1
|
Hoshiba Y, Matsumura Y, Kanna N, Ohashi Y, Sugiyama S. Impacts of glacial discharge on the primary production in a Greenlandic fjord. Sci Rep 2024; 14:15530. [PMID: 39080320 PMCID: PMC11289466 DOI: 10.1038/s41598-024-64529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
Subglacial discharge from marine-terminating glaciers in Greenland injects large volumes of freshwater and suspended sediment into adjacent fjord environments. Although the discharge itself is nutrient poor, the formation of meltwater plumes can enhance marine biological production by stimulating upwelling of nutrient-rich fjord water. Despite the importance of meltwater discharge to marine ecosystems, little is known of the quantitative impact of discharge processes on phytoplankton growth, including the effects of local plumes, fjord-wide stirring and mixing, and suspended sediments on net primary production (NPP). Here, we report simulations of Bowdoin Fjord in northwestern Greenland using coupled non-hydrostatic ocean circulation and lower-trophic level ecosystem models, developed using field data. Our findings demonstrate that subglacial discharge plays a crucial role in NPP by stirring and mixing the entire fjord water system, which has a greater effect on NPP than local plume upwelling. Sensitivity tests suggest a 20% increase in NPP under conditions of enhanced discharge anticipated in the future. However, if glacier discharge and retreat exceed critical levels, NPP is predicted to decline by 88% relative to present values. This pattern reflects the negative impact of increased sediment flux on photosynthesis and weakened fjord stirring and mixing resulting from shallower outlet depths.
Collapse
Affiliation(s)
- Yasuhiro Hoshiba
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan.
| | - Yoshimasa Matsumura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Naoya Kanna
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | | | - Shin Sugiyama
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- Arctic Research Center, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Wunder LC, Breuer I, Willis-Poratti G, Aromokeye DA, Henkel S, Richter-Heitmann T, Yin X, Friedrich MW. Manganese reduction and associated microbial communities in Antarctic surface sediments. Front Microbiol 2024; 15:1398021. [PMID: 39021633 PMCID: PMC11252027 DOI: 10.3389/fmicb.2024.1398021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The polar regions are the fastest warming places on earth. Accelerated glacial melting causes increased supply of nutrients such as metal oxides (i.e., iron and manganese oxides) into the surrounding environment, such as the marine sediments of Potter Cove, King George Island/Isla 25 de Mayo (West Antarctic Peninsula). Microbial manganese oxide reduction and the associated microbial communities are poorly understood in Antarctic sediments. Here, we investigated this process by geochemical measurements of in situ sediment pore water and by slurry incubation experiments which were accompanied by 16S rRNA sequencing. Members of the genus Desulfuromusa were the main responder to manganese oxide and acetate amendment in the incubations. Other organisms identified in relation to manganese and/or acetate utilization included Desulfuromonas, Sva1033 (family of Desulfuromonadales) and unclassified Arcobacteraceae. Our data show that distinct members of Desulfuromonadales are most active in organotrophic manganese reduction, thus providing strong evidence of their relevance in manganese reduction in permanently cold Antarctic sediments.
Collapse
Affiliation(s)
- Lea C. Wunder
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Inga Breuer
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Graciana Willis-Poratti
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - David A. Aromokeye
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Susann Henkel
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Xiuran Yin
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Michael W. Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
Hörstmann C, Hattermann T, Thomé PC, Buttigieg PL, Morel I, Waite AM, John U. Biogeographic gradients of picoplankton diversity indicate increasing dominance of prokaryotes in warmer Arctic fjords. Commun Biol 2024; 7:256. [PMID: 38431695 PMCID: PMC10908816 DOI: 10.1038/s42003-024-05946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Climate change is opening the Arctic Ocean to increasing human impact and ecosystem changes. Arctic fjords, the region's most productive ecosystems, are sustained by a diverse microbial community at the base of the food web. Here we show that Arctic fjords become more prokaryotic in the picoplankton (0.2-3 µm) with increasing water temperatures. Across 21 fjords, we found that Arctic fjords had proportionally more trophically diverse (autotrophic, mixotrophic, and heterotrophic) picoeukaryotes, while subarctic and temperate fjords had relatively more diverse prokaryotic trophic groups. Modeled oceanographic connectivity between fjords suggested that transport alone would create a smooth gradient in beta diversity largely following the North Atlantic Current and East Greenland Current. Deviations from this suggested that picoeukaryotes had some strong regional patterns in beta diversity that reduced the effect of oceanographic connectivity, while prokaryotes were mainly stopped in their dispersal if strong temperature differences between sites were present. Fjords located in high Arctic regions also generally had very low prokaryotic alpha diversity. Ultimately, warming of Arctic fjords could induce a fundamental shift from more trophic diverse eukaryotic- to prokaryotic-dominated communities, with profound implications for Arctic ecosystem dynamics including their productivity patterns.
Collapse
Affiliation(s)
- Cora Hörstmann
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
- Aix Marseille Univ, Universite de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
- Turing Center for Living Systems, Aix-Marseille University, 13009, Marseille, France.
| | - Tore Hattermann
- Norwegian Polar Institute, iC3: Centre for Ice, Cryosphere, Carbon and Climate, Framsenteret, Hjalmar Johansens gate 14, 9296, Tromsø, Norway
- Complex Systems Group, Department of Mathematics and Statistics, The Arctic University - University of Tromsø, Hansine Hansens veg 18, 9019, Tromsø, Norway
| | - Pauline C Thomé
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Pier Luigi Buttigieg
- Helmholtz Metadata Collaboration, GEOMAR, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Isidora Morel
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Anya M Waite
- Ocean Frontier Institute, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada
| | - Uwe John
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, 26129, Oldenburg, Germany
| |
Collapse
|
4
|
Souza-Kasprzyk J, Kozak L, Niedzielski P. Impacts of anthropogenic activities and glacial processes on the distribution of chemical elements in Billefjord, Svalbard, Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168534. [PMID: 37977378 DOI: 10.1016/j.scitotenv.2023.168534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The Arctic region is undergoing rapid and extensive transformations due to global climate change. This study investigated the spatial distribution of 31 chemical elements in eight locations in Billefjord, Svalbard, Arctic, with varying degrees of anthropogenic and glacial influences. The west coast of Billefjord has experienced a greater historical anthropogenic impact, while the east coast has larger glaciers and shows less visible evidence of direct human impact. Over 450 topsoil samples collected in the west (abandoned mining town Pyramiden, and glacial valleys of Elsa, Ferdinand, Sven) and east coast of the fjord (glacial valleys of Ebba, Pollock, Ragnar and nearby the Nordenskiöld glacier). These samples were extracted and analyzed by ICP-OES. The results revealed complex distributions of elements among the locations. Nordenskiöld glacier area, along with other locations in the eastern part of the Billefjord, had significantly higher levels of most elements (20 out of 31; As, B, Ca, Cd, Co, Cr, Cu, K, Li, Mg, Mo, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zr). In contrast, Ferdinand Valley and other locations on the western side of the fjord had the lowest mean concentrations of most elements (18 out of 31; B, Ca, Cu, Cd, K, Li, P, Mg, Mo, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zr). These findings highlight the significant influence of glacial processes on the elemental composition of soils within the region. The meltwater flow originating from glaciers in the sampled valleys contributes to the local element load, while the loss of glacier mass is associated with decreased element concentrations within these valleys. These results underscore the complexity of element distribution in the study area and emphasize the necessity for continuous monitoring efforts in this unique and environmentally sensitive region.
Collapse
Affiliation(s)
- Juliana Souza-Kasprzyk
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland
| | - Lídia Kozak
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland
| | - Przemyslaw Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland.
| |
Collapse
|
5
|
Brauner M, Briggs BR. Microbial iron acquisition is influenced by spatial and temporal conditions in a glacial influenced river and estuary system. Environ Microbiol 2023; 25:3450-3465. [PMID: 37956696 PMCID: PMC10872409 DOI: 10.1111/1462-2920.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
In Arctic regions, glaciers are major sources of iron to rivers and streams; however, estuaries are considered iron sinks due to the coagulation and flocculation processes that occur at higher salinities. It is unknown how iron dynamics in a glacial influenced river and estuary environment affect microbial mechanisms for iron acquisition. Microbial taxonomic and functional sequencing was performed on samples taken throughout the year from the Kenai River and the estuary, Alaska. Despite distinct iron, sodium, and other nutrient concentrations, the river and estuary did not have statistically different microbial communities nor was time of sampling significant. However, ferrous iron transport (Feo) system genes were more abundant in river environments, while siderophore genes were more abundant and diverse in estuary environments. Siderophore transport and iron storage genes were found in all samples, but gene abundance and distribution were potentially influenced by physical drivers such as discharge rates and nutrient distributions. Differences in iron metabolism between river and estuary ecosystems indicate environmental conditions drive microbial mechanisms to sequester iron. This could have implications for iron transport as the Arctic continues to warm.
Collapse
Affiliation(s)
- Megan Brauner
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr CPSB 101, Anchorage, Alaska
| | - Brandon R. Briggs
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr CPSB 101, Anchorage, Alaska
| |
Collapse
|
6
|
Jabir T, Jain A, Vipindas PV, Krishnan KP. Stochastic Processes Dominate in the Water Mass-Based Segregation of Diazotrophs in a High Arctic Fjord (Svalbard). MICROBIAL ECOLOGY 2023; 86:2733-2746. [PMID: 37532947 DOI: 10.1007/s00248-023-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Nitrogen-fixing or diazotrophic microbes fix atmospheric nitrogen (N2) to ammonia (NH3+) using nitrogenase enzyme and play a crucial role in regulating marine primary productivity and carbon dioxide sequestration. However, there is a lack of information about the diversity, structure, and environmental regulations of the diazotrophic communities in the high Arctic fjords, such as Kongsfjorden. Here, we employed nifH gene sequencing to clarify variations in composition, community structure, and assembly mechanism among the diazotrophs of the salinity-driven stratified waters of Kongsfjorden. The principal environmental and ecological drivers of the observed variations were identified. The majority of the nifH gene sequences obtained in the present study belonged to cluster I and cluster III nifH phylotypes, accounting for 65% and 25% of the total nifH gene sequences. The nifH gene diversity and composition, irrespective of the size fractions (free-living and particle attached), showed a clear separation among water mass types, i.e., Atlantic-influenced versus glacier-influenced water mass. Higher nifH gene diversity and relative abundances of non-cyanobacterial nifH OTUs, affiliated with uncultured Rhizobiales, Burkholderiales, Alteromonadaceae, Gallionellaceae (cluster I) and uncultured Deltaproteobacteria including Desulfuromonadaceae (cluster III), were prevalent in GIW while uncultured Gammaproteobacteria and Desulfobulbaceae were abundant in AIW. The diazotrophic community assembly was dominated by stochastic processes, principally ecological drift, and to lesser degrees dispersal limitation and homogeneous dispersal. Differences in the salinity and dissolved oxygen content lead to the vertical segregation of diazotrophs among water mass types. These findings suggest that water column stratification affects the composition and assembly mechanism of diazotrophic communities and thus could affect nitrogen fixation in the Arctic fjord.
Collapse
Affiliation(s)
- Thajudeen Jabir
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India.
| | - Anand Jain
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| | - Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| |
Collapse
|
7
|
Orłowska A, Proch J, Niedzielski P. A Fast and Efficient Procedure of Iron Species Determination Based on HPLC with a Short Column and Detection in High Resolution ICP OES. Molecules 2023; 28:molecules28114539. [PMID: 37299015 DOI: 10.3390/molecules28114539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The optimization and application of a new hyphenated procedure for iron ionic speciation, i.e., high performance liquid chromatography (HPLC) with short cation-exchange column (50 mm × 4 mm) coupled to high resolution inductively coupled plasma optical emission spectrometry (ICP hrOES), is presented in this paper. Fe(III) and Fe(II) species were separated on the column with the mobile phase containing pyridine-2,6-dicarboxylic acid (PDCA). The total time of the analysis was approx. 5 min, with a significantly low eluent flow rate (0.5 mL min-1) compared to the literature. Additionally, a long cation-exchange column (250 mm × 4.0 mm) was used as reference. Depending on the total iron content in the sample, two plasma views were chosen, e.g., an attenuated axial (<2 g kg-1) and an attenuated radial. The standard addition method was performed for the method's accuracy studies, and the applicability was presented on three types of samples: sediments, soils, and archaeological pottery. This study introduces a fast, efficient, and green method for leachable iron speciation in both geological and pottery samples.
Collapse
Affiliation(s)
- Aleksandra Orłowska
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jędrzej Proch
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Faculty of Archaeology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 7, 61-614 Poznań, Poland
- Interdisciplinary Research Group Archaeometry, Faculty of Archaeology and Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 7-8, 61-614 Poznań, Poland
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Interdisciplinary Research Group Archaeometry, Faculty of Archaeology and Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 7-8, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Klaes B, Thiele-Bruhn S, Wörner G, Höschen C, Mueller CW, Marx P, Arz HW, Breuer S, Kilian R. Iron (hydr)oxide formation in Andosols under extreme climate conditions. Sci Rep 2023; 13:2818. [PMID: 36797309 PMCID: PMC9935883 DOI: 10.1038/s41598-023-29727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Redox-driven biogeochemical cycling of iron plays an integral role in the complex process network of ecosystems, such as carbon cycling, the fate of nutrients and greenhouse gas emissions. We investigate Fe-(hydr)oxide (trans)formation pathways from rhyolitic tephra in acidic topsoils of South Patagonian Andosols to evaluate the ecological relevance of terrestrial iron cycling for this sensitive fjord ecosystem. Using bulk geochemical analyses combined with micrometer-scale-measurements on individual soil aggregates and tephra pumice, we document biotic and abiotic pathways of Fe released from the glassy tephra matrix and titanomagnetite phenocrysts. During successive redox cycles that are controlled by frequent hydrological perturbations under hyper-humid climate, (trans)formations of ferrihydrite-organic matter coprecipitates, maghemite and hematite are closely linked to tephra weathering and organic matter turnover. These Fe-(hydr)oxides nucleate after glass dissolution and complexation with organic ligands, through maghemitization or dissolution-(re)crystallization processes from metastable precursors. Ultimately, hematite represents the most thermodynamically stable Fe-(hydr)oxide formed under these conditions and physically accumulates at redox interfaces, whereas the ferrihydrite coprecipitates represent a so far underappreciated terrestrial source of bio-available iron for fjord bioproductivity. The insights into Fe-(hydr)oxide (trans)formation in Andosols have implications for a better understanding of biogeochemical cycling of iron in this unique Patagonian fjord ecosystem.
Collapse
Affiliation(s)
- Björn Klaes
- Geology Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296, Trier, Germany. .,Soil Science Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296, Trier, Germany.
| | - Sören Thiele-Bruhn
- grid.12391.380000 0001 2289 1527Soil Science Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296 Trier, Germany
| | - Gerhard Wörner
- grid.7450.60000 0001 2364 4210Division of Geochemistry and Isotope Geology, GZG, Georg-August-University Göttingen, Goldschmidtstraße 1, 37077 Göttingen, Germany
| | - Carmen Höschen
- grid.6936.a0000000123222966Soil Science, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising-Weihenstephan, Germany
| | - Carsten W. Mueller
- grid.6936.a0000000123222966Soil Science, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising-Weihenstephan, Germany ,grid.5254.60000 0001 0674 042XDepartment for Geosciences and Environmental Management, University of Copenhagen, Øster Voldgade 10, 1350 København K, Denmark
| | - Philipp Marx
- grid.12391.380000 0001 2289 1527Soil Science Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296 Trier, Germany
| | - Helge Wolfgang Arz
- grid.423940.80000 0001 2188 0463Marine Geology Section, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestraße 15, 18119 Rostock, Germany
| | - Sonja Breuer
- grid.15606.340000 0001 2155 4756Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Rolf Kilian
- grid.12391.380000 0001 2289 1527Geology Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296 Trier, Germany ,grid.442242.60000 0001 2287 1761University of Magallanes, Avenida Bulnes 01855, Punta Arenas, Chile
| |
Collapse
|
9
|
Ng HC, Hawkings JR, Bertrand S, Summers BA, Sieber M, Conway TM, Freitas FS, Ward JPJ, Pryer HV, Wadham JL, Arndt S, Hendry KR. Benthic Dissolved Silicon and Iron Cycling at Glaciated Patagonian Fjord Heads. GLOBAL BIOGEOCHEMICAL CYCLES 2022; 36:e2022GB007493. [PMID: 36582664 PMCID: PMC9786927 DOI: 10.1029/2022gb007493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Glacier meltwater supplies silicon (Si) and iron (Fe) sourced from weathered bedrock to downstream ecosystems. However, the extent to which these nutrients reach the ocean is regulated by the nature of the benthic cycling of dissolved Si and Fe within fjord systems, given the rapid deposition of reactive particulate fractions at fjord heads. Here, we examine the benthic cycling of the two nutrients at four Patagonian fjord heads through geochemical analyses of sediment pore waters, including Si and Fe isotopes (δ30Si and δ56Fe), and reaction-transport modeling for Si. A high diffusive flux of dissolved Fe from the fjord sediments (up to 0.02 mmol m-2 day-1) compared to open ocean sediments (typically <0.001 mmol m-2 day-1) is supported by both reductive and non-reductive dissolution of glacially-sourced reactive Fe phases, as reflected by the range of pore water δ56Fe (-2.7 to +0.8‰). In contrast, the diffusive flux of dissolved Si from the fjord sediments (0.02-0.05 mmol m-2 day-1) is relatively low (typical ocean values are >0.1 mmol m-2 day-1). High pore water δ30Si (up to +3.3‰) observed near the Fe(II)-Fe(III) redox boundary is likely associated with the removal of dissolved Si by Fe(III) mineral phases, which, together with high sedimentation rates, contribute to the low diffusive flux of Si at the sampled sites. Our results suggest that early diagenesis promotes the release of dissolved Fe, yet suppresses the release of dissolved Si at glaciated fjord heads, which has significant implications for understanding the downstream transport of these nutrients along fjord systems.
Collapse
Affiliation(s)
- Hong Chin Ng
- School of Earth SciencesUniversity of BristolBristolUK
- IfremerUniversité Bretagne OccidentaleCNRSGeo‐OceanPlouzanéFrance
| | - Jon R. Hawkings
- Department of Earth and Environmental ScienceUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | | - Brent A. Summers
- College of Marine ScienceUniversity of South FloridaSt PetersburgFLUSA
| | - Matthias Sieber
- College of Marine ScienceUniversity of South FloridaSt PetersburgFLUSA
| | - Tim M. Conway
- College of Marine ScienceUniversity of South FloridaSt PetersburgFLUSA
| | - Felipe S. Freitas
- School of Earth SciencesUniversity of BristolBristolUK
- BGeosysDepartment of GeosciencesUniversité libre de BruxellesBrusselsBelgium
| | | | - Helena V. Pryer
- Bristol Glaciology CentreSchool of Geographical SciencesUniversity of BristolBristolUK
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
| | - Jemma L. Wadham
- Bristol Glaciology CentreSchool of Geographical SciencesUniversity of BristolBristolUK
- Department of GeosciencesCentre for Arctic Gas Hydrate, Environment and Climate (CAGE)UiT The Arctic University of NorwayTromsøNorway
| | - Sandra Arndt
- BGeosysDepartment of GeosciencesUniversité libre de BruxellesBrusselsBelgium
| | - Katharine R. Hendry
- School of Earth SciencesUniversity of BristolBristolUK
- Polar Oceans TeamBritish Antarctic SurveyCambridgeUK
| |
Collapse
|
10
|
Wareppam B, Kuzmann E, Garg VK, Singh LH. Mössbauer spectroscopic investigations on iron oxides and modified nanostructures: A review. JOURNAL OF MATERIALS RESEARCH 2022; 38:937-957. [PMID: 36059887 PMCID: PMC9423703 DOI: 10.1557/s43578-022-00665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Pure and doped iron oxide and hydroxide nanoparticles are highly potential materials for biological, environment, energy and other technological applications. On demand of the applications, single phase as well as multiple phase of different polymorphs or composites of iron oxides with compatible materials for example, zeolite, SiO2, or Au are prepared. The properties of the as-synthesized nanoparticles are predominantly dictated by the local structure and the distribution of the cations. Mössbauer spectroscopy is a perfect and efficient characterization technique to investigate the local structure of the Mössbauer-active element such as Fe, Au, and Sn. In the present review, the local structure transformation on the optimization of the magnetite coexisted with iron hydroxides, spin dynamics of the bare, caped, core-shell and the composites of iron oxide nanoparticles (IONPs), dipole-dipole interactions and the diffusion of IONPs were discussed, based on the findings using Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Boris Wareppam
- Department of Physics, National Institute of Technology Manipur, Langol, 795004 India
| | - Ernő Kuzmann
- Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, 1117 Hungary
| | - Vijayendra K. Garg
- Institute of Physics, University of Brasília, Brasília, DF 70919-970 Brazil
| | - L. Herojit Singh
- Department of Physics, National Institute of Technology Manipur, Langol, 795004 India
| |
Collapse
|
11
|
Laufer-Meiser K, Michaud AB, Maisch M, Byrne JM, Kappler A, Patterson MO, Røy H, Jørgensen BB. Potentially bioavailable iron produced through benthic cycling in glaciated Arctic fjords of Svalbard. Nat Commun 2021; 12:1349. [PMID: 33649339 PMCID: PMC7921405 DOI: 10.1038/s41467-021-21558-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
The Arctic has the highest warming rates on Earth. Glaciated fjord ecosystems, which are hotspots of carbon cycling and burial, are extremely sensitive to this warming. Glaciers are important for the transport of iron from land to sea and supply this essential nutrient to phytoplankton in high-latitude marine ecosystems. However, up to 95% of the glacially-sourced iron settles to sediments close to the glacial source. Our data show that while 0.6-12% of the total glacially-sourced iron is potentially bioavailable, biogeochemical cycling in Arctic fjord sediments converts the glacially-derived iron into more labile phases, generating up to a 9-fold increase in the amount of potentially bioavailable iron. Arctic fjord sediments are thus an important source of potentially bioavailable iron. However, our data suggests that as glaciers retreat onto land the flux of iron to the sediment-water interface may be reduced. Glacial retreat therefore likely impacts iron cycling in coastal marine ecosystems.
Collapse
Affiliation(s)
- Katja Laufer-Meiser
- grid.7048.b0000 0001 1956 2722Center for Geomicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark ,grid.15649.3f0000 0000 9056 9663Present Address: GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Alexander B. Michaud
- grid.7048.b0000 0001 1956 2722Center for Geomicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark ,grid.296275.d0000 0000 9516 4913Present Address: Bigelow Laboratory for Ocean Sciences, Maine, USA
| | - Markus Maisch
- grid.10392.390000 0001 2190 1447Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - James M. Byrne
- grid.10392.390000 0001 2190 1447Center for Applied Geosciences, University of Tübingen, Tübingen, Germany ,grid.5337.20000 0004 1936 7603Present Address: School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, UK
| | - Andreas Kappler
- grid.10392.390000 0001 2190 1447Center for Applied Geosciences, University of Tübingen, Tübingen, Germany ,grid.15649.3f0000 0000 9056 9663Present Address: GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Molly O. Patterson
- grid.264260.40000 0001 2164 4508Department of Geological Sciences and Environmental Studies, Binghamton University, New York, USA
| | - Hans Røy
- grid.7048.b0000 0001 1956 2722Center for Geomicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Bo Barker Jørgensen
- grid.7048.b0000 0001 1956 2722Center for Geomicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|