1
|
Paliakkara J, Ellenberg S, Ursino A, Smith AA, Evans J, Strayhorn J, Faraone SV, Zhang-James Y. A Systematic Review of the Etiology and Neurobiology of Intermittent Explosive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.12.24313573. [PMID: 39314952 PMCID: PMC11419216 DOI: 10.1101/2024.09.12.24313573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Intermittent Explosive Disorder (IED) is characterized by repeated inability to control aggressive impulses. Although the etiology and neurobiology of impulsive anger and impulse control disorders have been reviewed, no systematic review on these aspects has been published for IED specifically. We conducted a systematic search in seven electronic databases for publications about IED, screened by two authors, and retained twenty-four studies for the review. Our findings highlight a multifactorial etiology and neurobiology of IED, emphasizing the role of the amygdala and orbitofrontal cortex in emotional regulation and impulse control, and supporting interventions that target serotonergic signaling. Research also shows that childhood trauma and adverse family environment may significantly contribute to the development of IED. Yet, genetic studies focusing on IED were largely lacking, despite many examining the genetics underlying aggression as a general trait or other related disorders. Future research using consistently defined IED as a phenotype is required to better understand the etiology and underlying mechanisms and assist in informing the development of more effective interventions for IED.
Collapse
Affiliation(s)
- John Paliakkara
- Norton College of Medicine at SUNY Upstate Medical University, 766 Irving Ave, Syracuse, NY 13210, Syracuse, NY 13210 USA
| | - Stacy Ellenberg
- Norton College of Medicine at Upstate Medical University, Adult Psychiatry Clinic Psychiatry and Behavioral Sciences, 713 Harrison Street, Syracuse, NY 13210 USA
| | - Andrew Ursino
- Norton College of Medicine at Upstate Medical University, Adult Psychiatry Clinic Psychiatry and Behavioral Sciences, 713 Harrison Street, Syracuse, NY 13210 USA
- Clinical & Forensic Psychology, 1101 Erie Blvd. East, Suite 207, Syracuse, NY 13210 USA
| | - Abigail A Smith
- Health Sciences Library, Norton College of Medicine at SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - James Evans
- Health Sciences Library, Norton College of Medicine at SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Joseph Strayhorn
- Norton College of Medicine at Upstate Medical University, Clinical Psychology Psychiatry and Behavioral Sciences, 719 Harrison Street, Syracuse, NY 13210 USA
| | - Stephen V Faraone
- Norton College of Medicine at SUNY Upstate Medical University, Departments of Psychiatry and Behavioral Sciences and Neuroscience and Physiology, Institute for Human Performance, 505 Irving Ave, Syracuse, NY 13210 USA
| | - Yanli Zhang-James
- Norton College of Medicine at SUNY Upstate Medical University, Department of Psychiatry and Behavioral Sciences, Institute for Human Performance, 505 Irving Ave, Syracuse, NY 13210 USA
| |
Collapse
|
2
|
Koyama E, Kant T, Takata A, Kennedy JL, Zai CC. Genetics of child aggression, a systematic review. Transl Psychiatry 2024; 14:252. [PMID: 38862490 PMCID: PMC11167064 DOI: 10.1038/s41398-024-02870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 06/13/2024] Open
Abstract
Excessive and persistent aggressiveness is the most common behavioral problem that leads to psychiatric referrals among children. While half of the variance in childhood aggression is attributed to genetic factors, the biological mechanism and the interplay between genes and environment that results in aggression remains elusive. The purpose of this systematic review is to provide an overview of studies examining the genetics of childhood aggression irrespective of psychiatric diagnosis. PubMed, PsycINFO, and MEDLINE databases were searched using predefined search terms for aggression, genes and the specific age group. From the 652 initially yielded studies, eighty-seven studies were systematically extracted for full-text review and for further quality assessment analyses. Findings show that (i) investigation of candidate genes, especially of MAOA (17 studies), DRD4 (13 studies), and COMT (12 studies) continue to dominate the field, although studies using other research designs and methods including genome-wide association and epigenetic studies are increasing, (ii) the published articles tend to be moderate in sizes, with variable methods of assessing aggressive behavior and inconsistent categorizations of tandem repeat variants, resulting in inconclusive findings of genetic main effects, gene-gene, and gene-environment interactions, (iii) the majority of studies are conducted on European, male-only or male-female mixed, participants. To our knowledge, this is the first study to systematically review the effects of genes on youth aggression. To understand the genetic underpinnings of childhood aggression, more research is required with larger, more diverse sample sets, consistent and reliable assessments and standardized definition of the aggression phenotypes. The search for the biological mechanisms underlying child aggression will also benefit from more varied research methods, including epigenetic studies, transcriptomic studies, gene system and genome-wide studies, longitudinal studies that track changes in risk/ameliorating factors and aggression-related outcomes, and studies examining causal mechanisms.
Collapse
Affiliation(s)
- Emiko Koyama
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Tuana Kant
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Miller AP, Bogdan R, Agrawal A, Hatoum AS. Generalized genetic liability to substance use disorders. J Clin Invest 2024; 134:e172881. [PMID: 38828723 PMCID: PMC11142744 DOI: 10.1172/jci172881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Lifetime and temporal co-occurrence of substance use disorders (SUDs) is common and compared with individual SUDs is characterized by greater severity, additional psychiatric comorbidities, and worse outcomes. Here, we review evidence for the role of generalized genetic liability to various SUDs. Coaggregation of SUDs has familial contributions, with twin studies suggesting a strong contribution of additive genetic influences undergirding use disorders for a variety of substances (including alcohol, nicotine, cannabis, and others). GWAS have documented similarly large genetic correlations between alcohol, cannabis, and opioid use disorders. Extending these findings, recent studies have identified multiple genomic loci that contribute to common risk for these SUDs and problematic tobacco use, implicating dopaminergic regulatory and neuronal development mechanisms in the pathophysiology of generalized SUD genetic liability, with certain signals demonstrating cross-species and translational validity. Overlap with genetic signals for other externalizing behaviors, while substantial, does not explain the entirety of the generalized genetic signal for SUD. Polygenic scores (PGS) derived from the generalized genetic liability to SUDs outperform PGS for individual SUDs in prediction of serious mental health and medical comorbidities. Going forward, it will be important to further elucidate the etiology of generalized SUD genetic liability by incorporating additional SUDs, evaluating clinical presentation across the lifespan, and increasing the granularity of investigation (e.g., specific transdiagnostic criteria) to ultimately improve the nosology, prevention, and treatment of SUDs.
Collapse
Affiliation(s)
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Alexander S. Hatoum
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Wimberley T, Brikell I, Astrup A, Larsen JT, Petersen LV, Albiñana C, Vilhjálmsson BJ, Bulik CM, Chang Z, Fanelli G, Bralten J, Mota NR, Salas-Salvadó J, Fernandez-Aranda F, Bulló M, Franke B, Børglum A, Mortensen PB, Horsdal HT, Dalsgaard S. Shared familial risk for type 2 diabetes mellitus and psychiatric disorders: a nationwide multigenerational genetics study. Psychol Med 2024:1-10. [PMID: 38801094 DOI: 10.1017/s0033291724001053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Psychiatric disorders and type 2 diabetes mellitus (T2DM) are heritable, polygenic, and often comorbid conditions, yet knowledge about their potential shared familial risk is lacking. We used family designs and T2DM polygenic risk score (T2DM-PRS) to investigate the genetic associations between psychiatric disorders and T2DM. METHODS We linked 659 906 individuals born in Denmark 1990-2000 to their parents, grandparents, and aunts/uncles using population-based registers. We compared rates of T2DM in relatives of children with and without a diagnosis of any or one of 11 specific psychiatric disorders, including neuropsychiatric and neurodevelopmental disorders, using Cox regression. In a genotyped sample (iPSYCH2015) of individuals born 1981-2008 (n = 134 403), we used logistic regression to estimate associations between a T2DM-PRS and these psychiatric disorders. RESULTS Among 5 235 300 relative pairs, relatives of individuals with a psychiatric disorder had an increased risk for T2DM with stronger associations for closer relatives (parents:hazard ratio = 1.38, 95% confidence interval 1.35-1.42; grandparents: 1.14, 1.13-1.15; and aunts/uncles: 1.19, 1.16-1.22). In the genetic sample, one standard deviation increase in T2DM-PRS was associated with an increased risk for any psychiatric disorder (odds ratio = 1.11, 1.08-1.14). Both familial T2DM and T2DM-PRS were significantly associated with seven of 11 psychiatric disorders, most strongly with attention-deficit/hyperactivity disorder and conduct disorder, and inversely with anorexia nervosa. CONCLUSIONS Our findings of familial co-aggregation and higher T2DM polygenic liability associated with psychiatric disorders point toward shared familial risk. This suggests that part of the comorbidity is explained by shared familial risks. The underlying mechanisms still remain largely unknown and the contributions of genetics and environment need further investigation.
Collapse
Affiliation(s)
- Theresa Wimberley
- The National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark
| | - Isabell Brikell
- The National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Aske Astrup
- The National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Janne T Larsen
- The National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Liselotte V Petersen
- The National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Clara Albiñana
- The National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Bjarni J Vilhjálmsson
- The National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Zheng Chang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Giuseppe Fanelli
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Nina R Mota
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jordi Salas-Salvadó
- Department of Biochemistry & Biotechnology, School of Medicine, IISPV, Rovira i Virgili University. Reus, Spain
- Institute of Health Pere Virgili (IISPV), Reus, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII). Madrid, Spain
| | - Fernando Fernandez-Aranda
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII). Madrid, Spain
- Clinical Psychology Unit, University Hospital Bellvitge, Hospitalet del Llobregat, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Hospitalet del Llobregat, Spain
- Psychoneurobiology of Eating and Addictive Behaviours Group, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet del Llobregat, Spain
| | - Monica Bulló
- Department of Biochemistry & Biotechnology, School of Medicine, IISPV, Rovira i Virgili University. Reus, Spain
- Institute of Health Pere Virgili (IISPV), Reus, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII). Madrid, Spain
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anders Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Preben B Mortensen
- The National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark
| | - Henriette T Horsdal
- The National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Søren Dalsgaard
- The National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Child and Adolescent Psychiatry Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Breunig S, Lawrence JM, Foote IF, Gebhardt HJ, Willcutt EG, Grotzinger AD. Examining Differences in the Genetic and Functional Architecture of Attention-Deficit/Hyperactivity Disorder Diagnosed in Childhood and Adulthood. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100307. [PMID: 38633226 PMCID: PMC11021367 DOI: 10.1016/j.bpsgos.2024.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024] Open
Abstract
Background Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with diagnostic criteria requiring symptoms to begin in childhood. We investigated whether individuals diagnosed as children differ from those diagnosed in adulthood with respect to shared and unique architecture at the genome-wide and gene expression level of analysis. Methods We used genomic structural equation modeling (SEM) to investigate differences in genetic correlations (rg) of childhood-diagnosed (ncases = 14,878) and adulthood-diagnosed (ncases = 6961) ADHD with 98 behavioral, psychiatric, cognitive, and health outcomes. We went on to apply transcriptome-wide SEM to identify functional annotations and patterns of gene expression associated with genetic risk sharing or divergence across the ADHD subgroups. Results Compared with the childhood subgroup, adulthood-diagnosed ADHD exhibited a significantly larger negative rg with educational attainment, the noncognitive skills of educational attainment, and age at first sexual intercourse. We observed a larger positive rg for adulthood-diagnosed ADHD with major depression, suicidal ideation, and a latent internalizing factor. At the gene expression level, transcriptome-wide SEM analyses revealed 22 genes that were significantly associated with shared genetic risk across the subtypes that reflected a mixture of coding and noncoding genes and included 15 novel genes relative to the ADHD subgroups. Conclusions This study demonstrated that ADHD diagnosed later in life shows much stronger genetic overlap with internalizing disorders and related traits. This may indicate the potential clinical relevance of distinguishing these subgroups or increased misdiagnosis for those diagnosed later in life. Top transcriptome-wide SEM results implicated genes related to neuronal function and clinical characteristics (e.g., sleep).
Collapse
Affiliation(s)
- Sophie Breunig
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Jeremy M. Lawrence
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Isabelle F. Foote
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Hannah J. Gebhardt
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Erik G. Willcutt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Andrew D. Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
6
|
Hubers N, Hagenbeek FA, Pool R, Déjean S, Harms AC, Roetman PJ, van Beijsterveldt CEM, Fanos V, Ehli EA, Vermeiren RRJM, Bartels M, Hottenga JJ, Hankemeier T, van Dongen J, Boomsma DI. Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/Hyperactivity Disorder. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32955. [PMID: 37534875 DOI: 10.1002/ajmg.b.32955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.
Collapse
Affiliation(s)
- Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, UMR 5219, University of Toulouse, CNRS, Toulouse, France
| | - Amy C Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Peter J Roetman
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Robert R J M Vermeiren
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Youz, Parnassia Group, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Tesli N, Jaholkowski P, Haukvik UK, Jangmo A, Haram M, Rokicki J, Friestad C, Tielbeek JJ, Næss Ø, Skardhamar T, Gustavson K, Ask H, Fazel S, Tesli M, Andreassen OA. Conduct disorder - a comprehensive exploration of comorbidity patterns, genetic and environmental risk factors. Psychiatry Res 2024; 331:115628. [PMID: 38029627 DOI: 10.1016/j.psychres.2023.115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Conduct disorder (CD), a common mental disorder in children and adolescents, is characterized by antisocial behavior. Despite similarities with antisocial personality disorder (ASPD) and possible diagnostic continuity, CD has been shown to precede a range of adult-onset mental disorders. Additionally, little is known about the putative shared genetic liability between CD and adult-onset mental disorders and the underlying gene-environment interplay. Here, we interrogated comorbidity between CD and other mental disorders from the Norwegian Mother, Father and Child Cohort Study (n = 114 500) and investigated how polygenic risk scores (PRS) for mental health traits were associated with CD/CD traits in childhood and adolescence. Gene-environment interplay patterns for CD was explored with data on bullying and parental education. We found CD to be comorbid with several child and adult-onset mental disorders. This phenotypic overlap corresponded with associations between PRS for mental disorders and CD. Additionally, our findings support an additive gene-environment model. Previously conceptualized as a precursor of ASPD, we found that CD was associated with polygenic risk for several child- and adult-onset mental disorders. High comorbidity of CD with other psychiatric disorders reflected on the genetic level should inform research studies, diagnostic assessments and clinical follow-up of this heterogenous group.
Collapse
Affiliation(s)
- Natalia Tesli
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway; Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway.
| | - Piotr Jaholkowski
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway; Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Andreas Jangmo
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Marit Haram
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jaroslav Rokicki
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Christine Friestad
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway; University College of Norwegian Correctional Service, Oslo, Norway
| | - Jorim J Tielbeek
- Center for Neurogenomics and Cognitive Research, Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Øyvind Næss
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway; Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Skardhamar
- Department of Sociology and Human Geography, University of Oslo, Oslo, Norway
| | - Kristin Gustavson
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Helga Ask
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Seena Fazel
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Martin Tesli
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway; Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Antón-Galindo E, Cabana-Domínguez J, Torrico B, Corominas R, Cormand B, Fernàndez-Castillo N. The pleiotropic contribution of genes in dopaminergic and serotonergic pathways to addiction and related behavioral traits. Front Psychiatry 2023; 14:1293663. [PMID: 37937232 PMCID: PMC10627163 DOI: 10.3389/fpsyt.2023.1293663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Co-occurrence of substance use disorders (SUD) and other behavioral conditions, such as stress-related, aggressive or risk-taking behaviors, in the same individual has been frequently described. As dopamine (DA) and serotonin (5-HT) have been previously identified as key neurotransmitters for some of these phenotypes, we explored the genetic contribution of these pathways to SUD and these comorbid phenotypes in order to better understand the genetic relationship between them. Methods We tested the association of 275 dopaminergic genes and 176 serotonergic genes with these phenotypes by performing gene-based, gene-set and transcriptome-wide association studies in 11 genome-wide association studies (GWAS) datasets on SUD and related behaviors. Results At the gene-wide level, 68 DA and 27 5-HT genes were found to be associated with at least one GWAS on SUD or related behavior. Among them, six genes had a pleiotropic effect, being associated with at least three phenotypes: ADH1C, ARNTL, CHRNA3, HPRT1, HTR1B and DRD2. Additionally, we found nominal associations between the DA gene sets and SUD, opioid use disorder, antisocial behavior, irritability and neuroticism, and between the 5-HT-core gene set and neuroticism. Predicted gene expression correlates in brain were also found for 19 DA or 5-HT genes. Discussion Our study shows a pleiotropic contribution of dopaminergic and serotonergic genes to addiction and related behaviors such as anxiety, irritability, neuroticism and risk-taking behavior, highlighting a role for DA genes, which could explain, in part, the co-occurrence of these phenotypes.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Roser Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
9
|
Ribasés M, Mitjans M, Hartman CA, Soler Artigas M, Demontis D, Larsson H, Ramos-Quiroga JA, Kuntsi J, Faraone SV, Børglum AD, Reif A, Franke B, Cormand B. Genetic architecture of ADHD and overlap with other psychiatric disorders and cognition-related phenotypes. Neurosci Biobehav Rev 2023; 153:105313. [PMID: 37451654 PMCID: PMC10789879 DOI: 10.1016/j.neubiorev.2023.105313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.
Collapse
Affiliation(s)
- M Ribasés
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - M Mitjans
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalonia, Spain
| | - C A Hartman
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Soler Artigas
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - D Demontis
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - H Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - J A Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Kuntsi
- Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - S V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - A D Børglum
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - A Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - B Franke
- Departments of Cognitive Neuroscience and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - B Cormand
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
He Q, Keding TJ, Zhang Q, Miao J, Russell JD, Herringa RJ, Lu Q, Travers BG, Li JJ. Neurogenetic mechanisms of risk for ADHD: Examining associations of polygenic scores and brain volumes in a population cohort. J Neurodev Disord 2023; 15:30. [PMID: 37653373 PMCID: PMC10469494 DOI: 10.1186/s11689-023-09498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND ADHD polygenic scores (PGSs) have been previously shown to predict ADHD outcomes in several studies. However, ADHD PGSs are typically correlated with ADHD but not necessarily reflective of causal mechanisms. More research is needed to elucidate the neurobiological mechanisms underlying ADHD. We leveraged functional annotation information into an ADHD PGS to (1) improve the prediction performance over a non-annotated ADHD PGS and (2) test whether volumetric variation in brain regions putatively associated with ADHD mediate the association between PGSs and ADHD outcomes. METHODS Data were from the Philadelphia Neurodevelopmental Cohort (N = 555). Multiple mediation models were tested to examine the indirect effects of two ADHD PGSs-one using a traditional computation involving clumping and thresholding and another using a functionally annotated approach (i.e., AnnoPred)-on ADHD inattention (IA) and hyperactivity-impulsivity (HI) symptoms, via gray matter volumes in the cingulate gyrus, angular gyrus, caudate, dorsolateral prefrontal cortex (DLPFC), and inferior temporal lobe. RESULTS A direct effect was detected between the AnnoPred ADHD PGS and IA symptoms in adolescents. No indirect effects via brain volumes were detected for either IA or HI symptoms. However, both ADHD PGSs were negatively associated with the DLPFC. CONCLUSIONS The AnnoPred ADHD PGS was a more developmentally specific predictor of adolescent IA symptoms compared to the traditional ADHD PGS. However, brain volumes did not mediate the effects of either a traditional or AnnoPred ADHD PGS on ADHD symptoms, suggesting that we may still be underpowered in clarifying brain-based biomarkers for ADHD using genetic measures.
Collapse
Affiliation(s)
- Quanfa He
- Department of Psychology, University of, Wisconsin-Madison, 1202 W. Johnson Street, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, USA
| | | | - Qi Zhang
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, USA
| | - Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, USA
| | - Justin D Russell
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Ryan J Herringa
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, USA
| | - Brittany G Travers
- Waisman Center, University of Wisconsin-Madison, Madison, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, USA
| | - James J Li
- Department of Psychology, University of, Wisconsin-Madison, 1202 W. Johnson Street, Madison, WI, 53706, USA.
- Waisman Center, University of Wisconsin-Madison, Madison, USA.
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
11
|
Dou M, Li M, Zheng Z, Chen Q, Wu Y, Wang J, Shan H, Wang F, Dai X, Li Y, Yang Z, Tan G, Luo F, Chen L, Shi YS, Wu JW, Luo XJ, Asadollahpour Nanaei H, Niyazbekova Z, Zhang G, Wang W, Zhao S, Zheng W, Wang X, Jiang Y. A missense mutation in RRM1 contributes to animal tameness. SCIENCE ADVANCES 2023; 9:eadf4068. [PMID: 37352351 PMCID: PMC10289655 DOI: 10.1126/sciadv.adf4068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/18/2023] [Indexed: 06/25/2023]
Abstract
The increased tameness to reduce avoidance of human in wild animals has been long proposed as the key step of animal domestication. The tameness is a complex behavior trait and largely determined by genetic factors. However, the underlying genetic mutations remain vague and how they influence the animal behaviors is yet to be explored. Behavior tests of a wild-domestic hybrid goat population indicate the locus under strongest artificial selection during domestication may exert a huge effect on the flight distance. Within this locus, only one missense mutation RRM1I241V which was present in the early domestic goat ~6500 years ago. Genome editing of RRM1I241V in mice showed increased tameness and sociability and reduced anxiety. These behavioral changes induced by RRM1I241V were modulated by the alternation of activity of glutamatergic synapse and some other synapse-related pathways. This study established a link between RRM1I241V and tameness, demonstrating that the complex behavioral change can be achieved by mutations under strong selection during animal domestication.
Collapse
Affiliation(s)
- Mingle Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
| | - Zhuqing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiuming Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830011, China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Jinxin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Huiquan Shan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Yunjia Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Zhirui Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Guanghui Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Funong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu, 210032, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Xiong-Jian Luo
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | - Zhannur Niyazbekova
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Guojie Zhang
- Centre for Evolutionary and Organismal Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Wenxin Zheng
- Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, 830011, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
12
|
Dachew BA, Pereira G, Tessema GA, Dhamrait GK, Alati R. Interpregnancy interval and the risk of oppositional defiant disorder in offspring. Dev Psychopathol 2023; 35:891-898. [PMID: 35232525 DOI: 10.1017/s095457942200013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The study aimed to investigate the association between interpregnancy interval (IPI) and parent-reported oppositional defiant disorder (ODD) in offspring at 7 and 10 years of age. We used data from the Avon Longitudinal Study of Parents and Children (ALSPAC), an ongoing population-based longitudinal study based in Bristol, United Kingdom (UK). Data included in the analysis consisted of more than 3200 mothers and their singleton children. The association between IPI and ODD was determined using a series of log-binomial regression analyses. We found that children of mothers with short IPI (<6 months) were 2.4 times as likely to have a diagnosis of ODD at 7 and 10 years compared to mothers with IPI of 18-23 months (RR = 2.45; 95%CI: 1.24-4.81 and RR = 2.40; 95% CI: 1.08-5.33), respectively. We found no evidence of associations between other IPI categories and risk of ODD in offspring in both age groups. Adjustment for a wide range of confounders, including maternal mental health, and comorbid ADHD did not alter the findings. This study suggests that the risk of ODD is higher among children born following short IPI (<6 months). Future large prospective studies are needed to elucidate the mechanisms explaining this association.
Collapse
Affiliation(s)
| | - Gavin Pereira
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| | - Gizachew Assefa Tessema
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Gursimran Kaur Dhamrait
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - Rosa Alati
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Institute for Social Science Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Silveira PP, Meaney MJ. Examining the biological mechanisms of human mental disorders resulting from gene-environment interdependence using novel functional genomic approaches. Neurobiol Dis 2023; 178:106008. [PMID: 36690304 DOI: 10.1016/j.nbd.2023.106008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
We explore how functional genomics approaches that integrate datasets from human and non-human model systems can improve our understanding of the effect of gene-environment interplay on the risk for mental disorders. We start by briefly defining the G-E paradigm and its challenges and then discuss the different levels of regulation of gene expression and the corresponding data existing in humans (genome wide genotyping, transcriptomics, DNA methylation, chromatin modifications, chromosome conformational changes, non-coding RNAs, proteomics and metabolomics), discussing novel approaches to the application of these data in the study of the origins of mental health. Finally, we discuss the multilevel integration of diverse types of data. Advance in the use of functional genomics in the context of a G-E perspective improves the detection of vulnerabilities, informing the development of preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Patrícia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore; Brain - Body Initiative, Agency for Science, Technology and Research (ASTAR), Singapore.
| |
Collapse
|
14
|
Meijer M, Franke B, Sandi C, Klein M. Epigenome-wide DNA methylation in externalizing behaviours: A review and combined analysis. Neurosci Biobehav Rev 2023; 145:104997. [PMID: 36566803 DOI: 10.1016/j.neubiorev.2022.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
DNA methylation (DNAm) is one of the most frequently studied epigenetic mechanisms facilitating the interplay of genomic and environmental factors, which can contribute to externalizing behaviours and related psychiatric disorders. Previous epigenome-wide association studies (EWAS) for externalizing behaviours have been limited in sample size, and, therefore, candidate genes and biomarkers with robust evidence are still lacking. We 1) performed a systematic literature review of EWAS of attention-deficit/hyperactivity disorder (ADHD)- and aggression-related behaviours conducted in peripheral tissue and cord blood and 2) combined the most strongly associated DNAm sites observed in individual studies (p < 10-3) to identify candidate genes and biological systems for ADHD and aggressive behaviours. We observed enrichment for neuronal processes and neuronal cell marker genes for ADHD. Astrocyte and granulocytes cell markers among genes annotated to DNAm sites were relevant for both ADHD and aggression-related behaviours. Only 1 % of the most significant epigenetic findings for ADHD/ADHD symptoms were likely to be directly explained by genetic factors involved in ADHD. Finally, we discuss how the field would greatly benefit from larger sample sizes and harmonization of assessment instruments.
Collapse
Affiliation(s)
- Mandy Meijer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
15
|
Tielbeek JJ, Uffelmann E, Williams BS, Colodro-Conde L, Gagnon É, Mallard TT, Levitt BE, Jansen PR, Johansson A, Sallis HM, Pistis G, Saunders GRB, Allegrini AG, Rimfeld K, Konte B, Klein M, Hartmann AM, Salvatore JE, Nolte IM, Demontis D, Malmberg ALK, Burt SA, Savage JE, Sugden K, Poulton R, Harris KM, Vrieze S, McGue M, Iacono WG, Mota NR, Mill J, Viana JF, Mitchell BL, Morosoli JJ, Andlauer TFM, Ouellet-Morin I, Tremblay RE, Côté SM, Gouin JP, Brendgen MR, Dionne G, Vitaro F, Lupton MK, Martin NG, Castelao E, Räikkönen K, Eriksson JG, Lahti J, Hartman CA, Oldehinkel AJ, Snieder H, Liu H, Preisig M, Whipp A, Vuoksimaa E, Lu Y, Jern P, Rujescu D, Giegling I, Palviainen T, Kaprio J, Harden KP, Munafò MR, Morneau-Vaillancourt G, Plomin R, Viding E, Boutwell BB, Aliev F, Dick DM, Popma A, Faraone SV, Børglum AD, Medland SE, Franke B, Boivin M, Pingault JB, Glennon JC, Barnes JC, Fisher SE, Moffitt TE, Caspi A, Polderman TJC, Posthuma D. Uncovering the genetic architecture of broad antisocial behavior through a genome-wide association study meta-analysis. Mol Psychiatry 2022; 27:4453-4463. [PMID: 36284158 PMCID: PMC10902879 DOI: 10.1038/s41380-022-01793-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/03/2022] [Accepted: 09/09/2022] [Indexed: 01/14/2023]
Abstract
Despite the substantial heritability of antisocial behavior (ASB), specific genetic variants robustly associated with the trait have not been identified. The present study by the Broad Antisocial Behavior Consortium (BroadABC) meta-analyzed data from 28 discovery samples (N = 85,359) and five independent replication samples (N = 8058) with genotypic data and broad measures of ASB. We identified the first significant genetic associations with broad ASB, involving common intronic variants in the forkhead box protein P2 (FOXP2) gene (lead SNP rs12536335, p = 6.32 × 10-10). Furthermore, we observed intronic variation in Foxp2 and one of its targets (Cntnap2) distinguishing a mouse model of pathological aggression (BALB/cJ strain) from controls (BALB/cByJ strain). Polygenic risk score (PRS) analyses in independent samples revealed that the genetic risk for ASB was associated with several antisocial outcomes across the lifespan, including diagnosis of conduct disorder, official criminal convictions, and trajectories of antisocial development. We found substantial genetic correlations of ASB with mental health (depression rg = 0.63, insomnia rg = 0.47), physical health (overweight rg = 0.19, waist-to-hip ratio rg = 0.32), smoking (rg = 0.54), cognitive ability (intelligence rg = -0.40), educational attainment (years of schooling rg = -0.46) and reproductive traits (age at first birth rg = -0.58, father's age at death rg = -0.54). Our findings provide a starting point toward identifying critical biosocial risk mechanisms for the development of ASB.
Collapse
Affiliation(s)
- Jorim J Tielbeek
- Center for Neurogenomics and Cognitive Research, Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands.
| | - Emil Uffelmann
- Center for Neurogenomics and Cognitive Research, Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Benjamin S Williams
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, 2020 West Main Street, Durham, NC, 27705, USA
| | - Lucía Colodro-Conde
- Psychiatric Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Éloi Gagnon
- Research Unit on Children's Psychosocial Maladjustment, École de psychologie, Université Laval, 2523 Allée des Bibliothèques, Quebec City, QC, G1V 0A6, Canada
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brandt E Levitt
- Carolina Population Center, University of North Carolina at Chapel Hill, 123 Franklin St, Chapel Hill, NC, 27516, USA
| | - Philip R Jansen
- Center for Neurogenomics and Cognitive Research, Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Ada Johansson
- Department of Psychology, Faculty of Arts, Psychology, and Theology, Åbo Akademi University, Tuomiokirkontori 3, FI-20500, Turku, Finland
| | - Hannah M Sallis
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Road, Bristol, BS8 2BN, UK
| | - Giorgio Pistis
- Center for Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery 25, CH-1008, Prilly, Vaud, Switzerland
| | - Gretchen R B Saunders
- Department of Psychology, University of Minnesota, 75 E. River Road, Minneapolis, MN, 55455, USA
| | - Andrea G Allegrini
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, DeCrespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Kaili Rimfeld
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, DeCrespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Bettina Konte
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Groteplein 10, 6500 HB, Nijmegen, The Netherlands
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Jessica E Salvatore
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Ditte Demontis
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000, Aarhus C, Aarhus, Denmark
| | - Anni L K Malmberg
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, 00014, Helsinki, Finland
| | | | - Jeanne E Savage
- Center for Neurogenomics and Cognitive Research, Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Karen Sugden
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, 2020 West Main Street, Durham, NC, 27705, USA
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, Dunedin, New Zealand
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, CB# 3210, 201 Hamilton Hall, Chapel Hill, NC, 27599, USA
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, 75 E. River Road, Minneapolis, MN, 55455, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, 75 E. River Road, Minneapolis, MN, 55455, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, 75 E. River Road, Minneapolis, MN, 55455, USA
| | - Nina Roth Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Groteplein 10, 6500 HB, Nijmegen, The Netherlands
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Joana F Viana
- The Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, Birmingham, UK
| | - Brittany L Mitchell
- Genetic Epidemiology, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Jose J Morosoli
- Psychiatric Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Till F M Andlauer
- Department of Neurology, Technical University of Munich, 22 Ismaninger St., 81675, Munich, Germany
| | - Isabelle Ouellet-Morin
- Research Unit on Children's Psychosocial Maladjustment, École de criminologie, Université of Montreal, 3150 Rue Jean-Brillant, Montreal, QC, H3T 1N8, Canada
| | - Richard E Tremblay
- Research Unit on Children's Psychosocial Maladjustment, Département de pédiatrie et de psychologie, University of Montreal, 90 Avenue Vincent d'Indy, Montreal, QC, H2V 2S9, Canada
| | - Sylvana M Côté
- Research Unit on Children's Psychosocial Maladjustment, CHU Ste-Justine Research Center and Department of Social and Preventive Medicine, University of Montreal, 3175 Chemin de la Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Jean-Philippe Gouin
- Department of Psychology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Mara R Brendgen
- Research Unit on Children's Psychosocial Maladjustment, Département de psychologie, Université du Québec à Montréal, CP 8888 succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| | - Ginette Dionne
- Research Unit on Children's Psychosocial Maladjustment, École de psychologie, Université Laval, 2523 Allée des Bibliothèques, Quebec City, QC, G1V 0A6, Canada
| | - Frank Vitaro
- Research Unit on Children's Psychosocial Maladjustment, CHU Sainte-Justine Research Center and University of Montreal, 3175 Chemin de la Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Michelle K Lupton
- Genetic Epidemiology, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Nicholas G Martin
- Genetic Epidemiology, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Enrique Castelao
- Center for Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery 25, CH-1008, Prilly, Vaud, Switzerland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, 00014, Helsinki, Finland
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Tukholmankatu 8 B, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, 00014, Helsinki, Finland
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Hexuan Liu
- School of Criminal Justice, University of Cincinnati, 2840 Bearcat Way, Cincinnati, OH, 45221, USA
| | - Martin Preisig
- Center for Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery 25, CH-1008, Prilly, Vaud, Switzerland
| | - Alyce Whipp
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, PO Box 4, (Yliopistonkatu 3), 00014, Helsinki, Finland
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, PO Box 4, (Yliopistonkatu 3), 00014, Helsinki, Finland
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels Väg 12A, 171 77, Stockholm, Sweden
| | - Patrick Jern
- Department of Psychology, Faculty of Arts, Psychology, and Theology, Åbo Akademi University, Tuomiokirkontori 3, FI-20500, Turku, Finland
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ina Giegling
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, PO Box 4, (Yliopistonkatu 3), 00014, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, PO Box 4, (Yliopistonkatu 3), 00014, Helsinki, Finland
| | - Kathryn Paige Harden
- Department of Psychology and Population Research Center, University of Texas at Austin, 108 E Dean Keeton Stop #A8000, Austin, TX, 78712, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Road, Bristol, BS8 2BN, UK
| | - Geneviève Morneau-Vaillancourt
- Research Unit on Children's Psychosocial Maladjustment, École de psychologie, Université Laval, 2523 Allée des Bibliothèques, Quebec City, QC, G1V 0A6, Canada
| | - Robert Plomin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, DeCrespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Essi Viding
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Brian B Boutwell
- School of Applied Sciences, University of Mississippi, John D. Bower School of Population Health, University of Mississippi Medical Center, 84 Dormitory Row West, University, MS, 38677, USA
| | - Fazil Aliev
- Department of Psychology, Virginia Commonwealth University, Box 842018, 806W Franklin St, Richmond, VA, 23284, USA
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, Box 842018, 806W Franklin St, Richmond, VA, 23284, USA
| | - Arne Popma
- Amsterdam UMC, VKC Psyche, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam, The Netherlands
| | - Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000, Aarhus C, Aarhus, Denmark
| | - Sarah E Medland
- Psychiatric Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaivour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Michel Boivin
- Research Unit on Children's Psychosocial Maladjustment, École de psychologie, Université Laval, 2523 Allée des Bibliothèques, Quebec City, QC, G1V 0A6, Canada
| | - Jean-Baptiste Pingault
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Sciences, School of Medicine, University College Dublin, Dublin, Ireland
| | - J C Barnes
- School of Criminal Justice, University of Cincinnati, 2840 Bearcat Way, Cincinnati, OH, 45221, USA
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD, Nijmegen, The Netherlands
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, 2020 West Main Street, Durham, NC, 27705, USA
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, 2020 West Main Street, Durham, NC, 27705, USA
| | - Tinca J C Polderman
- Amsterdam UMC, VKC Psyche, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Center for Neurogenomics and Cognitive Research, Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Wu Y, Li Y, Zhu J, Long J. Shared genetics and causality underlying epilepsy and attention-deficit hyperactivity disorder. Psychiatry Res 2022; 316:114794. [PMID: 35994864 DOI: 10.1016/j.psychres.2022.114794] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
The prevalence of attention deficit hyperactivity disorder (ADHD) in patients with epilepsy was much higher than prevalence in general population, and vice versa. The mechanisms underlying comorbid ADHD and epilepsy remained largely unknown. Here, we systematically analyzed the genetic correlation, causality, shared genetics and specific trait related tissues by using linkage disequilibrium score regression (LDSC), two sample Mendelian randomization (TwoSampleMR), bivariate causal mixture model (MiXeR), conjunctional false discovery rate (conjFDR) and LDSC applied to specifically expressed genes based on genome wide association studies (GWASs) data of ADHD and epilepsy. We found that ADHD had significant positive genetic association with epilepsy. Two-sample Mendelian randomization analysis with genome wide significant single nucleotide polymorphisms (SNPs) as instrument variables suggested a positively causal effect of ADHD on epilepsy. Using MiXeR, which estimates the total amount of shared variants, we observed 1 K causal variants overlapped between ADHD and epilepsy. At conjFDR <0.05, ADHD shared 2 distinct genomic loci with Epilepsy. Further disease-relevant tissues analysis showed that cortex, substantia nigra, amygdala and hippocampus were both associated with ADHD and epilepsy. Our results suggested that ADHD was genetically correlated with epilepsy, which might be due to the fact that they shared common pathogenic sites and tissues origin.
Collapse
Affiliation(s)
- Yong Wu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan, Hubei 430012, China
| | - Yichen Li
- Radiology Department, Wuhan Mental Health Center, Wuhan, Hubei 430012, China
| | - Junhong Zhu
- Department of Mental Rehabilitation, Wuhan Mental Health Center, Wuhan, Hubei 430012, China.
| | - Jingyi Long
- Department of Child & Adolescent Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei 430012, China.
| |
Collapse
|
17
|
Langley K, Martin J, Thapar A. Genetics of Attention-Deficit Hyperactivity Disorder. Curr Top Behav Neurosci 2022; 57:243-268. [PMID: 35538303 DOI: 10.1007/7854_2022_338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) has long been recognized as being a highly heritable condition and our understanding of the genetic contributions to ADHD has grown over the past few decades. This chapter will discuss the studies that have examined its heritability and the efforts to identify specific genetic risk-variants at the molecular genetic level. We outline the various techniques that have been used to characterize genetic contributions to ADHD, describing what we have learnt so far, what there is still to learn and the methodologies that can be used to further our knowledge. In doing so we will discuss research into rare and common genetic variants, polygenic risk scores, and gene-environment interplay, while also describing what genetic studies have revealed about the biological processes involved in ADHD and what they have taught us about the overlap between ADHD and other psychiatric and somatic disorders. Finally, we will discuss the strengths and limitations of the current methodologies and clinical implications of genetic research to date.
Collapse
Affiliation(s)
- Kate Langley
- School of Psychology, Cardiff University, Cardiff, UK. .,MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| | - Joanna Martin
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.,Division of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK.,Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
| | - Anita Thapar
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.,Division of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK.,Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
| |
Collapse
|
18
|
Hohmann S, Häge A, Millenet S, Banaschewski T. [The Genetic Basis of ADHD - An Update]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2022; 50:203-217. [PMID: 35514173 DOI: 10.1024/1422-4917/a000868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Genetic Basis of ADHD - An Update Abstract. Genetic risks play an important role in the etiology of attention-deficit/hyperactivity disorder (ADHD). This review presents the current state of knowledge concerning the genetic basis of the disorder. It discusses the results of twin- and family-based studies, linkage and association studies as well as recent findings resulting from Genome Wide Association Studies (GWAS). Furthermore, it elaborates on the relevance of polygenic risk scores, rare variants, and epigenetic alterations, especially in light of findings on genetic pleiotropy in the context of frequent psychiatric comorbidities in patients with ADHD.
Collapse
Affiliation(s)
- Sarah Hohmann
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Alexander Häge
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Sabina Millenet
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Tobias Banaschewski
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| |
Collapse
|
19
|
Teeuw J, Klein M, Mota NR, Brouwer RM, van ‘t Ent D, Al-Hassaan Z, Franke B, Boomsma DI, Hulshoff Pol HE. Multivariate Genetic Structure of Externalizing Behavior and Structural Brain Development in a Longitudinal Adolescent Twin Sample. Int J Mol Sci 2022; 23:ijms23063176. [PMID: 35328598 PMCID: PMC8949114 DOI: 10.3390/ijms23063176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Externalizing behavior in its more extreme form is often considered a problem to the individual, their families, teachers, and society as a whole. Several brain structures have been linked to externalizing behavior and such associations may arise if the (co)development of externalizing behavior and brain structures share the same genetic and/or environmental factor(s). We assessed externalizing behavior with the Child Behavior Checklist and Youth Self Report, and the brain volumes and white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD]) with magnetic resonance imaging in the BrainSCALE cohort, which consisted of twins and their older siblings from 112 families measured longitudinally at ages 10, 13, and 18 years for the twins. Genetic covariance modeling based on the classical twin design, extended to also include siblings of twins, showed that genes influence externalizing behavior and changes therein (h2 up to 88%). More pronounced externalizing behavior was associated with higher FA (observed correlation rph up to +0.20) and lower MD (rph up to −0.20), with sizeable genetic correlations (FA ra up to +0.42; MD ra up to −0.33). The cortical gray matter (CGM; rph up to −0.20) and cerebral white matter (CWM; rph up to +0.20) volume were phenotypically but not genetically associated with externalizing behavior. These results suggest a potential mediating role for global brain structures in the display of externalizing behavior during adolescence that are both partially explained by the influence of the same genetic factor.
Collapse
Affiliation(s)
- Jalmar Teeuw
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Correspondence: ; Tel.: +31-(088)-75-53-387
| | - Marieke Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Rachel M. Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Dennis van ‘t Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.v.‘t.E.); (D.I.B.)
| | - Zyneb Al-Hassaan
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.v.‘t.E.); (D.I.B.)
- Amsterdam Public Health (APH) Research Institute, 1081 BT Amsterdam, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Department of Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
20
|
Skogstrand K, Borbye-Lorenzen N, Bækvad-Hansen M, Lausten-Thomsen U. Editorial: Biomarkers to predict, prevent and find the appropriate treatments of disorders in childhood. Front Pediatr 2022; 10:1093198. [PMID: 36507127 PMCID: PMC9727377 DOI: 10.3389/fped.2022.1093198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kristin Skogstrand
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nis Borbye-Lorenzen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ulrik Lausten-Thomsen
- Neonatal Intensive Care Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
21
|
Brikell I, Burton C, Mota NR, Martin J. Insights into attention-deficit/hyperactivity disorder from recent genetic studies. Psychol Med 2021; 51:2274-2286. [PMID: 33814023 DOI: 10.1017/s0033291721000982] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder (NDD). In this narrative review, we summarize recent advances in quantitative and molecular genetic research from the past 5-10 years. Combined with large-scale international collaboration, these advances have resulted in fast-paced progress in understanding the etiology of ADHD and how genetic risk factors map on to clinical heterogeneity. Studies are converging on a number of key insights. First, ADHD is a highly polygenic NDD with a complex genetic architecture encompassing risk variants across the spectrum of allelic frequencies, which are implicated in neurobiological processes. Second, genetic studies strongly suggest that ADHD diagnosis shares a large proportion of genetic risks with continuously distributed traits of ADHD in the population, with shared genetic risks also seen across development and sex. Third, ADHD genetic risks are shared with those implicated in many other neurodevelopmental, psychiatric and somatic phenotypes. As sample sizes and the diversity of genetic studies continue to increase through international collaborative efforts, we anticipate further success with gene discovery, characterization of how the ADHD phenotype relates to other human traits and growing potential to use genomic risk factors for understanding clinical trajectories and for precision medicine approaches.
Collapse
Affiliation(s)
- Isabell Brikell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
| | - Christie Burton
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| |
Collapse
|
22
|
Biederman J, Green A, DiSalvo M, Faraone SV. Can polygenic risk scores help identify pediatric bipolar spectrum and related disorders?: A systematic review. Psychiatry Res 2021; 299:113843. [PMID: 33721787 PMCID: PMC10733908 DOI: 10.1016/j.psychres.2021.113843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/25/2021] [Indexed: 11/21/2022]
Abstract
The genetic basis of mood disorders can, theoretically, provide diagnostic information in scenarios of clinical uncertainty. Therefore, we examined the available body of knowledge on the association between polygenic risk scores for bipolar disorder (BP-PRSs) and pediatric bipolar spectrum and related disorders. We performed a literature search through PubMed in March of 2020. The following variables were extracted from relevant studies: population age, study sample size, source of polygenic risk scores, source of data, the primary goal of the study, the assessments used during the course of the study, and the main findings/outcomes of each study. BP-PRSs were associated with deficits in executive functioning and the diagnosis of attention deficit/hyperactivity disorder (ADHD). Three studies included in our analysis directly compared major depressive disorder (MDD)-PRSs to BP-PRSs in youth. Results showed that MDD-PRSs, and not BP-PRSs, were associated with ADHD symptoms, internalizing problems, and social problems. ADHD-PRSs were associated with conduct problems, depressive symptomatology, and externalizing disorders symptoms. Findings revealed that ADHD-PRSs were more clearly associated with emotional reactivity, emotional dysregulation, and irritability-frequent correlates of pediatric BP disorder. These findings suggest that ADHD-PRSs may have an important contribution to the development of mood related problems in youth.
Collapse
Affiliation(s)
- Joseph Biederman
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Allison Green
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | - Maura DiSalvo
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|