1
|
Lo CH. TNF receptors: Structure-function relationships and therapeutic targeting strategies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184394. [PMID: 39442606 DOI: 10.1016/j.bbamem.2024.184394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Tumor necrosis factor receptors (TNFR1 and TNFR2) play key roles in mediating inflammatory response and cell death signaling, which are associated with autoimmune disorders, neurodegenerative diseases, and cancers. The structure-function relationships of TNF receptors and their ligands determine the activation or inhibition of downstream signaling pathways. Available crystal structures have provided critical insights into the therapeutic targeting strategies of TNF receptors and their signaling networks. In this review, we discuss the potential of targeting receptor-ligand and receptor-receptor interactions in a competitive manner as well as perturbing receptor conformational dynamics through an allosteric mechanism to modulate TNF receptor signaling. We propose that conformational states of TNF receptors can act as a molecular switch in determining their functions and are important therapeutic targets. The knowledge of the structure-function relationships of TNF receptors can be applied to translational high-throughput drug screening and design of novel receptor-specific modulators with enhanced pharmacological properties.
Collapse
MESH Headings
- Humans
- Structure-Activity Relationship
- Signal Transduction/drug effects
- Ligands
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Animals
- Protein Conformation
- Receptors, Tumor Necrosis Factor, Type II/chemistry
- Receptors, Tumor Necrosis Factor, Type II/metabolism
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Department of Biology, Syracuse University, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, NY 13244, USA.
| |
Collapse
|
2
|
Wang F, Wang Y, Feng L, Zhang C, Lai L. Target-Specific De Novo Peptide Binder Design with DiffPepBuilder. J Chem Inf Model 2024; 64:9135-9149. [PMID: 39266056 DOI: 10.1021/acs.jcim.4c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Despite the exciting progress in target-specific de novo protein binder design, peptide binder design remains challenging due to the flexibility of peptide structures and the scarcity of protein-peptide complex structure data. In this study, we curated a large synthetic data set, referred to as PepPC-F, from the abundant protein-protein interface data and developed DiffPepBuilder, a de novo target-specific peptide binder generation method that utilizes an SE(3)-equivariant diffusion model trained on PepPC-F to codesign peptide sequences and structures. DiffPepBuilder also introduces disulfide bonds to stabilize the generated peptide structures. We tested DiffPepBuilder on 30 experimentally verified strong peptide binders with available protein-peptide complex structures. DiffPepBuilder was able to effectively recall the native structures and sequences of the peptide ligands and to generate novel peptide binders with improved binding free energy. We subsequently conducted de novo generation case studies on three targets. In both the regeneration test and case studies, DiffPepBuilder outperformed AfDesign and RFdiffusion coupled with ProteinMPNN, in terms of sequence and structure recall, interface quality, and structural diversity. Molecular dynamics simulations confirmed that the introduction of disulfide bonds enhanced the structural rigidity and binding performance of the generated peptides. As a general peptide binder de novo design tool, DiffPepBuilder can be used to design peptide binders for given protein targets with three-dimensional and binding site information.
Collapse
Affiliation(s)
- Fanhao Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuzhe Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Laiyi Feng
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Changsheng Zhang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
He J, Zhao G, Chen M, Ren X, Zhu P, Liu Z, Zhou J, Chen H, Xiao C, Li XG. Identification and functional analysis of hub genes involved in deoxynivalenol-induced enterotoxicity in porcine (Sus scrofa). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117544. [PMID: 39675078 DOI: 10.1016/j.ecoenv.2024.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Deoxynivalenol (DON) is a type of mycotoxin commonly found in food and animal feed. When consumed, it can have harmful effects on the intestine. The porcine digestive system is physiologically similar to that of humans, making pigs a suitable model for studying DON-induced enterotoxicity. However, the exact ways DON causes intestinal damage in pigs still need to be fully understood. To address this knowledge gap, this study aimed to identify hub genes associated with enterotoxicity caused by DON exposure. Transcriptomic datasets from porcine jejunal explants exposed to DON were extensively analyzed using bioinformatic techniques in this study. A total of 265 differentially expressed genes (DEGs) were identified, with 238 being up-regulated and 27 being down-regulated, indicating that exposure to DON tends to increase gene expression. Further analysis revealed that the up-regulated DEGs were enriched in tumor necrosis factor, nuclear factor kappa-B, mitogen-activated protein kinases, and Janus kinase/signal transducer and activator of transcription-related signaling pathways. In addition, Weighted gene co-expression network analysis was performed to identify highly co-expressed modules. Then, genes in the highest co-expressed module were intersected with the up-regulated DEGs to construct a Protein-Protein Interaction network, resulting in 237 overlapping genes. Subsequently, 6 hub genes (CXCR4, PTGS2, ICAM1, IL-1A, IL-1B, and IL-10) that played a central role in the response to DON were identified using cytohubba in conjunction with the Molecular Complex Detection. In summary, exposure to DON is more likely to result in increased rather than decreased gene expression. Six of the upregulated genes, which are involved in immunoregulation and inflammation, were identified as hub genes related to DON-induced enterotoxicity in pigs. This study provides new insights into the mechanisms underlying DON-induced enterotoxicity and could guide interventions for this condition.
Collapse
Affiliation(s)
- Jinhua He
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Geng Zhao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Mingxia Chen
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Qingyuan 511500, China
| | - Ximing Ren
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peizhi Zhu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhizhong Liu
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayi Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanwei Chen
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou 511450, China
| | - Chuqiao Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Glögl M, Krishnakumar A, Ragotte RJ, Goreshnik I, Coventry B, Bera AK, Kang A, Joyce E, Ahn G, Huang B, Yang W, Chen W, Sanchez MG, Koepnick B, Baker D. Target-conditioned diffusion generates potent TNFR superfamily antagonists and agonists. Science 2024; 386:1154-1161. [PMID: 39636970 DOI: 10.1126/science.adp1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Despite progress in designing protein-binding proteins, the shape matching of designs to targets is lower than in many native protein complexes, and design efforts have failed for the tumor necrosis factor receptor 1 (TNFR1) and other protein targets with relatively flat and polar surfaces. We hypothesized that free diffusion from random noise could generate shape-matched binders for challenging targets and tested this approach on TNFR1. We obtain designs with low picomolar affinity whose specificity can be completely switched to other family members using partial diffusion. Designs function as antagonists or as superagonists when presented at higher valency for OX40 and 4-1BB. The ability to design high-affinity and high-specificity antagonists and agonists for pharmacologically important targets in silico presages a coming era in protein design in which binders are made by computation rather than immunization or random screening approaches.
Collapse
MESH Headings
- Humans
- Drug Design
- Protein Binding
- Receptors, Tumor Necrosis Factor, Type I/agonists
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/chemistry
- Receptors, OX40/agonists
- Receptors, OX40/antagonists & inhibitors
- Receptors, OX40/chemistry
Collapse
Affiliation(s)
- Matthias Glögl
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Aditya Krishnakumar
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Robert J Ragotte
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Emily Joyce
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Green Ahn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wei Chen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mariana Garcia Sanchez
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brian Koepnick
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Croft M, Salek-Ardakani S, Ware CF. Targeting the TNF and TNFR superfamilies in autoimmune disease and cancer. Nat Rev Drug Discov 2024; 23:939-961. [PMID: 39448880 DOI: 10.1038/s41573-024-01053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
The first anti-tumour necrosis factor (TNF) monoclonal antibody, infliximab (Remicade), celebrated its 25th anniversary of FDA approval in 2023. Inhibitors of TNF have since proved clinically efficacious at reducing inflammation associated with several autoimmune diseases, including rheumatoid arthritis, psoriasis and Crohn's disease. The success of TNF inhibitors raised unrealistic expectations for targeting other members of the TNF superfamily (TNFSF) of ligands and their receptors, with difficulties in part related to their more limited, variable expression and potential redundancy. However, there has been a resurgence of interest and investment, with many of these cytokines or their cognate receptors now under clinical investigation as targets for modulation of autoimmune and inflammatory diseases, as well as cancer. This Review assesses TNFSF-targeted biologics currently in clinical development for immune system-related diseases, highlighting ongoing challenges and future directions.
Collapse
Affiliation(s)
- Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | | | - Carl F Ware
- Laboratory of Molecular Immunology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Mima M, Mishima-Tsumagari C, Nakano K, Morimoto M, Ogata H, Sakata M, Iwaoka R, Iwata K, Hachiuma K, Iwamoto K, Fujii Y, Kurokawa T. Structural design of the anti-TNFα therapeutic NANOBODY® compound, ozoralizumab, to support its potent and sustained clinical efficacy. Biochem Biophys Res Commun 2024; 734:150454. [PMID: 39083975 DOI: 10.1016/j.bbrc.2024.150454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Masashi Mima
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | | | - Koichiro Nakano
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Mai Morimoto
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Hitoshi Ogata
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Mayumi Sakata
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Ryo Iwaoka
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Katsuya Iwata
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Kenji Hachiuma
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Kunihiko Iwamoto
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Yasuyuki Fujii
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan
| | - Tomofumi Kurokawa
- Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama, 331-9530, Japan.
| |
Collapse
|
7
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
Affiliation(s)
| | - Thomas A. Wynn
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | - Jie Quan
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | | |
Collapse
|
8
|
Javaid N, Ahmad B, Patra MC, Choi S. Decoy peptides that inhibit TNF signaling by disrupting the TNF homotrimeric oligomer. FEBS J 2024; 291:4372-4391. [PMID: 39003565 DOI: 10.1111/febs.17220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor necrosis factor (TNF) is a pro-inflammatory cytokine and its functional homotrimeric form interacts with the TNF receptor (TNFR) to activate downstream apoptotic, necroptotic, and inflammatory signaling pathways. Excessive activation of these pathways leads to various inflammatory diseases, which makes TNF a promising therapeutic target. Here, 12-mer peptides were selected from the interface of TNF-TNFR based upon their relative binding energies and were named 'TNF-inhibiting decoys' (TIDs). These decoy peptides inhibited TNF-mediated secretion of cytokines and cell death, as well as activation of downstream signaling effectors. Effective TIDs inhibited TNF signaling by disrupting the formation of TNF's functional homotrimeric form. Among derivatives of TIDs, TID3c showed slightly better efficacy in cell-based assays by disrupting TNF trimer formation. Moreover, TID3c oligomerized TNF to a high molecular weight configuration. In silico modeling and simulations revealed that TID3c and its parent peptide, TID3, form a stable complex with TNF through hydrogen bonds and electrostatic interactions, which makes them the promising lead to develop peptide-based anti-TNF therapeutics.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| |
Collapse
|
9
|
Li L, Ye R, Li Y, Pan H, Han S, Lu Y. Targeting TNFR2 for cancer immunotherapy: recent advances and future directions. J Transl Med 2024; 22:812. [PMID: 39223671 PMCID: PMC11367783 DOI: 10.1186/s12967-024-05620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is the leading cause of death worldwide, accounting for nearly 10 million deaths every year. Immune checkpoint blockade approaches have changed the therapeutic landscape for many tumor types. However, current immune checkpoint inhibitors PD-1 or CTLA-4 are far from satisfactory, due to high immune-related adverse event incident (up to 60%) and the inefficiency in cases of "cold" tumor microenvironment. TNFR2, a novel hopeful tumor immune target, was initially proposed in 2017. It not only promotes tumor cell proliferation, but also correlates with the suppressive function of Treg cells, implicating in the development of an immunosuppressive tumor microenvironment. In preclinical studies, TNFR2 antibody therapy has demonstrated efficacy alone or a potential synergistic effect when combined with classical PD-1/ CTLA-4 antibodies. The focus of this review is on the characteristics, functions, and recent advancements in TNFR2 therapy, providing a new direction for the next generation of anti-tumor alternative therapy.
Collapse
Affiliation(s)
- Linxue Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Ruiwei Ye
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Yingying Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Hanyu Pan
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Sheng Han
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| | - Yiming Lu
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| |
Collapse
|
10
|
Majid DSA, Prieto MC, Castillo A, Chamberlain C, Navar LG. Augmentation of Nitric Oxide Deficient Hypertension by High Salt Diet Is Associated With Reduced TNF-α Receptor Type 1 Expression in the Kidneys. Am J Hypertens 2024; 37:717-725. [PMID: 38780971 PMCID: PMC11322281 DOI: 10.1093/ajh/hpae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND High salt (HS) intake induces an augmented hypertensive response to nitric oxide (NO) inhibition, though it causes minimal changes in blood pressure (BP) in NO intact condition. The cause of such augmentation is not known. HS induces tumor necrosis factor-alpha (TNFα) production that causes natriuresis via activation of its receptor type 1 (TNFR1). We hypothesized that NO deficiency reduces renal TNFR1 activity, leading to enhanced sodium retention and hypertension. METHODS We examined the changes in renal TNFR1 protein expression (Immunohistochemistry analyses) after HS (4% NaCl) intake in wild-type mice (WT, C57BL6) treated with a NO synthase (NOS) inhibitor, nitro-l-arginine methyl ester (L-NAME; 0.05 mg/min/g; osmotic mini-pump), as well as in endothelial NOS knockout mice (eNOSKO) and compared the responses in WT mice with normal salt (NS; 0.3% NaCl) intake. BP was measured with tail-cuff plethysmography and 24-hour urine collections were made using metabolic cages. RESULTS HS alone did not alter mean BP in untreated mice (76 ± 3 to 77 ± 1 mm Hg) but induced an augmented response in L-NAME treated (106 ± 1 vs. 97 ± 2 mm Hg) and in eNOSKO (107 ± 2 vs. 89 ± 3 mm Hg) mice. The percentage area of TNFR1 expression in renal tissue was higher in WT + HS (4.1 + 0.5%) than in WT + NS mice (2.7 ± 0.6%). However, TNFR1 expression was significantly lower in L-NAME treated WT + NS (0.9 ± 0.1%) and in eNOSKO + NS (1.4 ± 0.2%) than in both WT + NS and WT + HS mice. CONCLUSIONS These data indicate that TNFR1 activity is downregulated in NO deficient conditions, which facilitates salt retention leading to augmented hypertension during HS intake.
Collapse
Affiliation(s)
- Dewan S A Majid
- Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Alexander Castillo
- Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Cameron Chamberlain
- Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Luis Gabriel Navar
- Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| |
Collapse
|
11
|
Liguori-Bills N, Blinov ML. bnglViz: online visualization of rule-based models. Bioinformatics 2024; 40:btae351. [PMID: 38814806 PMCID: PMC11176710 DOI: 10.1093/bioinformatics/btae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
MOTIVATION Rule-based modeling is a powerful method to describe and simulate interactions among multi-site molecules and multi-molecular species, accounting for the internal connectivity of molecules in chemical species. This modeling technique is implemented in BioNetGen software that is used by various tools and software frameworks, such as BioNetGen stand-alone software, NFSim simulation engine, Virtual Cell simulation and modeling framework, SmolDyn and PySB software tools. These tools exchange models using BioNetGen scripting language (BNGL). Until now, there was no online visualization of such rule-based models. Modelers and researchers reading the manuscripts describing rule-based models had to learn BNGL scripting or master one of these tools to understand the models. RESULTS Here, we introduce bnglViz, an online platform for visualizing BNGL files as graphical cartoons, empowering researchers to grasp the nuances of rule-based models swiftly and efficiently, and making the exploration of complex biological systems more accessible than ever before. The produced visualizations can be used as supplemental figures in publications or as a way to annotate BNGL models on web repositories. AVAILABILITY AND IMPLEMENTATION Available at https://bnglviz.github.io/.
Collapse
Affiliation(s)
- Noah Liguori-Bills
- Marine Earth and Atmospheric Sciences Department, North Carolina State University, Raleigh, NC 27695, United States
| | - Michael L Blinov
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030, United States
| |
Collapse
|
12
|
Zeng J, Loi GWZ, Saipuljumri EN, Romero Durán MA, Silva-García O, Perez-Aguilar JM, Baizabal-Aguirre VM, Lo CH. Peptide-based allosteric inhibitor targets TNFR1 conformationally active region and disables receptor-ligand signaling complex. Proc Natl Acad Sci U S A 2024; 121:e2308132121. [PMID: 38551841 PMCID: PMC10998571 DOI: 10.1073/pnas.2308132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/23/2024] [Indexed: 04/02/2024] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1) plays a pivotal role in mediating TNF induced downstream signaling and regulating inflammatory response. Recent studies have suggested that TNFR1 activation involves conformational rearrangements of preligand assembled receptor dimers and targeting receptor conformational dynamics is a viable strategy to modulate TNFR1 signaling. Here, we used a combination of biophysical, biochemical, and cellular assays, as well as molecular dynamics simulation to show that an anti-inflammatory peptide (FKCRRWQWRMKK), which we termed FKC, inhibits TNFR1 activation allosterically by altering the conformational states of the receptor dimer without blocking receptor-ligand interaction or disrupting receptor dimerization. We also demonstrated the efficacy of FKC by showing that the peptide inhibits TNFR1 signaling in HEK293 cells and attenuates inflammation in mice with intraperitoneal TNF injection. Mechanistically, we found that FKC binds to TNFR1 cysteine-rich domains (CRD2/3) and perturbs the conformational dynamics required for receptor activation. Importantly, FKC increases the frequency in the opening of both CRD2/3 and CRD4 in the receptor dimer, as well as induces a conformational opening in the cytosolic regions of the receptor. This results in an inhibitory conformational state that impedes the recruitment of downstream signaling molecules. Together, these data provide evidence on the feasibility of targeting TNFR1 conformationally active region and open new avenues for receptor-specific inhibition of TNFR1 signaling.
Collapse
Affiliation(s)
- Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Gavin Wen Zhao Loi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Eka Norfaishanty Saipuljumri
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Marco Antonio Romero Durán
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, México
| | - Octavio Silva-García
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, México
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla, University City, Puebla 72570, México
| | - Víctor M Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, México
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
13
|
Zang C, Liu H, Ning J, Chen Q, Jiang Y, Shang M, Yang Y, Ma J, Dong Y, Wang J, Li F, Bao X, Zhang D. Emerging role and mechanism of HACE1 in the pathogenesis of neurodegenerative diseases: A promising target. Biomed Pharmacother 2024; 172:116204. [PMID: 38364733 DOI: 10.1016/j.biopha.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
HACE1 is a member of the HECT domain-containing E3 ligases with 909 amino acid residues, containing N-terminal ankyrin-repeats (ANK) and C-terminal HECT domain. Previously, it was shown that HACE1 is inactive in human tumors and plays a crucial role in the initiation, progression, and invasion of malignant tumors. Recent studies indicated that HACE1 might be closely involved in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. HACE1 interacts with its substrates, including Ras-related C3 botulinum toxin substrate 1 (Rac1), nuclear factor erythroid 2-related factor 2 (Nrf2), tumor necrosis factor receptor (TNFR), and optineurin (OPTN), through which participates in several pathophysiological processes, such as oxidative stress, autophagy and inflammation. Therefore, in this review, we elaborately describe the essential substrates of HACE1 and illuminate the pathophysiological processes by which HACE1 is involved in neurodegenerative diseases. We provide a new molecular target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Caixia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Qiuzhu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yueqi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yirong Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jinrong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
14
|
Lander A, Kong Y, Jin Y, Wu C, Luk LYP. Deciphering the Synthetic and Refolding Strategy of a Cysteine-Rich Domain in the Tumor Necrosis Factor Receptor (TNF-R) for Racemic Crystallography Analysis and d-Peptide Ligand Discovery. ACS BIO & MED CHEM AU 2024; 4:68-76. [PMID: 38404743 PMCID: PMC10885103 DOI: 10.1021/acsbiomedchemau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024]
Abstract
Many cell-surface receptors are promising targets for chemical synthesis because of their critical roles in disease development. This synthetic approach enables investigations by racemic protein crystallography and ligand discovery by mirror-image methodologies. However, due to their complex nature, the chemical synthesis of a receptor can be a significant challenge. Here, we describe the chemical synthesis and folding of a central, cysteine-rich domain of the cell-surface receptor tumor necrosis factor 1 which is integral to binding of the cytokine TNF-α, namely, TNFR-1 CRD2. Racemic protein crystallography at 1.4 Å confirmed that the native binding conformation was preserved, and TNFR-1 CRD2 maintained its capacity to bind to TNF-α (KD ≈ 7 nM). Encouraged by this discovery, we carried out mirror-image phage display using the enantiomeric receptor mimic and identified a d-peptide ligand for TNFR-1 CRD2 (KD = 1 μM). This work demonstrated that cysteine-rich domains, including the central domains, can be chemically synthesized and used as mimics for investigations.
Collapse
Affiliation(s)
- Alexander
J. Lander
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Yifu Kong
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Yi Jin
- Manchester
Institute of Biotechnology, University of
Manchester, Manchester M1 7DN, U.K.
| | - Chuanliu Wu
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Louis Y. P. Luk
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
15
|
Carmona-Rocha E, Rusiñol L, Puig L. New and Emerging Oral/Topical Small-Molecule Treatments for Psoriasis. Pharmaceutics 2024; 16:239. [PMID: 38399292 PMCID: PMC10892104 DOI: 10.3390/pharmaceutics16020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The introduction of biologic therapies has led to dramatic improvements in the management of moderate-to-severe psoriasis. Even though the efficacy and safety of the newer biologic agents are difficult to match, oral administration is considered an important advantage by many patients. Current research is focused on the development of oral therapies with improved efficacy and safety compared with available alternatives, as exemplified by deucravacitinib, the first oral allosteric Tyk2 inhibitor approved for the treatment of moderate to severe psoriasis in adults. Recent advances in our knowledge of psoriasis pathogenesis have also led to the development of targeted topical molecules, mostly focused on intracellular signaling pathways such as AhR, PDE-4, and Jak-STAT. Tapinarof (an AhR modulator) and roflumilast (a PDE-4 inhibitor) have exhibited favorable efficacy and safety outcomes and have been approved by the FDA for the topical treatment of plaque psoriasis. This revision focuses on the most recent oral and topical therapies available for psoriasis, especially those that are currently under evaluation and development for the treatment of psoriasis.
Collapse
Affiliation(s)
- Elena Carmona-Rocha
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
16
|
Lee C, Kuo W, Chang Y, Hsu S, Wu C, Chen Y, Chang J, Wang AH. Structure-based development of a canine TNF-α-specific antibody using adalimumab as a template. Protein Sci 2024; 33:e4873. [PMID: 38111376 PMCID: PMC10804672 DOI: 10.1002/pro.4873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
The canine anti-tumor necrosis factor-alpha (TNF-α) monoclonal antibody is a potential therapeutic option for treating canine arthritis. The current treatments for arthritis in dogs have limitations due to side effects, emphasizing the need for safer and more effective therapies. The crystal structure of canine TNF-α (cTNF-α) was successfully determined at a resolution of 1.85 Å, and the protein was shown to assemble as a trimer, with high similarity to the functional quaternary structure of human TNF-α (hTNF-α). Adalimumab (Humira), a known TNF-α inhibitor, effectively targets and neutralizes TNF-α to reduce inflammation and has been used to manage autoimmune conditions such as rheumatoid arthritis. By comparing the structure of cTNF-α with the complex structure of hTNF-α and adalimumab-Fab, the epitope of adalimumab on cTNF-α was identified. The significant structural similarities of epitopes in cTNF-α and hTNF-α indicate the potential of using adalimumab to target cTNF-α. Therefore, a canine/human chimeric antibody, Humivet-R1, was created by grafting the variable domain of adalimumab onto a canine antibody framework derived from ranevetmab. Humivet-R1 exhibits potent neutralizing ability (IC50 = 0.05 nM) and high binding affinity (EC50 = 0.416 nM) to cTNF-α, comparable to that of adalimumab for both hTNF-α and cTNF-α. These results strongly suggest that Humivet-R1 has the potential to provide effective treatment for canine arthritis with reduced side effects. Here, we propose a structure-guided antibody design for the use of a chimeric antibody to treat canine inflammatory disease. Our successful development strategy can speed up therapeutic antibody discovery for animals and has the potential to revolutionize veterinary medicine.
Collapse
Affiliation(s)
- Cheng‐Chung Lee
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Wen‐Chih Kuo
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
| | - Ya‐Wen Chang
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Shu‐Fang Hsu
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Chia‐Hung Wu
- Traditional Chinese Veterinary Medicine, China Medical UniversityTaichungTaiwan
| | - Ya‐Wen Chen
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Jui‐Jen Chang
- Graduate Institute of Integrated Medicine, China Medical UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| | - Andrew H.‐J. Wang
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
17
|
Elnosary ME, Shreadah MA, Ashour ML, Nabil-Adam A. Predictions based on inflammatory cytokine profiling of Egyptian COVID-19 with 2 potential therapeutic effects of certain marine-derived compounds. Int Immunopharmacol 2024; 126:111072. [PMID: 38006751 DOI: 10.1016/j.intimp.2023.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUNDS A worldwide coronavirus pandemic has affected many healthcare systems in 2019 (COVID-19). Following viral activation, cytokines and chemokines are released, causing inflammation and tissue death, particularly in the lungs, resulting in severe COVID-19 symptoms such as pneumonia and ARDS. COVID-19 induces the release of several chemokines and cytokines in different organs, such as the cardiovascular system and lungs. RESEARCH IDEA COVID-19 and its more severe effects, such as an elevated risk of death, are more common in patients with metabolic syndrome and the elderly. Cytokine storm and COVID-19 severity may be mitigated by immunomodulation targeting NF-κB activation in conjunction with TNF- α -inhibition. In severe cases of COVID-19, inhibiting the NF-κB/TNF- α, the pathway may be employed as a therapeutic option. MATERIAL AND METHODS The study will elaborate on the Egyptian pattern for COVID-19 patients in the first part of our study. An Egyptian patient with COVID-19 inflammatory profiling will be discussed in the second part of this article using approved marine drugs selected to inhabit the significant inflammatory signals. A biomarker profiling study is currently being performed on Egyptian patients with SARS-COV-2. According to the severity of the infection, participants were divided into four groups. The First Group was non-infected with SARS-CoV-2 (Control, n = 16), the Second Group was non-intensive care patients (non-ICU, n = 16), the Third Group was intensive care patients (ICU, n = 16), and the Fourth Group was ICU with endotracheal intubation (ICU + EI, n = 16). To investigate COVID-19 inflammatory biomarkers for Egyptian patients, several inflammatory, oxidative, antioxidant, and anti-inflammatory biomarkers were measured. The following are examples of blood tests: CRP, Ferritin, D-dimer, TNF-α, IL-8, IL-6., IL-Ib, CD8, NF-κB, MDA, and total antioxidants. RESULTS AND DISCUSSION The results of the current study revealed many logical findings, such as the elevation of CRP, Ferritin, D-dimer, TNF- α, CD8, IL-6, IL-, NF-κB, and MDA. Where a significant increase showed in ICU group results (23.05 ± 0.30, 2.35 ± 0.86, 433.4 ± 159.3, 26.67 ± 3.51, 7.52 ± 1.48, 7.49 ± 1.04, 5.76 ± 1.31, 7.41 ± 0.73) respectively, and also ICU group results (54.75 ± 3.44, 0.65 ± 0.13, 460.2 ± 121.42, 27.43 ± 2.52, 8.63 ± 2.68, 10.65 ± 2.75, 5.93 ± 1.4, 10.64 ± 0.86) respectively, as well as ICU + EI group results (117.63 ± 11.89, 1.22 ± 0.65, 918.8 ± 159.27, 26.68 ± 2.00, 6.68 ± 1.08, 11.68 ± 6.16, 6.23 ± 0.07, 22.41 ± 1.39),respectively.The elevation in laboratory biomarkers of cytokines storm in three infected groups with remarkable increases in the ICU + EI group was due to the elevation of oxidative stress and inflammatory storm molecules, which lead to highly inflammatory responses, specifically in severe patients of COVID-19. Another approach to be used in the current study is investigating new computational drug compounds for SARS-COV-2 protective agents from the marine environment. The results revealed that (Imatinib and Indinavir) had the highest affinity toward Inflammatory molecules and COVID-19 proteins (PDB ID: -7CZ4 and 7KJR), which may be used in the future as possible COVID-19 drug candidates. CONCLUSION The investigated inflammatory biomarkers in Egyptian COVID-19 patients showed a strong correlation between IL6, TNF-α, NF-κB, CRB, DHL, and ferritin as COVID-19 biomarkers and determined the severity of the infection. Also, the oxidative /antioxidant showed good biomarkers for infection recovery and progression of the patients.
Collapse
Affiliation(s)
- Mohamed E Elnosary
- Al-Azhar University, Faculty of Science, Botany and Microbiology Department, 11884 Nasr City, Cairo, Egypt.
| | - Mohamed Attia Shreadah
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia.
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Egypt.
| |
Collapse
|
18
|
Arora D, Taneja Y, Sharma A, Dhingra A, Guarve K. Role of Apoptosis in the Pathogenesis of Osteoarthritis: An Explicative Review. Curr Rheumatol Rev 2024; 20:2-13. [PMID: 37670694 DOI: 10.2174/1573397119666230904150741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Apoptosis is a complex regulatory, active cell death process that plays a role in cell development, homeostasis, and ageing. Cancer, developmental defects, and degenerative diseases are all pathogenic disorders caused by apoptosis dysregulation. Osteoarthritis (OA) is by far the most frequently diagnosed joint disease in the aged, and it is characterized by the ongoing breakdown of articular cartilage, which causes severe disability. Multiple variables regulate the anabolic and catabolic pathways of the cartilage matrix, which either directly or indirectly contribute to cartilage degeneration in osteoarthritis. Articular cartilage is a highly specialized tissue made up of an extracellular matrix of cells that are tightly packed together. As a result, chondrocyte survival is crucial for the preservation of an optimal cartilage matrix, and chondrocyte characteristics and survival compromise may result in articular cartilage failure. Inflammatory cytokines can either promote or inhibit apoptosis, the process of programmed cell death. Pro-apoptotic cytokines like TNF-α can induce cell death, while anti-apoptotic cytokines like IL-4 and IL-10 protect against apoptosis. The balance between these cytokines plays a critical role in determining cell fate and has implications for tissue damage and disease progression. Similarly, they contribute to the progression of OA by disrupting the metabolic balance in joint tissues by promoting catabolic and anabolic pathways. Their impact on cell joints, as well as the impacts of cell signalling pathways on cytokines and inflammatory substances, determines their function in osteoarthritis development. Apoptosis is evident in osteoarthritic cartilage; however, determining the relative role of chondrocyte apoptosis in the aetiology of OA is difficult, and the rate of apoptotic chondrocytes in osteoarthritic cartilage is inconsistent. The current study summarises the role of apoptosis in the development of osteoarthritis, the mediators, and signalling pathways that trigger the cascade of events, and the other inflammatory features involved.
Collapse
Affiliation(s)
- Deepshi Arora
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| | - Yugam Taneja
- Zeon Lifesciences, Paonta Sahib, Himachal Pradesh, 173025, India
| | - Anjali Sharma
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| | - Ashwani Dhingra
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| | - Kumar Guarve
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| |
Collapse
|
19
|
Su Z, Wu Y. How does the same ligand activate signaling of different receptors in TNFR superfamily: a computational study. J Cell Commun Signal 2023; 17:657-671. [PMID: 36167956 PMCID: PMC10409953 DOI: 10.1007/s12079-022-00701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
TNFα is a highly pleiotropic cytokine inducing inflammatory signaling pathways. It is initially presented on plasma membrane of cells (mTNFα), and also exists in a soluble variant (sTNFα) after cleavage. The ligand is shared by two structurally similar receptors, TNFR1 and TNFR2. Interestingly, while sTNFα preferentially stimulates TNFR1, TNFR2 signaling can only be activated by mTNFα. How can two similar receptors respond to the same ligand in such a different way? We employed computational simulations in multiple scales to address this question. We found that both mTNFα and sTNFα can trigger the clustering of TNFR1. The size of clusters induced by sTNFα is constantly larger than the clusters induced by mTNFα. The systems of TNFR2, on the other hand, show very different behaviors. Only when the interactions between TNFR2 are very weak, mTNFα can trigger the receptors to form very large clusters. Given the same weak binding affinity, only small oligomers were obtained in the system of sTNFα. Considering that TNF-mediated signaling is modulated by the ligand-induced clustering of receptors on cell surface, our study provided the mechanistic foundation to the phenomenon that different isoforms of the ligand can lead to highly distinctive signaling patterns for its receptors.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
20
|
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43:1668-1700. [PMID: 37052231 DOI: 10.1002/med.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophic factors (NTFs) are involved in the pathophysiology of neurological disorders such as dementia, stroke and traumatic brain injury (TBI), and constitute molecular targets of high interest for the therapy of these pathologies. In this review we provide an overview of current knowledge of the definition, discovery and mode of action of five NTFs, nerve growth factor, insulin-like growth factor 1, brain derived NTF, vascular endothelial growth factor and tumor necrosis factor alpha; as well as on their contribution to brain pathology and potential therapeutic use in dementia, stroke and TBI. Within the concept of NTFs in the treatment of these pathologies, we also review the neuropeptide preparation Cerebrolysin, which has been shown to resemble the activities of NTFs and to modulate the expression level of endogenous NTFs. Cerebrolysin has demonstrated beneficial treatment capabilities in vitro and in clinical studies, which are discussed within the context of the biochemistry of NTFs. The review focuses on the interactions of different NTFs, rather than addressing a single NTF, by outlining their signaling network and by reviewing their effect on clinical outcome in prevalent brain pathologies. The effects of the interactions of these NTFs and Cerebrolysin on neuroplasticity, neurogenesis, angiogenesis and inflammation, and their relevance for the treatment of dementia, stroke and TBI are summarized.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | | | | | - Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, Coruña, Spain
| |
Collapse
|
21
|
Choi Y, Cho BK, Seok SH, Kim C, Ryu JH, Kwon IC. Controlled spatial characteristics of ligands on nanoparticles: Determinant of cellular functions. J Control Release 2023; 360:672-686. [PMID: 37437847 DOI: 10.1016/j.jconrel.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Interactions of various ligands and receptors have been extensively investigated because they regulate a series of signal transduction leading to various functional cellular outcomes. The receptors on cell membrane recognize their specific ligands, resulting in specific binding between ligands and receptors. Accumulating evidence reveals that the receptors recognize the difference on the spatial characteristics of ligands as well as the types of ligands. Thus, control on spatial characteristics of multiple ligands presented on therapeutic nanoparticles is believed to impact the cellular functions. Specifically, the localized and multivalent distribution of ligands on nanoparticles can induce receptor oligomerization and receptor clustering, controlling intensity or direction of signal transduction cascades. Here, we will introduce recent studies on the use of material-based nanotechnology to control spatial characteristics of ligands and their effect on cellular functions. These therapeutic nanoparticles with controlled spatial characteristics of ligands may be a promising strategy for maximized therapeutic outcome.
Collapse
Affiliation(s)
- Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Bo Kyung Cho
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Su Hyun Seok
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chansoo Kim
- Computational Science Centre & ASSIST, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; AI-Robot Department, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
22
|
Prasad Panda S, Kesharwani A, Prasanna Mallick S, Prasanth D, Kumar Pasala P, Bharadwaj Tatipamula V. Viral-induced neuronal necroptosis: Detrimental to brain function and regulation by necroptosis inhibitors. Biochem Pharmacol 2023; 213:115591. [PMID: 37196683 DOI: 10.1016/j.bcp.2023.115591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Neuronal necroptosis (programmed necrosis) in the CNS naturally occurs through a caspase-independent way and, especially in neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parknson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and viral infections. Understanding necroptosis pathways (death receptor-dependent and independent), and its connections with other cell death pathways could lead to new insights into treatment. Receptor-interacting protein kinase (RIPK) mediates necroptosis via mixed-lineage kinase-like (MLKL) proteins. RIPK/MLKL necrosome contains FADD, procaspase-8-cellular FLICE-inhibitory proteins (cFLIPs), RIPK1/RIPK3, and MLKL. The necrotic stimuli cause phosphorylation of MLKL and translocate to the plasma membrane, causing an influx of Ca2+ and Na+ ions and, the immediate opening of mitochondrial permeability transition pore (mPTP) with the release of inflammatory cell damage-associated molecular patterns (DAMPs) like mitochondrial DNA (mtDNA), high-mobility group box1 (HMGB1), and interleukin1 (IL-1). The MLKL translocates to the nucleus to induce transcription of the NLRP3 inflammasome complex elements. MLKL-induced NLRP3 activity causes caspase-1 cleavage and, IL-1 activation which promotes neuroinflammation. RIPK1-dependent transcription increases illness-associated microglial and lysosomal abnormalities to facilitate amyloid plaque (Aβ) aggregation in AD. Recent research has linked neuroinflammation and mitochondrial fission with necroptosis. MicroRNAs (miRs) such as miR512-3p, miR874, miR499, miR155, and miR128a regulate neuronal necroptosis by targeting key components of necroptotic pathways. Necroptosis inhibitors act by inhibiting the membrane translocation of MLKL and RIPK1 activity. This review insights into the RIPK/MLKL necrosome-NLRP3 inflammasome interactions during death receptor-dependent and independent neuronal necroptosis, and clinical intervention by miRs to protect the brain from NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhrapradesh, India
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | | | - Vinay Bharadwaj Tatipamula
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| |
Collapse
|
23
|
Rusiñol L, Carmona-Rocha E, Puig L. Psoriasis: a focus on upcoming oral formulations. Expert Opin Investig Drugs 2023; 32:583-600. [PMID: 37507233 DOI: 10.1080/13543784.2023.2242767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Targeted therapies have greatly improved the quality of life of patients with psoriasis. Despite the extensive list of treatments available, multiple new drugs are being developed, especially oral therapies with potential advantages as regards comfort of administration. However, the efficacy and safety of these new oral therapies need to be improved to match those of novel biologics. AREAS COVERED We provide a narrative review of the oral therapies for psoriasis that are currently under development, from Jak inhibitors to oral IL-17 and IL-23 inhibitors, among others. A literature search was performed for articles published from 1 January 2020, to 6 June 2023. EXPERT OPINION The approval of deucravacitinib, the first Jak inhibitor for the treatment of moderate-to-severe plaque psoriasis, heralds a bright therapeutic future with multiple new oral formulations. A great number of oral treatments with singular mechanism of action, like A3AR agonists, HSP90 inhibitors, ROCK-2 inhibitors, oral TNF inhibitors, oral IL-23 inhibitors, oral IL-17 inhibitors, PD4 inhibitors (orismilast) and several Tyk2 inhibitors, are currently being evaluated in clinical trials and could be suitable for approval in the future. Growing variation in treatment modes of administration will allow dermatologists to better integrate patient preferences in the therapeutic decision process.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Elena Carmona-Rocha
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Lluís Puig
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| |
Collapse
|
24
|
Vunnam N, Yang M, Lo CH, Paulson C, Fiers WD, Huber E, Been M, Ferguson DM, Sachs JN. Zafirlukast Is a Promising Scaffold for Selectively Inhibiting TNFR1 Signaling. ACS BIO & MED CHEM AU 2023; 3:270-282. [PMID: 37363080 PMCID: PMC10288500 DOI: 10.1021/acsbiomedchemau.2c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023]
Abstract
Tumor necrosis factor (TNF) plays an important role in the pathogenesis of inflammatory and autoimmune diseases such as rheumatoid arthritis and Crohn's disease. The biological effects of TNF are mediated by binding to TNF receptors, TNF receptor 1 (TNFR1), or TNF receptor 2 (TNFR2), and this coupling makes TNFR1-specific inhibition by small-molecule therapies essential to avoid deleterious side effects. Recently, we engineered a time-resolved fluorescence resonance energy transfer biosensor for high-throughput screening of small molecules that modulate TNFR1 conformational states and identified zafirlukast as a compound that inhibits receptor activation, albeit at low potency. Here, we synthesized 16 analogues of zafirlukast and tested their potency and specificity for TNFR1 signaling. Using cell-based functional assays, we identified three analogues with significantly improved efficacy and potency, each of which induces a conformational change in the receptor (as measured by fluorescence resonance energy transfer (FRET) in cells). The best analogue decreased NF-κB activation by 2.2-fold, IκBα efficiency by 3.3-fold, and relative potency by two orders of magnitude. Importantly, we showed that the analogues do not block TNF binding to TNFR1 and that binding to the receptor's extracellular domain is strongly cooperative. Despite these improvements, the best candidate's maximum inhibition of NF-κB is only 63%, leaving room for further improvements to the zafirlukast scaffold to achieve full inhibition and prove its potential as a therapeutic lead. Interestingly, while we find that the analogues also bind to TNFR2 in vitro, they do not inhibit TNFR2 function in cells or cause any conformational changes upon binding. Thus, these lead compounds should also be used as reagents to study conformational-dependent activation of TNF receptors.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mu Yang
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chih Hung Lo
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carolyn Paulson
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - William D. Fiers
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Evan Huber
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - MaryJane Been
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - David M. Ferguson
- Department
of Medicinal Chemistry and Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan N. Sachs
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Chédotal H, Narayanan D, Povlsen K, Gotfredsen CH, Brambilla R, Gajhede M, Bach A, Clausen MH. Small-molecule modulators of tumor necrosis factor signaling. Drug Discov Today 2023; 28:103575. [PMID: 37003513 DOI: 10.1016/j.drudis.2023.103575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine with a major role in immune system homeostasis and is involved in many inflammatory and autoimmune diseases, such as rheumatoid arthritis (RA), psoriasis, Alzheimer's disease (AD), and multiple sclerosis (MS). Thus, TNF and its receptors, TNFR1 and TNFR2, are relevant pharmacological targets. Biologics have been developed to block TNF-dependent signaling cascades, but they display serious side effects, and their pharmacological effectiveness decreases over time because of their immunogenicity. In this review, we present recent discoveries in small molecules targeting TNF and its receptors and discuss alternative strategies for modulating TNF signaling. Teaser: This review presents several recent and innovative strategies for the modulation of tumor necrosis factor function, with a focus on small molecules.
Collapse
Affiliation(s)
- Henri Chédotal
- Technical University of Denmark, Center for Nanomedicine and Theranostics, Department of Chemistry, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Katrine Povlsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Charlotte H Gotfredsen
- Technical University of Denmark, Department of Chemistry, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, and BRIDGE - Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Mads H Clausen
- Technical University of Denmark, Center for Nanomedicine and Theranostics, Department of Chemistry, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
26
|
Xu H, Gan C, Xiang Z, Xiang T, Li J, Huang X, Qin X, Liu T, Sheng J, Wang X. Targeting the TNF-α-TNFR interaction with EGCG to block NF-κB signaling in human synovial fibroblasts. Biomed Pharmacother 2023; 161:114575. [PMID: 36963358 DOI: 10.1016/j.biopha.2023.114575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
The tumor necrosis factor alpha (TNF-α)-TNF-α receptor (TNFR) interaction plays a central role in the pathogenesis of various autoimmune diseases, particularly rheumatoid arthritis, and is therefore considered a key target for drug discovery. However, natural compounds that can specifically block the TNF-α-TNFR interaction are rarely reported. (-)-Epigallocatechin-3-gallate (EGCG) is the most active, abundant, and thoroughly investigated polyphenolic compound in green tea. However, the molecular mechanism by which EGCG ameliorates autoimmune arthritis remains to be elucidated. In the present study, we found that EGCG can directly bind to TNF-α, TNFR1, and TNFR2 with similar μM affinity and disrupt the interactions between TNF-α and TNFR1 and TNFR2, which inhibits TNF-α-induced L929 cell death, blocks TNF-α-induced NF-κB activation in 293-TNF-α response cell line, and eventually leads to inhibition of TNF-α-induced NF-κB signaling pathway in HFLS and MH7A cells. Thus, regular consumption of EGCG in green tea may represent a potential therapeutic agent for the treatment of TNF-α-associated diseases.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxia Gan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Ting Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xueqin Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xiangdong Qin
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| |
Collapse
|
27
|
Kanwar M, Dey R, Maiti S, Banerjee A, Bishayi B. Synovial macrophages of rheumatoid arthritic mice protectively responded by altered M1/M2 differentiation after antibody blocking of TNFR1 and IL-1R. Int Immunopharmacol 2023; 115:109654. [PMID: 36621328 DOI: 10.1016/j.intimp.2022.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Rheumatoid arthritis (RA) primarily affecting the synovial tissue, has emerged as a major concern leading to the pressing need to develop effective treatment strategies. In the affected synovial tissue, resident macrophages play a pivotal role in the pathogenesis of RA. TNF-α and IL-1β released from pro-inflammatory M1 synovial macrophages are the master regulators of chronic joint inflammation. In this study collagen-induced rheumatoid arthritis model was developed in mice and post isolation, macrophages were subjected to administration with neutralizing antibodies IL1R and TNFR1 either alone or in combination. Flow cytometric analysis followed by Western blots, ROS, and IL-1β, TNF-α release assays were performed. Outcomes suggested that post-dual blockade of IL1R and TNFR1 arthritic synovial macrophages showed a shifting of the M1 towards the anti-inflammatory M2 phenotype. Moreover, the switch towards the M2 phenotype might be responsible for decreased levels of IL-1β,TNF-α, and ROS and simultaneous elevation in the activity of antioxidant enzymes like SOD, CAT, and GPX content in the isolated macrophages. Simultaneous blocking of both IL1R and TNFR1 also showed a sharp reduction in the expression of NF-κB and SAPK-JNK. The elevated arginase and GRX activity further confirmed the polarization towards M2. Moreover, bioinformatics analysis was performed,and it was found that blocking TNFR1 with an antibody could hamper the binding of TNF to TNFR1 in the TNF-TNFR1 pathway. Thus, it may be inferred that dual blockade of IL1R and TNFR1 and a suitable antibody blocking of TNFR1 might be alternative therapeutic approaches for the regulation of RA-induced inflammation in the future.
Collapse
Affiliation(s)
- Mehak Kanwar
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India; Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, VIH Campus, Rangamati, Midnapur-721102, West Bengal, India
| | - Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Smarajit Maiti
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, VIH Campus, Rangamati, Midnapur-721102, West Bengal, India
| | - Amrita Banerjee
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, VIH Campus, Rangamati, Midnapur-721102, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
28
|
Dimitrova YN, Gutierrez JA, Huard K. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. RSC Med Chem 2023; 14:22-46. [PMID: 36760737 PMCID: PMC9890894 DOI: 10.1039/d2md00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An arsenal of molecular tools with increasingly diversified mechanisms of action is being developed by the scientific community to enable biological interrogation and pharmaceutical modulation of targets and pathways of ever increasing complexity. While most small molecules interact with the target of interest in a 1 : 1 relationship, a noteworthy number of recent examples were reported to bind in a sub-stoichiometric manner to a homomeric protein complex. This approach requires molecular understanding of the physiologically relevant protein assemblies and in-depth characterization of the compound's mechanism of action. The recent literature examples summarized here were selected to illustrate methods used to identify and characterize molecules with such mechanisms. The concept of one small molecule targeting a homomeric protein assembly is not new but the subject deserves renewed inspection in light of emerging technologies and increasingly diverse target biology, to ensure relevant in vitro systems are used and valuable compounds with potentially novel sub-stoichiometric mechanisms of action aren't overlooked.
Collapse
Affiliation(s)
| | | | - Kim Huard
- Genentech 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
29
|
Taghipour F, Motamed N, Amoozegar MA, Shahhoseini M, Mahdian S. Carotenoids as potential inhibitors of TNFα in COVID-19 treatment. PLoS One 2022; 17:e0276538. [PMID: 36574379 PMCID: PMC9794061 DOI: 10.1371/journal.pone.0276538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/08/2022] [Indexed: 12/29/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a multifunctional pro-inflammatory cytokine, responsible for autoimmune and inflammatory disorders. In COVID-19 patients, increased TNF-α concentration may provoke inflammatory cascade and induce the initiation of cytokine storm that may result in fatal pneumonia and acute respiratory distress syndrome (ADRS). Hence, TNFα is assumed to be a promising drug target against cytokine storm in COVID-19 patients. In the present study, we focused on finding novel small molecules that can directly block TNF-α-hTNFR1 (human TNF receptor 1) interaction. In this regards, TNF-α-inhibiting capacity of natural carotenoids was investigated in terms of blocking TNF-α-hTNFR1 interaction in COVID-19 patients with the help of a combination of in silico approaches, based on virtual screening, molecular docking, and molecular dynamics (MD) simulation. A total of 125 carotenoids were selected out of 1204 natural molecules, based on their pharmacokinetics properties and they all met Lipinski's rule of five. Among them, Sorgomol, Strigol and Orobanchol had the most favorable ΔG with the best ADME (absorption, distribution, metabolism, excretion) properties, and were selected for MD simulation studies, which explored the complex stability and the impact of ligands on protein conformation. Our results showed that Sorgomol formed the most hydrogen bonds, resulting in the highest binding energy with lowest RMSD and RMSF, which made it the most appropriate candidate as TNF-α inhibitor. In conclusion, the present study could serve to expand possibilities to develop new therapeutic small molecules against TNF-α.
Collapse
Affiliation(s)
- Farzaneh Taghipour
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Soodeh Mahdian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Tsunoda SI. Functional Study of TNFR2 Signaling and Drug Discovery Using a Protein Engineering Approach. YAKUGAKU ZASSHI 2022; 142:1297-1305. [DOI: 10.1248/yakushi.22-00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
31
|
Vugler A, O’Connell J, Nguyen MA, Weitz D, Leeuw T, Hickford E, Verbitsky A, Ying X, Rehberg M, Carrington B, Merriman M, Moss A, Nicholas JM, Stanley P, Wright S, Bourne T, Foricher Y, Zhu Z, Brookings D, Horsley H, Heer J, Schio L, Herrmann M, Rao S, Kohlmann M, Florian P. An orally available small molecule that targets soluble TNF to deliver anti-TNF biologic-like efficacy in rheumatoid arthritis. Front Pharmacol 2022; 13:1037983. [PMID: 36467083 PMCID: PMC9709720 DOI: 10.3389/fphar.2022.1037983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine belonging to a family of trimeric proteins with both proinflammatory and immunoregulatory functions. TNF is a key mediator in autoimmune diseases and during the last couple of decades several biologic drugs have delivered new therapeutic options for patients suffering from chronic autoimmune diseases such as rheumatoid arthritis and chronic inflammatory bowel disease. Attempts to design small molecule therapies directed to this cytokine have not led to approved products yet. Here we report the discovery and development of a potent small molecule inhibitor of TNF that was recently moved into phase 1 clinical trials. The molecule, SAR441566, stabilizes an asymmetrical form of the soluble TNF trimer, compromises downstream signaling and inhibits the functions of TNF in vitro and in vivo. With SAR441566 being studied in healthy volunteers we hope to deliver a more convenient orally bioavailable and effective treatment option for patients suffering with chronic autoimmune diseases compared to established biologic drugs targeting TNF.
Collapse
Affiliation(s)
- Alexander Vugler
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - James O’Connell
- Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Mai Anh Nguyen
- Sanofi R&D, TMED Pharmacokinetics Dynamics and Metabolism, Frankfurt am Main, Germany
| | - Dietmar Weitz
- Sanofi R&D, Drug Metabolism and Pharmacokinetics, Frankfurt am Main, Germany
| | - Thomas Leeuw
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| | - Elizabeth Hickford
- Development Science, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | | | - Xiaoyou Ying
- Sanofi R&D, Translation In vivo Models, Cambridge, MA, United States
| | - Markus Rehberg
- Sanofi R&D, Translational Disease Modelling, Frankfurt am Main, Germany
| | - Bruce Carrington
- Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Mark Merriman
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Andrew Moss
- Translational Medicine Immunology, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Jean-Marie Nicholas
- Development Science, Drug Metabolism and Pharmacokinetics, UCB Pharma, Braine-I’Alleud, Belgium
| | - Phil Stanley
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Sara Wright
- Early PV Missions, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Tim Bourne
- Milvuswood Consultancy, Penn, United Kingdom
| | - Yann Foricher
- Sanofi R&D, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Zhaoning Zhu
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Daniel Brookings
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Helen Horsley
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Jag Heer
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Laurent Schio
- Sanofi R&D, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Matthias Herrmann
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| | - Srinivas Rao
- Sanofi R&D, Translation In vivo Models, Cambridge, MA, United States
| | - Markus Kohlmann
- Sanofi R&D, Early Clinical Development, Therapeutic Area Immunology and Inflammation, Frankfurt am Main, Germany
| | - Peter Florian
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| |
Collapse
|
32
|
Das A, Foglizzo M, Padala P, Zhu J, Day CL. TRAF trimers form immune signalling networks via RING domain dimerization. FEBS Lett 2022; 597:1213-1224. [PMID: 36310378 DOI: 10.1002/1873-3468.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/13/2022]
Abstract
For many inflammatory cytokines, the response elicited is dependent on the recruitment of the tumour necrosis factor receptor-associated factor (TRAF) family of adaptor proteins. All TRAF proteins have a trimeric C-terminal TRAF domain, while at the N-terminus most TRAFs have a RING domain that forms dimers. The symmetry mismatch of the N- and C-terminal halves of TRAF proteins means that when receptors cluster, it is presumed that RING dimers connect TRAF trimers to form a network. Here, using purified TRAF6 proteins, we provide direct evidence in support of this model, and we show that TRAF6 trimers bind Lys63-linked ubiquitin chains to promote their processive assembly. This study provides critical evidence in support of TRAF trimers as key players in signalling.
Collapse
Affiliation(s)
- Anubrita Das
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Martina Foglizzo
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Prasanth Padala
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jingyi Zhu
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Catherine L Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Frazzette N, Cruz AC, Wu X, Hammer JA, Lippincott-Schwartz J, Siegel RM, Sengupta P. Super-Resolution Imaging of Fas/CD95 Reorganization Induced by Membrane-Bound Fas Ligand Reveals Nanoscale Clustering Upstream of FADD Recruitment. Cells 2022; 11:cells11121908. [PMID: 35741037 PMCID: PMC9221696 DOI: 10.3390/cells11121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Signaling through the TNF-family receptor Fas/CD95 can trigger apoptosis or non-apoptotic cellular responses and is essential for protection from autoimmunity. Receptor clustering has been observed following interaction with Fas ligand (FasL), but the stoichiometry of Fas, particularly when triggered by membrane-bound FasL, the only form of FasL competent at inducing programmed cell death, is not known. Here we used super-resolution microscopy to study the behavior of single molecules of Fas/CD95 on the plasma membrane after interaction of Fas with FasL on planar lipid bilayers. We observed rapid formation of Fas protein superclusters containing more than 20 receptors after interactions with membrane-bound FasL. Fluorescence correlation imaging demonstrated recruitment of FADD dependent on an intact Fas death domain, with lipid raft association playing a secondary role. Flow-cytometric FRET analysis confirmed these results, and also showed that some Fas clustering can occur in the absence of FADD and caspase-8. Point mutations in the Fas death domain associated with autoimmune lymphoproliferative syndrome (ALPS) completely disrupted Fas reorganization and FADD recruitment, confirming structure-based predictions of the critical role that these residues play in Fas–Fas and Fas–FADD interactions. Finally, we showed that induction of apoptosis correlated with the ability to form superclusters and recruit FADD.
Collapse
Affiliation(s)
- Nicholas Frazzette
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; (N.F.); (A.C.C.)
| | - Anthony C. Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; (N.F.); (A.C.C.)
| | - Xufeng Wu
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.W.); (J.A.H.)
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.W.); (J.A.H.)
| | | | - Richard M. Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; (N.F.); (A.C.C.)
- Correspondence: (R.M.S.); (P.S.)
| | - Prabuddha Sengupta
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA;
- Correspondence: (R.M.S.); (P.S.)
| |
Collapse
|
34
|
Niu J, Cederstrand AJ, Eddinger GA, Yin B, Checco JW, Bingman CA, Outlaw VK, Gellman SH. Trimer-to-Monomer Disruption Mechanism for a Potent, Protease-Resistant Antagonist of Tumor Necrosis Factor-α Signaling. J Am Chem Soc 2022; 144:9610-9617. [PMID: 35613436 PMCID: PMC9749406 DOI: 10.1021/jacs.1c13717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aberrant tumor necrosis factor-α (TNFα) signaling is associated with many inflammatory diseases. The homotrimeric quaternary structure of TNFα is essential for receptor recognition and signal transduction. Previously, we described an engineered α/β-peptide inhibitor that potently suppresses TNFα activity and resists proteolysis. Here, we present structural evidence that both the α/β-peptide inhibitor and an all-α analogue bind to a monomeric form of TNFα. Calorimetry data support a 1:1 inhibitor/TNFα stoichiometry in solution. In contrast, previous cocrystal structures involving peptide or small-molecule inhibitors have shown the antagonists engaging a TNFα dimer. The structural data reveal why our inhibitors favor monomeric TNFα. Previous efforts to block TNFα-induced cell death with peptide inhibitors revealed that surfactant additives to the assay conditions cause a more rapid manifestation of inhibitory activity than is observed in the absence of additives. We attributed this effect to a loose surfactant TNFα association that lowers the barrier to trimer dissociation. Here, we used the new structural data to design peptide inhibitors bearing a surfactant-inspired appendage intended to facilitate TNFα trimer dissociation. The appendage modified the time course of protection from cell death.
Collapse
Affiliation(s)
- Jiani Niu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Annika J. Cederstrand
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Geoffrey A. Eddinger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Boyu Yin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - James W. Checco
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Victor K. Outlaw
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
35
|
Yan P, Wei Y, Wang M, Tao J, Ouyang H, Du Z, Li S, Jiang H. Network pharmacology combined with metabolomics and lipidomics to reveal the hypolipidemic mechanism of Alismatis rhizoma in hyperlipidemic mice. Food Funct 2022; 13:4714-4733. [PMID: 35383784 DOI: 10.1039/d1fo04386b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alismatis rhizoma (AR), the dried rhizome of Alisma orientale (Sam) Juzep, is effective in treating hyperlipidemia, but the mechanisms involved require further exploration. This study evaluated the hypolipidemic properties of AR using an integrated strategy combining network pharmacology with metabolomics and lipidomics. Firstly, a hyperlipidemia mouse model induced by a high-fat diet was established to evaluate the therapeutic effects of AR. Secondly, plasma metabolomics and lipidomics were used to identify differential metabolites and lipids, and metabolic pathway analysis was performed using MetaboAnalyst. Thirdly, network pharmacology, based on the metabolic profile of AR in vivo, was used to discover potential therapeutic targets. Finally, key targets were obtained through a compound-target-metabolite network, which was verified by molecular docking and quantitative real-time PCR (qPCR). Biochemistry analysis and histological examinations showed that AR exerted hypolipidemic effects on hyperlipidemic mice. Seventy potential biomarkers for the AR treatment of hyperlipidemia were identified by metabolomics and lipidomics, which were mainly involved in lipid metabolism, energy metabolism and amino acid metabolism. Eighteen potentially active compounds were identified in the plasma of mice after oral administration of AR, which were associated with 83 potential therapeutic targets. The PPAR signaling pathway was considered a crucial signaling pathway of AR against hyperlipidemia by KEGG analysis. The joint analysis showed that 6 upstream key targets were regulated by AR, including ALB, TNF, IL1B, MMP9, PPARA and PPARG. Molecular docking showed that active compounds of AR had high binding affinity with these key targets. qPCR further demonstrated that AR could reverse the mRNA expression of these key targets in hyperlipidemic mice. This study integrates network pharmacology with metabolomics and lipidomics to reveal the regulatory effects of AR on endogenous metabolites and validates key therapeutic targets, and represents the most systematic and in-depth study on the hypolipidemic activity of AR.
Collapse
Affiliation(s)
- Pan Yan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yinyu Wei
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Meiqin Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jianmei Tao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
36
|
Tang R, Chen P, Wang Z, Wang L, Hao H, Hou T, Sun H. Characterizing the stabilization effects of stabilizers in protein-protein systems with end-point binding free energy calculations. Brief Bioinform 2022; 23:6565618. [PMID: 35395683 DOI: 10.1093/bib/bbac127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Drug design targeting protein-protein interactions (PPIs) associated with the development of diseases has been one of the most important therapeutic strategies. Besides interrupting the PPIs with PPI inhibitors/blockers, increasing evidence shows that stabilizing the interaction between two interacting proteins may also benefit the therapy, such as the development of various types of molecular glues/stabilizers that mostly work by stabilizing the two interacting proteins to regulate the downstream biological effects. However, characterizing the stabilization effect of a stabilizer is usually hard or too complicated for traditional experiments since it involves ternary interactions [protein-protein-stabilizer (PPS) interaction]. Thus, developing reliable computational strategies will facilitate the discovery/design of molecular glues or PPI stabilizers. Here, by fully analyzing the energetic features of the binary interactions in the PPS ternary complex, we systematically investigated the performance of molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) methods on characterizing the stabilization effects of stabilizers in 14-3-3 systems. The results show that both MM/PBSA and MM/GBSA are powerful tools in distinguishing the stabilizers from the decoys (with area under the curves of 0.90-0.93 for all tested cases) and are reasonable for ranking protein-peptide interactions in the presence or absence of stabilizers as well (with the average Pearson correlation coefficient of ~0.6 at a relatively high dielectric constant for both methods). Moreover, to give a detailed picture of the stabilization effects, the stabilization mechanism is also analyzed from the structural and energetic points of view for individual systems containing strong or weak stabilizers. This study demonstrates a potential strategy to accelerate the discovery of PPI stabilizers.
Collapse
Affiliation(s)
- Rongfan Tang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Pengcheng Chen
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, Zhejiang, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Lingling Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
37
|
Understanding the functional role of membrane confinements in TNF-mediated signaling by multiscale simulations. Commun Biol 2022; 5:228. [PMID: 35277586 PMCID: PMC8917213 DOI: 10.1038/s42003-022-03179-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe interaction between TNFα and TNFR1 is essential in maintaining tissue development and immune responses. While TNFR1 is a cell surface receptor, TNFα exists in both soluble and membrane-bound forms. Interestingly, it was found that the activation of TNFR1-mediated signaling pathways is preferentially through the soluble form of TNFα, which can also induce the clustering of TNFR1 on plasma membrane of living cells. We developed a multiscale simulation framework to compare receptor clustering induced by soluble and membrane-bound ligands. Comparing with the freely diffusive soluble ligands, we hypothesize that the conformational dynamics of membrane-bound ligands are restricted, which affects the clustering of ligand-receptor complexes at cell-cell interfaces. Our simulation revealed that only small clusters can form if TNFα is bound on cell surface. In contrast, the clustering triggered by soluble TNFα is more dynamic, and the size of clusters is statistically larger. We therefore demonstrated the impact of membrane-bound ligand on dynamics of receptor clustering. Moreover, considering that larger TNFα-TNFR1 clusters is more likely to provide spatial platform for downstream signaling pathway, our studies offer new mechanistic insights about why the activation of TNFR1-mediated signaling pathways is not preferred by membrane-bound form of TNFα.
Collapse
|
38
|
He C, Maniyar RR, Avraham Y, Zappasodi R, Rusinova R, Newman W, Heath H, Wolchok JD, Dahan R, Merghoub T, Meyerson JR. Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism. SCIENCE ADVANCES 2022; 8:eabm4552. [PMID: 35213218 PMCID: PMC8880771 DOI: 10.1126/sciadv.abm4552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/12/2022] [Indexed: 05/11/2023]
Abstract
GITR is a TNF receptor, and its activation promotes immune responses and drives antitumor activity. The receptor is activated by the GITR ligand (GITRL), which is believed to cluster receptors into a high-order array. Immunotherapeutic agonist antibodies also activate the receptor, but their mechanisms are not well characterized. We solved the structure of full-length mouse GITR bound to Fabs from the antibody DTA-1. The receptor is a dimer, and each subunit binds one Fab in an orientation suggesting that the antibody clusters receptors. Binding experiments with purified proteins show that DTA-1 IgG and GITRL both drive extensive clustering of GITR. Functional data reveal that DTA-1 and the anti-human GITR antibody TRX518 activate GITR in their IgG forms but not as Fabs. Thus, the divalent character of the IgG agonists confers an ability to mimic GITRL and cluster and activate GITR. These findings will inform the clinical development of this class of antibodies for immuno-oncology.
Collapse
Affiliation(s)
- Changhao He
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Rachana R. Maniyar
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yahel Avraham
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Jedd D. Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rony Dahan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel R. Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
39
|
Xiong H, Chen Z, Zhao J, Li W, Zhang S. TNF-α/ENO1 signaling facilitates testicular phagocytosis by directly activating Elmo1 gene expression in mouse Sertoli cells. FEBS J 2021; 289:2809-2827. [PMID: 34919331 DOI: 10.1111/febs.16326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Abstract
Phagocytic clearance of apoptotic germ cells (GCs), as well as residual bodies (RBs) released from developing spermatids, is critical for Sertoli cells (SCs) to maintain inner environment homeostasis within testis. However, the molecular mechanisms controlling the phagocytosis are ill defined. Here, we identify a new role for alpha-enolase (ENO1), a key enzyme during glycolysis, as a molecule that facilitates testicular phagocytosis via transactivation of the engulfment and cell motility 1 (Elmo1) gene. Using immunohistochesmitry and double-labeling immunofluorescence, ENO1 was observed to be expressed exclusively in the nuclei of SCs and its expression correlated with the completion of Sertoli cell differentiation. By incubating TM4 cells with different pharmacological inhibitors and establishing TM4Tnfr1-/- cells, we demonstrated that Sertoli cell-specific expression of ENO1 was under a delicate paracrine control from apoptotic GCs. In turn, persistent blockade of ENO1 expression by a validated siRNA protocol resulted in the disturbance of spermatogenesis and impairment of male fertility. Furthermore, using chromatin immunoprecipitation, electrophoretic mobility shift assay and luciferase reporter assay, we showed that in the presence of apoptotic GCs, ENO1 binds to the distal region of the Elmo1 promoter and facilitates transactivation of the Elmo1 gene. In agreement, overexpression of ELMO1 ameliorated ENO1 deficiency-induced impairment of phagocytosis in TM4 cells. These data reveal a novel role for Sertoli cell-specific expression of ENO1 in regulating phagocytosis in testis, identify TNF-α and ELMO1 as critical upstream and downstream factors in mediating ENO1 action, and have important implications for understanding paracrine control of Sertoli cell function by adjacent GCs.
Collapse
Affiliation(s)
- Hu Xiong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P.R.China
| | - Zhenzhen Chen
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, P.R.China
| | - Jie Zhao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, P.R.China
| | - Wei Li
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, P.R.China
| | - Shun Zhang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P.R.China
| |
Collapse
|
40
|
Eguida M, Rognan D. Unexpected similarity between HIV-1 reverse transcriptase and tumor necrosis factor binding sites revealed by computer vision. J Cheminform 2021; 13:90. [PMID: 34814950 PMCID: PMC8609734 DOI: 10.1186/s13321-021-00567-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/06/2021] [Indexed: 11/10/2022] Open
Abstract
Rationalizing the identification of hidden similarities across the repertoire of druggable protein cavities remains a major hurdle to a true proteome-wide structure-based discovery of novel drug candidates. We recently described a new computational approach (ProCare), inspired by numerical image processing, to identify local similarities in fragment-based subpockets. During the validation of the method, we unexpectedly identified a possible similarity in the binding pockets of two unrelated targets, human tumor necrosis factor alpha (TNF-α) and HIV-1 reverse transcriptase (HIV-1 RT). Microscale thermophoresis experiments confirmed the ProCare prediction as two of the three tested and FDA-approved HIV-1 RT inhibitors indeed bind to soluble human TNF-α trimer. Interestingly, the herein disclosed similarity could be revealed neither by state-of-the-art binding sites comparison methods nor by ligand-based pairwise similarity searches, suggesting that the point cloud registration approach implemented in ProCare, is uniquely suited to identify local and unobvious similarities among totally unrelated targets.
Collapse
Affiliation(s)
- Merveille Eguida
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 67400, Illkirch, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 67400, Illkirch, France.
| |
Collapse
|
41
|
Martino E, Chiarugi S, Margheriti F, Garau G. Mapping, Structure and Modulation of PPI. Front Chem 2021; 9:718405. [PMID: 34692637 PMCID: PMC8529325 DOI: 10.3389/fchem.2021.718405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Because of the key relevance of protein–protein interactions (PPI) in diseases, the modulation of protein-protein complexes is of relevant clinical significance. The successful design of binding compounds modulating PPI requires a detailed knowledge of the involved protein-protein system at molecular level, and investigation of the structural motifs that drive the association of the proteins at the recognition interface. These elements represent hot spots of the protein binding free energy, define the complex lifetime and possible modulation strategies. Here, we review the advanced technologies used to map the PPI involved in human diseases, to investigate the structure-function features of protein complexes, and to discover effective ligands that modulate the PPI for therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Martino
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Sara Chiarugi
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy.,BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| | | | - Gianpiero Garau
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| |
Collapse
|
42
|
Dömling A, Li X. TNF-α: The shape of small molecules to come? Drug Discov Today 2021; 27:3-7. [PMID: 34229081 DOI: 10.1016/j.drudis.2021.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
In 2020, the anti-tumor necrosis factor (TNF) monoclonal antibody Humira® generated US$165.8 billion in cumulative sales and snatched the crown for the industry's most successful drug from Lipitor (atorvastatin). TNF-α is a major component in beneficial and disease-related inflammation and TNF-α-inhibitor biologics have gained widespread use in autoimmune diseases, such as rheumatoid arthritis (RA). Many more diseases could benefit from TNF-α inhibitors, such as Alzheimer's disease (AD) or major depression. However, the nature of TNF-α-inhibitor biologics prohibits central nervous system (CNS) applications. Moreover, high drug production costs and pricing, together with antidrug immune reactions and insufficient patient coverage, argue for the development of small-molecule drugs. Recently, drug-like orally available small molecules were described with high activity in animal disease models with activities comparable to those of antibodies.
Collapse
Affiliation(s)
| | - Xin Li
- Drug Design Department, University of Groningen, the Netherlands
| |
Collapse
|
43
|
Lawson ADG, MacCoss M, Baeten DL, Macpherson A, Shi J, Henry AJ. Modulating Target Protein Biology Through the Re-mapping of Conformational Distributions Using Small Molecules. Front Chem 2021; 9:668186. [PMID: 34017820 PMCID: PMC8129178 DOI: 10.3389/fchem.2021.668186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last 10 years considerable progress has been made in the application of small molecules to modulating protein-protein interactions (PPIs), and the navigation from "undruggable" to a host of candidate molecules in clinical trials has been well-charted in recent, comprehensive reviews. Structure-based design has played an important role in this scientific journey, with three dimensional structures guiding medicinal chemistry efforts. However, the importance of two additional dimensions: movement and time is only now being realised, as increasing computing power, closely aligned with wet lab validation, is applied to the challenge. Protein dynamics are fundamental to biology and disease, and application to PPI drug discovery has massively widened the scope for new chemical entities to influence function from allosteric, and previously unreported, sites. In this forward-looking perspective we highlight exciting, new opportunities for small molecules to modulate disease biology, by adjusting the frequency profile of natural conformational sampling, through the stabilisation of clinically desired conformers of target proteins.
Collapse
Affiliation(s)
| | | | | | | | - Jiye Shi
- UCB Pharma, Slough, United Kingdom
| | | |
Collapse
|
44
|
Su Z, Dhusia K, Wu Y. A multiscale study on the mechanisms of spatial organization in ligand-receptor interactions on cell surfaces. Comput Struct Biotechnol J 2021; 19:1620-1634. [PMID: 33868599 PMCID: PMC8026753 DOI: 10.1016/j.csbj.2021.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 01/11/2023] Open
Abstract
The binding of cell surface receptors with extracellular ligands triggers distinctive signaling pathways, leading into the corresponding phenotypic variation of cells. It has been found that in many systems, these ligand-receptor complexes can further oligomerize into higher-order structures. This ligand-induced oligomerization of receptors on cell surfaces plays an important role in regulating the functions of cell signaling. The underlying mechanism, however, is not well understood. One typical example is proteins that belong to the tumor necrosis factor receptor (TNFR) superfamily. Using a generic multiscale simulation platform that spans from atomic to subcellular levels, we compared the detailed physical process of ligand-receptor oligomerization for two specific members in the TNFR superfamily: the complex formed between ligand TNFα and receptor TNFR1 versus the complex formed between ligand TNFβ and receptor TNFR2. Interestingly, although these two systems share high similarity on the tertiary and quaternary structural levels, our results indicate that their oligomers are formed with very different dynamic properties and spatial patterns. We demonstrated that the changes of receptor’s conformational fluctuations due to the membrane confinements are closely related to such difference. Consistent to previous experiments, our simulations also showed that TNFR can preassemble into dimers prior to ligand binding, while the introduction of TNF ligands induced higher-order oligomerization due to a multivalent effect. This study, therefore, provides the molecular basis to TNFR oligomerization and reveals new insights to TNFR-mediated signal transduction. Moreover, our multiscale simulation framework serves as a prototype that paves the way to study higher-order assembly of cell surface receptors in many other bio-systems.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Kalyani Dhusia
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| |
Collapse
|
45
|
Lightwood DJ, Munro RJ, Porter J, McMillan D, Carrington B, Turner A, Scott-Tucker A, Hickford ES, Schmidt A, Fox D, Maloney A, Ceska T, Bourne T, O'Connell J, Lawson ADG. A conformation-selective monoclonal antibody against a small molecule-stabilised signalling-deficient form of TNF. Nat Commun 2021; 12:583. [PMID: 33495445 PMCID: PMC7835358 DOI: 10.1038/s41467-020-20825-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
We have recently described the development of a series of small-molecule inhibitors of human tumour necrosis factor (TNF) that stabilise an open, asymmetric, signalling-deficient form of the soluble TNF trimer. Here, we describe the generation, characterisation, and utility of a monoclonal antibody that selectively binds with high affinity to the asymmetric TNF trimer-small molecule complex. The antibody helps to define the molecular dynamics of the apo TNF trimer, reveals the mode of action and specificity of the small molecule inhibitors, acts as a chaperone in solving the human TNF-TNFR1 complex crystal structure, and facilitates the measurement of small molecule target occupancy in complex biological samples. We believe this work defines a role for monoclonal antibodies as tools to facilitate the discovery and development of small-molecule inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
| | | | - John Porter
- UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | | | | | | | | | | | | | - David Fox
- UCB Pharma, 7869 NE Day Road W, Bainbridge Island, WA, 98110, USA
| | | | - Tom Ceska
- UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | - Tim Bourne
- UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | | | | |
Collapse
|