1
|
Olmo-Fontánez AM, Allué-Guardia A, Garcia-Vilanova A, Glenn J, Wang SH, Merritt RE, Schlesinger LS, Turner J, Wang Y, Torrelles JB. Impact of the elderly lung mucosa on Mycobacterium tuberculosis transcriptional adaptation during infection of alveolar epithelial cells. Microbiol Spectr 2024; 12:e0179024. [PMID: 39513699 PMCID: PMC11619525 DOI: 10.1128/spectrum.01790-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Tuberculosis is one of the leading causes of death due to a single infectious agent. Upon infection, Mycobacterium tuberculosis (M.tb) is deposited in the alveoli and encounters the lung mucosa or alveolar lining fluid (ALF). We previously showed that, as we age, ALF presents a higher degree of oxidation and inflammatory mediators, which favors M.tb replication in human macrophages and alveolar epithelial cells (ATs). Here, we define the transcriptional profile of M.tb when exposed to healthy ALF from adult (A-ALF) or elderly (E-ALF) humans before and during infection of ATs. Prior to infection, M.tb exposure to E-ALF upregulated genes essential for bacterial host adaptation directly involved in M.tb pathogenesis. During infection of ATs, E-ALF exposed M.tb further upregulated genes involved in its ability to escape into the AT cytosol bypassing critical host defense mechanisms, as well as genes associated with defense against oxidative stress. These findings demonstrate how alterations in human ALF during the aging process can impact the metabolic status of M.tb, potentially enabling a greater adaptation and survival within host cells. Importantly, we present the first transcriptomic analysis on the impact of the elderly lung mucosa on M.tb pathogenesis during intracellular replication in ATs.IMPORTANCETuberculosis is one of the leading causes of death due to a single infectious agent. Upon infection, Mycobacterium tuberculosis (M.tb) is deposited in the alveoli and comes in contact with the alveolar lining fluid (ALF). We previously showed that elderly ALF favors M.tb replication in human macrophages and alveolar epithelial cells (ATs). Here we define the transcriptional profile of when exposed to healthy ALF from adult (A-ALF) or elderly (E-ALF) humans before and during infection of ATs. Prior to infection, exposure to E-ALF upregulates genes essential for bacterial host adaptation and pathogenesis. During infection of ATs, E-ALF further upregulates M.tb genes involved in its ability to escape into the AT cytosol, as well as genes for defense against oxidative stress. These findings demonstrate how alterations in human ALF during the aging process can impact the metabolic status of M.tb, potentially enabling a greater adaptation and survival within host cells.
Collapse
Affiliation(s)
- Angélica M. Olmo-Fontánez
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Anna Allué-Guardia
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- International Center for the Advancement of Research & Education (I • CARE), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Andreu Garcia-Vilanova
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jeremy Glenn
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Shu-Hua Wang
- Department of Internal Medicine, Infectious Disease Division, The Ohio State University, Columbus, Ohio, USA
| | - Robert E. Merritt
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Larry S. Schlesinger
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- International Center for the Advancement of Research & Education (I • CARE), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joanne Turner
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- International Center for the Advancement of Research & Education (I • CARE), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Jordi B. Torrelles
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- International Center for the Advancement of Research & Education (I • CARE), Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
2
|
Malik AA, Shariq M, Sheikh JA, Jaiswal U, Fayaz H, Shrivastava G, Ehtesham NZ, Hasnain SE. Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. Crit Rev Biochem Mol Biol 2024; 59:310-336. [PMID: 39378051 DOI: 10.1080/10409238.2024.2411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/14/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. M. tb employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive. It utilizes the early secretory antigenic target (ESAT6) secretion system 1 (ESX-1) type VII secretion system (T7SS) and cell wall lipids to disrupt phagosomal integrity, inhibiting phagosome maturation, and fusion with lysosomes. Although host cells activate mechanisms such as ubiquitin (Ub), Ub-ligase, and cyclic GMP-AMP synthase-stimulator of interferon genes 1 (CGAS-STING1)-mediated autophagy to inhibit M. tb survival within macrophages, the pathogen counteracts these defenses with its own virulence factors, thereby inhibiting autophagy and dampening host-directed responses. T7SSs are critical for transporting proteins across the complex mycobacterial cell envelope, performing essential functions, including metabolite uptake, immune evasion, and conjugation. T7SS substrates fall into two main families: ESAT-6 system proteins, which are found in both Firmicutes and Actinobacteria, and proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins, which are unique to mycobacteria. Recent studies have highlighted the significance of T7SSs in mycobacterial growth, virulence, and pathogenesis. Understanding the mechanisms governing T7SSs could pave the way for novel therapeutic strategies to combat mycobacterial diseases, including tuberculosis (TB).
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Telangana, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Udyeshita Jaiswal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Gauri Shrivastava
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, India
| |
Collapse
|
3
|
Suresh M, Sai KV, Mitra K, Ravindran R, Doble M. A network pharmacology-based approach to understand the mechanism of action of anti-mycobacterial activity of Acacia nilotica: a modelling and experimental study. Mol Divers 2024:10.1007/s11030-024-10985-8. [PMID: 39292406 DOI: 10.1007/s11030-024-10985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The rapid rise in drug-resistant tuberculosis poses a serious threat to public health and demands the discovery of new anti-mycobacterial agents. Medicinal plants are a proven potential source of bioactive compounds; however, identifying those responsible for the putative anti-mycobacterial action still remains a challenging task. In this study, we undertook a systematic network pharmacology approach to identify and evaluate anti-mycobacterial compounds from a traditional plant, Acacia nilotica, as a model system. The protein-protein interaction network revealed 17 key pathways in M. tuberculosis encompassing 40 unique druggable targets that are necessary for its growth and survival. The phytochemicals of A. nilotica were preferentially found to interfere with the cell division and cell wall biogenesis proteins, especially FtsZ and Mur. Notably, the compounds epigallocatechin, ellagic acid, chlorogenic acid, and D-pinitol were found to exhibit a potential polypharmacological effect against multiple proteins. Further, in vitro studies confirmed that the selected candidates, chlorogenic acid, and ellagic acid exhibited potent anti-mycobacterial activity (against M. smegmatis) with specific inhibition of purified M.tb FtsZ enzyme. Taken together, the present study demonstrates that network pharmacology combined with molecular docking can be utilized as an efficient approach to identify potential bioactive phytochemicals from natural products along with their mechanism of action. Hence, the compounds identified in this study can be potential lead candidates for developing novel anti-mycobacterial drugs, while the key proteins identified here can be potential drug targets.
Collapse
Affiliation(s)
- Madhumitha Suresh
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Kadambari Vijay Sai
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Kartik Mitra
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Radhika Ravindran
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Theevanam Additives Nutraceuts Pvt Ltd, IITM Bioincubator, IIT Madras, Chennai, 600036, India
- Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, India
| |
Collapse
|
4
|
Kamboyi HK, Paudel A, Shawa M, Sugawara M, Zorigt T, Chizimu JY, Kitao T, Furuta Y, Hang'ombe BM, Munyeme M, Higashi H. EsxA, a type VII secretion system-dependent effector, reveals a novel function in the sporulation of Bacillus cereus ATCC14579. BMC Microbiol 2024; 24:351. [PMID: 39289639 PMCID: PMC11406982 DOI: 10.1186/s12866-024-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Bacillus cereus is a Gram-positive, spore-forming bacterium that produces a spectrum of effectors integral to bacterial niche adaptation and the development of various infections. Among those is EsxA, whose secretion depends on the EssC component of the type VII secretion system (T7SS). EsxA's roles within the bacterial cell are poorly understood, although postulations indicate that it may be involved in sporulation. However, the T7SS repertoire in B. cereus has not been reported, and its functions are unestablished. METHODS We used the type strain, B. cereus ATCC14579, to generate ΔessC mutant through homologous recombination using the homing endonuclease I-SceI mediated markerless gene replacement. Comparatively, we analyzed the culture supernatant of type strain and the ΔessC mutant through Liquid chromatography-tandem mass spectrometry (LC-MS/MS). We further generated T7SSb-specific gene mutations to explore the housekeeping roles of the T7SSb-dependent effectors. The sporulation process of B. cereus ATCC14579 and its mutants was observed microscopically through the classic Schaeffer-Fulton staining method. The spore viability of each strain in this study was established by enumerating the colony-forming units on LB agar. RESULTS Through LC-MS/MS, we identified a pair of nearly identical (94%) effector proteins named EsxA belonging to the sagEsxA-like subfamily of the WXG100 protein superfamily in the culture supernatant of the wild type and none in the ΔessC mutant. Homology analysis of the T7SSb gene cluster among B. cereus strains revealed diversity from the 3' end of essC, encoding additional substrates. Deletions in esxA1 and esxA2 neither altered cellular morphology nor growth rate, but the ΔesxA1ΔesxA2 deletion resulted in significantly fewer viable spores and an overall slower sporulation process. Within 24 h culture, more than 80% of wild-type cells formed endospores compared to less than 5% in the ΔesxA1ΔesxA2 mutant. The maximum spore ratios for the wild type and ΔesxA1ΔesxA2 were 0.96 and 0.72, respectively. Altogether, these results indicated that EsxA1 and EsxA2 work cooperatively and are required for sporulation in B. cereus ATCC14567. CONCLUSION B. cereus ATCC14579 possesses two nearly identical T7SSb-dependent effectors belonging to the sagEsxA-like proteins. Simultaneous deletion of genes encoding these effectors significantly delayed and reduced sporulation, a novel finding for EsxA.
Collapse
Affiliation(s)
- Harvey K Kamboyi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Atmika Paudel
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- GenEndeavor LLC, 26219 Eden Landing Rd, Hayward, CA, 94545, USA
| | - Misheck Shawa
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Hokudai Center for Zoonosis Control in Zambia, University of Zambia, Lusaka, Zambia
| | - Misa Sugawara
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tuvshinzaya Zorigt
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Joseph Y Chizimu
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - Tomoe Kitao
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Bernard M Hang'ombe
- Microbiology Unit, Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- Public Health Unit, Disease Control Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Liu L, Wen C, Cai X, Gong W. A Novel Bi-Directional Channel for Nutrient Uptake across Mycobacterial Outer Envelope. Microorganisms 2024; 12:1827. [PMID: 39338501 PMCID: PMC11434571 DOI: 10.3390/microorganisms12091827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Nutrients are absorbed by special transport proteins on the cell membrane; however, there is less information regarding transporters across the mycobacterial outer envelope, which comprises dense and intricate structures. In this study, we focus on the model organism Mycolicibacterium smegmatis, which has a cell envelope similar to that of Mycobacterium tuberculosis, as well as on the TiME protein secretion tube across the mycobacterial outer envelope. We present transcriptome results and analyze the protein compositions of a mycobacterial surface envelope, determining that more transporters and porins are induced to complement the deletion of the time gene in Mycolicibacterium smegmatis. The TiME protein is essential for nutrient utilization, as demonstrated in the uptake experiments and growth on various monosaccharides or with amino acids as the sole carbon source. Its deletion caused bacteria to be more sensitive to anti-TB drugs and to show a growth defect at an acid pH level, indicating that TiME promotes the survival of M. smegmatis in antibiotic-containing and acidic environments. These results suggest that TiME tubes facilitate bi-directional processes for both protein secretion and nutrient uptake across the mycobacterial outer envelope.
Collapse
Affiliation(s)
- Lei Liu
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chongzheng Wen
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoying Cai
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Weimin Gong
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Garrett SR, Higginson AB, Palmer T. Multiple variants of the type VII secretion system in Gram-positive bacteria. MICROLIFE 2024; 5:uqae013. [PMID: 38957458 PMCID: PMC11217815 DOI: 10.1093/femsml/uqae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Type VII secretion systems (T7SS) are found in bacteria across the Bacillota and Actinomycetota phyla and have been well described in Staphylococcus aureus, Bacillus subtilis, and pathogenic mycobacteria. The T7SS from Actinomycetota and Bacillota share two common components, a membrane-bound EccC/EssC ATPase and EsxA, a small helical hairpin protein of the WXG100 family. However, they also have additional phylum-specific components, and as a result they are termed the T7SSa (Actinomycetota) and T7SSb (Bacillota), respectively. Here, we identify additional organizations of the T7SS across these two phyla and describe eight additional T7SS subtypes, which we have named T7SSc-T7SSj. T7SSd is found exclusively in Actinomycetota including the Olselnella and Bifodobacterium genus, whereas the other seven are found only in Bacillota. All of the novel subtypes contain the canonical ATPase (TsxC) and the WXG100-family protein (TsxA). Most of them also contain a small ubiquitin-related protein, TsxB, related to the T7SSb EsaB/YukD component. Protein kinases, phosphatases, and forkhead-associated (FHA) proteins are often encoded in the novel T7SS gene clusters. Candidate substrates of these novel T7SS subtypes include LXG-domain and RHS proteins. Predicted substrates are frequently encoded alongside genes for additional small WXG100-related proteins that we speculate serve as cosecretion partners. Collectively our findings reveal unexpected diversity in the T7SS in Gram-positive bacteria.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Andrew B Higginson
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
7
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6-specific nanobody restricts M. tuberculosis growth in macrophages. eLife 2024; 12:RP91930. [PMID: 38805257 PMCID: PMC11132683 DOI: 10.7554/elife.91930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| |
Collapse
|
8
|
He P, Zhao B, He W, Song Z, Pei S, Liu D, Xia H, Wang S, Ou X, Zheng Y, Zhou Y, Song Y, Wang Y, Cao X, Xing R, Zhao Y. Impact of MSMEG5257 Deletion on Mycolicibacterium smegmatis Growth. Microorganisms 2024; 12:770. [PMID: 38674714 PMCID: PMC11052289 DOI: 10.3390/microorganisms12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mycobacterial membrane proteins play a pivotal role in the bacterial invasion of host cells; however, the precise mechanisms underlying certain membrane proteins remain elusive. Mycolicibacterium smegmatis (Ms) msmeg5257 is a hemolysin III family protein that is homologous to Mycobacterium tuberculosis (Mtb) Rv1085c, but it has an unclear function in growth. To address this issue, we utilized the CRISPR/Cas9 gene editor to construct Δmsmeg5257 strains and combined RNA transcription and LC-MS/MS protein profiling to determine the functional role of msmeg5257 in Ms growth. The correlative analysis showed that the deletion of msmeg5257 inhibits ABC transporters in the cytomembrane and inhibits the biosynthesis of amino acids in the cell wall. Corresponding to these results, we confirmed that MSMEG5257 localizes in the cytomembrane via subcellular fractionation and also plays a role in facilitating the transport of iron ions in environments with low iron levels. Our data provide insights that msmeg5257 plays a role in maintaining Ms metabolic homeostasis, and the deletion of msmeg5257 significantly impacts the growth rate of Ms. Furthermore, msmeg5257, a promising drug target, offers a direction for the development of novel therapeutic strategies against mycobacterial diseases.
Collapse
Affiliation(s)
- Ping He
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Bing Zhao
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Wencong He
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Zexuan Song
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Shaojun Pei
- School of Public Health, Peking University, Haidian District, Beijing 100871, China;
| | - Dongxin Liu
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Hui Xia
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Shengfen Wang
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Xichao Ou
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yang Zheng
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yang Zhou
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yuanyuan Song
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yiting Wang
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Xiaolong Cao
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Ruida Xing
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yanlin Zhao
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| |
Collapse
|
9
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6 specific nanobody restricts M. tuberculosis growth in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.16.553641. [PMID: 37645775 PMCID: PMC10462100 DOI: 10.1101/2023.08.16.553641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| |
Collapse
|
10
|
Pavlenok M, Nair RR, Hendrickson RC, Niederweis M. The C-terminus is essential for the stability of the mycobacterial channel protein MspA. Protein Sci 2024; 33:e4912. [PMID: 38358254 PMCID: PMC10868439 DOI: 10.1002/pro.4912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability. While a conserved C-terminal signal sequence is essential for folding and protein assembly in the outer membrane of Gram-negative bacteria, the molecular determinants of these processes are unknown for MspA. In this study, we show that mutation and deletion of methionine 183 in the highly conserved C-terminus of MspA and mutation of the conserved tryptophan 40 lead to a complete loss of protein in heat extracts of M. smegmatis. Swapping these residues partially restores the heat stability of MspA indicating that methionine 183 and tryptophan 40 form a conserved sulfur-π electron interaction, which stabilizes the MspA monomer. Flow cytometry showed that all MspA mutants are surface-accessible demonstrating that oligomerization and membrane integration in M. smegmatis are not affected. Thus, the conserved C-terminus of MspA is essential for its thermal stability, but it is not required for protein assembly in its native membrane, indicating that this process is mediated by a mechanism distinct from that in Gram-negative bacteria. These findings will benefit the rational design of MspA-like pores to tailor their properties in current and future applications.
Collapse
Affiliation(s)
- Mikhail Pavlenok
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | | | - Michael Niederweis
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
11
|
Granados-Tristán AL, Hernández-Luna CE, González-Escalante LA, Camacho-Moll ME, Silva-Ramírez B, Bermúdez de León M, Peñuelas-Urquides K. ESX-3 secretion system in Mycobacterium: An overview. Biochimie 2024; 216:46-55. [PMID: 37879428 DOI: 10.1016/j.biochi.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Mycobacteria are microorganisms distributed in the environment worldwide, and some of them, such as Mycobacterium tuberculosis or M. leprae, are pathogenic. The hydrophobic mycobacterial cell envelope has low permeation and bacteria need to export products across their structure. Mycobacteria possess specialized protein secretion systems, such as the Early Secretory Antigenic Target 6 secretion (ESX) system. Five ESX loci have been described in M. tuberculosis, called ESX-1 to ESX-5. The ESX-3 secretion system has been associated with mycobacterial metabolism and growth. The locus of this system is highly conserved across mycobacterial species. Metallo-proteins regulate negative ESX-3 transcription in high conditions of iron and zinc. Moreover, this secretion system is part of an antioxidant regulatory pathway linked to Zinc. EccA3, EccB3, EccC3, EccD3, and EccE3 are components of the ESX-3 secretion machinery, whereas EsxG-EsxH, PE5-PPE4, and PE15-PPE20 are proteins secreted by this system. In addition, EspG3 and MycP3 are complementary proteins involved in transport and proteolysis respectively. This system is associated to mycobacterial virulence by releasing the bacteria from the phagosome and inhibiting endomembrane damage response. Furthermore, components of this system inhibit the host immune response by reducing the recognition of M. tuberculosis-infected cells. The components of the ESX-3 secretion system play a role in drug resistance and cell wall integrity. Moreover, the expression data of this system indicated that external and internal factors affect ESX-3 locus expression. This review provides an overview of new findings on the ESX-3 secretion system, its regulation, expression, and functions.
Collapse
Affiliation(s)
- Ana Laura Granados-Tristán
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico; Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - Carlos Eduardo Hernández-Luna
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - Laura Adiene González-Escalante
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - María Elena Camacho-Moll
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| |
Collapse
|
12
|
Boardman ER, Palmer T, Alcock F. Interbacterial competition mediated by the type VIIb secretion system. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001420. [PMID: 38116759 PMCID: PMC10765036 DOI: 10.1099/mic.0.001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Successful occupancy of a given niche requires the colonising bacteria to interact extensively with the biotic and abiotic environment, including other resident microbes. Bacteria have evolved a range of protein secretion machines for this purpose with eleven such systems identified to date. The type VIIb secretion system (T7SSb) is utilised by Bacillota to secrete a range of protein substrates, including antibacterial toxins targeting closely related strains, and the system as a whole has been implicated in a range of activities such as iron acquisition, intercellular signalling, host colonisation and virulence. This review covers the components and secretion mechanism of the T7SSb, the substrates of these systems and their roles in Gram-positive bacteria, with a focus on interbacterial competition.
Collapse
Affiliation(s)
- Eleanor R. Boardman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Felicity Alcock
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
13
|
Bunduc CM, Ding Y, Kuijl C, Marlovits TC, Bitter W, Houben ENG. Reconstitution of a minimal ESX-5 type VII secretion system suggests a role for PPE proteins in the outer membrane transport of proteins. mSphere 2023; 8:e0040223. [PMID: 37747201 PMCID: PMC10597459 DOI: 10.1128/msphere.00402-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Mycobacteria utilize type VII secretion systems (T7SSs) to secrete proteins across their highly hydrophobic and diderm cell envelope. Pathogenic mycobacteria have up to five different T7SSs, called ESX-1 to ESX-5, which are crucial for growth and virulence. Here, we use a functionally reconstituted ESX-5 system in the avirulent species Mycobacterium smegmatis that lacks ESX-5, to define the role of each esx-5 gene in system functionality. By creating an array of gene deletions and assessing protein levels of components and membrane complex assembly, we observed that only the five components of the inner membrane complex are required for its assembly. However, in addition to these five core components, active secretion also depends on both the Esx and PE/PPE substrates. Tagging the PPE substrates followed by subcellular fractionation, surface labeling and membrane extraction showed that these proteins localize to the mycobacterial outer membrane. This indicates that they could play a role in secretion across this enigmatic outer barrier. These results provide the first full overview of the role of each esx-5 gene in T7SS functionality. IMPORTANCE Pathogenic mycobacteria, such as the notorious Mycobacterium tuberculosis, are highly successful as pathogens, in part due to their specific and diderm cell envelope, with a mycolic acid-containing outer membrane. The architecture of this highly impermeable membrane is little understood and the proteins that populate it even less so. To transport proteins across their cell envelope, mycobacteria employ a specialized transport pathway called type VII secretion. While recent studies have elucidated the type VII secretion membrane channel that mediates transport across the inner membrane, the identity of the outer membrane channel remains a black box. Here, we show evidence that specific substrates of the type VII pathway could form these channels. Elucidating the pathway and mechanism of protein secretion through the mycobacterial outer membrane will allow its exploitation for the development of novel mycobacterial therapeutics.
Collapse
Affiliation(s)
- C. M. Bunduc
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
- Centre for Structural Systems Biology, Notkestraße, Hamburg, Germany
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße, Hamburg, Germany
- German Electron Synchrotron Centre, Notkestraße, Hamburg, Germany
| | - Y. Ding
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
| | - C. Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - T. C. Marlovits
- Centre for Structural Systems Biology, Notkestraße, Hamburg, Germany
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße, Hamburg, Germany
- German Electron Synchrotron Centre, Notkestraße, Hamburg, Germany
| | - W. Bitter
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - E. N. G. Houben
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Zheng Q, Daskalov A. Microbial gasdermins: More than a billion years of pyroptotic-like cell death. Semin Immunol 2023; 69:101813. [PMID: 37480832 DOI: 10.1016/j.smim.2023.101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
In the recent past, the concept of immunity has been extended to eukaryotic and prokaryotic microorganisms, like fungi and bacteria. The latest findings have drawn remarkable evolutionary parallels between metazoan and microbial defense-related genes, unveiling a growing number of shared transkingdom components of immune systems. One such component is the gasdermin family of pore-forming proteins - executioners of a highly inflammatory immune cell death program in mammals, termed pyroptosis. Pyroptotic cell death limits the spread of intracellular pathogens by eliminating infected cells and coordinates the broader inflammatory response to infection. The microbial gasdermins have similarly been implicated in defense-related cell death reactions in fungi, bacteria and archaea. Moreover, the discovery of the molecular regulators of gasdermin cytotoxicity in fungi and bacteria, has established additional evolutionary links to mammalian pyroptotic pathways. Here, we focus on the gasdermin proteins in microorganisms and their role in organismal defense and provide perspective on this remarkable case study in comparative immunology.
Collapse
Affiliation(s)
- Qi Zheng
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
15
|
Vargas R, Luna MJ, Freschi L, Marin M, Froom R, Murphy KC, Campbell EA, Ioerger TR, Sassetti CM, Farhat MR. Phase variation as a major mechanism of adaptation in Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 2023; 120:e2301394120. [PMID: 37399390 PMCID: PMC10334774 DOI: 10.1073/pnas.2301394120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
Phase variation induced by insertions and deletions (INDELs) in genomic homopolymeric tracts (HT) can silence and regulate genes in pathogenic bacteria, but this process is not characterized in MTBC (Mycobacterium tuberculosis complex) adaptation. We leverage 31,428 diverse clinical isolates to identify genomic regions including phase-variants under positive selection. Of 87,651 INDEL events that emerge repeatedly across the phylogeny, 12.4% are phase-variants within HTs (0.02% of the genome by length). We estimated the in-vitro frameshift rate in a neutral HT at 100× the neutral substitution rate at [Formula: see text] frameshifts/HT/year. Using neutral evolution simulations, we identified 4,098 substitutions and 45 phase-variants to be putatively adaptive to MTBC (P < 0.002). We experimentally confirm that a putatively adaptive phase-variant alters the expression of espA, a critical mediator of ESX-1-dependent virulence. Our evidence supports the hypothesis that phase variation in the ESX-1 system of MTBC can act as a toggle between antigenicity and survival in the host.
Collapse
Affiliation(s)
- Roger Vargas
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA02115
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Michael J. Luna
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Maximillian Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY10065
| | - Kenan C. Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX77843
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Maha Reda Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA02114
| |
Collapse
|
16
|
Famelis N, Geibel S, van Tol D. Mycobacterial type VII secretion systems. Biol Chem 2023; 0:hsz-2022-0350. [PMID: 37276364 DOI: 10.1515/hsz-2022-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Mycobacteria, such as the pathogen M. tuberculosis, utilize up to five paralogous type VII secretion systems to transport proteins across their cell envelope. Since these proteins associate in pairs that depend on each other for transport to a different extent, the secretion pathway to the bacterial surface remained challenging to address. Structural characterization of the inner-membrane embedded secretion machineries along with recent advances on the substrates' co-dependencies for transport allow for the first time more detailed and testable models for secretion.
Collapse
Affiliation(s)
- Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius Maximilian University of Würzburg, D-97080 Würzburg, Germany
| | - Sebastian Geibel
- Leiden Institute of Chemistry, Leiden University, NL-2333 CC Leiden, Netherlands
| | - Daan van Tol
- Leiden Institute of Chemistry, Leiden University, NL-2333 CC Leiden, Netherlands
| |
Collapse
|
17
|
Sun S, Wang M, Xiang J, Shao Y, Li L, Sedjoah RCAA, Wu G, Zhou J, Xin Z. BON domain-containing protein-mediated co-selection of antibiotic and heavy metal resistance in bacteria. Int J Biol Macromol 2023; 238:124062. [PMID: 36933600 DOI: 10.1016/j.ijbiomac.2023.124062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The widespread antibiotic resistance of bacteria has become one of the most severe threats to public health. However, the mechanisms that allow microbial acquisition of resistance are still poorly understood. In the present study, a novel BON domain-containing protein was heterologously expressed in Escherichia coli. It functions as an efflux pump-like to confer resistance to various antibiotics, especially for ceftazidime, with a >32-fold increase in minimum inhibitory concentration (MIC). The fluorescence spectroscopy experiment indicated that BON protein could interact with several metal ions, such as copper and silver, which has been associated with the induced co-regulation of antibiotic and heavy metal resistance in bacteria. Furthermore, the BON protein was demonstrated to spontaneously self-assemble into a trimer and generate a central pore-like architecture for antibiotic transporting. A WXG motif as a molecular switch is essential for forming the transmembrane oligomeric pores and controls the interaction between BON protein and cell membrane. Based on these findings, a mechanism termed "one-in, one-out", was proposed for the first time. The present study provides new insights into the structure and function of BON protein and a previously unidentified antibiotic resistance mechanism, filling the knowledge gap in understanding BON protein-mediated intrinsic antibiotic resistance.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengxi Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiahui Xiang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Longxiang Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rita-Cindy Aye-Ayire Sedjoah
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guojun Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingjie Zhou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Yadav P. Challenges & Solutions for Recent Advancements in Multi-Drugs Resistance Tuberculosis: A Review. Microbiol Insights 2023; 16:11786361231152438. [PMID: 36741475 PMCID: PMC9893349 DOI: 10.1177/11786361231152438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
In MDR-TB, mycobacterium is resistant to battlefront drugs like rifampicin and isoniazid. Now it's an urgent global challenge for treatment & diagnosis because more than 50% of drugs are resistant. Till today's information, 5 reasons are liable for MDR: (1) Errors of physicians/patients in therapy management, (2) Complexity and poor vascularization of granulomatous lesions, which obstruct drug distribution to some sites, leading to resistance development, (3) Intrinsic drug resistance of tubercle bacilli, (4) Formation of non-replicating, drug-tolerant bacilli inside the granulomas, (5) Development of mutations in Mtb genes, which are the foremost important molecular mechanisms of resistance. the most contribution of this work is a brief & clear explanation of things chargeable for resistant development, and recent diagnostic & treatment methods for MDR-TB. This study shall help researchers & scientists to develop replacement rapid diagnostic tools, drugs, and treatment protocols.
Collapse
Affiliation(s)
- Pramod Yadav
- Pramod Yadav, Department of AFAF, Amity
University Noida, J-1 Block, Noida, Uttar Pradesh 201313, India. Emails:
;
| |
Collapse
|
19
|
Lagune M, Le Moigne V, Johansen MD, Vásquez Sotomayor F, Daher W, Petit C, Cosentino G, Paulowski L, Gutsmann T, Wilmanns M, Maurer FP, Herrmann JL, Girard-Misguich F, Kremer L. The ESX-4 substrates, EsxU and EsxT, modulate Mycobacterium abscessus fitness. PLoS Pathog 2022; 18:e1010771. [PMID: 35960766 PMCID: PMC9401124 DOI: 10.1371/journal.ppat.1010771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/24/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
ESX type VII secretion systems are complex secretion machineries spanning across the mycobacterial membrane and play an important role in pathogenicity, nutrient uptake and conjugation. We previously reported the role of ESX-4 in modulating Mycobacterium abscessus intracellular survival. The loss of EccB4 was associated with limited secretion of two effector proteins belonging to the WXG-100 family, EsxU and EsxT, and encoded by the esx-4 locus. This prompted us to investigate the function of M. abscessus EsxU and EsxT in vitro and in vivo. Herein, we show that EsxU and EsxT are substrates of ESX-4 and form a stable 1:1 heterodimer that permeabilizes artificial membranes. While expression of esxU and esxT was up-regulated in M. abscessus-infected macrophages, their absence in an esxUT deletion mutant prevented phagosomal membrane disruption while maintaining M. abscessus in an unacidified phagosome. Unexpectedly, the esxUT deletion was associated with a hyper-virulent phenotype, characterised by increased bacterial loads and mortality in mouse and zebrafish infection models. Collectively, these results demonstrate that the presence of EsxU and EsxT dampens survival and persistence of M. abscessus during infection.
Collapse
Affiliation(s)
- Marion Lagune
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Vincent Le Moigne
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Matt D. Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Flor Vásquez Sotomayor
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Cécile Petit
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Gina Cosentino
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Laura Paulowski
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas Gutsmann
- Research Center Borstel, Leibniz Lung Center, Division of Biophysics, Borstel, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- * E-mail: (MW); (FPM); (J-LH); (FG-M); (LK)
| | - Florian P. Maurer
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Institute of Medical Microbiology, Virology and Hospital Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (MW); (FPM); (J-LH); (FG-M); (LK)
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
- APHP, GHU Paris-Saclay, Hôpital Raymond Poincaré, Service de Microbiologie, Garches, France
- * E-mail: (MW); (FPM); (J-LH); (FG-M); (LK)
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
- * E-mail: (MW); (FPM); (J-LH); (FG-M); (LK)
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
- * E-mail: (MW); (FPM); (J-LH); (FG-M); (LK)
| |
Collapse
|
20
|
Pepperell CS. Evolution of Tuberculosis Pathogenesis. Annu Rev Microbiol 2022; 76:661-680. [PMID: 35709500 DOI: 10.1146/annurev-micro-121321-093031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis is a globally distributed, lethal pathogen of humans. The virulence armamentarium of M. tuberculosis appears to have been developed on a scaffold of antiphagocytic defenses found among diverse, mostly free-living species of Mycobacterium. Pathoadaptation was further aided by the modularity, flexibility, and interactivity characterizing mycobacterial effectors and their regulators. During emergence of M. tuberculosis, novel genetic material was acquired, created, and integrated with existing tools. The major mutational mechanisms underlying these adaptations are discussed in this review, with examples. During its evolution, M. tuberculosis lost the ability and/or opportunity to engage in lateral gene transfer, but despite this it has retained the adaptability that characterizes mycobacteria. M. tuberculosis exemplifies the evolutionary genomic mechanisms underlying adoption of the pathogenic niche, and studies of its evolution have uncovered a rich array of discoveries about how new pathogens are made. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Caitlin S Pepperell
- Division of Infectious Diseases, Department of Medicine, and Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
21
|
Cronin RM, Ferrell MJ, Cahir CW, Champion MM, Champion PA. Proteo-genetic analysis reveals clear hierarchy of ESX-1 secretion in Mycobacterium marinum. Proc Natl Acad Sci U S A 2022; 119:e2123100119. [PMID: 35671426 PMCID: PMC9214503 DOI: 10.1073/pnas.2123100119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
The ESX-1 (ESAT-6-system-1) system and the protein substrates it transports are essential for mycobacterial pathogenesis. The precise ways that ESX-1 substrates contribute to virulence remains unknown. Several known ESX-1 substrates are also required for the secretion of other proteins. We used a proteo-genetic approach to construct high-resolution dependency relationships for the roles of individual ESX-1 substrates in secretion and virulence in Mycobacterium marinum, a pathogen of humans and animals. Characterizing a collection of M. marinum strains with in-frame deletions in each of the known ESX-1 substrate genes and the corresponding complementation strains, we demonstrate that ESX-1 substrates are differentially required for ESX-1 activity and for virulence. Using isobaric-tagged proteomics, we quantified the degree of requirement of each substrate on protein secretion. We conclusively defined distinct contributions of ESX-1 substrates in protein secretion. Our data reveal a hierarchy of ESX-1 substrate secretion, which supports a model for the composition of the extracytoplasmic ESX-1 secretory machinery. Overall, our proteo-genetic analysis demonstrates discrete roles for ESX-1 substrates in ESX-1 function and secretion in M. marinum.
Collapse
Affiliation(s)
- Rachel M. Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Micah J. Ferrell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Clare W. Cahir
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
22
|
Kondratieva E, Majorov K, Grigorov A, Skvortsova Y, Kondratieva T, Rubakova E, Linge I, Azhikina T, Apt A. An In Vivo Model of Separate M. tuberculosis Phagocytosis by Neutrophils and Macrophages: Gene Expression Profiles in the Parasite and Disease Development in the Mouse Host. Int J Mol Sci 2022; 23:ijms23062961. [PMID: 35328388 PMCID: PMC8954342 DOI: 10.3390/ijms23062961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
The role of neutrophils in tuberculosis infection remains less well studied compared to that of the CD4+ T-lymphocytes and macrophages. Thus, alterations in Mycobacterium tuberculosis transcription profile following phagocytosis by neutrophils and how these shifts differ from those caused by macrophage phagocytosis remain unknown. We developed a mouse model that allows obtaining large amounts of either neutrophils or macrophages infected in vivo with M. tuberculosis for mycobacteria isolation in quantities sufficient for the whole genome RNA sequencing and aerosol challenge of mice. Here, we present: (i) the differences in transcription profiles of mycobacteria isolated from liquid cultures, neutrophils and macrophages infected in vivo; (ii) phenotypes of infection and lung inflammation (life span, colony forming units (CFU) counts in organs, lung pathology, immune cells infiltration and cytokine production) in genetically TB-susceptible mice identically infected via respiratory tract with neutrophil-passaged (NP), macrophage-passaged (MP) and conventionally prepared (CP) mycobacteria. Two-hour residence within neutrophils caused transcriptome shifts consistent with mycobacterial transition to dormancy and diminished their capacity to attract immune cells to infected lung tissue. Mycobacterial multiplication in organs did not depend upon pre-phagocytosis, whilst survival time of infected mice was shorter in the group infected with NP bacilli. We also discuss possible reasons for these phenotypic divergences.
Collapse
Affiliation(s)
- Elena Kondratieva
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
| | - Konstantin Majorov
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
| | - Artem Grigorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (Y.S.); (T.A.)
| | - Yulia Skvortsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (Y.S.); (T.A.)
| | - Tatiana Kondratieva
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
| | - Elvira Rubakova
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
| | - Irina Linge
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
| | - Tatyana Azhikina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (Y.S.); (T.A.)
| | - Alexander Apt
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
- Correspondence:
| |
Collapse
|
23
|
Multiple genetic paths including massive gene amplification allow Mycobacterium tuberculosis to overcome loss of ESX-3 secretion system substrates. Proc Natl Acad Sci U S A 2022; 119:2112608119. [PMID: 35193958 PMCID: PMC8872769 DOI: 10.1073/pnas.2112608119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium tuberculosis (Mtb) ESX-3 type VII secretion system plays a critical role in iron acquisition. Infection of mice with highly attenuated Mtb deletion mutants lacking esxG or esxH, genes encoding key ESX-3 substrates, unexpectedly yielded suppressor mutants with restored capacity to grow in vivo and in vitro in the absence of iron supplementation. Whole-genome sequencing identified two mechanisms of suppression, the disruption of a transcriptional repressor that regulates expression of an ESX-3 paralogous region encoding EsxR and EsxS, and a massive 38- to 60-fold gene amplification of this same region. These data are significant because they reveal a previously unrecognized iron acquisition regulon and inform mechanisms of Mtb chromosome evolution. Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving “accordion-type” amplification.
Collapse
|
24
|
Spencer BL, Tak U, Mendonça JC, Nagao PE, Niederweis M, Doran KS. A type VII secretion system in Group B Streptococcus mediates cytotoxicity and virulence. PLoS Pathog 2021; 17:e1010121. [PMID: 34871327 PMCID: PMC8675928 DOI: 10.1371/journal.ppat.1010121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/16/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Type VII secretion systems (T7SS) have been identified in Actinobacteria and Firmicutes and have been shown to secrete effector proteins with functions in virulence, host toxicity, and/or interbacterial killing in a few genera. Bioinformatic analysis indicates that isolates of Group B Streptococcus (GBS) encode at least four distinct subtypes of T7SS machinery, three of which encode adjacent putative T7SS effectors with WXG and LXG motifs. However, the function of T7SS in GBS pathogenesis is unknown. Here we assessed the role of the most abundant GBS T7SS subtype during GBS pathogenesis. In a murine model of hematogenous meningitis, mice infected with GBS lacking a functional T7SS or lacking the secreted WXG100 effector EsxA exhibited less mortality, lower bacterial burdens in tissues, and decreased inflammation in the brain compared to mice infected with the parental GBS strain. We further showed that this T7SS induces cytotoxicity in brain endothelium and that EsxA contributes to these cytotoxicity phenotypes in a WXG motif-dependent manner. Finally, we determined that EsxA is a pore-forming protein, thus demonstrating the first role for a non-mycobacterial EsxA homolog in pore formation. This work reveals the importance of a T7SS in host–GBS interactions and has implications for T7SS effector function in other Gram-positive bacteria. Group B Streptococcus (GBS) is an important human pathogen that is a leading cause of invasive disease in newborns and certain adult populations, including pregnant women, the elderly, and those with diabetes. During pregnancy, asymptomatically colonizing GBS in the female genital tract can be transmitted to the fetus or newborn and can result in neonatal meningitis upon GBS disruption of the blood-brain barrier (BBB). GBS encodes a type VII secretion system (T7SS), which may allow export of proteins and/or toxins that promote BBB disruption; however, the GBS T7SS has not been studied. Here we show that GBS encodes four types of T7SSs and that the most prevalent subtype is important for GBS meningitis progression, possibly by inducing inflammation and cell death in the brain. We also show that a secreted T7SS effector protein, EsxA, contributes to GBS pathogenesis and can form pores in lipid membranes. This is the first demonstration of EsxA-mediated pore-formation in Gram-positive bacteria.
Collapse
Affiliation(s)
- Brady L. Spencer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Uday Tak
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, Alabama, United States of America
| | - Jéssica C. Mendonça
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
- Rio de Janeiro State University, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro, RJ, Brazil
| | - Prescilla E. Nagao
- Rio de Janeiro State University, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro, RJ, Brazil
| | - Michael Niederweis
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, Alabama, United States of America
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
25
|
Pajuelo D, Tak U, Zhang L, Danilchanka O, Tischler AD, Niederweis M. Toxin secretion and trafficking by Mycobacterium tuberculosis. Nat Commun 2021; 12:6592. [PMID: 34782620 PMCID: PMC8593097 DOI: 10.1038/s41467-021-26925-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mycobacterium tuberculosis (Mtb) in macrophages. TNT is the C-terminal domain of the outer membrane protein CpnT and gains access to the cytosol to kill macrophages infected with Mtb. However, molecular mechanisms of TNT secretion and trafficking are largely unknown. A comprehensive analysis of the five type VII secretion systems of Mtb revealed that the ESX-4 system is required for export of CpnT and surface accessibility of TNT. Furthermore, the ESX-2 and ESX-4 systems are required for permeabilization of the phagosomal membrane in addition to the ESX-1 system. Thus, these three ESX systems need to act in concert to enable trafficking of TNT into the cytosol of Mtb-infected macrophages. These discoveries establish new molecular roles for the two previously uncharacterized type VII secretion systems ESX-2 and ESX-4 and reveal an intricate link between toxin secretion and phagosomal permeabilization by Mtb. The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of M. tuberculosis (Mtb). Mtb possesses five type VII secretion systems (ESX). Pajuelo et al. show that the ESX-4 system is required for TNT secretion and that ESX-2 and ESX-4 systems work in concert with ESX-1 to permeabilize the phagosomal membrane and enable trafficking of TNT into the cytoplasm of macrophages infected with Mtb.
Collapse
Affiliation(s)
- David Pajuelo
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Uday Tak
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.,University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building B255, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Olga Danilchanka
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.,Merck & Co., Inc., Cambridge, MA, 02141, USA
| | - Anna D Tischler
- Department of Microbiology and Immunology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.
| |
Collapse
|
26
|
Roussin M, Salcedo SP. NAD+-targeting by bacteria: an emerging weapon in pathogenesis. FEMS Microbiol Rev 2021; 45:6315328. [PMID: 34223888 DOI: 10.1093/femsre/fuab037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a major cofactor in redox reactions in all lifeforms. A stable level of NAD+ is vital to ensure cellular homeostasis. Some pathogens can modulate NAD+ metabolism to their advantage and even utilize or cleave NAD+ from the host using specialized effectors known as ADP-ribosyltransferase toxins and NADases, leading to energy store depletion, immune evasion, or even cell death. This review explores recent advances in the field of bacterial NAD+-targeting toxins, highlighting the relevance of NAD+ modulation as an emerging pathogenesis strategy. In addition, we discuss the role of specific NAD+-targeting toxins in niche colonization and bacterial lifestyle as components of Toxin/Antitoxin systems and key players in inter-bacterial competition. Understanding the mechanisms of toxicity, regulation, and secretion of these toxins will provide interesting leads in the search for new antimicrobial treatments in the fight against infectious diseases.
Collapse
Affiliation(s)
- Morgane Roussin
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| |
Collapse
|
27
|
Ehtram A, Shariq M, Ali S, Quadir N, Sheikh JA, Ahmad F, Sharma T, Ehtesham NZ, Hasnain SE. Teleological cooption of Mycobacterium tuberculosis PE/PPE proteins as porins: Role in molecular immigration and emigration. Int J Med Microbiol 2021; 311:151495. [PMID: 33730677 DOI: 10.1016/j.ijmm.2021.151495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023] Open
Abstract
Permeation through bacterial cells for exchange or uptake of biomolecules and ions invariably depend upon the existence of pore-forming proteins (porins) in their outer membrane. Mycobacterium tuberculosis (M. tb) harbours one of the most rigid cell envelopes across bacterial genera and is devoid of the classical porins for solute transport across the cell membrane. Though canonical porins are incompatible with the evolution of permeability barrier, porin like activity has been reported from membrane preparations of pathogenic mycobacteria. This suggests a sophisticated transport mechanism that has been elusive until now, along with the protein family responsible for it. Recent evidence suggests that these slow-growing mycobacteria have co-opted some of PE/PPE family proteins as molecular transport channels, in place of porins, to facilitate uptake of nutrients required to thrive in the restrictive host environment. These reports advocate that PE/PPE proteins, due to their structural ability, have a potential role in importing small molecules to the cell's interior. This mechanism unveils how a successful pathogen overcomes its restrictive membrane's transport limitations for selective uptake of nutrients. If extrapolated to have a role in drug transport, these channels could help understand the emergence of drug resistance. Further, as these proteins are associated with the export of virulence factors, they can be exploited as novel drug targets. There remains, however, an interesting question that as the PE/PPE proteins can allow the 'import' of molecules from outside the cell, is the reverse transport also possible across the M. tb membrane. In this review, we have discussed recent evidence supporting PE/PPE's role as a specific transport channel for selective uptake of small molecule nutrients and, as possible molecular export machinery of M. tb. This newly discovered role as transmembrane channels demands further research on this enigmatic family of proteins to comprehend the pathomechanism of this very smart pathogen.
Collapse
Affiliation(s)
- Aquib Ehtram
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India
| | - Sabeeha Ali
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Neha Quadir
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India; Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Faraz Ahmad
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India
| | - Tarina Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India; ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India.
| | - Seyed E Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.
| |
Collapse
|