provide guidelines for choosing the optimal segmentation methods in various real application scenarios. We developed Seggal, an online resource for downloading segmentation models already pre-trained with various tissue and cell types, substantially reducing the time and effort for training cell segmentation models.
Collapse
Affiliation(s)
- Yuxing Wang
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Junhan Zhao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Hongye Xu
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Cheng Han
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Zhiqiang Tao
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Dawei Zhou
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tong Geng
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Dongfang Liu
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Lo MCK, Siu DMD, Lee KCM, Wong JSJ, Yeung MCF, Hsin MKY, Ho JCM, Tsia KK. Information-Distilled Generative Label-Free Morphological Profiling Encodes Cellular Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307591. [PMID: 38864546 PMCID: PMC11304271 DOI: 10.1002/advs.202307591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/17/2024] [Indexed: 06/13/2024]
Abstract
Image-based cytometry faces challenges due to technical variations arising from different experimental batches and conditions, such as differences in instrument configurations or image acquisition protocols, impeding genuine biological interpretation of cell morphology. Existing solutions, often necessitating extensive pre-existing data knowledge or control samples across batches, have proved limited, especially with complex cell image data. To overcome this, "Cyto-Morphology Adversarial Distillation" (CytoMAD), a self-supervised multi-task learning strategy that distills biologically relevant cellular morphological information from batch variations, is introduced to enable integrated analysis across multiple data batches without complex data assumptions or extensive manual annotation. Unique to CytoMAD is its "morphology distillation", symbiotically paired with deep-learning image-contrast translation-offering additional interpretable insights into label-free cell morphology. The versatile efficacy of CytoMAD is demonstrated in augmenting the power of biophysical imaging cytometry. It allows integrated label-free classification of human lung cancer cell types and accurately recapitulates their progressive drug responses, even when trained without the drug concentration information. CytoMAD also allows joint analysis of tumor biophysical cellular heterogeneity, linked to epithelial-mesenchymal plasticity, that standard fluorescence markers overlook. CytoMAD can substantiate the wide adoption of biophysical cytometry for cost-effective diagnosis and screening.
Collapse
Affiliation(s)
- Michelle C. K. Lo
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Dickson M. D. Siu
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Kelvin C. M. Lee
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Justin S. J. Wong
- Conzeb LimitedHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Maximus C. F. Yeung
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam RoadHong Kong000000Hong Kong
| | - Michael K. Y. Hsin
- Department of Surgery, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam RoadHong Kong000000Hong Kong
| | - James C. M. Ho
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam RoadHong Kong000000Hong Kong
| | - Kevin K. Tsia
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| |
Collapse
|
5
|
Elmalam N, Ben Nedava L, Zaritsky A. In silico labeling in cell biology: Potential and limitations. Curr Opin Cell Biol 2024; 89:102378. [PMID: 38838549 DOI: 10.1016/j.ceb.2024.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
In silico labeling is the computational cross-modality image translation where the output modality is a subcellular marker that is not specifically encoded in the input image, for example, in silico localization of organelles from transmitted light images. In principle, in silico labeling has the potential to facilitate rapid live imaging of multiple organelles with reduced photobleaching and phototoxicity, a technology enabling a major leap toward understanding the cell as an integrated complex system. However, five years have passed since feasibility was attained, without any demonstration of using in silico labeling to uncover new biological insight. In here, we discuss the current state of in silico labeling, the limitations preventing it from becoming a practical tool, and how we can overcome these limitations to reach its full potential.
Collapse
Affiliation(s)
- Nitsan Elmalam
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lion Ben Nedava
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
6
|
Li Z, Casteleiro Costa P, Guang Z, Filan C, Robles FE. GAN-based quantitative oblique back-illumination microscopy enables computationally efficient epi-mode refractive index tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:4764-4774. [PMID: 39346989 PMCID: PMC11427205 DOI: 10.1364/boe.528968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 10/01/2024]
Abstract
Quantitative oblique back-illumination microscopy (qOBM) is a novel imaging technology that enables epi-mode 3D quantitative phase imaging and refractive index (RI) tomography of thick scattering samples. The technology uses four oblique back illumination images captured at the same focal plane and a fast 2D deconvolution reconstruction algorithm to reconstruct 2D phase cross-sections of thick samples. Alternatively, a through-focus z-stack of oblique back illumination images can be used to recover 3D RI tomograms with improved RI quantitative fidelity at the cost of a more computationally expensive reconstruction algorithm. Here, we report on a generative adversarial network (GAN) assisted approach to reconstruct 3D RI tomograms with qOBM that achieves high fidelity and greatly reduces processing time. The proposed approach achieves high-fidelity 3D RI tomography using differential phase contrast images from three adjacent z-planes. A ∼9-fold improvement in volumetric reconstruction time is achieved. We further show that this technique provides high SNR RI tomograms with high quantitative fidelity, reduces motion artifacts, and generalizes to different tissue types. This work can lead to real-time, high-fidelity RI tomographic imaging for in-vivo pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Zhenmin Li
- School of Electrical and Computer Engineering, Georgia Institute of Technology, USA
| | | | - Zhe Guang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| | - Caroline Filan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA
| | - Francisco E Robles
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| |
Collapse
|
7
|
Wang Y, Zhao J, Xu H, Han C, Tao Z, Zhou D, Geng T, Liu D, Ji Z. A systematic evaluation of computational methods for cell segmentation. Brief Bioinform 2024; 25:bbae407. [PMID: 39154193 PMCID: PMC11330341 DOI: 10.1093/bib/bbae407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
Cell segmentation is a fundamental task in analyzing biomedical images. Many computational methods have been developed for cell segmentation and instance segmentation, but their performances are not well understood in various scenarios. We systematically evaluated the performance of 18 segmentation methods to perform cell nuclei and whole cell segmentation using light microscopy and fluorescence staining images. We found that general-purpose methods incorporating the attention mechanism exhibit the best overall performance. We identified various factors influencing segmentation performances, including image channels, choice of training data, and cell morphology, and evaluated the generalizability of methods across image modalities. We also provide guidelines for choosing the optimal segmentation methods in various real application scenarios. We developed Seggal, an online resource for downloading segmentation models already pre-trained with various tissue and cell types, substantially reducing the time and effort for training cell segmentation models.
Collapse
Affiliation(s)
- Yuxing Wang
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, United States
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Junhan Zhao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Hongye Xu
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Cheng Han
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Zhiqiang Tao
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Dawei Zhou
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Tong Geng
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Dongfang Liu
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
8
|
Iyer RR, Applegate CC, Arogundade OH, Bangru S, Berg IC, Emon B, Porras-Gomez M, Hsieh PH, Jeong Y, Kim Y, Knox HJ, Moghaddam AO, Renteria CA, Richard C, Santaliz-Casiano A, Sengupta S, Wang J, Zambuto SG, Zeballos MA, Pool M, Bhargava R, Gaskins HR. Inspiring a convergent engineering approach to measure and model the tissue microenvironment. Heliyon 2024; 10:e32546. [PMID: 38975228 PMCID: PMC11226808 DOI: 10.1016/j.heliyon.2024.e32546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H. Arogundade
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian C. Berg
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pei-Hsuan Hsieh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hailey J. Knox
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amir Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carlos A. Renteria
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Craig Richard
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marcia Pool
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biochemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - H. Rex Gaskins
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Huang Z, Cao L. Quantitative phase imaging based on holography: trends and new perspectives. LIGHT, SCIENCE & APPLICATIONS 2024; 13:145. [PMID: 38937443 PMCID: PMC11211409 DOI: 10.1038/s41377-024-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 06/29/2024]
Abstract
In 1948, Dennis Gabor proposed the concept of holography, providing a pioneering solution to a quantitative description of the optical wavefront. After 75 years of development, holographic imaging has become a powerful tool for optical wavefront measurement and quantitative phase imaging. The emergence of this technology has given fresh energy to physics, biology, and materials science. Digital holography (DH) possesses the quantitative advantages of wide-field, non-contact, precise, and dynamic measurement capability for complex-waves. DH has unique capabilities for the propagation of optical fields by measuring light scattering with phase information. It offers quantitative visualization of the refractive index and thickness distribution of weak absorption samples, which plays a vital role in the pathophysiology of various diseases and the characterization of various materials. It provides a possibility to bridge the gap between the imaging and scattering disciplines. The propagation of wavefront is described by the complex amplitude. The complex-value in the complex-domain is reconstructed from the intensity-value measurement by camera in the real-domain. Here, we regard the process of holographic recording and reconstruction as a transformation between complex-domain and real-domain, and discuss the mathematics and physical principles of reconstruction. We review the DH in underlying principles, technical approaches, and the breadth of applications. We conclude with emerging challenges and opportunities based on combining holographic imaging with other methodologies that expand the scope and utility of holographic imaging even further. The multidisciplinary nature brings technology and application experts together in label-free cell biology, analytical chemistry, clinical sciences, wavefront sensing, and semiconductor production.
Collapse
Affiliation(s)
- Zhengzhong Huang
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Ivanov IE, Hirata-Miyasaki E, Chandler T, Cheloor-Kovilakam R, Liu Z, Pradeep S, Liu C, Bhave M, Khadka S, Arias C, Leonetti MD, Huang B, Mehta SB. Mantis: high-throughput 4D imaging and analysis of the molecular and physical architecture of cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.19.572435. [PMID: 38187521 PMCID: PMC10769231 DOI: 10.1101/2023.12.19.572435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
High-throughput dynamic imaging of cells and organelles is essential for understanding complex cellular responses. We report Mantis, a high-throughput 4D microscope that integrates two complementary, gentle, live-cell imaging technologies: remote-refocus label-free microscopy and oblique light-sheet fluorescence microscopy. Additionally, we report shrimPy, an open-source software for high-throughput imaging, deconvolution, and single-cell phenotyping of 4D data. Using Mantis and shrimPy, we achieved high-content correlative imaging of molecular dynamics and the physical architecture of 20 cell lines every 15 minutes over 7.5 hours. This platform also facilitated detailed measurements of the impacts of viral infection on the architecture of host cells and host proteins. The Mantis platform can enable high-throughput profiling of intracellular dynamics, long-term imaging and analysis of cellular responses to perturbations, and live-cell optical screens to dissect gene regulatory networks.
Collapse
Affiliation(s)
- Ivan E. Ivanov
- Chan Zuckerberg Biohub San Francisco, San Francisco, United States
| | | | - Talon Chandler
- Chan Zuckerberg Biohub San Francisco, San Francisco, United States
| | - Rasmi Cheloor-Kovilakam
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Ziwen Liu
- Chan Zuckerberg Biohub San Francisco, San Francisco, United States
| | - Soorya Pradeep
- Chan Zuckerberg Biohub San Francisco, San Francisco, United States
| | - Chad Liu
- Chan Zuckerberg Biohub San Francisco, San Francisco, United States
| | - Madhura Bhave
- Chan Zuckerberg Biohub San Francisco, San Francisco, United States
| | - Sudip Khadka
- Chan Zuckerberg Biohub San Francisco, San Francisco, United States
| | - Carolina Arias
- Chan Zuckerberg Biohub San Francisco, San Francisco, United States
| | | | - Bo Huang
- Chan Zuckerberg Biohub San Francisco, San Francisco, United States
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Shalin B. Mehta
- Chan Zuckerberg Biohub San Francisco, San Francisco, United States
| |
Collapse
|
11
|
Raj P, Paidi SK, Conway L, Chatterjee A, Barman I. CellSNAP: a fast, accurate algorithm for 3D cell segmentation in quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22706. [PMID: 38638450 PMCID: PMC11025678 DOI: 10.1117/1.jbo.29.s2.s22706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
Significance Three-dimensional quantitative phase imaging (QPI) has rapidly emerged as a complementary tool to fluorescence imaging, as it provides an objective measure of cell morphology and dynamics, free of variability due to contrast agents. It has opened up new directions of investigation by providing systematic and correlative analysis of various cellular parameters without limitations of photobleaching and phototoxicity. While current QPI systems allow the rapid acquisition of tomographic images, the pipeline to analyze these raw three-dimensional (3D) tomograms is not well-developed. We focus on a critical, yet often underappreciated, step of the analysis pipeline that of 3D cell segmentation from the acquired tomograms. Aim We report the CellSNAP (Cell Segmentation via Novel Algorithm for Phase Imaging) algorithm for the 3D segmentation of QPI images. Approach The cell segmentation algorithm mimics the gemstone extraction process, initiating with a coarse 3D extrusion from a two-dimensional (2D) segmented mask to outline the cell structure. A 2D image is generated, and a segmentation algorithm identifies the boundary in the x - y plane. Leveraging cell continuity in consecutive z -stacks, a refined 3D segmentation, akin to fine chiseling in gemstone carving, completes the process. Results The CellSNAP algorithm outstrips the current gold standard in terms of speed, robustness, and implementation, achieving cell segmentation under 2 s per cell on a single-core processor. The implementation of CellSNAP can easily be parallelized on a multi-core system for further speed improvements. For the cases where segmentation is possible with the existing standard method, our algorithm displays an average difference of 5% for dry mass and 8% for volume measurements. We also show that CellSNAP can handle challenging image datasets where cells are clumped and marred by interferogram drifts, which pose major difficulties for all QPI-focused AI-based segmentation tools. Conclusion Our proposed method is less memory intensive and significantly faster than existing methods. The method can be easily implemented on a student laptop. Since the approach is rule-based, there is no need to collect a lot of imaging data and manually annotate them to perform machine learning based training of the model. We envision our work will lead to broader adoption of QPI imaging for high-throughput analysis, which has, in part, been stymied by a lack of suitable image segmentation tools.
Collapse
Affiliation(s)
- Piyush Raj
- Johns Hopkins University, Department of Mechanical Engineering, Baltimore, Maryland, United States
| | - Santosh Kumar Paidi
- Johns Hopkins University, Department of Mechanical Engineering, Baltimore, Maryland, United States
| | - Lauren Conway
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, Baltimore, Maryland, United States
| | - Arnab Chatterjee
- Johns Hopkins University, Department of Mechanical Engineering, Baltimore, Maryland, United States
| | - Ishan Barman
- Johns Hopkins University, Department of Mechanical Engineering, Baltimore, Maryland, United States
- The Johns Hopkins University, School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, United States
- Johns Hopkins University, Department of Oncology, Baltimore, Maryland, United States
| |
Collapse
|
12
|
Goswami N, Anastasio MA, Popescu G. Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: a review-part I. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22713. [PMID: 39026612 PMCID: PMC11257415 DOI: 10.1117/1.jbo.29.s2.s22713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024]
Abstract
Significance Quantitative phase imaging (QPI) techniques offer intrinsic information about the sample of interest in a label-free, noninvasive manner and have an enormous potential for wide biomedical applications with negligible perturbations to the natural state of the sample in vitro. Aim We aim to present an in-depth review of the scattering formulation of light-matter interactions as applied to biological samples such as cells and tissues, discuss the relevant quantitative phase measurement techniques, and present a summary of various reported applications. Approach We start with scattering theory and scattering properties of biological samples followed by an exploration of various microscopy configurations for 2D QPI for measurement of structure and dynamics. Results We reviewed 157 publications and presented a range of QPI techniques and discussed suitable applications for each. We also presented the theoretical frameworks for phase reconstruction associated with the discussed techniques and highlighted their domains of validity. Conclusions We provide detailed theoretical as well as system-level information for a wide range of QPI techniques. Our study can serve as a guideline for new researchers looking for an exhaustive literature review of QPI methods and relevant applications.
Collapse
Affiliation(s)
- Neha Goswami
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Mark A. Anastasio
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| |
Collapse
|
13
|
Xin L, Xiao X, Xiao W, Peng R, Wang H, Pan F. Screening for urothelial carcinoma cells in urine based on digital holographic flow cytometry through machine learning and deep learning methods. LAB ON A CHIP 2024; 24:2736-2746. [PMID: 38660758 DOI: 10.1039/d3lc00854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The incidence of urothelial carcinoma continues to rise annually, particularly among the elderly. Prompt diagnosis and treatment can significantly enhance patient survival and quality of life. Urine cytology remains a widely-used early screening method for urothelial carcinoma, but it still has limitations including sensitivity, labor-intensive procedures, and elevated cost. In recent developments, microfluidic chip technology offers an effective and efficient approach for clinical urine specimen analysis. Digital holographic microscopy, a form of quantitative phase imaging technology, captures extensive data on the refractive index and thickness of cells. The combination of microfluidic chips and digital holographic microscopy facilitates high-throughput imaging of live cells without staining. In this study, digital holographic flow cytometry was employed to rapidly capture images of diverse cell types present in urine and to reconstruct high-precision quantitative phase images for each cell type. Then, various machine learning algorithms and deep learning models were applied to categorize these cell images, and remarkable accuracy in cancer cell identification was achieved. This research suggests that the integration of digital holographic flow cytometry with artificial intelligence algorithms offers a promising, precise, and convenient approach for early screening of urothelial carcinoma.
Collapse
Affiliation(s)
- Lu Xin
- Key Laboratory of Precision Opto-mechatronics Technology, Beihang University, Beijing 100191, China.
| | - Xi Xiao
- Peking University Third Hospital, Department of Radiation Oncology, Beijing 100191, China.
| | - Wen Xiao
- Key Laboratory of Precision Opto-mechatronics Technology, Beihang University, Beijing 100191, China.
| | - Ran Peng
- Peking University Third Hospital, Department of Radiation Oncology, Beijing 100191, China.
| | - Hao Wang
- Peking University Third Hospital, Department of Radiation Oncology, Beijing 100191, China.
- Peking University Third Hospital, Cancer Center, Beijing 100191, China
| | - Feng Pan
- Key Laboratory of Precision Opto-mechatronics Technology, Beihang University, Beijing 100191, China.
| |
Collapse
|
14
|
Giugliano G, Schiavo M, Pirone D, Běhal J, Bianco V, Montefusco S, Memmolo P, Miccio L, Ferraro P, Medina DL. Investigation on lysosomal accumulation by a quantitative analysis of 2D phase-maps in digital holography microscopy. Cytometry A 2024; 105:323-331. [PMID: 38420869 DOI: 10.1002/cyto.a.24833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Lysosomes are the terminal end of catabolic pathways in the cell, as well as signaling centers performing important functions such as the recycling of macromolecules, organelles, and nutrient adaptation. The importance of lysosomes in human health is supported by the fact that the deficiency of most lysosomal genes causes monogenic diseases called as a group Lysosomal Storage Diseases (LSDs). A common phenotypic hallmark of LSDs is the expansion of the lysosomal compartment that can be detected by using conventional imaging methods based on immunofluorescence protocols or overexpression of tagged lysosomal proteins. These methods require the alteration of the cellular architecture (i.e., due to fixation methods), can alter the behavior of cells (i.e., by the overexpression of proteins), and require sample preparation and the accurate selection of compatible fluorescent markers in relation to the type of analysis, therefore limiting the possibility of characterizing cellular status with simplicity. Therefore, a quantitative and label-free methodology, such as Quantitative Phase Imaging through Digital Holographic (QPI-DH), for the microscopic imaging of lysosomes in health and disease conditions may represent an important advance to study and effectively diagnose the presence of lysosomal storage in human disease. Here we proof the effectiveness of the QPI-DH method in accomplishing the detection of the lysosomal compartment using mouse embryonic fibroblasts (MEFs) derived from a Mucopolysaccharidosis type III-A (MSP-IIIA) mouse model, and comparing them with wild-type (WT) MEFs. We found that it is possible to identify label-free biomarkers able to supply a first pre-screening of the two populations, thus showing that QPI-DH can be a suitable candidate to surpass fluorescent drawbacks in the detection of lysosomes dysfunction. An appropriate numerical procedure was developed for detecting and evaluate such cellular substructures from in vitro cells cultures. Results reported in this study are encouraging about the further development of the proposed QPI-DH approach for such type of investigations about LSDs.
Collapse
Affiliation(s)
- Giusy Giugliano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Michela Schiavo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Jaromír Běhal
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
- Department of Optics, Palacký University, Olomouc, Czech Republic
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| |
Collapse
|
15
|
Pradeep S, Zangle TA. LVING reveals the intracellular structure of cell growth. Sci Rep 2024; 14:8544. [PMID: 38609444 PMCID: PMC11014851 DOI: 10.1038/s41598-024-58992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The continuous balance of growth and degradation inside cells maintains homeostasis. Disturbance of this balance by internal or external factors cause state of disease, while effective disease treatments seek to restore this balance. Here, we present a method based on quantitative phase imaging (QPI) based measurements of cell mass and the velocity of mass transport to quantify the balance of growth and degradation within intracellular control volumes. The result, which we call Lagrangian velocimetry for intracellular net growth (LVING), provides high resolution maps of intracellular biomass production and degradation. We use LVING to quantify the growth in different regions of the cell during phases of the cell cycle. LVING can also be used to quantitatively compare the effect of range of chemotherapy drug doses on subcellular growth processes. Finally, we applied LVING to characterize the effect of autophagy on the growth machinery inside cells. Overall, LVING reveals both the structure and distribution of basal growth within cells, as well as the disruptions to this structure that occur during alterations in cell state.
Collapse
Affiliation(s)
- Soorya Pradeep
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
16
|
Zhang L, Li S, Wang H, Jia X, Guo B, Yang Z, Fan C, Zhao H, Zhao Z, Zhang Z, Yuan L. The virtual staining method by quantitative phase imaging for label free lymphocytes based on self-supervised iteration cycle-consistent adversarial networks. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:045103. [PMID: 38557883 DOI: 10.1063/5.0159400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Quantitative phase imaging (QPI) provides 3D structural and morphological information for label free living cells. Unfortunately, this quantitative phase information cannot meet doctors' diagnostic requirements of the clinical "gold standard," which displays stained cells' pathological states based on 2D color features. To make QPI results satisfy the clinical "gold standard," the virtual staining method by QPI for label free lymphocytes based on self-supervised iteration Cycle-Consistent Adversarial Networks (CycleGANs) is proposed herein. The 3D phase information of QPI is, therefore, trained and transferred to a kind of 2D "virtual staining" image that is well in agreement with "gold standard" results. To solve the problem that unstained QPI and stained "gold standard" results cannot be obtained for the same label free living cell, the self-supervised iteration for the CycleGAN deep learning algorithm is designed to obtain a trained stained result as the ground truth for error evaluation. The structural similarity index of our virtual staining experimental results for 8756 lymphocytes is 0.86. Lymphocytes' area errors after converting to 2D virtual stained results from 3D phase information are less than 3.59%. The mean error of the nuclear to cytoplasmic ratio is 2.69%, and the color deviation from the "gold standard" is less than 6.67%.
Collapse
Affiliation(s)
- Lu Zhang
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shengjie Li
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huijun Wang
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xinhu Jia
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bohuan Guo
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zewen Yang
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chen Fan
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hong Zhao
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zixin Zhao
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Li Yuan
- Clinical Lab, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
17
|
Goswami N, Winston N, Choi W, Lai NZE, Arcanjo RB, Chen X, Sobh N, Nowak RA, Anastasio MA, Popescu G. EVATOM: an optical, label-free, machine learning assisted embryo health assessment tool. Commun Biol 2024; 7:268. [PMID: 38443460 PMCID: PMC10915136 DOI: 10.1038/s42003-024-05960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
The combination of a good quality embryo and proper maternal health factors promise higher chances of a successful in vitro fertilization (IVF) procedure leading to clinical pregnancy and live birth. Of these two factors, selection of a good embryo is a controllable aspect. The current gold standard in clinical practice is visual assessment of an embryo based on its morphological appearance by trained embryologists. More recently, machine learning has been incorporated into embryo selection "packages". Here, we report EVATOM: a machine-learning assisted embryo health assessment tool utilizing an optical quantitative phase imaging technique called artificial confocal microscopy (ACM). We present a label-free nucleus detection method with, to the best of our knowledge, novel quantitative embryo health biomarkers. Two viability assessment models are presented for grading embryos into two classes: healthy/intermediate (H/I) or sick (S) class. The models achieve a weighted F1 score of 1.0 and 0.99 respectively on the in-distribution test set of 72 fixed embryos and a weighted F1 score of 0.9 and 0.95 respectively on the out-of-distribution test dataset of 19 time-instances from 8 live embryos.
Collapse
Affiliation(s)
- Neha Goswami
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Nicola Winston
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Wonho Choi
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nastasia Z E Lai
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rachel B Arcanjo
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Xi Chen
- Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14850, USA
| | - Nahil Sobh
- NCSA Center for Artificial Intelligence Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
18
|
Pirone D, Bianco V, Miccio L, Memmolo P, Psaltis D, Ferraro P. Beyond fluorescence: advances in computational label-free full specificity in 3D quantitative phase microscopy. Curr Opin Biotechnol 2024; 85:103054. [PMID: 38142647 DOI: 10.1016/j.copbio.2023.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
Despite remarkable progresses in quantitative phase imaging (QPI) microscopes, their wide acceptance is limited due to the lack of specificity compared with the well-established fluorescence microscopy. In fact, the absence of fluorescent tag prevents to identify subcellular structures in single cells, making challenging the interpretation of label-free 2D and 3D phase-contrast data. Great effort has been made by many groups worldwide to address and overcome such limitation. Different computational methods have been proposed and many more are currently under investigation to achieve label-free microscopic imaging at single-cell level to recognize and quantify different subcellular compartments. This route promises to bridge the gap between QPI and FM for real-world applications.
Collapse
Affiliation(s)
- Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Demetri Psaltis
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Optics Laboratory, CH-1015 Lausanne, Switzerland
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
19
|
Wang K, Song L, Wang C, Ren Z, Zhao G, Dou J, Di J, Barbastathis G, Zhou R, Zhao J, Lam EY. On the use of deep learning for phase recovery. LIGHT, SCIENCE & APPLICATIONS 2024; 13:4. [PMID: 38161203 PMCID: PMC10758000 DOI: 10.1038/s41377-023-01340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Phase recovery (PR) refers to calculating the phase of the light field from its intensity measurements. As exemplified from quantitative phase imaging and coherent diffraction imaging to adaptive optics, PR is essential for reconstructing the refractive index distribution or topography of an object and correcting the aberration of an imaging system. In recent years, deep learning (DL), often implemented through deep neural networks, has provided unprecedented support for computational imaging, leading to more efficient solutions for various PR problems. In this review, we first briefly introduce conventional methods for PR. Then, we review how DL provides support for PR from the following three stages, namely, pre-processing, in-processing, and post-processing. We also review how DL is used in phase image processing. Finally, we summarize the work in DL for PR and provide an outlook on how to better use DL to improve the reliability and efficiency of PR. Furthermore, we present a live-updating resource ( https://github.com/kqwang/phase-recovery ) for readers to learn more about PR.
Collapse
Affiliation(s)
- Kaiqiang Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China.
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Li Song
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Chutian Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Zhenbo Ren
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Guangyuan Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiazhen Dou
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jianglei Di
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - George Barbastathis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianlin Zhao
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China.
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
20
|
Imboden S, Liu X, Payne MC, Hsieh CJ, Lin NY. Trustworthy in silico cell labeling via ensemble-based image translation. BIOPHYSICAL REPORTS 2023; 3:100133. [PMID: 38026685 PMCID: PMC10663640 DOI: 10.1016/j.bpr.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Artificial intelligence (AI) image translation has been a valuable tool for processing image data in biological and medical research. To apply such a tool in mission-critical applications, including drug screening, toxicity study, and clinical diagnostics, it is essential to ensure that the AI prediction is trustworthy. Here, we demonstrate that an ensemble learning method can quantify the uncertainty of AI image translation. We tested the uncertainty evaluation using experimentally acquired images of mesenchymal stromal cells. We find that the ensemble method reports a prediction standard deviation that correlates with the prediction error, estimating the prediction uncertainty. We show that this uncertainty is in agreement with the prediction error and Pearson correlation coefficient. We further show that the ensemble method can detect out-of-distribution input images by reporting increased uncertainty. Altogether, these results suggest that the ensemble-estimated uncertainty can be a useful indicator for identifying erroneous AI image translations.
Collapse
Affiliation(s)
- Sara Imboden
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California
| | - Xuanqing Liu
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
| | - Marie C. Payne
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California
| | - Cho-Jui Hsieh
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
| | - Neil Y.C. Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
21
|
Xu X, Xiao Z, Zhang F, Wang C, Wei B, Wang Y, Cheng B, Jia Y, Li Y, Li B, Guo H, Xu F. CellVisioner: A Generalizable Cell Virtual Staining Toolbox based on Few-Shot Transfer Learning for Mechanobiological Analysis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0285. [PMID: 38434246 PMCID: PMC10907024 DOI: 10.34133/research.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/16/2023] [Indexed: 03/05/2024]
Abstract
Visualizing cellular structures especially the cytoskeleton and the nucleus is crucial for understanding mechanobiology, but traditional fluorescence staining has inherent limitations such as phototoxicity and photobleaching. Virtual staining techniques provide an alternative approach to addressing these issues but often require substantial amount of user training data. In this study, we develop a generalizable cell virtual staining toolbox (termed CellVisioner) based on few-shot transfer learning that requires substantially reduced user training data. CellVisioner can virtually stain F-actin and nuclei for various types of cells and extract single-cell parameters relevant to mechanobiology research. Taking the label-free single-cell images as input, CellVisioner can predict cell mechanobiological status (e.g., Yes-associated protein nuclear/cytoplasmic ratio) and perform long-term monitoring for living cells. We envision that CellVisioner would be a powerful tool to facilitate on-site mechanobiological research.
Collapse
Affiliation(s)
- Xiayu Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Zhanfeng Xiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Changxiang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Bo Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yaohui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yuan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Bin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Hui Guo
- Department of Medical Oncology,
The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC),
Xi’an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
22
|
Shaked NT, Boppart SA, Wang LV, Popp J. Label-free biomedical optical imaging. NATURE PHOTONICS 2023; 17:1031-1041. [PMID: 38523771 PMCID: PMC10956740 DOI: 10.1038/s41566-023-01299-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/22/2023] [Indexed: 03/22/2024]
Abstract
Label-free optical imaging employs natural and nondestructive approaches for the visualisation of biomedical samples for both biological assays and clinical diagnosis. Currently, this field revolves around multiple broad technology-oriented communities, each with a specific focus on a particular modality despite the existence of shared challenges and applications. As a result, biologists or clinical researchers who require label-free imaging are often not aware of the most appropriate modality to use. This manuscript presents a comprehensive review of and comparison among different label-free imaging modalities and discusses common challenges and applications. We expect this review to facilitate collaborative interactions between imaging communities, push the field forward and foster technological advancements, biophysical discoveries, as well as clinical detection, diagnosis, and monitoring of disease.
Collapse
Affiliation(s)
- Natan T Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering,; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
23
|
Astratov VN, Sahel YB, Eldar YC, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao YT, Hsieh CL, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked NT, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng JX, Kariman BS, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang GJ, Chu SW, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen MJ, Stanciu SG, Smolyaninova VN, Smolyaninov II, Leonhardt U, Sahebdivan S, Wang Z, Luk’yanchuk B, Wu L, Maslov AV, Jin B, Simovski CR, Perrin S, Montgomery P, Lecler S. Roadmap on Label-Free Super-Resolution Imaging. LASER & PHOTONICS REVIEWS 2023; 17:2200029. [PMID: 38883699 PMCID: PMC11178318 DOI: 10.1002/lpor.202200029] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 06/18/2024]
Abstract
Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.
Collapse
Affiliation(s)
- Vasily N. Astratov
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Yair Ben Sahel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonina C. Eldar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nikolay Zheludev
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Junxiang Zhao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zachary Burns
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Material Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Evgenii Narimanov
- School of Electrical Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Neha Goswami
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Emanuel Pfitzner
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Brian Abbey
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Alberto Diaspro
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Aymeric LeGratiet
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- Université de Rennes, CNRS, Institut FOTON - UMR 6082, F-22305 Lannion, France
| | - Paolo Bianchini
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Natan T. Shaked
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 6997801, Israel
| | - Bertrand Simon
- LP2N, Institut d’Optique Graduate School, CNRS UMR 5298, Université de Bordeaux, Talence France
| | - Nicolas Verrier
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | | | - Olivier Haeberlé
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | - Sheng Wang
- School of Physics and Technology, Wuhan University, China
- Wuhan Institute of Quantum Technology, China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, USA
| | - Yeran Bai
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Behjat S. Kariman
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Katsumasa Fujita
- Department of Applied Physics and the Advanced Photonics and Biosensing Open Innovation Laboratory (AIST); and the Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Moshe Sinvani
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Zeev Zalevsky
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Guan-Jie Huang
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shi-Wei Chu
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Omer Tzang
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Dror Hershkovitz
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Ori Cheshnovsky
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Mikko J. Huttunen
- Laboratory of Photonics, Physics Unit, Tampere University, FI-33014, Tampere, Finland
| | - Stefan G. Stanciu
- Center for Microscopy – Microanalysis and Information Processing, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Vera N. Smolyaninova
- Department of Physics Astronomy and Geosciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Igor I. Smolyaninov
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ulf Leonhardt
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sahar Sahebdivan
- EMTensor GmbH, TechGate, Donau-City-Strasse 1, 1220 Wien, Austria
| | - Zengbo Wang
- School of Computer Science and Electronic Engineering, Bangor University, Bangor, LL57 1UT, United Kingdom
| | - Boris Luk’yanchuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Alexey V. Maslov
- Department of Radiophysics, University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Boya Jin
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Constantin R. Simovski
- Department of Electronics and Nano-Engineering, Aalto University, FI-00076, Espoo, Finland
- Faculty of Physics and Engineering, ITMO University, 199034, St-Petersburg, Russia
| | - Stephane Perrin
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Paul Montgomery
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Sylvain Lecler
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
24
|
Park J, Bai B, Ryu D, Liu T, Lee C, Luo Y, Lee MJ, Huang L, Shin J, Zhang Y, Ryu D, Li Y, Kim G, Min HS, Ozcan A, Park Y. Artificial intelligence-enabled quantitative phase imaging methods for life sciences. Nat Methods 2023; 20:1645-1660. [PMID: 37872244 DOI: 10.1038/s41592-023-02041-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023]
Abstract
Quantitative phase imaging, integrated with artificial intelligence, allows for the rapid and label-free investigation of the physiology and pathology of biological systems. This review presents the principles of various two-dimensional and three-dimensional label-free phase imaging techniques that exploit refractive index as an intrinsic optical imaging contrast. In particular, we discuss artificial intelligence-based analysis methodologies for biomedical studies including image enhancement, segmentation of cellular or subcellular structures, classification of types of biological samples and image translation to furnish subcellular and histochemical information from label-free phase images. We also discuss the advantages and challenges of artificial intelligence-enabled quantitative phase imaging analyses, summarize recent notable applications in the life sciences, and cover the potential of this field for basic and industrial research in the life sciences.
Collapse
Affiliation(s)
- Juyeon Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - DongHun Ryu
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chungha Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Yi Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mahn Jae Lee
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeongwon Shin
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yijie Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yuzhu Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Geon Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | | | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA.
- Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, USA.
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea.
- Tomocube, Daejeon, Republic of Korea.
| |
Collapse
|
25
|
Bianco V, D'Agostino M, Pirone D, Giugliano G, Mosca N, Di Summa M, Scerra G, Memmolo P, Miccio L, Russo T, Stella E, Ferraro P. Label-Free Intracellular Multi-Specificity in Yeast Cells by Phase-Contrast Tomographic Flow Cytometry. SMALL METHODS 2023; 7:e2300447. [PMID: 37670547 DOI: 10.1002/smtd.202300447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/14/2023] [Indexed: 09/07/2023]
Abstract
In-flow phase-contrast tomography provides a 3D refractive index of label-free cells in cytometry systems. Its major limitation, as with any quantitative phase imaging approach, is the lack of specificity compared to fluorescence microscopy, thus restraining its huge potentialities in single-cell analysis and diagnostics. Remarkable results in introducing specificity are obtained through artificial intelligence (AI), but only for adherent cells. However, accessing the 3D fluorescence ground truth and obtaining accurate voxel-level co-registration of image pairs for AI training is not viable for high-throughput cytometry. The recent statistical inference approach is a significant step forward for label-free specificity but remains limited to cells' nuclei. Here, a generalized computational strategy based on a self-consistent statistical inference to achieve intracellular multi-specificity is shown. Various subcellular compartments (i.e., nuclei, cytoplasmic vacuoles, the peri-vacuolar membrane area, cytoplasm, vacuole-nucleus contact site) can be identified and characterized quantitatively at different phases of the cells life cycle by using yeast cells as a biological model. Moreover, for the first time, virtual reality is introduced for handling the information content of multi-specificity in single cells. Full fruition is proofed for exploring and interacting with 3D quantitative biophysical parameters of the identified compartments on demand, thus opening the route to a metaverse for 3D microscopy.
Collapse
Affiliation(s)
- Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, Pozzuoli, Napoli, 80078, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
| | - Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, Pozzuoli, Napoli, 80078, Italy
| | - Giusy Giugliano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, Pozzuoli, Napoli, 80078, Italy
| | - Nicola Mosca
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Via Amendola 122/D-O, Bari, 70125, Italy
| | - Maria Di Summa
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Via Amendola 122/D-O, Bari, 70125, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, Pozzuoli, Napoli, 80078, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, Pozzuoli, Napoli, 80078, Italy
| | - Tommaso Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
| | - Ettore Stella
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Via Amendola 122/D-O, Bari, 70125, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, Pozzuoli, Napoli, 80078, Italy
| |
Collapse
|
26
|
Butt SS, Fida I, Fatima M, Khan MS, Mustafa S, Khan MN, Ahmad I. Quantitative phase imaging for characterization of single cell growth dynamics. Lasers Med Sci 2023; 38:241. [PMID: 37851109 DOI: 10.1007/s10103-023-03902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023]
Abstract
Quantitative phase imaging (QPI) has emerged as an indispensable tool in the field of biomedicine, offering the ability to obtain quantitative maps of phase changes due to optical path length delays without the need for contrast agents. These maps provide valuable information about cellular morphology and dynamics, unperturbed by the introduction of exogenous substances. In this review, a summary of recent studies that have focused on elucidating the growth dynamics of individual cells using QPI is presented. Specifically, investigations into cellular changes occurring during mitosis, the differentiation of cellular organelles, the assessment of distinct cell death processes (i.e., apoptosis, necrosis, and oncosis) and the precise measurement of live cell temperature are explored. Furthermore, the captivating applications of QPI in theragnostics, where its potential for transformative impact is prominently showcased, are highlighted. Finally, the challenges that need to be overcome for its wider adoption and successful integration into biomedical research are outlined.
Collapse
Affiliation(s)
| | - Irum Fida
- The Women University Multan, Multan, Pakistan
| | | | - Muskan Saif Khan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Sonia Mustafa
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| | | | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
27
|
Hochmann J, Millán M, Hernández P, Lafon-Hughes L, Aiuto ND, Silva A, Llaguno J, Alonso J, Fernández A, Pereira-Prado V, Sotelo-Silveira J, Bologna-Molina R, Arocena M. Contributions of viral oncogenes of HPV-18 and hypoxia to oxidative stress and genetic damage in human keratinocytes. Sci Rep 2023; 13:17734. [PMID: 37853061 PMCID: PMC10584980 DOI: 10.1038/s41598-023-44880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Infection with high-risk human papillomaviruses like HPV-16 and HPV-18 is highly associated with the development of cervical and other cancers. Malignant transformation requires viral oncoproteins E5, E6 and E7, which promote cell proliferation and increase DNA damage. Oxidative stress and hypoxia are also key factors in cervical malignant transformation. Increased levels of reactive species of oxygen (ROS) and nitrogen (RNS) are found in the hypoxic tumor microenvironment, promoting genetic instability and invasiveness. In this work, we studied the combined effect of E5, E6 and E7 and hypoxia in increasing oxidative stress and promoting DNA damage and nuclear architecture alterations. HaCaT cells containing HPV-18 viral oncogenes (HaCaT E5/E6/E7-18) showed higher ROS levels in normoxia and higher levels of RNS in hypoxia compared to HaCaT parental cells, as well as higher genetic damage in hypoxia as measured by γH2AX and comet assays. In hypoxia, HaCaT E5/E6/E7-18 increased its nuclear dry mass and both cell types displayed marked heterogeneity in nuclear dry mass distribution and increased nuclear foci. Our results show contributions of both viral oncogenes and hypoxia to oxidative stress, DNA damage and altered nuclear architecture, exemplifying how an altered microenvironment combines with oncogenic transformation to promote tumor progression.
Collapse
Affiliation(s)
- Jimena Hochmann
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
- Departamento de Diagnóstico en Patología y Medicina Bucal, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay.
| | - Magdalena Millán
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Hernández
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte -Sede Salto, Universidad de la República (CENUR LN, UdelaR), Montevideo, Uruguay
| | - Natali D' Aiuto
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Biología Odontológica, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay
| | - Alejandro Silva
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Juan Llaguno
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Julia Alonso
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Ariel Fernández
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Vanesa Pereira-Prado
- Departamento de Diagnóstico en Patología y Medicina Bucal, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ronell Bologna-Molina
- Departamento de Diagnóstico en Patología y Medicina Bucal, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay
| | - Miguel Arocena
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
- Departamento de Biología Odontológica, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay.
| |
Collapse
|
28
|
Mühlberg A, Ritter P, Langer S, Goossens C, Nübler S, Schneidereit D, Taubmann O, Denzinger F, Nörenberg D, Haug M, Schürmann S, Horstmeyer R, Maier AK, Goldmann WH, Friedrich O, Kreiss L. SEMPAI: a Self-Enhancing Multi-Photon Artificial Intelligence for Prior-Informed Assessment of Muscle Function and Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206319. [PMID: 37582656 PMCID: PMC10558688 DOI: 10.1002/advs.202206319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis-driven and extensive prior knowledge (priors) exists. To address this, the Self-Enhancing Multi-Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)-based laboratory research is presented. It utilizes meta-learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi-task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state-of-the-art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior-only approaches.
Collapse
Affiliation(s)
- Alexander Mühlberg
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Paul Ritter
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Simon Langer
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Chloë Goossens
- Clinical Division and Laboratory of Intensive Care MedicineKU LeuvenUZ Herestraat 49 – P.O. box 7003Leuven3000Belgium
| | - Stefanie Nübler
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Dominik Schneidereit
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Oliver Taubmann
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Felix Denzinger
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Dominik Nörenberg
- Department of Radiology and Nuclear MedicineUniversity Medical Center MannheimMedical Faculty MannheimTheodor‐Kutzer‐Ufer 1–368167MannheimGermany
| | - Michael Haug
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Sebastian Schürmann
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Roarke Horstmeyer
- Computational Optics LabDepartment of Biomedical EngineeringDuke University101 Science DrDurhamNC27708USA
| | - Andreas K. Maier
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Wolfgang H. Goldmann
- Biophysics GroupDepartment of PhysicsFriedrich‐Alexander University Erlangen‐NurembergHenkestr. 9191052ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Lucas Kreiss
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
- Computational Optics LabDepartment of Biomedical EngineeringDuke University101 Science DrDurhamNC27708USA
| |
Collapse
|
29
|
Anantha P, Liu Z, Raj P, Barman I. Optical diffraction tomography and Raman spectroscopy reveal distinct cellular phenotypes during white and brown adipocyte differentiation. Biosens Bioelectron 2023; 235:115388. [PMID: 37207582 PMCID: PMC10626559 DOI: 10.1016/j.bios.2023.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are the primary types of fats in humans, and they play prominent roles in energy storage and thermogenesis, respectively. While the mechanisms of terminal adipogenesis are well understood, much remains unknown about the early stages of adipogenic differentiation. Label-free approaches, such as optical diffraction tomography (ODT) and Raman spectroscopy, offer the ability to retrieve morphological and molecular information at the single cell level without the negative effects of photobleaching and system perturbation due to introduction of fluorophores. In this study, we employed 3D ODT and Raman spectroscopy to gain deeper insights into the early stages of differentiation of human white preadipocytes (HWPs) and human brown preadipocytes (HBPs). We utilized ODT to retrieve morphological information, including cell dry mass and lipid mass, and Raman spectroscopy to obtain molecular information about lipids. Our findings reveal that HWPs and HBPs undergo dynamic and differential changes during the differentiation process. Notably, we found that HBPs accumulated lipids more rapidly and had a higher lipid mass than HWPs. Additionally, both cell types experienced an increase and subsequent decrease in cell dry mass during the first seven days, followed by an increase after day 7, which we attribute to the transformation of adipogenic precursors in the early stages. Finally, HBPs had higher lipid unsaturation levels than HWPs for the same differentiation timepoints. The insights gained from our study provide crucial contributions towards the advancement of new therapies for obesity and related diseases.
Collapse
Affiliation(s)
- Pooja Anantha
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhenhui Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA; The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Raj P, Paidi S, Conway L, Chatterjee A, Barman I. CellSNAP: A fast, accurate algorithm for 3D cell segmentation in quantitative phase imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550376. [PMID: 37546926 PMCID: PMC10402093 DOI: 10.1101/2023.07.24.550376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Quantitative phase imaging (QPI) has rapidly emerged as a complementary tool to fluorescence imaging, as it provides an objective measure of cell morphology and dynamics, free of variability due to contrast agents. In particular, three-dimensional (3D) tomographic imaging of live cells has opened up new directions of investigation by providing systematic and correlative analysis of various cellular parameters without limitations of photobleaching and phototoxicity. While current QPI systems allow the rapid acquisition of tomographic images, the pipeline to analyze these raw 3D tomograms is not well-developed. This work focuses on a critical, yet often underappreciated, step of the analysis pipeline, that of 3D cell segmentation from the acquired tomograms. The current method employed for such tasks is the Otsu-based 3D watershed algorithm, which works well for isolated cells; however, it is very challenging to draw boundaries when the cells are clumped. This process is also memory intensive since the processing requires computation on a 3D stack of images. We report the CellSNAP (Cell Segmentation via Novel Algorithm for Phase Imaging) algorithm for the segmentation of QPI images, which outstrips the current gold standard in terms of speed, robustness, and implementation, achieving cell segmentation under 2 seconds per cell on a single-core processor. The implementation of CellSNAP can easily be parallelized on a multi-core system for further speed improvements. For the cases where segmentation is possible with the existing standard method, our algorithm displays an average difference of 5% for dry mass and 8% for volume measurements. We also show that CellSNAP can handle challenging image datasets where cells are clumped and marred by interferogram drifts, which pose major difficulties for all QPI-focused segmentation tools. We envision our work will lead to the broader adoption of QPI imaging for high-throughput analysis, which has, in part, been stymied by a lack of suitable image segmentation tools.
Collapse
Affiliation(s)
- Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Santosh Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lauren Conway
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arnab Chatterjee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Goswami N, Winston N, Choi W, Lai NZE, Arcanjo RB, Chen X, Sobh N, Nowak RA, Anastasio MA, Popescu G. Machine learning assisted health viability assay for mouse embryos with artificial confocal microscopy (ACM). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.30.550591. [PMID: 37547014 PMCID: PMC10402120 DOI: 10.1101/2023.07.30.550591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The combination of a good quality embryo and proper maternal health factors promise higher chances of a successful in vitro fertilization (IVF) procedure leading to clinical pregnancy and live birth. Of these two factors, selection of a good embryo is a controllable aspect. The current gold standard in clinical practice is visual assessment of an embryo based on its morphological appearance by trained embryologists. More recently, machine learning has been incorporated into embryo selection "packages". Here, we report a machine-learning assisted embryo health assessment tool utilizing a quantitative phase imaging technique called artificial confocal microscopy (ACM). We present a label-free nucleus detection method with novel quantitative embryo health biomarkers. Two viability assessment models are presented for grading embryos into two classes: healthy/intermediate (H/I) or sick (S) class. The models achieve a weighted F1 score of 1.0 and 0.99 respectively on the in-distribution test set of 72 fixed embryos and a weighted F1 score of 0.9 and 0.95 respectively on the out-of-distribution test dataset of 19 time-instances from 8 live embryos.
Collapse
|
32
|
Fanous MJ, Pillar N, Ozcan A. Digital staining facilitates biomedical microscopy. FRONTIERS IN BIOINFORMATICS 2023; 3:1243663. [PMID: 37564725 PMCID: PMC10411189 DOI: 10.3389/fbinf.2023.1243663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
Traditional staining of biological specimens for microscopic imaging entails time-consuming, laborious, and costly procedures, in addition to producing inconsistent labeling and causing irreversible sample damage. In recent years, computational "virtual" staining using deep learning techniques has evolved into a robust and comprehensive application for streamlining the staining process without typical histochemical staining-related drawbacks. Such virtual staining techniques can also be combined with neural networks designed to correct various microscopy aberrations, such as out-of-focus or motion blur artifacts, and improve upon diffracted-limited resolution. Here, we highlight how such methods lead to a host of new opportunities that can significantly improve both sample preparation and imaging in biomedical microscopy.
Collapse
Affiliation(s)
- Michael John Fanous
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, United States
| | - Nir Pillar
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, United States
- Bioengineering Department, University of California, Los Angeles, CA, United States
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, United States
- Bioengineering Department, University of California, Los Angeles, CA, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, United States
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
33
|
Atwell S, Waibel DJE, Boushehri SS, Wiedenmann S, Marr C, Meier M. Label-free imaging of 3D pluripotent stem cell differentiation dynamics on chip. CELL REPORTS METHODS 2023; 3:100523. [PMID: 37533640 PMCID: PMC10391578 DOI: 10.1016/j.crmeth.2023.100523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/09/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
Massive, parallelized 3D stem cell cultures for engineering in vitro human cell types require imaging methods with high time and spatial resolution to fully exploit technological advances in cell culture technologies. Here, we introduce a large-scale integrated microfluidic chip platform for automated 3D stem cell differentiation. To fully enable dynamic high-content imaging on the chip platform, we developed a label-free deep learning method called Bright2Nuc to predict in silico nuclear staining in 3D from confocal microscopy bright-field images. Bright2Nuc was trained and applied to hundreds of 3D human induced pluripotent stem cell cultures differentiating toward definitive endoderm on a microfluidic platform. Combined with existing image analysis tools, Bright2Nuc segmented individual nuclei from bright-field images, quantified their morphological properties, predicted stem cell differentiation state, and tracked the cells over time. Our methods are available in an open-source pipeline, enabling researchers to upscale image acquisition and phenotyping of 3D cell culture.
Collapse
Affiliation(s)
- Scott Atwell
- Helmholtz Pioneer Campus, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Dominik Jens Elias Waibel
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Life Sciences, Technical University of Munich, Weihenstephan, Germany
| | - Sayedali Shetab Boushehri
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Data & Analytics, Pharmaceutical Research and Early Development, Roche Innovation Center Munich (RICM), Penzberg, Germany
| | - Sandra Wiedenmann
- Helmholtz Pioneer Campus, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
34
|
Nienhaus F, Piotrowski T, Nießing B, König N, Schmitt RH. Adaptive phase contrast microscopy to compensate for the meniscus effect. Sci Rep 2023; 13:5785. [PMID: 37031241 PMCID: PMC10082838 DOI: 10.1038/s41598-023-32917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/04/2023] [Indexed: 04/10/2023] Open
Abstract
Phase contrast is one of the most important microscopic methods for making visible transparent, unstained cells. Cell cultures are often cultivated in microtiter plates, consisting of several cylindrical wells. The surface tension of the culture medium forms a liquid lens within the well, causing phase contrast conditions to fail in the more curved edge areas, preventing cell observation. Adaptive phase contrast microscopy is a method to strongly increase the observable area by optically compensating for the meniscus effect. The microscope's condenser annulus is replaced by a transmissive LCD to allow dynamic changes. A deformable, liquid-filled prism is placed in the illumination path. The prism's surface angle is adaptively inclined to refract transmitted light so that the tangential angle of the liquid lens can be compensated. Besides the observation of the phase contrast image, a beam splitter allows to simultaneously view condenser annulus and phase ring displacement. Algorithms analyze the displacement to dynamically adjust the LCD and prism to guarantee phase contrast conditions. Experiments show a significant increase in observable area, especially for small well sizes. For 96-well-plates, more than twelve times the area can be examined under phase contrast conditions instead of standard phase contrast microscopy.
Collapse
Affiliation(s)
- Florian Nienhaus
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany.
| | | | - Bastian Nießing
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Niels König
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Robert H Schmitt
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
- WZL | RWTH Aachen University, Aachen, Germany
| |
Collapse
|
35
|
Zhu L, Xiao Z, Chen C, Sun A, He X, Jiang Z, Kong Y, Xue L, Liu C, Wang S. sPhaseStation: a whole slide quantitative phase imaging system based on dual-view transport of intensity phase microscopy. APPLIED OPTICS 2023; 62:1886-1894. [PMID: 37133070 DOI: 10.1364/ao.477375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Whole slide imaging scans a microscope slide into a high-resolution digital image, and it paves the way from pathology to digital diagnostics. However, most of them rely on bright-field and fluorescence imaging with sample labels. In this work, we designed sPhaseStation, which is a dual-view transport of intensity phase microscopy-based whole slide quantitative phase imaging system for label-free samples. sPhaseStation relies on a compact microscopic system with two imaging recorders that can capture both under and over-focus images. Combined with the field of view (FoV) scan, a series of these defocus images in different FoVs can be captured and stitched into two FoV-extended under and over-focus ones, which are used for phase retrieval via solving the transport of intensity equation. Using a 10× micro-objective, sPhaseStation reaches the spatial resolution of 2.19 µm and obtains the phase with high accuracy. Additionally, it acquires a whole slide image of a 3m m×3m m region in 2 min. The reported sPhaseStation could be a prototype of the whole slide quantitative phase imaging device, which may provide a new perspective for digital pathology.
Collapse
|
36
|
Siu DMD, Lee KCM, Chung BMF, Wong JSJ, Zheng G, Tsia KK. Optofluidic imaging meets deep learning: from merging to emerging. LAB ON A CHIP 2023; 23:1011-1033. [PMID: 36601812 DOI: 10.1039/d2lc00813k] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Propelled by the striking advances in optical microscopy and deep learning (DL), the role of imaging in lab-on-a-chip has dramatically been transformed from a silo inspection tool to a quantitative "smart" engine. A suite of advanced optical microscopes now enables imaging over a range of spatial scales (from molecules to organisms) and temporal window (from microseconds to hours). On the other hand, the staggering diversity of DL algorithms has revolutionized image processing and analysis at the scale and complexity that were once inconceivable. Recognizing these exciting but overwhelming developments, we provide a timely review of their latest trends in the context of lab-on-a-chip imaging, or coined optofluidic imaging. More importantly, here we discuss the strengths and caveats of how to adopt, reinvent, and integrate these imaging techniques and DL algorithms in order to tailor different lab-on-a-chip applications. In particular, we highlight three areas where the latest advances in lab-on-a-chip imaging and DL can form unique synergisms: image formation, image analytics and intelligent image-guided autonomous lab-on-a-chip. Despite the on-going challenges, we anticipate that they will represent the next frontiers in lab-on-a-chip imaging that will spearhead new capabilities in advancing analytical chemistry research, accelerating biological discovery, and empowering new intelligent clinical applications.
Collapse
Affiliation(s)
- Dickson M D Siu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Kelvin C M Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Bob M F Chung
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Justin S J Wong
- Conzeb Limited, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| |
Collapse
|
37
|
Deng Y, Tay HM, Zhou Y, Fei X, Tang X, Nishikawa M, Yatomi Y, Hou HW, Xiao TH, Goda K. Studying the efficacy of antiplatelet drugs on atherosclerosis by optofluidic imaging on a chip. LAB ON A CHIP 2023; 23:410-420. [PMID: 36511820 DOI: 10.1039/d2lc00895e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vascular stenosis caused by atherosclerosis instigates activation and aggregation of platelets, eventually resulting in thrombus formation. Although antiplatelet drugs are commonly used to inhibit platelet activation and aggregation, they unfortunately cannot prevent recurrent thrombotic events in patients with atherosclerosis. This is partially due to the limited understanding of the efficacy of antiplatelet drugs in the complex hemodynamic environment of vascular stenosis. Conventional methods for evaluating the efficacy of antiplatelet drugs under stenosis either fail to simulate the hemodynamic environment of vascular stenosis characterized by high shear stress and recirculatory flow or lack spatial resolution in their analytical techniques to statistically identify and characterize platelet aggregates. Here we propose and experimentally demonstrate a method comprising an in vitro 3D stenosis microfluidic chip and an optical time-stretch quantitative phase imaging system for studying the efficacy of antiplatelet drugs under stenosis. Our method simulates the atherogenic flow environment of vascular stenosis while enabling high-resolution and statistical analysis of platelet aggregates. Using our method, we distinguished the efficacy of three antiplatelet drugs, acetylsalicylic acid (ASA), cangrelor, and eptifibatide, for inhibiting platelet aggregation induced by stenosis. Specifically, ASA failed to inhibit stenosis-induced platelet aggregation, while eptifibatide and cangrelor showed high and moderate efficacy, respectively. Furthermore, we demonstrated that the drugs tested also differed in their efficacy for inhibiting platelet aggregation synergistically induced by stenosis and agonists (e.g., adenosine diphosphate, and collagen). Taken together, our method is an effective tool for investigating the efficacy of antiplatelet drugs under vascular stenosis, which could assist the development of optimal pharmacologic strategies for patients with atherosclerosis.
Collapse
Affiliation(s)
- Yunjie Deng
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuqi Zhou
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Xueer Fei
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Xuke Tang
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-0033, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-0033, Japan
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Ting-Hui Xiao
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
- Institute of Technological Sciences, Wuhan University, Hubei, 430072, China
- Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
- CYBO, Tokyo 101-0022, Japan
| |
Collapse
|
38
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
39
|
Pirone D, Lim J, Merola F, Miccio L, Mugnano M, Bianco V, Cimmino F, Visconte F, Montella A, Capasso M, Iolascon A, Memmolo P, Psaltis D, Ferraro P. Stain-free identification of cell nuclei using tomographic phase microscopy in flow cytometry. NATURE PHOTONICS 2022; 16:851-859. [PMID: 36451849 PMCID: PMC7613862 DOI: 10.1038/s41566-022-01096-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/03/2022] [Indexed: 05/12/2023]
Abstract
Quantitative Phase Imaging (QPI) has gained popularity in bioimaging because it can avoid the need for cell staining, which in some cases is difficult or impossible. However, as a result, QPI does not provide labelling of various specific intracellular structures. Here we show a novel computational segmentation method based on statistical inference that makes it possible for QPI techniques to identify the cell nucleus. We demonstrate the approach with refractive index tomograms of stain-free cells reconstructed through the tomographic phase microscopy in flow cytometry mode. In particular, by means of numerical simulations and two cancer cell lines, we demonstrate that the nucleus can be accurately distinguished within the stain-free tomograms. We show that our experimental results are consistent with confocal fluorescence microscopy (FM) data and microfluidic cytofluorimeter outputs. This is a significant step towards extracting specific three-dimensional intracellular structures directly from the phase-contrast data in a typical flow cytometry configuration.
Collapse
Affiliation(s)
- Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- DIETI, Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, Via Claudio 21, 80125 Napoli, Italy
| | - Joowon Lim
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Optics Laboratory, CH-1015 Lausanne, Switzerland
| | - Francesco Merola
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Martina Mugnano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Flora Cimmino
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
| | - Feliciano Visconte
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
| | - Annalaura Montella
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Mario Capasso
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Achille Iolascon
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Demetri Psaltis
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Optics Laboratory, CH-1015 Lausanne, Switzerland
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
40
|
Fanous MJ, He S, Sengupta S, Tangella K, Sobh N, Anastasio MA, Popescu G. White blood cell detection, classification and analysis using phase imaging with computational specificity (PICS). Sci Rep 2022; 12:20043. [PMID: 36414631 PMCID: PMC9681839 DOI: 10.1038/s41598-022-21250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Treatment of blood smears with Wright's stain is one of the most helpful tools in detecting white blood cell abnormalities. However, to diagnose leukocyte disorders, a clinical pathologist must perform a tedious, manual process of locating and identifying individual cells. Furthermore, the staining procedure requires considerable preparation time and clinical infrastructure, which is incompatible with point-of-care diagnosis. Thus, rapid and automated evaluations of unlabeled blood smears are highly desirable. In this study, we used color spatial light interference microcopy (cSLIM), a highly sensitive quantitative phase imaging (QPI) technique, coupled with deep learning tools, to localize, classify and segment white blood cells (WBCs) in blood smears. The concept of combining QPI label-free data with AI for the purpose of extracting cellular specificity has recently been introduced in the context of fluorescence imaging as phase imaging with computational specificity (PICS). We employed AI models to first translate SLIM images into brightfield micrographs, then ran parallel tasks of locating and labelling cells using EfficientNet, which is an object detection model. Next, WBC binary masks were created using U-net, a convolutional neural network that performs precise segmentation. After training on digitally stained brightfield images of blood smears with WBCs, we achieved a mean average precision of 75% for localizing and classifying neutrophils, eosinophils, lymphocytes, and monocytes, and an average pixel-wise majority-voting F1 score of 80% for determining the cell class from semantic segmentation maps. Therefore, PICS renders and analyzes synthetically stained blood smears rapidly, at a reduced cost of sample preparation, providing quantitative clinical information.
Collapse
Affiliation(s)
- Michae J Fanous
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA.
| | - Shenghua He
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA
| | | | - Nahil Sobh
- NCSA Center for Artificial Intelligence Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA
| |
Collapse
|
41
|
ConvMOS: climate model output statistics with deep learning. Data Min Knowl Discov 2022. [DOI: 10.1007/s10618-022-00877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractClimate models are the tool of choice for scientists researching climate change. Like all models they suffer from errors, particularly systematic and location-specific representation errors. One way to reduce these errors is model output statistics (MOS) where the model output is fitted to observational data with machine learning. In this work, we assess the use of convolutional Deep Learning climate MOS approaches and present the ConvMOS architecture which is specifically designed based on the observation that there are systematic and location-specific errors in the precipitation estimates of climate models. We apply ConvMOS models to the simulated precipitation of the regional climate model REMO, showing that a combination of per-location model parameters for reducing location-specific errors and global model parameters for reducing systematic errors is indeed beneficial for MOS performance. We find that ConvMOS models can reduce errors considerably and perform significantly better than three commonly used MOS approaches and plain ResNet and U-Net models in most cases. Our results show that non-linear MOS models underestimate the number of extreme precipitation events, which we alleviate by training models specialized towards extreme precipitation events with the imbalanced regression method DenseLoss. While we consider climate MOS, we argue that aspects of ConvMOS may also be beneficial in other domains with geospatial data, such as air pollution modeling or weather forecasts.
Collapse
|
42
|
Somani A, Ahmed Sekh A, Opstad IS, Birna Birgisdottir Å, Myrmel T, Singh Ahluwalia B, Horsch A, Agarwal K, Prasad DK. Virtual labeling of mitochondria in living cells using correlative imaging and physics-guided deep learning. BIOMEDICAL OPTICS EXPRESS 2022; 13:5495-5516. [PMID: 36425635 PMCID: PMC9664879 DOI: 10.1364/boe.464177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Mitochondria play a crucial role in cellular metabolism. This paper presents a novel method to visualize mitochondria in living cells without the use of fluorescent markers. We propose a physics-guided deep learning approach for obtaining virtually labeled micrographs of mitochondria from bright-field images. We integrate a microscope's point spread function in the learning of an adversarial neural network for improving virtual labeling. We show results (average Pearson correlation 0.86) significantly better than what was achieved by state-of-the-art (0.71) for virtual labeling of mitochondria. We also provide new insights into the virtual labeling problem and suggest additional metrics for quality assessment. The results show that our virtual labeling approach is a powerful way of segmenting and tracking individual mitochondria in bright-field images, results previously achievable only for fluorescently labeled mitochondria.
Collapse
Affiliation(s)
- Ayush Somani
- Bio-AI Lab, Department of Computer Science,
UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Arif Ahmed Sekh
- Computer Science and Engineering, XIM University, Bhubaneswar, 751002, India
| | - Ida S. Opstad
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Åsa Birna Birgisdottir
- Cardiovascular group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Truls Myrmel
- Cardiovascular group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | | | - Alexander Horsch
- Bio-AI Lab, Department of Computer Science,
UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Krishna Agarwal
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Dilip K. Prasad
- Bio-AI Lab, Department of Computer Science,
UiT The Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
43
|
Fanous MJ, Popescu G. GANscan: continuous scanning microscopy using deep learning deblurring. LIGHT, SCIENCE & APPLICATIONS 2022; 11:265. [PMID: 36071043 PMCID: PMC9452654 DOI: 10.1038/s41377-022-00952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 05/05/2023]
Abstract
Most whole slide imaging (WSI) systems today rely on the "stop-and-stare" approach, where, at each field of view, the scanning stage is brought to a complete stop before the camera snaps a picture. This procedure ensures that each image is free of motion blur, which comes at the expense of long acquisition times. In order to speed up the acquisition process, especially for large scanning areas, such as pathology slides, we developed an acquisition method in which the data is acquired continuously while the stage is moving at high speeds. Using generative adversarial networks (GANs), we demonstrate this ultra-fast imaging approach, referred to as GANscan, which restores sharp images from motion blurred videos. GANscan allows us to complete image acquisitions at 30x the throughput of stop-and-stare systems. This method is implemented on a Zeiss Axio Observer Z1 microscope, requires no specialized hardware, and accomplishes successful reconstructions at stage speeds of up to 5000 μm/s. We validate the proposed method by imaging H&E stained tissue sections. Our method not only retrieves crisp images from fast, continuous scans, but also adjusts for defocusing that occurs during scanning within +/- 5 μm. Using a consumer GPU, the inference runs at <20 ms/ image.
Collapse
Affiliation(s)
- Michael John Fanous
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA.
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA.
| |
Collapse
|
44
|
Nguyen TL, Pradeep S, Judson-Torres RL, Reed J, Teitell MA, Zangle TA. Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine. ACS NANO 2022; 16:11516-11544. [PMID: 35916417 PMCID: PMC10112851 DOI: 10.1021/acsnano.1c11507] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Quantitative phase imaging (QPI) is a label-free, wide-field microscopy approach with significant opportunities for biomedical applications. QPI uses the natural phase shift of light as it passes through a transparent object, such as a mammalian cell, to quantify biomass distribution and spatial and temporal changes in biomass. Reported in cell studies more than 60 years ago, ongoing advances in QPI hardware and software are leading to numerous applications in biology, with a dramatic expansion in utility over the past two decades. Today, investigations of cell size, morphology, behavior, cellular viscoelasticity, drug efficacy, biomass accumulation and turnover, and transport mechanics are supporting studies of development, physiology, neural activity, cancer, and additional physiological processes and diseases. Here, we review the field of QPI in biology starting with underlying principles, followed by a discussion of technical approaches currently available or being developed, and end with an examination of the breadth of applications in use or under development. We comment on strengths and shortcomings for the deployment of QPI in key biomedical contexts and conclude with emerging challenges and opportunities based on combining QPI with other methodologies that expand the scope and utility of QPI even further.
Collapse
|
45
|
Sun Q, Yang X, Guo J, Zhao Y, Liu Y. CIEGAN: A Deep Learning Tool for Cell Image Enhancement. Front Genet 2022; 13:913372. [PMID: 35873483 PMCID: PMC9298179 DOI: 10.3389/fgene.2022.913372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Long-term live-cell imaging technology has emerged in the study of cell culture and development, and it is expected to elucidate the differentiation or reprogramming morphology of cells and the dynamic process of interaction between cells. There are some advantages to this technique: it is noninvasive, high-throughput, low-cost, and it can help researchers explore phenomena that are otherwise difficult to observe. Many challenges arise in the real-time process, for example, low-quality micrographs are often obtained due to unavoidable human factors or technical factors in the long-term experimental period. Moreover, some core dynamics in the developmental process are rare and fleeting in imaging observation and difficult to recapture again. Therefore, this study proposes a deep learning method for microscope cell image enhancement to reconstruct sharp images. We combine generative adversarial nets and various loss functions to make blurry images sharp again, which is much more convenient for researchers to carry out further analysis. This technology can not only make up the blurry images of critical moments of the development process through image enhancement but also allows long-term live-cell imaging to find a balance between imaging speed and image quality. Furthermore, the scalability of this technology makes the methods perform well in fluorescence image enhancement. Finally, the method is tested in long-term live-cell imaging of human-induced pluripotent stem cell-derived cardiomyocyte differentiation experiments, and it can greatly improve the image space resolution ratio.
Collapse
Affiliation(s)
- Qiushi Sun
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Xiaochun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jingtao Guo
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- *Correspondence: Yang Zhao, ; Yi Liu,
| | - Yi Liu
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
- *Correspondence: Yang Zhao, ; Yi Liu,
| |
Collapse
|
46
|
Naseri Kouzehgarani G, Kandel ME, Sakakura M, Dupaty JS, Popescu G, Gillette MU. Circadian Volume Changes in Hippocampal Glia Studied by Label-Free Interferometric Imaging. Cells 2022; 11:2073. [PMID: 35805157 PMCID: PMC9265588 DOI: 10.3390/cells11132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Complex brain functions, including learning and memory, arise in part from the modulatory role of astrocytes on neuronal circuits. Functionally, the dentate gyrus (DG) exhibits differences in the acquisition of long-term potentiation (LTP) between day and night. We hypothesize that the dynamic nature of astrocyte morphology plays an important role in the functional circuitry of hippocampal learning and memory, specifically in the DG. Standard microscopy techniques, such as differential interference contrast (DIC), present insufficient contrast for detecting changes in astrocyte structure and function and are unable to inform on the intrinsic structure of the sample in a quantitative manner. Recently, gradient light interference microscopy (GLIM) has been developed to upgrade a DIC microscope with quantitative capabilities such as single-cell dry mass and volume characterization. Here, we present a methodology for combining GLIM and electrophysiology to quantify the astrocyte morphological behavior over the day-night cycle. Colocalized measurements of GLIM and fluorescence allowed us to quantify the dry masses and volumes of hundreds of astrocytes. Our results indicate that, on average, there is a 25% cell volume reduction during the nocturnal cycle. Remarkably, this cell volume change takes place at constant dry mass, which suggests that the volume regulation occurs primarily through aqueous medium exchange with the environment.
Collapse
Affiliation(s)
- Ghazal Naseri Kouzehgarani
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
| | - Mikhail E. Kandel
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Masayoshi Sakakura
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Joshua S. Dupaty
- Department of Biomedical Engineering, Mercer University, Macon, GA 31207, USA;
| | - Gabriel Popescu
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Martha U. Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
47
|
Kim G, Ahn D, Kang M, Park J, Ryu D, Jo Y, Song J, Ryu JS, Choi G, Chung HJ, Kim K, Chung DR, Yoo IY, Huh HJ, Min HS, Lee NY, Park Y. Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network. LIGHT, SCIENCE & APPLICATIONS 2022; 11:190. [PMID: 35739098 PMCID: PMC9226356 DOI: 10.1038/s41377-022-00881-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 05/14/2023]
Abstract
The healthcare industry is in dire need of rapid microbial identification techniques for treating microbial infections. Microbial infections are a major healthcare issue worldwide, as these widespread diseases often develop into deadly symptoms. While studies have shown that an early appropriate antibiotic treatment significantly reduces the mortality of an infection, this effective treatment is difficult to practice. The main obstacle to early appropriate antibiotic treatments is the long turnaround time of the routine microbial identification, which includes time-consuming sample growth. Here, we propose a microscopy-based framework that identifies the pathogen from single to few cells. Our framework obtains and exploits the morphology of the limited sample by incorporating three-dimensional quantitative phase imaging and an artificial neural network. We demonstrate the identification of 19 bacterial species that cause bloodstream infections, achieving an accuracy of 82.5% from an individual bacterial cell or cluster. This performance, comparable to that of the gold standard mass spectroscopy under a sufficient amount of sample, underpins the effectiveness of our framework in clinical applications. Furthermore, our accuracy increases with multiple measurements, reaching 99.9% with seven different measurements of cells or clusters. We believe that our framework can serve as a beneficial advisory tool for clinicians during the initial treatment of infections.
Collapse
Affiliation(s)
- Geon Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Daewoong Ahn
- Tomocube Inc., Daejeon, 34109, Republic of Korea
| | - Minhee Kang
- Smart Healthcare & Device Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jinho Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - DongHun Ryu
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - YoungJu Jo
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
- Tomocube Inc., Daejeon, 34109, Republic of Korea
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Jinyeop Song
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jea Sung Ryu
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Gunho Choi
- Tomocube Inc., Daejeon, 34109, Republic of Korea
| | - Hyun Jung Chung
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kyuseok Kim
- Department of Emergency Medicine, Bundang CHA Hospital, Seongnam-si, Gyeonggi-Do, 13496, Korea
| | - Doo Ryeon Chung
- Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | | | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea.
- Tomocube Inc., Daejeon, 34109, Republic of Korea.
| |
Collapse
|
48
|
Prostate cancer histopathology using label-free multispectral deep-UV microscopy quantifies phenotypes of tumor aggressiveness and enables multiple diagnostic virtual stains. Sci Rep 2022; 12:9329. [PMID: 35665770 PMCID: PMC9167293 DOI: 10.1038/s41598-022-13332-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Identifying prostate cancer patients that are harboring aggressive forms of prostate cancer remains a significant clinical challenge. Here we develop an approach based on multispectral deep-ultraviolet (UV) microscopy that provides novel quantitative insight into the aggressiveness and grade of this disease, thus providing a new tool to help address this important challenge. We find that UV spectral signatures from endogenous molecules give rise to a phenotypical continuum that provides unique structural insight (i.e., molecular maps or “optical stains") of thin tissue sections with subcellular (nanoscale) resolution. We show that this phenotypical continuum can also be applied as a surrogate biomarker of prostate cancer malignancy, where patients with the most aggressive tumors show a ubiquitous glandular phenotypical shift. In addition to providing several novel “optical stains” with contrast for disease, we also adapt a two-part Cycle-consistent Generative Adversarial Network to translate the label-free deep-UV images into virtual hematoxylin and eosin (H&E) stained images, thus providing multiple stains (including the gold-standard H&E) from the same unlabeled specimen. Agreement between the virtual H&E images and the H&E-stained tissue sections is evaluated by a panel of pathologists who find that the two modalities are in excellent agreement. This work has significant implications towards improving our ability to objectively quantify prostate cancer grade and aggressiveness, thus improving the management and clinical outcomes of prostate cancer patients. This same approach can also be applied broadly in other tumor types to achieve low-cost, stain-free, quantitative histopathological analysis.
Collapse
|
49
|
Rosoff G, Elkabetz S, Gheber LA. Machine-Learning-Aided Quantification of Area Coverage of Adherent Cells from Phase-Contrast Images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-8. [PMID: 35638222 DOI: 10.1017/s1431927622000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The advances in machine learning (ML) software availability, efficiency, and friendliness, combined with the increase in the computation power of personal computers, are harnessed to rapidly and (relatively) effortlessly analyze time-lapse image series of adherent cell cultures, taken with phase-contrast microscopy (PCM). Since PCM is arguably the most widely used technique to visualize adherent cells in a label-free, noninvasive, and nondisruptive manner, the ability to easily extract quantitative information on the area covered by cells, should provide a valuable tool for investigation. We demonstrate two cases, in one we monitor the shrinking of cells in response to a toxicant, and in the second we measure the proliferation curve of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- Gal Rosoff
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shir Elkabetz
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Levi A Gheber
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
50
|
He Y, He S, Kandel ME, Lee YJ, Hu C, Sobh N, Anastasio MA, Popescu G. Cell Cycle Stage Classification Using Phase Imaging with Computational Specificity. ACS PHOTONICS 2022; 9:1264-1273. [PMID: 35480491 PMCID: PMC9026251 DOI: 10.1021/acsphotonics.1c01779] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 06/01/2023]
Abstract
Traditional methods for cell cycle stage classification rely heavily on fluorescence microscopy to monitor nuclear dynamics. These methods inevitably face the typical phototoxicity and photobleaching limitations of fluorescence imaging. Here, we present a cell cycle detection workflow using the principle of phase imaging with computational specificity (PICS). The proposed method uses neural networks to extract cell cycle-dependent features from quantitative phase imaging (QPI) measurements directly. Our results indicate that this approach attains very good accuracy in classifying live cells into G1, S, and G2/M stages, respectively. We also demonstrate that the proposed method can be applied to study single-cell dynamics within the cell cycle as well as cell population distribution across different stages of the cell cycle. We envision that the proposed method can become a nondestructive tool to analyze cell cycle progression in fields ranging from cell biology to biopharma applications.
Collapse
Affiliation(s)
- Yuchen
R. He
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shenghua He
- Department
of Computer Science & Engineering, Washington
University in St. Louis, St. Louis, Missouri 63130, United States
| | - Mikhail E. Kandel
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Young Jae Lee
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Neuroscience
Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chenfei Hu
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Nahil Sobh
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- NCSA
Center for Artificial Intelligence Innovation, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Mark A. Anastasio
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gabriel Popescu
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|