1
|
Wang Y, Feng X, Shang Z, Li X, Ma C, Chen G, Zhao Y, Wu S, Han Y. Optimizing the electronic synergy of atomically dispersed dual-metal sites for high-efficiency oxygen evolution/reduction reaction. Chem Commun (Camb) 2025. [PMID: 39820636 DOI: 10.1039/d4cc05706f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
We reported an exogenous nitrogen-doped method to synthesize a bifunctional electrocatalyst with oxygen reduction and evolution reaction activity. This electrocatalyst displays excellent ORR (E1/2 = 0.9 V vs. RHE) and OER (potential E = 1.57 V at 10 mA cm-2) activity.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Xueting Feng
- Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Ziang Shang
- Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Xintong Li
- Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Chao Ma
- Department of Chemistry Tsinghua University, Beijing 100084, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Ying Zhao
- Xi'an Hongxing Electronic Paste Technologies Co., Ltd, Xi'an 710065, China
| | - Shaoheng Wu
- Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Yunhu Han
- Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
| |
Collapse
|
2
|
Ao X, Wang H, Zhang X, Wang C. Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Acidic Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2844-2862. [PMID: 39754738 DOI: 10.1021/acsami.4c16972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Designing efficient and cost-effective electrocatalysts toward oxygen reduction reaction (ORR) under demanding acidic environments plays a critical role in advancing proton exchange membrane fuel cells (PEMFCs). Metal-nitrogen-carbon (M-N-C) catalysts with atomically dispersed metals have gained attention for their affordability, excellent catalytic performance, and distinctive features including consistent active sites and high atomic utilization. Over the past decade, significant achievements have been made in this field. This review offers a comprehensive summary of the latest developments in atomically dispersed M-N-C catalysts for ORR in acidic environments along with their applications in PEMFCs. The ORR mechanisms, PEMFC configuration, and operational principles are presented first, followed by an in-depth discussion of strategies to improve the activity and stability of the PEMFC using atomically dispersed M-N-C catalysts at the cathode. Lastly, this review highlights the unresolved challenges and proposes future research pathways for advancing high-performance atomically dispersed M-N-C catalysts and PEMFCs.
Collapse
Affiliation(s)
- Xiang Ao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Haoran Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
3
|
Qiu Z, Guo X, Cao S, Du M, Wang Q, Pi Y, Pang H. High-Entropy Ag-Ru-Based Electrocatalysts with Dual-Active-Center for Highly Stable Ultra-Low-Temperature Zinc-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202415216. [PMID: 39370547 DOI: 10.1002/anie.202415216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The development of advanced bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is significant for rechargeable zinc-air batteries (ZABs). Herein, a unique dual active center alloying strategy is proposed to achieve the efficient bifunctional oxygen catalysis, and the high entropy effect is further exploited to modulate the structure and performance of the catalysts. The MOF-assisted pyrolysis-replacement-alloying method was employed to construct the CoCuFeAgRu high-entropy alloy (HEA), which are uniformly anchored in porous nitrogen-doped carbon nanosheets. Notably, the obtained HEA catalyst exhibits excellent catalytic performance for both ORR and OER, and a peak power density of 136. 53 mW cm-2 and an energy density of 987.9 mAh gZn -1, surpassing the most of the previously reported bifunctional oxygen electrocatalysts. Moreover, the assembled flexible rechargeable ZAB enables excellent performance even at the ultralow temperature of -40 °C, with an energy density of 601.6 mAh gZn -1 and remarkable cycling stability up to 1,650 hours. Combined experimental and theoretical calculation results reveal that the excellent bifunctional catalytic activity of the HEA catalyst originated from the synergistic effect of the Ag and Ru dual active centers, and the optimization of the electronic structure by alloying effect.
Collapse
Affiliation(s)
- Ziming Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Meng Du
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Qinchao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
4
|
Song K, Jing H, Yang B, Shao J, Tao Y, Zhang W. Enhancing Oxygen Reduction Reaction of Single-Atom Catalysts by Structure Tuning. CHEMSUSCHEM 2025; 18:e202401713. [PMID: 39187438 DOI: 10.1002/cssc.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Deciphering the fine structure has always been a crucial approach to unlocking the distinct advantages of high activity, selectivity, and stability in single-atom catalysts (SACs). However, the complex system and unclear catalytic mechanism have obscured the significance of exploring the fine structure. Therefore, we endeavored to develop a three-component strategy to enhance oxygen reduction reaction (ORR), delving deep into the profound implications of the fine structure, focusing on central atoms, coordinating atoms, and environmental atoms. Firstly, the mechanism by which the chemical state and element type of central atoms influence catalytic performance is discussed. Secondly, the significance of coordinating atoms in SACs is analyzed, considering both the number and type. Lastly, the impact of environmental atoms in SACs is reviewed, encompassing existence state and atomic structure. Thorough analysis and summarization of how the fine structure of SACs influences the ORR have the potential to offer valuable insights for the accurate design and construction of SACs.
Collapse
Affiliation(s)
- Kexin Song
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Haifeng Jing
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Binbin Yang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Jing Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Youkun Tao
- College of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Kisand K, Sarapuu A, Douglin JC, Kikas A, Käärik M, Kozlova J, Aruväli J, Treshchalov A, Leis J, Kisand V, Kukli K, Dekel DR, Tammeveski K. Hierarchically Porous Fe-N-C Single-Atom Catalysts via Ionothermal Synthesis for Oxygen Reduction Reaction. CHEMSUSCHEM 2025; 18:e202401332. [PMID: 39185822 PMCID: PMC11739835 DOI: 10.1002/cssc.202401332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Platinum group metal (PGM)-free electrocatalysts have emerged as promising alternatives to replace Pt for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). However, traditional synthesis methods limit the single-atom site density due to metal agglomeration at higher temperatures. This work explores the preparation of hierarchically porous atomically dispersed electrocatalysts for the ORR. The materials were prepared via ionothermal synthesis, where magnesium nitrate was used to prepare hierarchically porous carbon materials. The in-situ formed Mg-Nx sites were trans-metalated to yield ORR-active Fe-Nx sites. The resulting carbon-based catalysts displayed excellent electrocatalytic activity, attributed to the atomically dispersed Fe-Nx active sites and high meso- and macroporosity that enhanced the mass transport and exposed more accessible active sites.
Collapse
Affiliation(s)
- Kaarel Kisand
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Ave Sarapuu
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - John C Douglin
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Arvo Kikas
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Maike Käärik
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Jekaterina Kozlova
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Jaan Aruväli
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Alexey Treshchalov
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Jaan Leis
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Kaupo Kukli
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Kaido Tammeveski
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| |
Collapse
|
6
|
Gu JF, Wang J, Wang C, Li J, Chen C, Zhang N, Xu XY, Chaemchuen S. Two-dimensional ZIF-L derived dual Fe/FeN x sites for synergistic efficient oxygen reduction in alkaline and acid media. J Colloid Interface Sci 2025; 684:159-169. [PMID: 39826503 DOI: 10.1016/j.jcis.2025.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Fe-N-C catalysts have emerged as the most promising alternatives to commercial Pt/C catalysts for oxygen reduction reaction (ORR) due to their cost-effectiveness and favorable activity. Herein, a dual-site Fe/FeNx-NC catalyst was synthesized via a green, in situ doping strategy using two-dimensional Fe-doped ZIF-L as a nitrogen-rich precursor. The catalyst integrated Fe nanoparticles (NPs) and FeNx sites anchored on carbon nanotubes, intertwined with nitrogen-doped porous carbon nanosheets, achieving a high active site density and graphitisation. Electrochemical tests revealed that the optimized Fe/FeNx-NC-1 exhibited significant ORR activity, with a half-wave potential of 0.92 V and 0.80 V for alkaline and acidic medium, respectively. Zn-air batteries employing Fe/FeNx-NC-1 delivered a peak power density of 168 mW·cm-2 and a specific capacity of 790 mAh·g-1, outperforming those of Pt-based catalysts. Density functional theory calculations demonstrated a reduced free energy barrier for the rate-determining step (0.48 eV) compared to single-site Fe-N4 models (0.79 eV). The synergy between Fe NPs and FeNx optimized ORR intermediate adsorption and facilitated charge/mass transfer. This study offers valuable insights for the development of advanced energy conversion systems.
Collapse
Affiliation(s)
- Jun-Fei Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 China
| | - Jichao Wang
- School of Marine Science and Technology, Northwestern Polytechnical University, 127 Youyi Road, Xian 710000 China; Ningbo Institute of NPU, 218 Qingyi Road, Ningbo 315100 China
| | - Caixia Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 China.
| | - Jin Li
- Department of Gastroenterology, The Eighth Affliated Hospital, Sun Yat-sen University, Shenzhen 518033 China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 China; Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000 China.
| | - Ni Zhang
- Hubei University of Technology Engineering and Technology College, Wuhan 430068 China
| | - Xiang-Ya Xu
- Department of Catalytic Sciences, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd, No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013 China
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 China; Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170 Thailand.
| |
Collapse
|
7
|
Ran X, Qin H, Liu X, Chu C, Li Q, Zhao H, Mao S. Oxygen Reduction Reaction Coupled Electro-Oxidation for Highly-Efficient and Sustainable Water Treatment. Angew Chem Int Ed Engl 2025; 64:e202414481. [PMID: 39227999 DOI: 10.1002/anie.202414481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Electro-oxidation (EO) technology demonstrates significant potential in wastewater treatment. However, the high energy consumption has become a pivotal constraint hindering its large-scale implementation. Herein, we design an EO and 4-electron oxygen reduction reaction coupled system (EO-4eORR) to replace the traditional EO and hydrogen evolution reaction (HER) coupled system (EO-HER). The theoretical cathodic potential of the electrolytic reactor is tuned from 0 V (vs. RHE) in HER to 1.23 V (vs. RHE) in 4eORR, which greatly decreases the required operation voltage of the reactor. Moreover, we demonstrate that convection can improve the mass transfer of oxygen and organic pollutants in the reaction system, leading to low cathodic polarization and high pollutant removal rate. Compared with traditional EO-HER system, the energy consumption of the EO-4eORR system under air aeration for 95 % total organic carbon (TOC) removal is greatly decreased to 2.61 kWh/kgTOC (only consider the electrolyzer energy consumption), which is superior to previously reported EO-based water treatment systems. The reported results in this study offer a new technical mode for development of highly efficient and sustainable EO-based treatment systems to remove organic pollutants in waste water.
Collapse
Affiliation(s)
- Xiaomeng Ran
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hehe Qin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiangyun Liu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Chengcheng Chu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hongying Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
8
|
Gao C, Zhen S, Wang Y, Wang L, Cao Y, Zhan J, Zhang L, Cai B. Spin effects in regulating the adsorption characteristics of metal ions. Chem Sci 2025:d4sc06477a. [PMID: 39790990 PMCID: PMC11708777 DOI: 10.1039/d4sc06477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Understanding the adsorption behavior of intermediates at interfaces is crucial for various heterogeneous systems, but less attention has been paid to metal species. This study investigates the manipulation of Co3+ spin states in ZnCo2O4 spinel oxides and establishes their impact on metal ion adsorption. Using electrochemical sensing as a metric, we reveal a quasi-linear relationship between the adsorption affinity of metal ions and the high-spin state fraction of Co3+ sites. Increasing the high-spin state of Co3+ shifts its d-band center downward relative to the Fermi level, thereby weakening metal ion adsorption and enhancing sensing performance. These findings demonstrate a spin-state-dependent mechanism for optimizing interactions with various metal species, including Cu2+, Cd2+, and Pb2+. This work provides new insights into the physicochemical determinants of metal ion adsorption, paving the way for advanced sensing technologies and beyond.
Collapse
Affiliation(s)
- Cunyuan Gao
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Shiyu Zhen
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University Beijing 100084 China
| | - Yutong Wang
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Lingwei Wang
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University Beijing 100084 China
- Beijing Huairou Laboratory Beijing 101400 China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
- Shenzhen Research Institute of Shandong University Shenzhen 518000 China
| |
Collapse
|
9
|
Tang B, Ji Q, Zhang X, Shi R, Ma J, Zhuang Z, Sun M, Wang H, Liu R, Liu H, Wang C, Guo Z, Lu L, Jiang P, Wang D, Yan W. Symmetry Breaking of FeN 4 Moiety via Edge Defects for Acidic Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025:e202424135. [PMID: 39776237 DOI: 10.1002/anie.202424135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Fe-N-C catalysts, with a planar D4h symmetric FeN4 structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe-N-C catalysts through morphology engineering, enabling the precise modulation of the FeN4 active site. Electrochemical experimental results demonstrate that FeN4@porous carbon (FeN4@PC), featuring enriched asymmetric edge-FeN4 active sites, exhibits higher acidic oxygen reduction reaction catalytic activity compared to FeN4@flaky carbon (FeN4@FC), where symmetric FeN4 is primarily distributed within the basal-plane. Synchrotron X-ray absorption spectra, X-ray emission spectra, and theoretical calculations indicate that the enhanced oxygen reduction reaction catalytic activity of FeN4@PC is attributed to the higher oxidation state of Fe species in the edge structure of FeN4@PC. This finding paves the way for controlling the local geometric and electronic structures of single-atom active sites, leading to the development of novel and efficient Fe-N-C catalysts.
Collapse
Affiliation(s)
- Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xilin Zhang
- School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Runchuan Shi
- School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Jin Ma
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mei Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Ruiqi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhiying Guo
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanlu Lu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Peng Jiang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
10
|
Wang X, Zhang N, Shang H, Duan H, Sun Z, Zhang L, Lei Y, Luo X, Zhang L, Zhang B, Chen W. Precisely designing asymmetrical selenium-based dual-atom sites for efficient oxygen reduction. Nat Commun 2025; 16:470. [PMID: 39775107 PMCID: PMC11707329 DOI: 10.1038/s41467-025-55862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Owing to their synergistic interactions, dual-atom catalysts (DACs) with well-defined active sites are attracting increasing attention. However, more experimental research and theoretical investigations are needed to further construct explicit dual-atom sites and understand the synergy that facilitates multistep catalytic reactions. Herein, we precisely design a series of asymmetric selenium-based dual-atom catalysts that comprise heteronuclear SeN2-MN2 (M = Fe, Mn, Co, Ni, Cu, Mo, etc.) active sites for the efficient oxygen reduction reaction (ORR). Spectroscopic characterisation and theoretical calculations revealed that heteronuclear selenium atoms can efficiently polarise the charge distribution of other metal atoms through short-range regulation. In addition, compared with the Se or Fe single-atom sites, the SeFe dual-atom sites facilitate a reduction in the conversion energy barrier from *O to *OH via the coadsorption of *O intermediates. Among these designed selenium-based dual-atom catalysts, selenium-iron dual-atom catalysts achieves superior alkaline ORR performance, with a half-wave potential of 0.926 V vs. a reversible hydrogen electrode. In addition, the SeN2-FeN2-based Zn-air battery has a high specific capacity (764.8 mAh g-1) and a maximum power density (287.2 mW cm-2). This work may provide a good perspective for designing heteronuclear DACs to improve ORR efficiency.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, P. R. China
| | - Ning Zhang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, P. R. China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, P. R. China.
| | - Haojie Duan
- Centre for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, P. R. China
| | - Zhiyi Sun
- Energy & Catalysis Centre, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Lili Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, P. R. China
| | - Yuanting Lei
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, P. R. China
| | - Xuan Luo
- Centre for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, P. R. China.
| | - Liang Zhang
- Centre for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, P. R. China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Centre, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
11
|
Luo Q, Wang K, Zhang Q, Ding W, Wang R, Li L, Peng S, Ji D, Qin X. Tailoring Single-Atom Coordination Environments in Carbon Nanofibers via Flash Heating for Highly Efficient Bifunctional Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202413369. [PMID: 39162070 DOI: 10.1002/anie.202413369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
The rational design of carbon-supported transition metal single-atom catalysts necessitates precise atomic positioning within the precursor. However, structural collapse during pyrolysis can occlude single atoms, posing significant challenges in controlling both their utilization and coordination environment. Herein, we present a surface atom adsorption-flash heating (FH) strategy, which ensures that the pre-designed carbon nanofiber structure remains intact during heating, preventing unforeseen collapse effects and enabling the formation of metal atoms in nano-environments with either tetra-nitrogen or penta-nitrogen coordination at different flash heating temperatures. Theoretical calculations and in situ Raman spectroscopy reveal that penta-nitrogen coordinated cobalt atoms (Co-N5) promote a lower energy pathway for oxygen reduction and oxygen evolution reactions compared to the commonly formed Co-N4 sites. This strategy ensures that Co-N5 sites are fully exposed on the surface, achieving exceptionally high atomic utilization. The turnover frequency (65.33 s-1) is 47.4 times higher than that of 20 % Pt/C under alkaline conditions. The porous, flexible carbon nanofibers significantly enhance zinc-air battery performance, with a high peak power density (273.8 mW cm-2), large specific capacity (784.2 mAh g-1), and long-term cycling stability over 600 h. Additionally, the flexible fiber-shaped zinc-air battery can power wearable devices, demonstrating significant potential in flexible electronics applications.
Collapse
Affiliation(s)
- Qingliang Luo
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Kangkang Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qiangqiang Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Wei Ding
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Rongwu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
| | - Dongxiao Ji
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
12
|
Tian Q, Huangfu S, Kang G, Wang H, Liu H, Wang X, Li A, Chen Y, Fan K, Zhang L. High-Spin States of Manganese(III) Enable Robust Cold-Adapted Activity of MnO 2 Nanozymes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2415477. [PMID: 39679805 DOI: 10.1002/advs.202415477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Developing novel cold-adapted nanozymes and elucidating their mechanisms of action remains a great challenge. Inspired by natural oxidases that utilize high-spin and high-valent metal-oxygen intermediates to achieve high efficiency at low temperatures, in this study, a series of MnOx nanomaterials with varied valence and spin states are synthesized. The activity assay revealed that the oxygen vacancy-engineered ε-MnO2 nanozyme displayed excellent cold-adapted oxidase-like properties, and no observable activity loss is observed in the temperature range of -20 to 45 °C. The superior performance is attributed to the high-spin Mn(III)-O species coupled with its induced Jahn-Teller effect, which facilitates the dissociation and activation of oxygen at low temperatures. As a proof of concept, an excellent cold-adapted δ-MnO2 nanozyme can be obtained using Mn3O4 as the precursor by regulating the spin state of Mn(III). Moreover, a novel and effective degradation strategy for corn stalk at low temperature is built based on the robust cold-adapted oxidase-like activity of ε-MnO2. These results not only provide new insights for the rational design of cold-adapted nanozymes but also broaden the application of nanozymes in low-temperature industrial processes.
Collapse
Affiliation(s)
- Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Shuaiqi Huangfu
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Ge Kang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Haoyu Wang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Huile Liu
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Xuejing Wang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Aipeng Li
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yao Chen
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| |
Collapse
|
13
|
Li JK, Zhao H, Zhang Y, Ma JJ, Wang FF, Zhao SN, Li J, Zang SQ. In Situ Electron Tomography Insights into the Curvature Effect of a Concave Surface on Fe Single Atoms for Durable Oxygen Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412387. [PMID: 39686655 DOI: 10.1002/advs.202412387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Curvature-induced interfacial electric field effects and local strain engineering offer a powerful approach for optimizing the intrinsic catalytic activity of single-atom catalysts (SACs). Investigations into the surface curvature on SACs are still ongoing, and the impact of the concave surface is often overlooked. In this work, theoretical calculations indicate that curved surfaces, particularly those with concavity, can optimize the electronic structures of single Fe sites and facilitate the reductive release of *OH. A carbon sphere featuring uniformly oriented channels and a chiral multi-shelled carbon hollow nanosphere are selected as carbon matrices due to their accessible concave and/or convex surfaces. After loading Fe species, the resulting catalysts with Fe SA in curved surfaces exhibit excellent oxygen reduction reaction activity (E1/2 = ≈0.89 V), strong methanol tolerance, and favorable long-term stability. Impressively, a solid-state flexible Zn-air battery based on this catalyst exhibits a remarkable durability over 40 h with a high peak power density of 122.1 mW cm-2 and excellent charge-discharge performance at different bending angles. This work offers in-depth insights into the rational design of carbon supports with highly curved surfaces, offering new opportunities for the microenvironmental regulation of SACs at the atomic level.
Collapse
Affiliation(s)
- Jun-Kang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Haobo Zhao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yang Zhang
- School of Materials Science and Engineering, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China
| | - Jing-Jing Ma
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Fen-Fen Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu-Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
14
|
Xia F, Li B, An B, Zachman MJ, Xie X, Liu Y, Xu S, Saha S, Wu Q, Gao S, Abdul Razak IB, Brown DE, Ramani V, Wang R, Marks TJ, Shao Y, Cheng Y. Cooperative Atomically Dispersed Fe-N 4 and Sn-N x Moieties for Durable and More Active Oxygen Electroreduction in Fuel Cells. J Am Chem Soc 2024; 146:33569-33578. [PMID: 39620942 DOI: 10.1021/jacs.4c11121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
One grand challenge for deploying porous carbons with embedded metal-nitrogen-carbon (M-N-C) moieties as platinum group metal (PGM)-free electrocatalysts in proton-exchange membrane fuel cells is their fast degradation and inferior activity. Here, we report the modulation of the local environment at Fe-N4 sites via the application of atomic Sn-Nx sites for simultaneously improved durability and activity. We discovered that Sn-Nx sites not only promote the formation of the more stable D2 FeN4C10 sites but also invoke a unique D3 SnNx-FeIIN4 site that is characterized by having atomically dispersed bridged Sn-Nx and Fe-N4. This new D3 site exhibits significantly improved stability against demetalation and several times higher turnover frequency for the oxygen reduction reaction (ORR) due to the shift of the reaction pathway from a single-site associative mechanism to a dual-site dissociative mechanism with the adjacent Sn site facilitating a lower overpotential cleavage of the O-O bond. This mechanism bypasses the formation of the otherwise inevitable intermediate that is responsible for demetalation, where two hydroxyl intermediates bind to one Fe site. As a result, a mesoporous Fe/Sn-PNC catalyst exhibits a positively shifted ORR half-wave potential and more than 50% lower peroxide formation. This, in combination with the stable D3 site and enriched D2 Fe sites, significantly enhanced the catalyst's durability as demonstrated in membrane electrode assemblies using complementary accelerated durability testing protocols.
Collapse
Affiliation(s)
- Fan Xia
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Bomin Li
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bowen An
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 United States
| | - Xiaohong Xie
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yiqi Liu
- Department of Chemistry, Northwestern University, Evanston, Ilinois 60208, Untied States
| | - Shicheng Xu
- Jinetics Inc., Santa Clara, California 95050, United States
| | - Sulay Saha
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Qin Wu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Siyuan Gao
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Iddrisu B Abdul Razak
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Dennis E Brown
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Vijay Ramani
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rongyue Wang
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, Evanston, Ilinois 60208, Untied States
| | - Yuyan Shao
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yingwen Cheng
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|
15
|
Wang H, Yuan H, Wang W, Shen L, Sun J, Liu X, Yang J, Wang X, Wang T, Wen N, Gao Y, Song K, Chen D, Wang S, Zhang YW, Wang J. Asymmetric Polarization Modulation of d-p Hybridization-Enhanced Bidirectional Sulfur Redox Kinetics with Heteronuclear Dual-Atom Catalysts. ACS NANO 2024; 18:33405-33417. [PMID: 39604013 DOI: 10.1021/acsnano.4c09637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lithium sulfur batteries (LiSBs) represent a highly promising avenue for future energy storage systems, offering high energy density and eco-friendliness. However, the sluggish kinetics of the sulfur redox reaction (SRR) poses a significant challenge to their widespread applications. To tackle this challenge, we have developed an efficient heteronuclear dual-atom catalyst (hetero-DAC) that leverages surface charge polarization to enhance the asymmetric adsorption of sulfur intermediates. This study investigates how asymmetric electronic redistribution of CoFe DACs modulates the d-p orbital hybridization with sulfur intermediates, revealing the mechanisms of moderate adsorption dynamics with enhanced catalytic performance. The dynamic switching between mono and dual adsorption sites, enabled by the heteronuclear polarized configuration, fine-tunes the orbital hybridization, boosting the bidirectional rate-determining steps, that is, the solid-solid conversion of Li2S2 to Li2S and the reverse dissociation of Li2S. Consequently, the thus-designed CoFe DACs cathode delivers impressive rate performance, achieving a high initial specific capacity of 703.9 mA h g-1 at 3 C, with a negligible decay rate of only 0.031% over 1000 cycles, demonstrating sustained long-term cycling stability. This work bridges geometric configurations and electronic structures, elucidating the mechanisms of asymmetric trapping and conversion enabled by hetero-DACs and offering fresh perspectives for catalyst design in LiSBs and beyond.
Collapse
Affiliation(s)
- Haimei Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Hao Yuan
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wanwan Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis No. 08-03, Singapore 138634, Republic of Singapore
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Republic of Singapore
| | - Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Jing Yang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xingyang Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Tuo Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Ning Wen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yulin Gao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Kepeng Song
- Electron Microscopy Center, Shandong University, Jinan 250100, Shandong, China
| | - Dairong Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Shijie Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis No. 08-03, Singapore 138634, Republic of Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632, Republic of Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing Liang Jiang New Area, Chongqing 401120, China
| |
Collapse
|
16
|
Zeng X, Qin Y, Yang X, Zhou J, Pan J, Luo S, Cheng K. Molecular level decontamination of trace quinolones and Serratia marcescens in wastewater via in situ Cu(III) complexes mediated Fenton-like oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136266. [PMID: 39476689 DOI: 10.1016/j.jhazmat.2024.136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
Co-pollution caused by antibiotics and antibiotic-resistant bacteria (ARB) in wastewater has led to widespread concerns. Hence, their targeted and synergistic decontamination is urgently required. A homogeneous Fenton-like oxidation system comprising cupric complexes-activated peroxymonosulfate (PMS) was demonstrated to synergistically decontaminate trace quinolones (QNs) and QNs-resistant Serratia marcescens (QRSM) in wastewater. More than 99 % of QNs were degraded within 60 min under alkaline condition, and the degradation efficiency was only slightly influenced by humic acid (up to 1 %) and various anions (up to 20 %), furthermore, the degraded pathway was proposed and the environmental risk after QNs degradation were also reduced. The activation of PMS via cupric complexes coupling in situ Cu(III) complexes generation promoted intramolecular electron transfer (IET) featuring the targeted oxidation of QNs. The produced Cu(III) and •OH played primary and secondary roles in the synergistic inactivation of QRSM by destroying the cell membranes and walls, DNA bases (T, A, C, and G), antibiotic resistance genes (ARGs, including intracellular ARGs and extracellular ARGs), and total DNA (including intracellular DNA and extracellular DNA). This study demonstrates a successful strategy and provides an innovative perspective for the molecular level decontamination of trace antibiotics and ARB using a homogeneous cupric complexes-activated Fenton-like oxidation system from metal ions inherent in breeding wastewater under alkaline condition.
Collapse
Affiliation(s)
- Xiangchu Zeng
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, Guangxi Zhuang Autonomous Region, China; Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China; School of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou 311402, Zhejiang Province, China.
| | - Yue Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, Guangxi Zhuang Autonomous Region, China
| | - Xiaobing Yang
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China
| | - Junmei Zhou
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, The Fifth Hospital Affiliated to Wenzhou Medical University, Lishui 323000, Zhejiang Province, China.
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China; School of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou 311402, Zhejiang Province, China.
| |
Collapse
|
17
|
Qiu L, Wu Z, Liu Y, Qin Z, Liu Y, Zhang J, Deng Y, Hu W. Mn Doping at High-Activity Octahedral Vacancies of γ-Fe 2O 3 for Oxygen Reduction Reaction Electrocatalysis in Metal-Air Batteries. Angew Chem Int Ed Engl 2024:e202421918. [PMID: 39628092 DOI: 10.1002/anie.202421918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Indexed: 12/17/2024]
Abstract
γ-Fe2O3 with the intrinsic cation vacancies is an ideal substrate for heteroatom doping into the highly active octahedral sites in spinel oxide catalysts. However, it is still a challenge to confirm the vacancy location of γ-Fe2O3 through experiments and obtain enhanced catalytic performance by preferential occupation of octahedral sites for heteroatom doping. Here, a Mn-doped γ-Fe2O3 incorporated with carbon nanotubes catalyst was developed to successfully achieve preferential doping into highly active octahedral sites by employing γ-Fe2O3 as the precursor. Further, the vacancy in γ-Fe2O3 was only located on octahedral sites rather than tetrahedral ones, which was first proved by direct experimental evidence through the clarification doping sites of Mn. Notably, the catalyst shows outstanding activity towards oxygen reduction reaction with the half-wave potential of 0.82 V and 0.64 V vs. reversible hydrogen electrode in alkaline and neutral electrolytes, respectively, as well as the maximum power density of 179 mWcm-2 and 403 mWcm-2 for Mg-air batteries and Al-air batteries, respectively. It could be attributed to the synergistic effect of the doping Mn on octahedral sites and the substrate γ-Fe2O3 along with the modification of the adsorption/desorption properties for oxygen-containing intermediates as well as the optimization of the reaction energy barriers.
Collapse
Affiliation(s)
- Liuzhe Qiu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.Institution
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhong Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhenbo Qin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yichun Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.Institution
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
18
|
Chen G, Isegawa M, Koide T, Yoshida Y, Harano K, Hayashida K, Fujita S, Takeyasu K, Ariga K, Nakamura J. Pentagon-Rich Caged Carbon Catalyst for the Oxygen Reduction Reaction in Acidic Electrolytes. Angew Chem Int Ed Engl 2024; 63:e202410747. [PMID: 39305103 DOI: 10.1002/anie.202410747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 11/03/2024]
Abstract
The interaction between electron spin and oxygen molecules in non-platinum catalysts, particularly carbon catalysts, significantly influences the catalytic performance of the oxygen reduction reaction (ORR). A promising approach to developing high-performance catalysts involves introducing five-membered ring structures with spin into graphitic carbons. In this study, we present the successful synthesis of cage-like cubic carbon catalysts enriched with pentagon structures using pentagon ring-containing C60 and a NaCl template. The number of pentagons contained in the structure was increased by doping with nitrogen and annealing, and the number of electron spins also increased, thereby improving catalytic activity. The prepared catalyst exhibits remarkable activity in ORR under acidic electrolytes. Furthermore, we elucidate the correlation between the pentagon structure, the number of spin, and catalytic activity, demonstrating that enhanced activity is contingent upon the presence of spin. Density functional theory (DFT) calculations support the role of spin in improving activity. The concept of spin and the introduction of pentagon structures provide new design principles for carbon catalysts.
Collapse
Affiliation(s)
- Guoping Chen
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Taro Koide
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yasuo Yoshida
- Department of Physics, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kenji Hayashida
- Graduate School of Environmental Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, Hokkaido, 001-0010, Japan
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Shusaku Fujita
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kotaro Takeyasu
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Katsuhiko Ariga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Japan
| | - Junji Nakamura
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| |
Collapse
|
19
|
Niu WJ, Zhao WW, Yan YY, Cai CY, Yu BX, Li RJ. In-depth understanding the synergisms of Cu atomic clusters on Cu single atoms for highly effective electrocatalytic oxygen reduction reaction and Zn-Air battery. J Colloid Interface Sci 2024; 675:989-998. [PMID: 39003818 DOI: 10.1016/j.jcis.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
In this paper, a novel, simple and mild soft template assisted strategy and further carbonization approach has been constructed to the size-tunable preparation of porous Cu-N-C/Surfactant catalysts successfully. Note that the pluronic F127 has a significant influence on the synthesis of porous Cu-N-C/F127 with the atomically dispersed Cu-N4 and adjacent Cu atomic clusters (ACs) than other surfactants owing to their particular non-ionic structure. By combining a series of experimental analysis and density functional theory (DFT) calculations, the synergistic effects between the adjacent Cu ACs and atomically dispersed Cu-N4 are favorable for manipulating the binding energy of O2 adsorption and intermediates desorption at the atomic interface of catalysts, resulting in an excellent electrocatalytic ORR performance with a faster kinetics for Cu-N-C/F127 than those of the Cu-N-C, Cu-N-C/CTAB, Cu-N-C/SDS, and comparable with the commercial Pt/C catalyst. This method not only provides a novel approach for synthesizing highly effective copper based single atom catalysts toward ORR, but also offers an in-depth understanding of the synergisms of adjacent ACs on the Cu single atoms (SAs) for highly effective electrocatalytic ORR and Zn-air Battery.
Collapse
Affiliation(s)
- Wen-Jun Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Wei-Wei Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Ying-Yun Yan
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Chen-Yu Cai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Bing-Xin Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Ru-Ji Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
20
|
Yan D, Kong L, Xu B, Yang B. One-Step Synthesis Strategy for a Platinum-Based Alloy Catalyst Designed via Crystal-Structure Prediction. Molecules 2024; 29:5634. [PMID: 39683794 DOI: 10.3390/molecules29235634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
The industrial application of polymer electrolyte membrane fuel cells is limited by the high cost of platinum catalysts. In this study, we developed a one-step synthesis strategy for low-platinum alloy catalysts based on crystal-structure predictions. Using this method, we successfully prepared a low-platinum alloy catalyst, i.e., CaPt2, which exhibits the same structure as its theoretically predicted counterpart in a single step via arc melting. There was no hazardous waste emission during the preparation of the alloy catalyst. Electrons were successfully enriched on the surfaces of platinum atoms, and the electronic structures of the platinum atoms were adjusted. The migration of oxygen intermediates during oxygen reduction was determined via an extensive oxygen-intermediate adsorption site test. The reaction path for the oxygen reduction process was determined. Electronic-structure analysis revealed the interaction mechanism between the oxygen intermediate and the platinum atom on the catalyst surface. The incorporation of calcium atoms into the alloy catalyst effectively improved the adsorption/dissociation state of the oxygen intermediates on the catalyst surface. Meanwhile, the molar fraction of platinum atoms in the CaPt2 alloy catalyst reduced by 33%, thus decreasing the feedstock cost of the catalyst. The double reduction in raw materials and manufacturing costs is conducive to the popularization and application of alloy catalysts. This study provides a reference for the design and production of other functional catalysts.
Collapse
Affiliation(s)
- Dengjie Yan
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Lingxin Kong
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Baoqiang Xu
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Bin Yang
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
21
|
Xu Z, Xiao T, Li Y, Pan Y, Li C, Liu P, Xu Q, Tian F, Wu L, Xu F, Mai Y. Assessing the Effect of a Schwarz P Surface on the Oxygen Electroreduction Performance of Porous Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416204. [PMID: 39570097 DOI: 10.1002/adma.202416204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 11/22/2024]
Abstract
The surface curvature of catalysts has a decisive impact on their catalytic performance. However, the influence of a negative-Gaussian-curvature surface on the catalytic performance of porous catalysts has remained unexplored due to the lack of suitable samples. Bicontinuous-structured porous structures can serve as ideal models, but they are known as "Plumber's nightmare" due to their highly difficult preparation. Here, using metal-organic frameworks as the precursor and polymer cubosomes as the template, a bicontinuous mesoporous Fe single-atom catalyst (named bmFeSAC) with a Schwarz P surface is synthesized. The bmFeSAC catalyst has a large specific surface area of 916 m2 g-1 and uniformly distributed Fe-N4 active sites with a 1.80 wt.% Fe content. The continuous channels enabled high utilization efficiency of the Fe-N4 catalytic sites, while the negative-Gaussian-curvature surface enabled low reaction energy barrier. As an electrocatalyst of the oxygen reduction reaction, bmFeSAC delivered a high half-wave potential of 0.931 V versus. RHE in alkaline electrolyte, reaching the leading level among those of the reported state-of-the-art electrocatalysts. Furthermore, the bmFeSAC-based Zn-air batteries exhibited excellent performance, demonstrating the potential application of bmFeSAC. This study revealed that a bicontinuous-structured porous structure can improve catalytic activity by increasing the utilization ratio of catalytic sites and, more importantly, by regulating the electronic structure of catalyst surfaces through the negative-Gaussian-curvature.
Collapse
Affiliation(s)
- Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyu Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pan Liu
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Wang K, Dai J, Zhan G, Zhao L, Wang R, Zou X, Wang J, Zheng Q, Zhou B, Zhao R, Zhang Y, Lian W, Yao Y, Zhang L. Superior Singlet Oxygen Electrosynthesis via Neighboring Dual Molecular Oxygen Coactivation for Selective Tetracycline Detoxification. Angew Chem Int Ed Engl 2024; 63:e202412209. [PMID: 39166761 DOI: 10.1002/anie.202412209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Oxygen (O2) electroreduction offers a green approach for singlet oxygen (1O2) synthesis in wastewater contaminants detoxification. However, traditional single O2 activation on single-metal catalytic sites seriously suffers from the kinetically-unfavorable desorption of adsorbed superoxide species (•O2 -*/•OOH*). Here, we demonstrate a novel dual O2 coactivation pathway on shortened Fe1-OV-Ti sites for superior 1O2 electrosynthesis through a rapid disproportionate process between surface-confined •O2 -*/•OOH*. Theoretical calculations combined with in situ electrochemical spectroscopies demonstrated that the shortened distance between Fe single atom and adjacent unsaturated Ti atom facilitates the direct recombination of surface-confined Fe-•OOH and Ti-•OO- to yield 1O2, bypassing the formidable •O2 -*/•OOH* desorption process. Impressively, Fe1-OV-Ti could realize an excellent 1O2 electrosynthesis rate of 54.5 μmol L-1 min-1 with an outstanding 1O2 selectivity of 97.6 % under neutral condition, surpassing that of Fe1-O-Ti (27.1 μmol L-1 min-1, 91.7 %). Using tetracycline (TC) as a model pollutant, the resulting Fe1-OV-Ti electrode achieved nearly 100 % degradation in 120 min at -0.6 V, meanwhile preventing the generation of toxic intermediates. This study provides a new 1O2 electrosynthesis strategy by controlling the distance of adjacent catalytic sites for the coactivation of dual molecular oxygen.
Collapse
Affiliation(s)
- Kaiyuan Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Jie Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Long Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Ruizhao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Xingyue Zou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Jiaxian Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Bing Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Wengao Lian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
23
|
Yang T, Ding K, Zhou J, Ma X, Tan KC, Wang G, Huang H, Yang M. Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts. SMALL METHODS 2024:e2401333. [PMID: 39552000 DOI: 10.1002/smtd.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Indexed: 11/19/2024]
Abstract
Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the dxz and dyz orbitals' occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.
Collapse
Affiliation(s)
- Tong Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Keda Ding
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jun Zhou
- Institute of Materials Research & Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Xiaoyang Ma
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Kay Chen Tan
- Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre on Data Sciences & Artificial Intelligence, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
24
|
Li Q, Ma Z, Liu M, Jiang Y, Fu M, Fan Y, Qin X, Song A, Shao G, Xu Y. High Spin-State Modulation of Catalytic Centers by Weak Ligand Field for Promoting Sulfur Redox Reaction in Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2024:e202416176. [PMID: 39510968 DOI: 10.1002/anie.202416176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
The spin state of transition-metal compounds in lithium-sulfur batteries (LSBs) significantly impacts the electronic properties and the kinetics of sulfur redox reactions (SRR). However, accurately designing the spin state remains challenging, which is crucial for understanding the structure-performance relationship and developing high-performance electrocatalysts. Herein, the CoF2, specifically the Co2+ with 3d7 electrons in a high-spin state distribution (t2g 5eg 2), were tailored predictably for the first time through the weak coordination field effect of the F element. Both DFT calculations and experimental results confirm that the spin state of Co2+ transitions from low- to high-spin configurations and strongly interacts with sulfur species through Co-S and Li-F bonds during the SRR process. This interaction weakens the S-S bond, promoting its facile cleavage from both ends while also facilitating the rapid and uniform nucleation of Li2S2/Li2S, thus resulting in LSBs with a capacity of 447.7 mAh g-1 at 10 C rates and stable cycling for 1000 cycles, with an acceptable practical capacity of 585 mAh g-1 at a high sulfur loading mass of 10 mg cm-2. This work achieves rational control of the active Co2+ d electron state through the field effect and enriches the application of spin control to accelerate SRR in LSBs.
Collapse
Affiliation(s)
- Qing Li
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Zhipeng Ma
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Ming Liu
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Yajie Jiang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Minhao Fu
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Yuqian Fan
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Xiujuan Qin
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Ailing Song
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Guangjie Shao
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
25
|
Zhu J, Lan D, Liu X, Zhang S, Jia Z, Wu G. Porous Structure Fibers Based on Multi-Element Heterogeneous Components for Optimized Electromagnetic Wave Absorption and Self-Anticorrosion Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403689. [PMID: 39128133 DOI: 10.1002/smll.202403689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/21/2024] [Indexed: 08/13/2024]
Abstract
The excellent performance of electromagnetic wave absorbers primarily depends on the coordination among components and the rational design of the structure. In this study, a series of porous fibers with carbon nanotubes uniformly distributed in the shape of pine leaves are prepared through electrospinning technique, one-pot hydrothermal synthesis, and high-temperature catalysis method. The impedance matching of the nanofibers with a porous structure is optimized by incorporating melamine into the spinning solution, as it undergoes gas decomposition during high-temperature calcination. Moreover, the electronic structure can be modulated by controlling the NH4F content in the hydrothermal synthesis process. Ultimately, the Ni/Co/CrN/CNTs-CF specimen (P3C NiCrN12) exhibited superior performance, while achieving a minimum reflection loss (RLmin) of -56.18 dB at a thickness of 2.2 mm and a maximum absorption bandwidth (EABmax) of 5.76 GHz at a thickness of 2.1 mm. This study presents an innovative approach to fabricating lightweight, thin materials with exceptional absorption properties and wide bandwidth by optimizing the three key factors influencing electromagnetic wave absorption performance.
Collapse
Affiliation(s)
- Jiahui Zhu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Di Lan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Shihan Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zirui Jia
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
26
|
Chen H, Xu C, Sun L, Guo C, Chen H, Shu C, Si Y, Liu Y, Jin R. Single-atom Mn sites confined into hierarchically porous core-shell nanostructures for improved catalysis of oxygen reduction. J Colloid Interface Sci 2024; 673:239-248. [PMID: 38871627 DOI: 10.1016/j.jcis.2024.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Applications of zinc-air batteries are partially limited by the slow kinetics of oxygen reduction reaction (ORR); Thus, developing effective strategies to address the compatibility issue between performance and stability is crucial, yet it remains a significant challenge. Here, we propose an in situ gas etching-thermal assembly strategy with an in situ-grown graphene-like shell that will favor Mn anchoring. Gas etching allows for the simultaneous creation of mesopore-dominated carbon cores and ultrathin carbon layer shells adorned entirely with highly dispersed Mn-N4 single-atom sites. This approach effectively resolves the compatibility issue between activity and stability in a single step. The unique core-shell structure allows for the full exposure of active sites and effectively prevents the agglomerations and dissolution of Mn-N4 sites in cores. The corresponding half-wave potential for ORR is up to 0.875 V (vs. reversible hydrogen electrode (RHE)) in 0.1 M KOH. The gained catalyst (Mn-N@Gra-L)-assembled zinc-air battery has a high peak power density (242 mW cm-2) and a durability of ∼ 115 h. Furthermore, replacing the zinc anode achieved a stable cyclic discharge platform of ∼ 20 h at varying current densities. Forming more fully exposed and stable existing Mn-N4 sites is a governing factor for improving the electrocatalytic ORR activity, significantly cycling durability, and reversibility of zinc-air batteries.
Collapse
Affiliation(s)
- Hongdian Chen
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China; School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chuanlan Xu
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Lingtao Sun
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China; Institute of Chemical and Gas and Oil Technologies, T.F. Gorbachev Kuzbass State Technical University, Kemerovo 650000, Russia
| | - Chaozhong Guo
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China; School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Haifeng Chen
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Chenyang Shu
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yujun Si
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yao Liu
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Rong Jin
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China; Institute of Chemical and Gas and Oil Technologies, T.F. Gorbachev Kuzbass State Technical University, Kemerovo 650000, Russia.
| |
Collapse
|
27
|
Jiang S, Xue J, Liu T, Huang H, Xu A, Liu D, Luo Q, Bao J, Liu X, Ding T, Jiang Z, Yao T. Visualization of the Distance-Dependent Synergistic Interaction in Heterogeneous Dual-Site Catalysis. J Am Chem Soc 2024; 146:29084-29093. [PMID: 39394051 DOI: 10.1021/jacs.4c10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Understanding the characteristics of interfacial hydroxyl (OH) at the solid/liquid electrochemical interface is crucial for deciphering synergistic catalysis. However, it remains challenging to elucidate the influences of spatial distance between interfacial OH and neighboring reactants on reaction kinetics at the atomic level. Herein, we visualize the distance-dependent synergistic interaction in heterogeneous dual-site catalysis by using ex-situ infrared nanospectroscopy and in situ infrared spectroscopy techniques. These spectroscopic techniques achieve direct identification of the spatial distribution of synergistic species and reveal that OH facilitates the reactant deprotonation process depending on site distances in dual-site catalysts. Via modulating Ir-Co pair distances, we find that the dynamic equilibrium between generation and consumption of OH accounts for high-efficiency synergism at the optimized distance of 7.9 Å. At farther or shorter distances, spatial inaccessibility and resistance of OH with intermediates lead to OH accumulation, thereby diminishing the synergistic effect. Hence, a volcano-shaped curve has been established between the spatial distance and mass activity using formic acid oxidation as the probe reaction. This notion could also be extended to oxophilic metals, like Ir-Ru pairs, where volcano curves and dynamic equilibrium further evidence the universal significance of spatial distances.
Collapse
Affiliation(s)
- Shuaiwei Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Jiawei Xue
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Hui Huang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Airong Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Dong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Jun Bao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Xiaokang Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tao Ding
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Zheng Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tao Yao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| |
Collapse
|
28
|
Sui S, Xie H, Chen B, Wang T, Qi Z, Wang J, Sha J, Liu E, Zhu S, Lei K, Zheng S, Zhou G, He C, Hu W, He F, Zhao N. Highly Reversible Sodium-ion Storage in A Bifunctional Nanoreactor Based on Single-atom Mn Supported on N-doped Carbon over MoS 2 Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202411255. [PMID: 38980971 DOI: 10.1002/anie.202411255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Conversion-type electrode materials have gained massive research attention in sodium-ion batteries (SIBs), but their limited reversibility hampers practical use. Herein, we report a bifunctional nanoreactor to boost highly reversible sodium-ion storage, wherein a record-high reversible degree of 85.65 % is achieved for MoS2 anodes. Composed of nitrogen-doped carbon-supported single atom Mn (NC-SAMn), this bifunctional nanoreactor concurrently confines active materials spatially and catalyzes reaction kinetics. In situ/ex situ characterizations including spectroscopy, microscopy, and electrochemistry, combined with theoretical simulations containing density functional theory and molecular dynamics, confirm that the NC-SAMn nanoreactors facilitate the electron/ion transfer, promote the distribution and interconnection of discharging products (Na2S/Mo), and reduce the Na2S decomposition barrier. As a result, the nanoreactor-promoted MoS2 anodes exhibit ultra-stable cycling with a capacity retention of 99.86 % after 200 cycles in the full cell. This work demonstrates the superiority of bifunctional nanoreactors with two-dimensional confined and catalytic effects, providing a feasible approach to improve the reversibility for a wide range of conversion-type electrode materials, thereby enhancing the application potential for long-cycled SIBs.
Collapse
Affiliation(s)
- Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Haonan Xie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
| | - Tianshuai Wang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zijia Qi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Jingyi Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Junwei Sha
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Enzuo Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Shan Zhu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Kaixiang Lei
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Shijian Zheng
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
| |
Collapse
|
29
|
Bao Y, Xiao J, Huang Y, Li Y, Yao S, Qiu M, Yang X, Lei L, Li Z, Hou Y, Wu G, Yang B. Regulating Spin Polarization via Axial Nitrogen Traction at Fe-N 5 Sites Enhanced Electrocatalytic CO 2 Reduction for Zn-CO 2 Batteries. Angew Chem Int Ed Engl 2024; 63:e202406030. [PMID: 39020457 DOI: 10.1002/anie.202406030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Single Fe sites have been explored as promising catalysts for the CO2 reduction reaction to value-added CO. Herein, we introduce a novel molten salt synthesis strategy for developing axial nitrogen-coordinated Fe-N5 sites on ultrathin defect-rich carbon nanosheets, aiming to modulate the reaction pathway precisely. This distinctive architecture weakens the spin polarization at the Fe sites, promoting a dynamic equilibrium of activated intermediates and facilitating the balance between *COOH formation and *CO desorption at the active Fe site. Notably, the synthesized FeN5, supported on defect-rich in nitrogen-doped carbon (FeN5@DNC), exhibits superior performance in CO2RR, achieving a Faraday efficiency of 99 % for CO production (-0.4 V vs. RHE) in an H-cell, and maintaining a Faraday efficiency of 98 % at a current density of 270 mA cm-2 (-1.0 V vs. RHE) in the flow cell. Furthermore, the FeN5@DNC catalyst is assembled as a reversible Zn-CO2 battery with a cycle durability of 24 hours. In situ IR spectroscopy and density functional theory (DFT) calculations reveal that the axial N coordination traction induces a transformation in the crystal field and local symmetry, therefore weakening the spin polarization of the central Fe atom and lowering the energy barrier for *CO desorption.
Collapse
Affiliation(s)
- Yanran Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Jiayong Xiao
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Yongkang Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youzhi Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Siyu Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Ming Qiu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering University at Buffalo, the State University of New York Buffalo, NY, 14260, USA
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Gang Wu
- Department of Chemical and Biological Engineering University at Buffalo, the State University of New York Buffalo, NY, 14260, USA
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| |
Collapse
|
30
|
Liu T, Huang H, Xu A, Sun Z, Liu D, Jiang S, Xu L, Chen Y, Liu X, Luo Q, Ding T, Yao T. Manipulation of d-Orbital Electron Configurations in Nonplanar Fe-Based Electrocatalysts for Efficient Oxygen Reduction. ACS NANO 2024; 18:28433-28443. [PMID: 39365637 DOI: 10.1021/acsnano.4c11356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Manipulation of the spin state holds great promise to improve the electrochemical activity of transition metal-based catalysts. However, the underlying relationship between the nonplanar metal coordination environment and spin states remains to be explored. Herein, we report the precise regulation of nonplanar Fe atomic d-orbital energy level into an irregular tetrahedral crystal field configuration by introducing P atoms. With the increase of P coordination number, the spin magnetic moment decreases linearly from 3.8 μB to 0.2 μB, and the high spin content decreases linearly from 31% to 5%. Significantly, a volcanic curve between the spin states of Fe-based catalysts (Fe-NxPy) and oxygen reduction reaction (ORR) activity has been unequivocally established based on the thermodynamic results. Thus, the Fe-N3P1 catalyst with a 19% medium spin state experimentally exhibits the optimal reaction activity with a high half-wave potential of 0.92 V. These findings indicate that regulating electron spin moments through coordination engineering is a promising catalyst design strategy, providing important insights into spin catalysis.
Collapse
Affiliation(s)
- Tong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Hui Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Airong Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiguo Sun
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuaiwei Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yudan Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaokang Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tao Ding
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Yao
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
31
|
Jiang T, Jiang H, Wang W, Mu H, Zhang Y, Li B. Atomically Dispersed High-Active Site Density Copper Electrocatalyst for the Reduction of Oxygen. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5030. [PMID: 39459735 PMCID: PMC11509251 DOI: 10.3390/ma17205030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Enlarging the M-Nx active-site density is an effective route to enhance the ORR performance of M-N-C catalysts. In this work, a single-atom catalyst Cu-N@Cu-N-C with enlarged Cu-N4 active site density was prepared by the second doping and pyrolysis (SDP) of Cu-N-C derived from Cu-doped zeolite imidazole frameworks. The half-wave potentials of Cu-N@Cu-N-C were measured as 0.85 V in alkaline electrolyte and 0.75 V in acidic media, which was 50 mV and 60 mV higher than that of Cu-N-C, respectively. N2 adsorption-desorption isotherm curves and corresponding pore distribution analysis were used to verify the successful filling of additional Cu and N in micropores of Cu-N-C after SDP. The obvious increase in Cu contents for Cu-N@Cu-N-C (1.92 wt%) compared with Cu-N-C (0.88 wt%) tested by ICP demonstrated the successful doping of Cu into Cu-N-C. XAFS analysis confirmed the presence of Cu-N4 single-atom active centers in Cu-N@Cu-N-C. The N 1 s high-resolution XPS results proved a great increase in Cu-N4 contents from 13.15% for Cu-N-C to 18.36% for Cu-N@Cu-N-C. The enhanced ORR performance of Cu-N@Cu-N-C was attributed to the enlargement of Cu-N4 active site density, providing an effective route for the preparation of efficient and low-cost ORR catalysts.
Collapse
Affiliation(s)
- Tao Jiang
- Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China; (H.M.); (Y.Z.); (B.L.)
| | - Hongli Jiang
- School of Intelligent Manufacturing, Zhejiang Dongfang Polytechnic, Wenzhou 325000, China;
| | - Weibin Wang
- School of Intelligent Manufacturing, Zhejiang Dongfang Polytechnic, Wenzhou 325000, China;
| | - Hao Mu
- Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China; (H.M.); (Y.Z.); (B.L.)
| | - Ying Zhang
- Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China; (H.M.); (Y.Z.); (B.L.)
| | - Bo Li
- Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China; (H.M.); (Y.Z.); (B.L.)
| |
Collapse
|
32
|
Guo J, Ding R, Li Y, Xie J, Fang Q, Yan M, Zhang Y, Yan Z, Chen Z, He Y, Sun X, Liu E. Semi-Ionic F Modified N-Doped Porous Carbon Implanted with Ruthenium Nanoclusters toward Highly Efficient pH-Universal Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403151. [PMID: 38934338 DOI: 10.1002/smll.202403151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Developing high electroactivity ruthenium (Ru)-based electrocatalysts for pH-universal hydrogen evolution reaction (HER) is challenging due to the strong bonding strengths of key Ru─H/Ru─OH intermediates and sluggish water dissociation rates on active Ru sites. Herein, a semi-ionic F-modified N-doped porous carbon implanted with ruthenium nanoclusters (Ru/FNPC) is introduced by a hydrogel sealing-pyrolying-etching strategy toward highly efficient pH-universal hydrogen generation. Benefiting from the synergistic effects between Ru nanoclusters (Ru NCs) and hierarchically F, N-codoped porous carbon support, such synthesized catalyst displays exceptional HER reactivity and durability at all pH levels. The optimal 8Ru/FNPC affords ultralow overpotentials of 17.8, 71.2, and 53.8 mV at the current density of 10 mA cm-2 in alkaline, neutral, and acidic media, respectively. Density functional theory (DFT) calculations elucidate that the F-doped substrate to support Ru NCs weakens the adsorption energies of H and OH on Ru sites and reduces the energy barriers of elementary steps for HER, thus enhancing the intrinsic activity of Ru sites and accelerating the HER kinetics. This work provides new perspectives for the design of advanced electrocatalysts by porous carbon substrate implanted with ultrafine metal NCs for energy conversion applications.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yi Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jinmei Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Qi Fang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Miao Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuzhen Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Ziyang Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhiqiang Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuming He
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
33
|
Yang Y, Han G, Xie M, Silva GVDO, Miao GX, Huang Y, Fu J. Magnetic Field Enhanced Oxygen Reduction Reaction via Oxygen Diffusion Speedup. SMALL METHODS 2024; 8:e2301594. [PMID: 38263805 DOI: 10.1002/smtd.202301594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The mass-transfer of oxygen in liquid phases (including in the bulk electrolyte and near the electrode surface) is a critical step to deliver oxygen to catalyst sites (especially immersed catalyst sites) and use the full capacity of oxygen reduction reaction (ORR). Despite the extensive efforts of optimizing the complex three-phase reaction interfaces to enhance the gaseous oxygen transfer, strong limitations remain due to oxygen's poor solubility and slow diffusion in electrolytes. Herein, a magnetic method for boosting the directional hydrodynamic pumping of oxygen toward immersed catalyst sites is demonstrated which allows the ORR to reach otherwise inaccessible catalytic regions where high currents normally would have depleted oxygen. For Pt foil electrodes without forced oxygen saturation in KOH electrolytes, the mass-transfer-limited current densities can be improved by 60% under an external magnetic field of 435 mT due to the synergistic effect between bulk- and surface-magnetohydrodynamic (MHD) flows induced by Lorentz forces. The residual magnetic fields are further used at the surface of magnetic materials (such as CoPt alloys and Pt/FeCo heterostructures) to enhance the surface-MHD effect, which helps to retain part of the ORR enhancement permanently without applying external magnetic fields.
Collapse
Affiliation(s)
- Yongqiang Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Guojun Han
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Minghui Xie
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | | | - Guo-Xing Miao
- Institute for Quantum Computing, Department of Electrical and Computer Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Yunhui Huang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Fu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, Shanghai, 201804, P. R. China
| |
Collapse
|
34
|
Krishnamoorthy V, Sabhapathy P, Raghunath P, Huang CY, Sabbah A, Hussien MK, Syum Z, Muthusamy S, Lin MC, Wu HL, Chen RS, Chen KH, Chen LC. Synergistic Electronic Interaction of Nitrogen Coordinated Fe-Sn Double-Atom Sites: An Efficient Electrocatalyst for Oxygen Reduction Reaction. SMALL METHODS 2024; 8:e2301674. [PMID: 38284329 DOI: 10.1002/smtd.202301674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Double-atom site catalysts (DASs) have emerged as a recent trend in the oxygen reduction reaction (ORR), thereby modifying the intermediate adsorption energies and increasing the activity. However, the lack of an efficient dual atom site to improve activity and durability has limited these catalysts from widespread application. Herein, the nitrogen-coordinated iron and tin-based DASs (Fe-Sn-N/C) catalyst are synthesized for ORR. This catalyst has a high activity with ORR half-wave potentials (E1/2) of 0.92 V in alkaline, which is higher than those of the state-of-the-art Pt/C (E1/2 = 0.83 V), Fe-N/C (E1/2 = 0.83 V), and Sn-N/C (E1/2 = 0.77 V). Scanning electron transmission microscopy analysis confirmed the atomically distributed Fe and Sn sites on the N-doped carbon network. X-ray absorption spectroscopy analysis revealed the charge transfer between Fe and Sn. Both experimental and theoretical results indicate that the Sn with Fe-NC (Fe-Sn-N/C) induces charge redistribution, weakening the binding strength of oxygenated intermediates and leading to improved ORR activity. This study provides the synergistic effects of DASs catalysts and addresses the impacts of P-block elements on d-block transition metals in ORR.
Collapse
Affiliation(s)
- Vimal Krishnamoorthy
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Palani Sabhapathy
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Puttikam Raghunath
- Department of Applied Chemistry, National Yang-Ming Chiao-Tung University, Hsinchu, 30010, Taiwan
| | - Chih-Yang Huang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Amr Sabbah
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Zeru Syum
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | | | - Ming-Chang Lin
- Department of Applied Chemistry, National Yang-Ming Chiao-Tung University, Hsinchu, 30010, Taiwan
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Ruei-San Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
35
|
Huang S, Lin F, Wang S, Zeng X, Ling H, Hu X, Shen Z, Cao D. Asymmetric Microenvironment Tailoring Strategies of Atomically Dispersed Dual-Site Catalysts for Oxygen Reduction and CO 2 Reduction Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407974. [PMID: 39152929 DOI: 10.1002/adma.202407974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Dual-atom catalysts (DACs) with atomically dispersed dual-sites, as an extension of single-atom catalysts (SACs), have recently become a new hot topic in heterogeneous catalysis due to their maximized atom efficiency and dual-site diverse synergy, because the synergistic diversity of dual-sites achieved by asymmetric microenvironment tailoring can efficiently boost the catalytic activity by optimizing the electronic structure of DACs. Here, this work first summarizes the frequently-used experimental synthesis and characterization methods of DACs. Then, four synergistic catalytic mechanisms (cascade mechanism, assistance mechanism, co-adsorption mechanism and bifunction mechanism) and four key modulating methods (active site asymmetric strategy, transverse/axial-modification engineering, distance engineering and strain engineering) are elaborated comprehensively. The emphasis is placed on the effects of asymmetric microenvironment of DACs on oxygen/carbon dioxide reduction reaction. Finally, some perspectives and outlooks are also addressed. In short, the review summarizes a useful asymmetric microenvironment tailoring strategy to speed up synthesis of high-performance electrocatalysts for different reactions.
Collapse
Affiliation(s)
- Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanmiao Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hao Ling
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Zhigang Shen
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
36
|
Sui R, Liu B, Chen C, Tan X, He C, Xin D, Chen B, Xu Z, Li J, Chen W, Zhuang Z, Wang Z, Chen C. Constructing Asymmetric Fe-Nb Diatomic Sites to Enhance ORR Activity and Durability. J Am Chem Soc 2024; 146:26442-26453. [PMID: 39267445 DOI: 10.1021/jacs.4c09642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Iron-nitrogen-carbon (Fe-N-C) materials have been identified as a promising class of platinum (Pt)-free catalysts for the oxygen reduction reaction (ORR). However, the dissolution and oxidation of Fe atoms severely restrict their long-term stability and performance. Modulating the active microstructure of Fe-N-C is a feasible strategy to enhance the ORR activity and stability. Compared with common 3d transition metals (Co, Ni, etc.), the 4d transition metal atom Nb has fewer d electrons and more unoccupied orbitals, which could potentially forge a more robust interaction with the Fe site to optimize the binding energy of the oxygen-containing intermediates while maintaining stability. Herein, an asymmetric Fe-Nb diatomic site catalyst (FeNb/c-SNC) was synthesized, which exhibited superior ORR performance and stability compared with those of Fe single-atom catalysts (SACs). The strong interaction within the Fe-Nb diatomic sites optimized the desorption energy of key intermediates (*OH), so that the adsorption energy of Fe-*OH approaches the apex of the volcano plot, thus exhibiting optimal ORR activity. More importantly, introducing Nb atoms could effectively strengthen the Fe-N bonding and suppress Fe demetalation, causing an outstanding stability. The zinc-air battery (ZAB) and hydroxide exchange membrane fuel cell (HEMFC) equipped with our FeNb/c-SNC could deliver high peak power densities of 314 mW cm-2 and 1.18 W cm-2, respectively. Notably, the stable operation time for ZAB and HEMFC increased by 9.1 and 5.8 times compared to Fe SACs, respectively. This research offers further insights into developing stable Fe-based atomic-level catalytic materials for the energy conversion process.
Collapse
Affiliation(s)
- Rui Sui
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chang Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chang He
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dongyue Xin
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bowen Chen
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiyuan Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiazhan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenbo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Chen Z, Zheng H, Zhang J, Jiang Z, Bao C, Yeh CH, Lai NC. Covalent organic frameworks derived Single-Atom cobalt catalysts for boosting oxygen reduction reaction in rechargeable Zn-Air batteries. J Colloid Interface Sci 2024; 670:103-113. [PMID: 38759265 DOI: 10.1016/j.jcis.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
The design and development of high-performance and long-life Pt-free catalysts for the oxygen reduction reaction (ORR) is of great important with respect to metal-air batteries and fuel cells. Herein, a new low-cost covalent organic frameworks (COFs)-derived CoNC single-atoms catalyst (SAC) is fabricated and compared with the engineered nanoparticle (NP) counterpart for ORR activity. The ORR performance of the SAC catalyst (CoSA@NC) surpasses the NP counterpart (CoNP-NC) under the same operation condition. CoSA@NC also achieves improved long-term durability and better methanol tolerance compared with the Pt/C. The zinc-air battery assembled by the CoSA@NC cathode delivers a higher power density and energy density than that of commercial Pt/C catalyst. Molecular dynamics (MD) is performed to explain the spontaneous evolution from clusters to single-atom metal configuration and density functional theory (DFT) calculations find that CoSA@NC possesses lower d-band center, resulting in weaker interaction between the surface and the O-containing intermediates. Consequently, the reductive desorption of OH*, the rate-determine step, is further accelerated.
Collapse
Affiliation(s)
- Zhenghao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinhui Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Cheng Bao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chen-Hao Yeh
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan.
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
38
|
Luu Luyen Doan T, Chuong Nguyen D, Komalla N, Hieu NV, Nguyen-Dinh L, Dzade NY, Sang Kim C, Hee Park C. Molybdenum oxide/nickel molybdenum oxide heterostructures hybridized active platinum co-catalyst toward superb-efficiency water splitting catalysis. J Colloid Interface Sci 2024; 670:12-27. [PMID: 38749379 DOI: 10.1016/j.jcis.2024.04.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
A new catalyst has been developed that utilizes molybdenum oxide (MoO3)/nickel molybdenum oxide (NiMoO4) heterostructured nanorods coupled with Pt ultrafine nanoparticles for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) toward industrial-grade water splitting. This catalyst has been synthesized using a versatile approach and has shown to perform better than noble-metals catalysts, such as Pt/C and RuO2, at industrial-grade current level (≥1000 mA·cm-2). When used simultaneously as a cathode and anode, the proposed material yields 10 mA·cm-2 at a remarkably small cell voltage of 1.55 V and has shown extraordinary durability for over 50 h. Density functional theory (DFT) calculations have proved that the combination of MoO3 and NiMoO4 creates a metallic heterostructure with outstanding charge transfer ability. The DFT calculations have also shown that the excellent chemical coupling effect between the MoO3/NiMoO4 and Pt synergistically optimize the charge transfer capability and Gibbs free energies of intermediate species, leading to remarkably speeding up the reaction kinetics of water electrolysis.
Collapse
Affiliation(s)
- Thi Luu Luyen Doan
- Division of Mechanical Design Engineering, School of Engineering, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea.
| | - Dinh Chuong Nguyen
- The University of Danang - University of Science and Education, Da Nang 550000, Viet Nam
| | - Nikhil Komalla
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Nguyen V Hieu
- The University of Danang - University of Science and Education, Da Nang 550000, Viet Nam
| | - Lam Nguyen-Dinh
- The University of Danang, University of Science and Technology, 54, Nguyen Luong Bang, Danang City, 550000, Viet Nam
| | - Nelson Y Dzade
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Cheol Sang Kim
- Division of Mechanical Design Engineering, School of Engineering, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University Jeollabuk-do Jeonju 54896, Republic of Korea.
| | - Chan Hee Park
- Division of Mechanical Design Engineering, School of Engineering, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University Jeollabuk-do Jeonju 54896, Republic of Korea.
| |
Collapse
|
39
|
Chen MY, Yin S, Li G, Chen J, Zhao WY, Lian YK, Wu HR, Yan W, Zhang JN, Lu BA. Strong Electronic Metal-Support Interactions Enable the Increased Spin State of Co-N 4 Active Sites and Performance for Acidic Oxygen Reduction Reaction. ACS NANO 2024. [PMID: 39264757 DOI: 10.1021/acsnano.4c06615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Nonprecious metal catalysts, particularly M-N-C catalysts, are widely recognized as promising contenders for the oxygen reduction reaction (ORR). However, a notable performance gap persists between M-N-C catalysts and Pt-based catalysts under acidic conditions. In this study, hybrid catalysts comprising single Co atoms and ultralow concentrations of Pt3Co intermetallic nanoparticles (NPs) are introduced to enhance ORR performance. Under acidic conditions, these hybrid catalysts demonstrate ORR efficiency with a half-wave potential of 0.895 V, negligible decay even after 80 000 cycles, and a high maximum power density of 1.34 W cm-2 in fuel cells. This performance surpasses those of Co-N-C and Pt/Co-N-C catalysts. Both experimental findings and theoretical computations suggest that the heightened ORR activity stems from an increase in the spin density of Co sites induced by noble metal NPs, facilitating the activation of O-O bonds via side-on overlapping and enabling a transition in the reaction pathway from associative to dissociative processes. This research offers a promising avenue for the systematic design of M-N-C cathodes with an enhanced performance for acidic fuel cells.
Collapse
Affiliation(s)
| | - Shuhu Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Gen Li
- Shanghai Nanoport, Thermo Fisher Scientific, Shanghai 201206, P.R. China
| | - Junxiang Chen
- Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Wen-Yuan Zhao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 P.R. China
| | - Yi-Kai Lian
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 P.R. China
| | - Hao-Ran Wu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 P.R. China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jia-Nan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 P.R. China
| | - Bang-An Lu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 P.R. China
| |
Collapse
|
40
|
Wang B, Yang X, Xie C, Liu H, Ma C, Zhang Z, Zhuang Z, Han A, Zhuang Z, Li L, Wang D, Liu J. A General Metal Ion Recognition Strategy to Mediate Dual-Atomic-Site Catalysts. J Am Chem Soc 2024; 146:24945-24955. [PMID: 39214615 DOI: 10.1021/jacs.4c06173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Heterogeneous dual-atomic-site catalysts (DACs) hold great potential for diverse applications. However, to date, the synthesis of DACs primarily relies on different atoms freely colliding on the support during synthesis, principally leading to low yields. Herein, we report a general metal ion recognition (MIR) strategy for constructing a series of DACs, including but not limited to Fe1Sn1, Fe1Co1, Fe1Ni1, Fe1Cu1, Fe1Mn1, Co1Ni1, Co1Cu1, Co2, and Cu2. This strategy is achieved by coupling target inorganometallic cations and anions as ion pairs, which are sequentially adsorbed onto a nitrogen-doped carbon substrate as the precursor. Taking the oxygen reduction reaction as an example, we demonstrated that the Fe1Sn1-DAC synthesized through this strategy delivers a record peak power density of 1.218 W cm-2 under 2.0 bar H2-O2 conditions and enhanced stability compared to the single-atom-site FeN4. Further study revealed that the superior performance arises from the synergistic effect of Fe1Sn1 dual vicinal sites, which effectively optimizes the adsorption of *OH and alleviates the troublesome Fenton-like reaction.
Collapse
Affiliation(s)
- Bingqing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chongbao Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Zedong Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Zechao Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Libo Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Prod Technology, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
41
|
Guo Z, Zhu Q, Wang S, Jiang M, Fan X, Zhang W, Han M, Wu X, Hou X, Zhang Y, Shao Z, Shi J, Zhong X, Li S, Wu X, Huang K, Feng S. Manipulating the Spin State of Spinel Octahedral Sites via a π-π Type Orbital Coupling to Boost Water Oxidation. Angew Chem Int Ed Engl 2024; 63:e202406711. [PMID: 38923764 DOI: 10.1002/anie.202406711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Spin state is often regarded as the crucial valve to release the reactivity of energy-related catalysts, yet it is also challenging to precisely manipulate, especially for the active center ions occupied at the specific geometric sites. Herein, a π-π type orbital coupling of 3d (Co)-2p (O)-4f (Ce) was employed to regulate the spin state of octahedral cobalt sites (CoOh) in the composite of Co3O4/CeO2. More specifically, the equivalent high-spin ratio of CoOh can reach to 54.7 % via tuning the CeO2 content, thereby triggering the average eg filling (1.094) close to the theoretical optimum value. The corresponding catalyst exhibits a superior water oxidation performance with an overpotential of 251 mV at 10 mA cm-2, rivaling most cobalt-based oxides state-of-the-art. The π-π type coupling corroborated by the matched energy levels between Ce t1u/t2u-O and CoOh t2g-O π type bond in the calculated crystal orbital Hamilton population and partial density of states profiles, stimulates a π-donation between O 2p and π-symmetric Ce 4fyz 2 orbital, consequently facilitating the electrons hopping from t2g to eg orbital of CoOh. This work offers an in-depth insight into understanding the 4f and 3d orbital coupling for spin state optimization in composite oxides.
Collapse
Affiliation(s)
- Zhangtao Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shaohua Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mengpei Jiang
- Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua RD, Shenyang, 110016, China
| | - Xinxin Fan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wanyu Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mei Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaotian Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiangyan Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jingyu Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xia Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shuting Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
42
|
Liu P, Liu H, Qiu Y, Jiang J, Zhong W. Electron Transfer Induced by the Change of Spin States as a Catalytic Descriptor on C 2N-TM Single-Atom Catalysts. J Phys Chem Lett 2024; 15:9003-9009. [PMID: 39186377 DOI: 10.1021/acs.jpclett.4c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The catalytic activity and selectivity of metal single-atom catalysts strongly depend upon their spin states. However, their intrinsic connections are not yet clear. In this work, we evaluate the catalytic activity and selectivity of oxygen reduction reactions (ORRs) on C2N-supporting 3d transition metal (TM = Mn/Co/Ni/Cu) single-atom catalysts (SACs) using the density functional theory calculations. It is found that all of the SACs with different spin states tend to follow the 2e- H2O2 pathway, except for C2N-Mn (S = 1/2), which takes the 4e- OOH pathway. Interestingly, we found that the sum of the changes in the electron spin moments of the metal active centers and the reaction intermediate OOH affects the OOH electron transfer, and the electron transfer promotes the catalytic activity of the 2e- H2O2 pathway on C2N-TM SACs. Moreover, there is a strong linear relationship between the OOH electron transfer and the catalytic activity of the 2e- H2O2 pathway on C2N-TM SACs. These findings indicate that electron transfer induced by the change of spin states serves as a descriptor of the catalytic activity of the 2e- H2O2 pathway on C2N-TM SACs, which is very helpful for designing more powerful SACs.
Collapse
Affiliation(s)
- Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Huifeng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Yue Qiu
- Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wenhui Zhong
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, People's Republic of China
| |
Collapse
|
43
|
Xu Y, Ma Y, Chen X, Wu K, Wang K, Shen Y, Liu S, Gao XJ, Zhang Y. Regulating Reactive Oxygen Intermediates of Fe-N-C SAzyme via Second-Shell Coordination for Selective Aerobic Oxidation Reactions. Angew Chem Int Ed Engl 2024; 63:e202408935. [PMID: 38895986 DOI: 10.1002/anie.202408935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Reactive oxygen species (ROS) regulation for single-atom nanozymes (SAzymes), e.g., Fe-N-C, is a key scientific issue that determines the activity, selectivity, and stability of aerobic reaction. However, the poor understanding of ROS formation mechanism on SAzymes greatly hampers their wider deployment. Herein, inspired by cytochromes P450 affording bound ROS intermediates in O2 activation, we report Fe-N-C containing the same FeN4 but with tunable second-shell coordination can effectively regulate ROS production pathways. Remarkably, compared to the control Fe-N-C sample, the second-shell sulfur functionalized Fe-N-C delivered a 2.4-fold increase of oxidase-like activity via the bound Fe=O intermediate. Conversely, free ROS (⋅O2 -) release was significantly reduced after functionalization, down to only 17 % of that observed for Fe-N-C. The detailed characterizations and theoretical calculations revealed that the second-shell sulfur functionalization significantly altered the electronic structure of FeN4 sites, leading to an increase of electron density at Fermi level. It enhanced the electron transfer from active sites to the key intermediate *OOH, thereby ultimately determining the type of ROS in aerobic oxidation process. The proposed Fe-N-Cs with different second-shell anion were further applied to three aerobic oxidation reactions with enhanced activity, selectivity, and stability.
Collapse
Affiliation(s)
- Yuan Xu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Yuanjie Ma
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinghua Chen
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Kaiqing Wu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Kaiyuan Wang
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| |
Collapse
|
44
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
45
|
Sun S, Zhang Y, Shi X, Sun W, Felser C, Li W, Li G. From Charge to Spin: An In-Depth Exploration of Electron Transfer in Energy Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312524. [PMID: 38482969 DOI: 10.1002/adma.202312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/24/2024] [Indexed: 05/01/2024]
Abstract
Catalytic materials play crucial roles in various energy-related processes, ranging from large-scale chemical production to advancements in renewable energy technologies. Despite a century of dedicated research, major enduring challenges associated with enhancing catalyst efficiency and durability, particularly in green energy-related electrochemical reactions, remain. Focusing only on either the crystal structure or electronic structure of a catalyst is deemed insufficient to break the linear scaling relationship (LSR), which is the golden rule for the design of advanced catalysts. The discourse in this review intricately outlines the essence of heterogeneous catalysis reactions by highlighting the vital roles played by electron properties. The physical and electrochemical properties of electron charge and spin that govern catalysis efficiencies are analyzed. Emphasis is placed on the pronounced influence of external fields in perturbing the LSR, underscoring the vital role that electron spin plays in advancing high-performance catalyst design. The review culminates by proffering insights into the potential applications of spin catalysis, concluding with a discussion of extant challenges and inherent limitations.
Collapse
Affiliation(s)
- Shubin Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xin Shi
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering, Ningbo University, 818 A Fenghua Rd, Jiangbei District, Ningbo, 315211, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Claudia Felser
- Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
46
|
Yang X, Zhu B, Gao Z, Yang C, Zhou J, Han A, Liu J. A Vacuum Vapor Deposition Strategy to Fe Single-Atom Catalysts with Densely Active Sites for High-Performance Zn-Air Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306594. [PMID: 38751152 PMCID: PMC11425844 DOI: 10.1002/advs.202306594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Indexed: 09/27/2024]
Abstract
Iron single-atom catalysts (SACs) have garnered increasing attention as highly efficient catalysts for the oxygen reduction reaction (ORR), yet their performance in practical devices remains suboptimal due to the low density of accessible active sites. Anchoring iron single atoms on 2D support is a promising way to increase the accessible active sites but remains difficult attributing to the high aggregation tendency of iron atoms on the 2D support. Herein, a vacuum vapor deposition strategy is presented to fabricate an iron SAC supported on ultrathin N-doped carbon nanosheets with densely active sites (FeSAs-UNCNS). Experimental analyses confirm that the FeSAs-UNCNS achieves densely accessible active sites (1.11 × 1020 sites g-1) in the configuration of Fe─N4O. Consequently, the half-wave potential of FeSAs-UNCNS in 0.1 m KOH reaches a remarkable value of 0.951 V versus RHE. Moreover, when employed as the cathode of various kinds of Zn-air batteries, FeSAs-UNCNS exhibits boosting performances by achieving a maximum power density of 306 mW cm-2 and long cycle life (>180 h) at room temperature, surpassing both Pt/C and reported SACs. Further investigations reveal that FeSAs-UNCNS facilitates the mass and charge transfer during catalysis and the atomic configuration favors the desorption of *OH kinetically.
Collapse
Affiliation(s)
- Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Baohui Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhiyang Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Can Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jingbo Zhou
- Baidu Research, Haidian District, Beijing, 100193, P. R. China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
47
|
Li X, Qin J, Lin Q, Yi X, Yan C, Zhang J, Dong J, Yu K, Zhang S, Xie C, Yang H, Xiao W, Li W, Wang J, Li X. Electron Spin Broken-Symmetry of Fe-Co Diatomic Pairs to Promote Kinetics of Bifunctional Oxygen Electrocatalysis for Zinc-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401187. [PMID: 38877642 PMCID: PMC11425208 DOI: 10.1002/advs.202401187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Indexed: 06/16/2024]
Abstract
Designing bifunctional catalysts to reduce the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) reaction barriers while accelerating the reaction kinetics is perceived to be a promising strategy to improve the performance of Zinc-air batteries. Unsymmetric configuration in single-atom catalysts has attracted attention due to its unique advantages in regulating electron orbitals. In this work, a seesaw effect in unsymmetric Fe-Co bimetallic monoatomic configurations is proposed, which can effectively improve the OER/ORR bifunctional activity of the catalyst. Compared with the symmetrical model of Fe-Co, a strong charge polarization between Co and Fe atoms in the unsymmetric model is detected, in whom the spin-down electrons around Co atoms are much higher than those spin-up electrons. The seesaw effect occurred between Co atoms and Fe atoms, resulting in a negative shift of the d-band center, which means that the adsorption of oxygen intermediates is weakened and more conducive to their dissociation. The optimized reaction kinetics of the catalyst leads to excellent performance in ZABs, with a peak power density of 215 mW cm-2 and stable cycling for >1300 h and >4000 cycles. Flexible Zinc-air batteries have also gained excellent performance to demonstrate their potential in the field of flexible wearables.
Collapse
Affiliation(s)
- Xiaokang Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jian Qin
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
- Department of Materials Science and Engineering, Macau University of Science and Technology, Macau, 999078, China
| | - Qingxin Lin
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Xiaoyu Yi
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Cheng Yan
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jianhua Zhang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jinjuan Dong
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Kang Yu
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Shenglong Zhang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Chong Xie
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Huijuan Yang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Wei Xiao
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Wenbin Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jingjing Wang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
48
|
Lei L, Guo X, Han X, Fei L, Guo X, Wang DG. From Synthesis to Mechanisms: In-Depth Exploration of the Dual-Atom Catalytic Mechanisms Toward Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311434. [PMID: 38377407 DOI: 10.1002/adma.202311434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Dual-atom catalysts (DACs) hold a higher metal atom loading and provide greater flexibility in terms of the structural characteristics of their active sites in comparison to single-atom catalysts. Consequently, DACs hold great promise for achieving improved catalytic performance. This article aims to provide a focused overview of the latest advancements in DACs, covering their synthesis and mechanisms in reversible oxygen electrocatalysis, which plays a key role in sustainable energy conversion and storage technologies. The discussion starts by highlighting the structures of DACs and the differences in diatomic coordination induced by various substrates. Subsequently, the state-of-the-art fabrication strategies of DACs for oxygen electrocatalysis are discussed from several different perspectives. It particularly highlights the challenges of increasing the diatomic loading capacity. More importantly, the main focus of this overview is to investigate the correlation between the configuration and activity in DACs in order to gain a deeper understanding of their active roles in oxygen electrocatalysis. This will be achieved through density functional theory calculations and sophisticated in situ characterization technologies. The aim is to provide guidelines for optimizing and upgrading DACs in oxygen electrocatalysis. Additionally, the overview discusses the current challenges and future prospects in this rapidly evolving area of research.
Collapse
Affiliation(s)
- Lei Lei
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinghua Guo
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xu Han
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ling Fei
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiao Guo
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Gao Wang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
49
|
Zhu B, Zhao Z, Cao S, Sun Y, Wang L, Huang S, Cheng C, Ma L, Qiu L. Highly spontaneous spin polarization engineering of single-atom artificial antioxidases towards efficient ROS elimination and tissue regeneration. NANOSCALE 2024; 16:15946-15959. [PMID: 39037714 DOI: 10.1039/d4nr02104e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The creation of atomic catalytic centers has emerged as a conducive path to design efficient nanobiocatalysts to serve as artificial antioxidases (AAOs) that can mimic the function of natural antioxidases to scavenge noxious reactive oxygen species (ROS) for protecting stem cells and promoting tissue regeneration. However, the fundamental mechanisms of diverse single-atom sites for ROS biocatalysis remain ambiguous. Herein, we show that highly spontaneous spin polarization mediates the hitherto unclear origin of H2O2-elimination activities in engineering ferromagnetic element (Fe, Co, Ni)-based AAOs with atomic centers. The experimental and theoretical results reveal that Fe-AAO exhibits the best catalase-like kinetics and turnover number, while Co-AAO shows the highest glutathione peroxidase-like activity and turnover number. Furthermore, our investigations prove that both Fe-AAO and Co-AAO can effectively secure the functions of stem cells in high ROS microenvironments and promote the repair of injured tendon tissue by scavenging H2O2 and other ROS. We believe that the proposed highly spontaneous spin polarization engineering of ferromagnetic element-based AAOs will provide essential guidance and practical opportunities for developing efficient AAOs for eliminating ROS, protecting stem cells, and accelerating tissue regeneration.
Collapse
Affiliation(s)
- Bihui Zhu
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yimin Sun
- West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liyun Wang
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Songya Huang
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Li Qiu
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
50
|
Xu X, Guan J. Spin effect in dual-atom catalysts for electrocatalysis. Chem Sci 2024:d4sc04370g. [PMID: 39246370 PMCID: PMC11376133 DOI: 10.1039/d4sc04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The development of high-efficiency atomic-level catalysts for energy-conversion and -storage technologies is crucial to address energy shortages. The spin states of diatomic catalysts (DACs) are closely tied to their catalytic activity. Adjusting the spin states of DACs' active centers can directly modify the occupancy of d-orbitals, thereby influencing the bonding strength between metal sites and intermediates as well as the energy transfer during electro reactions. Herein, we discuss various techniques for characterizing the spin states of atomic catalysts and strategies for modulating their active center spin states. Next, we outline recent progress in the study of spin effects in DACs for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), electrocatalytic nitrogen/nitrate reduction reaction (eNRR/NO3RR), and electrocatalytic carbon dioxide reduction reaction (eCO2RR) and provide a detailed explanation of the catalytic mechanisms influenced by the spin regulation of DACs. Finally, we offer insights into the future research directions in this critical field.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|