1
|
Ahmed Taha B, Addie AJ, Saeed AQ, Haider AJ, Chaudhary V, Arsad N. Nanostructured photonics Probes: A transformative approach in neurotherapeutics and brain circuitry. Neuroscience 2024; 562:S0306-4522(24)00563-3. [PMID: 39490518 DOI: 10.1016/j.neuroscience.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Neuroprobes that use nanostructured photonic interfaces are capable of multimodal sensing, stimulation, and imaging with unprecedented spatio-temporal resolution. In addition to electrical recording, optogenetic modulation, high-resolution optical imaging, and molecular sensing, these advanced probes combine nanophotonic waveguides, optical transducers, nanostructured electrodes, and biochemical sensors. The potential of this technology lies in unraveling the mysteries of neural coding principles, mapping functional connectivity in complex brain circuits, and developing new therapeutic interventions for neurological disorders. Nevertheless, achieving the full potential of nanostructured photonic neural probes requires overcoming challenges such as ensuring long-term biocompatibility, integrating nanoscale components at high density, and developing robust data-analysis pipelines. In this review, we summarize and discuss the role of photonics in neural probes, trends in electrode diameter for neural interface technologies, nanophotonic technologies using nanostructured materials, advances in nanofabrication photonics interface engineering, and challenges and opportunities. Finally, interdisciplinary efforts are required to unlock the transformative potential of next-generation neuroscience therapies.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia.
| | - Ali J Addie
- Center of Industrial Applications and Materials Technology, Scientific Research Commission, Iraq.
| | - Ali Q Saeed
- Computer Center / Northern Technical University, Iraq
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Iraq
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India; Centre for Research Impact & Outcome, Chitkara University, Punjab, 140401 India
| | - Norhana Arsad
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia.
| |
Collapse
|
2
|
Sbandati C, Stathopoulos S, Foster P, Peer ND, Sestito C, Serb A, Vassanelli S, Cohen D, Prodromakis T. Single-trial detection of auditory cues from the rat brain using memristors. SCIENCE ADVANCES 2024; 10:eadp7613. [PMID: 39231225 PMCID: PMC11373585 DOI: 10.1126/sciadv.adp7613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Implantable devices hold the potential to address conditions currently lacking effective treatments, such as drug-resistant neural impairments and prosthetic control. Medical devices need to be biologically compatible while providing enhanced performance metrics of low-power consumption, high accuracy, small size, and minimal latency to enable ongoing intervention in brain function. Here, we demonstrate a memristor-based processing system for single-trial detection of behaviorally meaningful brain signals within a timeframe that supports real-time closed-loop intervention. We record neural activity from the reward center of the brain, the ventral tegmental area, in rats trained to associate a musical tone with a reward, and we use the memristors built-in thresholding properties to detect nontrivial biomarkers in local field potentials. This approach yields consistent and accurate detection of biomarkers >98% while maintaining power consumption as low as 4.14 nanowatt per channel. The efficacy of our system's capabilities to process real-time in vivo neural data paves the way for low-power chronic neural activity monitoring and biomedical implants.
Collapse
Affiliation(s)
- Caterina Sbandati
- Centre for Electronics Frontiers, Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Spyros Stathopoulos
- Centre for Electronics Frontiers, Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Patrick Foster
- Centre for Electronics Frontiers, Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Noam D Peer
- The Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Cristian Sestito
- Centre for Electronics Frontiers, Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Alex Serb
- Centre for Electronics Frontiers, Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Stefano Vassanelli
- Padua Neuroscience Center, University of Padua, via Orus 2/B, 35131 Padua, Italy
| | - Dana Cohen
- The Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Themis Prodromakis
- Centre for Electronics Frontiers, Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Yoo S, Kim M, Choi C, Kim DH, Cha GD. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Adv Healthc Mater 2024; 13:e2303563. [PMID: 38117136 DOI: 10.1002/adhm.202303563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
4
|
Beaubois R, Cheslet J, Duenki T, De Venuto G, Carè M, Khoyratee F, Chiappalone M, Branchereau P, Ikeuchi Y, Levi T. BiœmuS: A new tool for neurological disorders studies through real-time emulation and hybridization using biomimetic Spiking Neural Network. Nat Commun 2024; 15:5142. [PMID: 38902236 PMCID: PMC11190274 DOI: 10.1038/s41467-024-48905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Characterization and modeling of biological neural networks has emerged as a field driving significant advancements in our understanding of brain function and related pathologies. As of today, pharmacological treatments for neurological disorders remain limited, pushing the exploration of promising alternative approaches such as electroceutics. Recent research in bioelectronics and neuromorphic engineering have fostered the development of the new generation of neuroprostheses for brain repair. However, achieving their full potential necessitates a deeper understanding of biohybrid interaction. In this study, we present a novel real-time, biomimetic, cost-effective and user-friendly neural network capable of real-time emulation for biohybrid experiments. Our system facilitates the investigation and replication of biophysically detailed neural network dynamics while prioritizing cost-efficiency, flexibility and ease of use. We showcase the feasibility of conducting biohybrid experiments using standard biophysical interfaces and a variety of biological cells as well as real-time emulation of diverse network configurations. We envision our system as a crucial step towards the development of neuromorphic-based neuroprostheses for bioelectrical therapeutics, enabling seamless communication with biological networks on a comparable timescale. Its embedded real-time functionality enhances practicality and accessibility, amplifying its potential for real-world applications in biohybrid experiments.
Collapse
Affiliation(s)
- Romain Beaubois
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
| | - Jérémy Cheslet
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
| | - Tomoya Duenki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | | | - Marta Carè
- DIBRIS, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Farad Khoyratee
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France
| | - Michela Chiappalone
- DIBRIS, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Timothée Levi
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France.
| |
Collapse
|
5
|
Costa F, Schaft EV, Huiskamp G, Aarnoutse EJ, Van't Klooster MA, Krayenbühl N, Ramantani G, Zijlmans M, Indiveri G, Sarnthein J. Robust compression and detection of epileptiform patterns in ECoG using a real-time spiking neural network hardware framework. Nat Commun 2024; 15:3255. [PMID: 38627406 PMCID: PMC11021517 DOI: 10.1038/s41467-024-47495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Interictal Epileptiform Discharges (IED) and High Frequency Oscillations (HFO) in intraoperative electrocorticography (ECoG) may guide the surgeon by delineating the epileptogenic zone. We designed a modular spiking neural network (SNN) in a mixed-signal neuromorphic device to process the ECoG in real-time. We exploit the variability of the inhomogeneous silicon neurons to achieve efficient sparse and decorrelated temporal signal encoding. We interface the full-custom SNN device to the BCI2000 real-time framework and configure the setup to detect HFO and IED co-occurring with HFO (IED-HFO). We validate the setup on pre-recorded data and obtain HFO rates that are concordant with a previously validated offline algorithm (Spearman's ρ = 0.75, p = 1e-4), achieving the same postsurgical seizure freedom predictions for all patients. In a remote on-line analysis, intraoperative ECoG recorded in Utrecht was compressed and transferred to Zurich for SNN processing and successful IED-HFO detection in real-time. These results further demonstrate how automated remote real-time detection may enable the use of HFO in clinical practice.
Collapse
Affiliation(s)
- Filippo Costa
- Klinik für Neurochirurgie, Universitätsspital Zürich und Universität Zürich, Zürich, Switzerland.
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Eline V Schaft
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geertjan Huiskamp
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maryse A Van't Klooster
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niklaus Krayenbühl
- Division of Pediatric Neurosurgery, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Georgia Ramantani
- Division of Pediatric Neurosurgery, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften (ZNZ) Neuroscience Center Zurich, Universität Zürich und ETH Zürich, Zurich, Switzerland
| | - Maeike Zijlmans
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften (ZNZ) Neuroscience Center Zurich, Universität Zürich und ETH Zürich, Zurich, Switzerland
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, Universitätsspital Zürich und Universität Zürich, Zürich, Switzerland.
- Zentrum für Neurowissenschaften (ZNZ) Neuroscience Center Zurich, Universität Zürich und ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
6
|
Xu S, Liu B, Yi S, Wang J, Zou W. Analog spatiotemporal feature extraction for cognitive radio-frequency sensing with integrated photonics. LIGHT, SCIENCE & APPLICATIONS 2024; 13:50. [PMID: 38355673 PMCID: PMC10866915 DOI: 10.1038/s41377-024-01390-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Analog feature extraction (AFE) is an appealing strategy for low-latency and efficient cognitive sensing systems since key features are much sparser than the Nyquist-sampled data. However, applying AFE to broadband radio-frequency (RF) scenarios is challenging due to the bandwidth and programmability bottlenecks of analog electronic circuitry. Here, we introduce a photonics-based scheme that extracts spatiotemporal features from broadband RF signals in the analog domain. The feature extractor structure inspired by convolutional neural networks is implemented on integrated photonic circuits to process RF signals from multiple antennas, extracting valid features from both temporal and spatial dimensions. Because of the tunability of the photonic devices, the photonic spatiotemporal feature extractor is trainable, which enhances the validity of the extracted features. Moreover, a digital-analog-hybrid transfer learning method is proposed for the effective and low-cost training of the photonic feature extractor. To validate our scheme, we demonstrate a radar target recognition task with a 4-GHz instantaneous bandwidth. Experimental results indicate that the photonic analog feature extractor tackles broadband RF signals and reduces the sampling rate of analog-to-digital converters to 1/4 of the Nyquist sampling while maintaining a high target recognition accuracy of 97.5%. Our scheme offers a promising path for exploiting the AFE strategy in the realm of cognitive RF sensing, with the potential to contribute to the efficient signal processing involved in applications such as autonomous driving, robotics, and smart factories.
Collapse
Affiliation(s)
- Shaofu Xu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (imLic), Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Binshuo Liu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (imLic), Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sicheng Yi
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (imLic), Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (imLic), Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwen Zou
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (imLic), Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Siddique MAB, Zhang Y, An H. Monitoring time domain characteristics of Parkinson's disease using 3D memristive neuromorphic system. Front Comput Neurosci 2023; 17:1274575. [PMID: 38162516 PMCID: PMC10754992 DOI: 10.3389/fncom.2023.1274575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Parkinson's disease (PD) is a neurodegenerative disorder affecting millions of patients. Closed-Loop Deep Brain Stimulation (CL-DBS) is a therapy that can alleviate the symptoms of PD. The CL-DBS system consists of an electrode sending electrical stimulation signals to a specific region of the brain and a battery-powered stimulator implanted in the chest. The electrical stimuli in CL-DBS systems need to be adjusted in real-time in accordance with the state of PD symptoms. Therefore, fast and precise monitoring of PD symptoms is a critical function for CL-DBS systems. However, the current CL-DBS techniques suffer from high computational demands for real-time PD symptom monitoring, which are not feasible for implanted and wearable medical devices. Methods In this paper, we present an energy-efficient neuromorphic PD symptom detector using memristive three-dimensional integrated circuits (3D-ICs). The excessive oscillation at beta frequencies (13-35 Hz) at the subthalamic nucleus (STN) is used as a biomarker of PD symptoms. Results Simulation results demonstrate that our neuromorphic PD detector, implemented with an 8-layer spiking Long Short-Term Memory (S-LSTM), excels in recognizing PD symptoms, achieving a training accuracy of 99.74% and a validation accuracy of 99.52% for a 75%-25% data split. Furthermore, we evaluated the improvement of our neuromorphic CL-DBS detector using NeuroSIM. The chip area, latency, energy, and power consumption of our CL-DBS detector were reduced by 47.4%, 66.63%, 65.6%, and 67.5%, respectively, for monolithic 3D-ICs. Similarly, for heterogeneous 3D-ICs, employing memristive synapses to replace traditional Static Random Access Memory (SRAM) resulted in reductions of 44.8%, 64.75%, 65.28%, and 67.7% in chip area, latency, and power usage. Discussion This study introduces a novel approach for PD symptom evaluation by directly utilizing spiking signals from neural activities in the time domain. This method significantly reduces the time and energy required for signal conversion compared to traditional frequency domain approaches. The study pioneers the use of neuromorphic computing and memristors in designing CL-DBS systems, surpassing SRAM-based designs in chip design area, latency, and energy efficiency. Lastly, the proposed neuromorphic PD detector demonstrates high resilience to timing variations in brain neural signals, as confirmed by robustness analysis.
Collapse
Affiliation(s)
- Md Abu Bakr Siddique
- Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI, United States
| | - Yan Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Hongyu An
- Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
8
|
Ramantani G, Westover MB, Gliske S, Sarnthein J, Sarma S, Wang Y, Baud MO, Stacey WC, Conrad EC. Passive and active markers of cortical excitability in epilepsy. Epilepsia 2023; 64 Suppl 3:S25-S36. [PMID: 36897228 PMCID: PMC10512778 DOI: 10.1111/epi.17578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Electroencephalography (EEG) has been the primary diagnostic tool in clinical epilepsy for nearly a century. Its review is performed using qualitative clinical methods that have changed little over time. However, the intersection of higher resolution digital EEG and analytical tools developed in the past decade invites a re-exploration of relevant methodology. In addition to the established spatial and temporal markers of spikes and high-frequency oscillations, novel markers involving advanced postprocessing and active probing of the interictal EEG are gaining ground. This review provides an overview of the EEG-based passive and active markers of cortical excitability in epilepsy and of the techniques developed to facilitate their identification. Several different emerging tools are discussed in the context of specific EEG applications and the barriers we must overcome to translate these tools into clinical practice.
Collapse
Affiliation(s)
- Georgia Ramantani
- Department of Neuropediatrics and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - M Brandon Westover
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Data Science, Massachusetts General Hospital McCance Center for Brain Health, Boston, Massachusetts, USA
- Research Affiliate Faculty, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Research Affiliate Faculty, Broad Institute, Cambridge, Massachusetts, USA
| | - Stephen Gliske
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Sridevi Sarma
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yujiang Wang
- Interdisciplinary Computing and Complex BioSystems, School of Computing Science, Newcastle University, Newcastle Upon Tyne, UK
| | - Maxime O Baud
- Sleep-Wake-Epilepsy Center, NeuroTec, Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | - William C Stacey
- Department of Neurology, BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Division of Neurology, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Erin C Conrad
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Chen P, Liu F, Lin P, Li P, Xiao Y, Zhang B, Pan G. Open-loop analog programmable electrochemical memory array. Nat Commun 2023; 14:6184. [PMID: 37794039 PMCID: PMC10550916 DOI: 10.1038/s41467-023-41958-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Emerging memories have been developed as new physical infrastructures for hosting neural networks owing to their low-power analog computing characteristics. However, accurately and efficiently programming devices in an analog-valued array is still largely limited by the intrinsic physical non-idealities of the devices, thus hampering their applications in in-situ training of neural networks. Here, we demonstrate a passive electrochemical memory (ECRAM) array with many important characteristics necessary for accurate analog programming. Different image patterns can be open-loop and serially programmed into our ECRAM array, achieving high programming accuracies without any feedback adjustments. The excellent open-loop analog programmability has led us to in-situ train a bilayer neural network and reached software-like classification accuracy of 99.4% to detect poisonous mushrooms. The training capability is further studied in simulation for large-scale neural networks such as VGG-8. Our results present a new solution for implementing learning functions in an artificial intelligence hardware using emerging memories.
Collapse
Affiliation(s)
- Peng Chen
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Fenghao Liu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Peng Lin
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou, China.
| | - Peihong Li
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yu Xiao
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Bihua Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Gang Pan
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Aboumerhi K, Güemes A, Liu H, Tenore F, Etienne-Cummings R. Neuromorphic applications in medicine. J Neural Eng 2023; 20:041004. [PMID: 37531951 DOI: 10.1088/1741-2552/aceca3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
In recent years, there has been a growing demand for miniaturization, low power consumption, quick treatments, and non-invasive clinical strategies in the healthcare industry. To meet these demands, healthcare professionals are seeking new technological paradigms that can improve diagnostic accuracy while ensuring patient compliance. Neuromorphic engineering, which uses neural models in hardware and software to replicate brain-like behaviors, can help usher in a new era of medicine by delivering low power, low latency, small footprint, and high bandwidth solutions. This paper provides an overview of recent neuromorphic advancements in medicine, including medical imaging and cancer diagnosis, processing of biosignals for diagnosis, and biomedical interfaces, such as motor, cognitive, and perception prostheses. For each section, we provide examples of how brain-inspired models can successfully compete with conventional artificial intelligence algorithms, demonstrating the potential of neuromorphic engineering to meet demands and improve patient outcomes. Lastly, we discuss current struggles in fitting neuromorphic hardware with non-neuromorphic technologies and propose potential solutions for future bottlenecks in hardware compatibility.
Collapse
Affiliation(s)
- Khaled Aboumerhi
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Amparo Güemes
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge CB3 0FA, United Kingdom
| | - Hongtao Liu
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Francesco Tenore
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States of America
| | - Ralph Etienne-Cummings
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
11
|
Tzouvadaki I, Gkoupidenis P, Vassanelli S, Wang S, Prodromakis T. Interfacing Biology and Electronics with Memristive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210035. [PMID: 36829290 DOI: 10.1002/adma.202210035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Memristive technologies promise to have a large impact on modern electronics, particularly in the areas of reconfigurable computing and artificial intelligence (AI) hardware. Meanwhile, the evolution of memristive materials alongside the technological progress is opening application perspectives also in the biomedical field, particularly for implantable and lab-on-a-chip devices where advanced sensing technologies generate a large amount of data. Memristive devices are emerging as bioelectronic links merging biosensing with computation, acting as physical processors of analog signals or in the framework of advanced digital computing architectures. Recent developments in the processing of electrical neural signals, as well as on transduction and processing of chemical biomarkers of neural and endocrine functions, are reviewed. It is concluded with a critical perspective on the future applicability of memristive devices as pivotal building blocks in bio-AI fusion concepts and bionic schemes.
Collapse
Affiliation(s)
- Ioulia Tzouvadaki
- Centre for Microsystems Technology, Ghent University-IMEC, Ghent, 9052, Belgium
| | | | - Stefano Vassanelli
- NeuroChip Laboratory and Padova Neuroscience Centre, University of Padova, Padova, 35129, Italy
| | - Shiwei Wang
- Centre for Electronics Frontiers, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| | - Themis Prodromakis
- Centre for Electronics Frontiers, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| |
Collapse
|
12
|
Yuan R, Tiw PJ, Cai L, Yang Z, Liu C, Zhang T, Ge C, Huang R, Yang Y. A neuromorphic physiological signal processing system based on VO 2 memristor for next-generation human-machine interface. Nat Commun 2023; 14:3695. [PMID: 37344448 DOI: 10.1038/s41467-023-39430-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Physiological signal processing plays a key role in next-generation human-machine interfaces as physiological signals provide rich cognition- and health-related information. However, the explosion of physiological signal data presents challenges for traditional systems. Here, we propose a highly efficient neuromorphic physiological signal processing system based on VO2 memristors. The volatile and positive/negative symmetric threshold switching characteristics of VO2 memristors are leveraged to construct a sparse-spiking yet high-fidelity asynchronous spike encoder for physiological signals. Besides, the dynamical behavior of VO2 memristors is utilized in compact Leaky Integrate and Fire (LIF) and Adaptive-LIF (ALIF) neurons, which are incorporated into a decision-making Long short-term memory Spiking Neural Network. The system demonstrates superior computing capabilities, needing only small-sized LSNNs to attain high accuracies of 95.83% and 99.79% in arrhythmia classification and epileptic seizure detection, respectively. This work highlights the potential of memristors in constructing efficient neuromorphic physiological signal processing systems and promoting next-generation human-machine interfaces.
Collapse
Affiliation(s)
- Rui Yuan
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Pek Jun Tiw
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Lei Cai
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Zhiyu Yang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Chang Liu
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Teng Zhang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ru Huang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Yuchao Yang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China.
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.
- Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China.
- Center for Brain Inspired Intelligence, Chinese Institute for Brain Research (CIBR), Beijing, Beijing, 102206, China.
| |
Collapse
|
13
|
Ronchini M, Rezaeiyan Y, Zamani M, Panuccio G, Moradi F. NET-TEN: a silicon neuromorphic network for low-latency detection of seizures in local field potentials. J Neural Eng 2023; 20. [PMID: 37144338 DOI: 10.1088/1741-2552/acd029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Objective. Therapeutic intervention in neurological disorders still relies heavily on pharmacological solutions, while the treatment of patients with drug resistance remains an unresolved issue. This is particularly true for patients with epilepsy, 30% of whom are refractory to medications. Implantable devices for chronic recording and electrical modulation of brain activity have proved a viable alternative in such cases. To operate, the device should detect the relevant electrographic biomarkers from local field potentials (LFPs) and determine the right time for stimulation. To enable timely interventions, the ideal device should attain biomarker detection with low latency while operating under low power consumption to prolong battery life.Approach. Here we introduce a fully-analog neuromorphic device implemented in CMOS technology for analyzing LFP signals in anin vitromodel of acute ictogenesis. Neuromorphic networks have progressively gained a reputation as low-latency low-power computing systems, which makes them a promising candidate as processing core of next-generation implantable neural interfaces.Main results. The developed system can detect ictal and interictal events with ms-latency and with high precision, consuming on average 3.50 nW during the task.Significance. The work presented in this paper paves the way to a new generation of brain implantable devices for personalized closed-loop stimulation for epilepsy treatment.
Collapse
Affiliation(s)
- Margherita Ronchini
- Integrated Circuits & Electronics Laboratory, Institut for Elektro- og Computerteknologi, Aarhus University, Aarhus, Denmark
| | - Yasser Rezaeiyan
- Integrated Circuits & Electronics Laboratory, Institut for Elektro- og Computerteknologi, Aarhus University, Aarhus, Denmark
| | - Milad Zamani
- Integrated Circuits & Electronics Laboratory, Institut for Elektro- og Computerteknologi, Aarhus University, Aarhus, Denmark
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Farshad Moradi
- Integrated Circuits & Electronics Laboratory, Institut for Elektro- og Computerteknologi, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Ma B, Zhang J, Zhao Y, Zou W. Analog-to-spike encoding and time-efficient RF signal processing with photonic neurons. OPTICS EXPRESS 2022; 30:46541-46551. [PMID: 36558605 DOI: 10.1364/oe.479077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The radio-frequency (RF) signal processing in real time is indispensable for advanced information systems, such as radar and communications. However, the latency performance of conventional processing paradigm is worsened by high-speed analog-to-digital conversion (ADC) generating massive data, and computation-intensive digital processing. Here, we propose to encode and process RF signals harnessing photonic spiking response in fully-analog domain. The dependence of photonic analog-to-spike encoding on threshold level and time constant is theoretically and experimentally investigated. For two classes of waveforms from real RF devices, the photonic spiking neuron exhibits distinct distributions of encoded spike numbers. In a waveform classification task, the photonic-spiking-based scheme achieves an accuracy of 92%, comparable to the K-nearest neighbor (KNN) digital algorithm for 94%, and the processing latency is reduced approximately from 0.7 s (code running time on a CPU platform) to 80 ns (light transmission delay) by more than one million times. It is anticipated that the asynchronous-encoding, and binary-output nature of photonic spiking response could pave the way to real-time RF signal processing.
Collapse
|
15
|
Chiappalone M, Cota VR, Carè M, Di Florio M, Beaubois R, Buccelli S, Barban F, Brofiga M, Averna A, Bonacini F, Guggenmos DJ, Bornat Y, Massobrio P, Bonifazi P, Levi T. Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering. Brain Sci 2022; 12:1578. [PMID: 36421904 PMCID: PMC9688667 DOI: 10.3390/brainsci12111578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system.
Collapse
Affiliation(s)
- Michela Chiappalone
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Vinicius R. Cota
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marta Carè
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Mattia Di Florio
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - Romain Beaubois
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| | - Stefano Buccelli
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Federico Barban
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - Alberto Averna
- Department of Neurology, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Francesco Bonacini
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - David J. Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Yannick Bornat
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- National Institute for Nuclear Physics (INFN), 16146 Genova, Italy
| | - Paolo Bonifazi
- IKERBASQUE, The Basque Fundation, 48009 Bilbao, Spain
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Timothée Levi
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| |
Collapse
|
16
|
Yan H, Wang X, Yu T, Ni D, Qiao L, Zhang X, Xu C, Shu W, Wang Y, Ren L. The anterior nucleus of the thalamus plays a role in the epileptic network. Ann Clin Transl Neurol 2022; 9:2010-2024. [PMID: 36334281 PMCID: PMC9735375 DOI: 10.1002/acn3.51693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES We investigated both the metabolic differences and interictal/ictal discharges of the anterior nucleus of the thalamus (ANT) in patients with epilepsy to clarify the relationship between the ANT and the epileptic network. METHODS Nineteen patients with drug-resistant epilepsy who underwent stereoelectroencephalography were studied. Metabolic differences in ANT were analyzed using [18F] fluorodeoxyglucose-positron emission tomography with three-dimensional (3D) visual and quantitative analyses. Interictal and ictal discharges in the ANT were analyzed using visual and time-frequency analyses. The relationship between interictal discharge and metabolic differences was analyzed. RESULTS We found that patients with temporal lobe epilepsy (TLE) showed significant metabolic differences in bilateral ANT compared with extratemporal lobe epilepsy in 3D visual and quantitative analyses. Four types of interictal activities were recorded from the ANT: spike, high-frequency oscillation (HFO), slow-wave, and α-rhythmic activity. Spike and HFO waveforms were recorded mainly in patients with TLE. Two spike patterns were recorded: synchronous and independent. In 83.3% of patients, ANT was involved during seizures. Three seizure onset types of ANT were recorded: low-voltage fast activity, rhythmic spikes, and theta band discharge. The time interval of seizure onset between the seizure onset zone and ANT showed two patterns: immediate and delayed. INTERPRETATION ANT can receive either interictal discharges or ictal discharges which propagate from the epileptogenic zones. Independent epileptic discharges can also be recorded from the ANT in some patients. Metabolic anomalies and epileptic discharges in the ANT indicate that the ANT plays a role in the epileptic network in most patients with epilepsy, especially TLE.
Collapse
Affiliation(s)
- Hao Yan
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Xueyuan Wang
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Tao Yu
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Duanyu Ni
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Liang Qiao
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Xiaohua Zhang
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Cuiping Xu
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Wei Shu
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of Neurology, Comprehensive Epilepsy Center of Beijing, Beijing Key Laboratory of NeuromodulationXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Liankun Ren
- Department of Neurology, Comprehensive Epilepsy Center of Beijing, Beijing Key Laboratory of NeuromodulationXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Chow SYA, Hu H, Osaki T, Levi T, Ikeuchi Y. Advances in construction and modeling of functional neural circuits in vitro. Neurochem Res 2022; 47:2529-2544. [PMID: 35943626 PMCID: PMC9463289 DOI: 10.1007/s11064-022-03682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Over the years, techniques have been developed to culture and assemble neurons, which brought us closer to creating neuronal circuits that functionally and structurally mimic parts of the brain. Starting with primary culture of neurons, preparations of neuronal culture have advanced substantially. Development of stem cell research and brain organoids has opened a new path for generating three-dimensional human neural circuits. Along with the progress in biology, engineering technologies advanced and paved the way for construction of neural circuit structures. In this article, we overview research progress and discuss perspective of in vitro neural circuits and their ability and potential to acquire functions. Construction of in vitro neural circuits with complex higher-order functions would be achieved by converging development in diverse major disciplines including neuroscience, stem cell biology, tissue engineering, electrical engineering and computer science.
Collapse
Affiliation(s)
- Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Huaruo Hu
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Timothée Levi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- IMS laboratory, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
18
|
Li X, Zhang H, Lai H, Wang J, Wang W, Yang X. High-Frequency Oscillations and Epileptogenic Network. Curr Neuropharmacol 2022; 20:1687-1703. [PMID: 34503414 PMCID: PMC9881061 DOI: 10.2174/1570159x19666210908165641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is a network disease caused by aberrant neocortical large-scale connectivity spanning regions on the scale of several centimeters. High-frequency oscillations, characterized by the 80-600 Hz signals in electroencephalography, have been proven to be a promising biomarker of epilepsy that can be used in assessing the severity and susceptibility of epilepsy as well as the location of the epileptogenic zone. However, the presence of a high-frequency oscillation network remains a topic of debate as high-frequency oscillations have been previously thought to be incapable of propagation, and the relationship between high-frequency oscillations and the epileptogenic network has rarely been discussed. Some recent studies reported that high-frequency oscillations may behave like networks that are closely relevant to the epileptogenic network. Pathological highfrequency oscillations are network-driven phenomena and elucidate epileptogenic network development; high-frequency oscillations show different characteristics coincident with the epileptogenic network dynamics, and cross-frequency coupling between high-frequency oscillations and other signals may mediate the generation and propagation of abnormal discharges across the network.
Collapse
Affiliation(s)
- Xiaonan Li
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | | | | | - Jiaoyang Wang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China,Address correspondence to this author at the Bioland Laboratory, Guangzhou, China; Tel: 86+ 18515855127; E-mail:
| |
Collapse
|
19
|
Yang Y, Truong ND, Eshraghian JK, Nikpour A, Kavehei O. Weak self-supervised learning for seizure forecasting: a feasibility study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220374. [PMID: 35950196 PMCID: PMC9346358 DOI: 10.1098/rsos.220374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 05/27/2023]
Abstract
This paper proposes an artificial intelligence system that continuously improves over time at event prediction using initially unlabelled data by using self-supervised learning. Time-series data are inherently autocorrelated. By using a detection model to generate weak labels on the fly, which are concurrently used as targets to train a prediction model on a time-shifted input data stream, this autocorrelation can effectively be harnessed to reduce the burden of manual labelling. This is critical in medical patient monitoring, as it enables the development of personalized forecasting models without demanding the annotation of long sequences of physiological signal recordings. We perform a feasibility study on seizure prediction, which is identified as an ideal test case, as pre-ictal brainwaves are patient-specific, and tailoring models to individual patients is known to improve forecasting performance significantly. Our self-supervised approach is used to train individualized forecasting models for 10 patients, showing an average relative improvement in sensitivity by 14.30% and a reduction in false alarms by 19.61% in early seizure forecasting. This proof-of-concept on the feasibility of using a continuous stream of time-series neurophysiological data paves the way towards a low-power neuromorphic neuromodulation system.
Collapse
Affiliation(s)
- Yikai Yang
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| | - Nhan Duy Truong
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| | - Jason K. Eshraghian
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Armin Nikpour
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales 2006, Australia
- Comprehensive Epilepsy Service and Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Omid Kavehei
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| |
Collapse
|
20
|
Ramezanian-Panahi M, Abrevaya G, Gagnon-Audet JC, Voleti V, Rish I, Dumas G. Generative Models of Brain Dynamics. Front Artif Intell 2022; 5:807406. [PMID: 35910192 PMCID: PMC9335006 DOI: 10.3389/frai.2022.807406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/10/2022] [Indexed: 01/28/2023] Open
Abstract
This review article gives a high-level overview of the approaches across different scales of organization and levels of abstraction. The studies covered in this paper include fundamental models in computational neuroscience, nonlinear dynamics, data-driven methods, as well as emergent practices. While not all of these models span the intersection of neuroscience, AI, and system dynamics, all of them do or can work in tandem as generative models, which, as we argue, provide superior properties for the analysis of neuroscientific data. We discuss the limitations and unique dynamical traits of brain data and the complementary need for hypothesis- and data-driven modeling. By way of conclusion, we present several hybrid generative models from recent literature in scientific machine learning, which can be efficiently deployed to yield interpretable models of neural dynamics.
Collapse
Affiliation(s)
| | - Germán Abrevaya
- Mila-Quebec AI Institute, Montréal, QC, Canada
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Instituto de Física de Buenos Aires (IFIBA), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Vikram Voleti
- Mila-Quebec AI Institute, Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
| | - Irina Rish
- Mila-Quebec AI Institute, Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
| | - Guillaume Dumas
- Mila-Quebec AI Institute, Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Department of Psychiatry, CHU Sainte-Justine Research Center, Mila-Quebec AI Institute, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
21
|
García-Sebastián LM, Ponce-Ponce VH, Sossa H, Rubio-Espino E, Martínez-Navarro JA. Neuromorphic Signal Filter for Robot Sensoring. Front Neurorobot 2022; 16:905313. [PMID: 35770276 PMCID: PMC9234973 DOI: 10.3389/fnbot.2022.905313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Noise management associated with input signals in sensor devices arises as one of the main problems limiting robot control performance. This article introduces a novel neuromorphic filter model based on a leaky integrate and fire (LIF) neural model cell, which encodes the primary information from a noisy input signal and delivers an output signal with a significant noise reduction in practically real-time with energy-efficient consumption. A new approach for neural decoding based on the neuron-cell spiking frequency is introduced to recover the primary signal information. The simulations conducted on the neuromorphic filter demonstrate an outstanding performance of white noise rejecting while preserving the original noiseless signal with a low information loss. The proposed filter model is compatible with the CMOS technology design methodologies for implementing low consumption smart sensors with applications in various fields such as robotics and the automotive industry demanded by Industry 4.0.
Collapse
|
22
|
Burelo K, Sharifshazileh M, Indiveri G, Sarnthein J. Automatic Detection of High-Frequency Oscillations With Neuromorphic Spiking Neural Networks. Front Neurosci 2022; 16:861480. [PMID: 35720714 PMCID: PMC9205405 DOI: 10.3389/fnins.2022.861480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Interictal high-frequency oscillations (HFO) detected in electroencephalography recordings have been proposed as biomarkers of epileptogenesis, seizure propensity, disease severity, and treatment response. Automatic HFO detectors typically analyze the data offline using complex time-consuming algorithms, which limits their clinical application. Neuromorphic circuits offer the possibility of building compact and low-power processing systems that can analyze data on-line and in real time. In this review, we describe a fully automated detection pipeline for HFO that uses, for the first time, spiking neural networks and neuromorphic technology. We demonstrated that our HFO detection pipeline can be applied to recordings from different modalities (intracranial electroencephalography, electrocorticography, and scalp electroencephalography) and validated its operation in a custom-designed neuromorphic processor. Our HFO detection approach resulted in high accuracy and specificity in the prediction of seizure outcome in patients implanted with intracranial electroencephalography and electrocorticography, and in the prediction of epilepsy severity in patients recorded with scalp electroencephalography. Our research provides a further step toward the real-time detection of HFO using compact and low-power neuromorphic devices. The real-time detection of HFO in the operation room may improve the seizure outcome of epilepsy surgery, while the use of our neuromorphic processor for non-invasive therapy monitoring might allow for more effective medication strategies to achieve seizure control. Therefore, this work has the potential to improve the quality of life in patients with epilepsy by improving epilepsy diagnostics and treatment.
Collapse
Affiliation(s)
- Karla Burelo
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, ETH und Universität Zürich, Zurich, Switzerland
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, ETH und Universität Zürich, Zurich, Switzerland
| |
Collapse
|
23
|
Effect of Hydrogen Migration in SiO2/Al2O3 Stacked Gate Insulator of InGaZnO Thin-Film Transistors. CRYSTALS 2022. [DOI: 10.3390/cryst12050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, the correlation between SiO2 deposition thickness and hydrogen content is discussed and the effect of the SiO2 layer on the properties of synaptic InGaZnO (IGZO) TFTs is analyzed. Three types of IGZO synaptic thin-film transistors (TFTs) were fabricated with different gate insulators, and the effect of SiO2 as a gate insulator was investigated. XPS analysis confirmed that the hydrogen content in the Al2O3 and SiO2 layers increased during SiO2 deposition step for all depth regions. Hydrogen injected by the SiO2 layer deposition step was confirmed to improve the memory window through more threshold voltage shift under positive bias stress (PBS) and negative bias stress (NBS) conditions. In addition, the retention characteristics were improved due to the low hydrogen movement velocity in the SiO2 layer. These results contribute to the optimization of the amount of hydrogen, and the proposed device has potential as a synaptic device capable of neuromorphic computing.
Collapse
|
24
|
Petschenig H, Bisio M, Maschietto M, Leparulo A, Legenstein R, Vassanelli S. Classification of Whisker Deflections From Evoked Responses in the Somatosensory Barrel Cortex With Spiking Neural Networks. Front Neurosci 2022; 16:838054. [PMID: 35495034 PMCID: PMC9047904 DOI: 10.3389/fnins.2022.838054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Spike-based neuromorphic hardware has great potential for low-energy brain-machine interfaces, leading to a novel paradigm for neuroprosthetics where spiking neurons in silicon read out and control activity of brain circuits. Neuromorphic processors can receive rich information about brain activity from both spikes and local field potentials (LFPs) recorded by implanted neural probes. However, it was unclear whether spiking neural networks (SNNs) implemented on such devices can effectively process that information. Here, we demonstrate that SNNs can be trained to classify whisker deflections of different amplitudes from evoked responses in a single barrel of the rat somatosensory cortex. We show that the classification performance is comparable or even superior to state-of-the-art machine learning approaches. We find that SNNs are rather insensitive to recorded signal type: both multi-unit spiking activity and LFPs yield similar results, where LFPs from cortical layers III and IV seem better suited than those of deep layers. In addition, no hand-crafted features need to be extracted from the data—multi-unit activity can directly be fed into these networks and a simple event-encoding of LFPs is sufficient for good performance. Furthermore, we find that the performance of SNNs is insensitive to the network state—their performance is similar during UP and DOWN states.
Collapse
Affiliation(s)
- Horst Petschenig
- Faculty of Computer Science and Biomedical Engineering, Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria
| | - Marta Bisio
- NeuroChip Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Maschietto
- NeuroChip Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessandro Leparulo
- NeuroChip Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Robert Legenstein
- Faculty of Computer Science and Biomedical Engineering, Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria
- Robert Legenstein
| | - Stefano Vassanelli
- NeuroChip Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Stefano Vassanelli
| |
Collapse
|
25
|
Ambati R, Raja S, Al-Hameed M, John T, Arjoune Y, Shekhar R. Neuromorphic Architecture Accelerated Automated Seizure Detection in Multi-Channel Scalp EEG. SENSORS 2022; 22:s22051852. [PMID: 35271005 PMCID: PMC8914704 DOI: 10.3390/s22051852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
Epileptic focal seizures can be localized in the brain using tracer injections during or immediately after the incidence of a seizure. A real-time automated seizure detection system with minimal latency can help time the injection properly to find the seizure origin accurately. Reliable real-time seizure detection systems have not been clinically reported yet. We developed an anomaly detection-based automated seizure detection system, using scalp-electroencephalogram (EEG) data, which can be trained using a few seizure sessions, and implemented it on commercially available hardware with parallel, neuromorphic architecture—the NeuroStack. We extracted nonlinear, statistical, and discrete wavelet decomposition features, and we developed a graphical user interface and traditional feature selection methods to select the most discriminative features. We investigated Reduced Coulomb Energy (RCE) networks and K-Nearest Neighbors (k-NN) for its several advantages, such as fast learning no local minima problem. We obtained a maximum sensitivity of 91.14%±1.77% and a specificity of 98.77%±0.57% with 5 s epoch duration. The system’s latency was 12 s, which is within most seizure event windows, which last for an average duration of 60 s. Our results showed that the CD feature consumes large computation resources and excluding it can reduce the latency to 3.6 s but at the cost of lower performance 80% sensitivity and 97% specificity. We demonstrated that the proposed methodology achieves a high specificity and an acceptable sensitivity within a short delay. Our results indicated also that individual-based RCE are superior to population-based RCE. The proposed RCE networks has been compared to SVM and ANN as a baseline for comparison as they are the most common machine learning seizure detection methods. SVM and ANN-based systems were trained on the same data as RCE and K-NN with features optimized specifically for them. RCE nets are superior to SVM and ANN. The proposed model also achieves comparable performance to the state-of-the-art deep learning techniques while not requiring a sizeable database, which is often expensive to build. These numbers indicate that the system is viable as a trigger mechanism for tracer injection.
Collapse
Affiliation(s)
- Ravi Ambati
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (R.A.); (T.J.); (Y.A.)
| | - Shanker Raja
- National Neuroscience Institute, King Fahad Medical City, Riyadh 12231, Saudi Arabia; (S.R.); (M.A.-H.)
| | - Majed Al-Hameed
- National Neuroscience Institute, King Fahad Medical City, Riyadh 12231, Saudi Arabia; (S.R.); (M.A.-H.)
| | - Titus John
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (R.A.); (T.J.); (Y.A.)
| | - Youness Arjoune
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (R.A.); (T.J.); (Y.A.)
| | - Raj Shekhar
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (R.A.); (T.J.); (Y.A.)
- Correspondence:
| |
Collapse
|
26
|
Burelo K, Ramantani G, Indiveri G, Sarnthein J. A neuromorphic spiking neural network detects epileptic high frequency oscillations in the scalp EEG. Sci Rep 2022; 12:1798. [PMID: 35110665 PMCID: PMC8810784 DOI: 10.1038/s41598-022-05883-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Interictal High Frequency Oscillations (HFO) are measurable in scalp EEG. This development has aroused interest in investigating their potential as biomarkers of epileptogenesis, seizure propensity, disease severity, and treatment response. The demand for therapy monitoring in epilepsy has kindled interest in compact wearable electronic devices for long-term EEG recording. Spiking neural networks (SNN) have emerged as optimal architectures for embedding in compact low-power signal processing hardware. We analyzed 20 scalp EEG recordings from 11 pediatric focal lesional epilepsy patients. We designed a custom SNN to detect events of interest (EoI) in the 80-250 Hz ripple band and reject artifacts in the 500-900 Hz band. We identified the optimal SNN parameters to detect EoI and reject artifacts automatically. The occurrence of HFO thus detected was associated with active epilepsy with 80% accuracy. The HFO rate mirrored the decrease in seizure frequency in 8 patients (p = 0.0047). Overall, the HFO rate correlated with seizure frequency (rho = 0.90 CI [0.75 0.96], p < 0.0001, Spearman's correlation). The fully automated SNN detected clinically relevant HFO in the scalp EEG. This study is a further step towards non-invasive epilepsy monitoring with a low-power wearable device.
Collapse
Affiliation(s)
- Karla Burelo
- Klinik für Neurochirurgie, Universitätsspital und Universität Zürich, 8091, Zurich, Switzerland
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Georgia Ramantani
- Neuropädiatrie, Universitäts-Kinderspital und Universität Zürich, Zurich, Switzerland
- Forschungszentrum für das Kind, Universitäts-Kinderspital Zürich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich, ETH und Universität Zürich, Zurich, Switzerland
| | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich, ETH und Universität Zürich, Zurich, Switzerland
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, Universitätsspital und Universität Zürich, 8091, Zurich, Switzerland.
- Zentrum für Neurowissenschaften Zürich, ETH und Universität Zürich, Zurich, Switzerland.
| |
Collapse
|
27
|
Liu Z, Wei P, Wang Y, Yang Y, Dai Y, Cao G, Kang G, Shan Y, Liu D, Xie Y. Automatic Detection of High-Frequency Oscillations Based on an End-to-End Bi-Branch Neural Network and Clinical Cross-Validation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:7532241. [PMID: 34992650 PMCID: PMC8727108 DOI: 10.1155/2021/7532241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/28/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
Accurate identification of high-frequency oscillation (HFO) is an important prerequisite for precise localization of epileptic foci and good prognosis of drug-refractory epilepsy. Exploring a high-performance automatic detection method for HFOs can effectively help clinicians reduce the error rate and reduce manpower. Due to the limited analysis perspective and simple model design, it is difficult to meet the requirements of clinical application by the existing methods. Therefore, an end-to-end bi-branch fusion model is proposed to automatically detect HFOs. With the filtered band-pass signal (signal branch) and time-frequency image (TFpic branch) as the input of the model, two backbone networks for deep feature extraction are established, respectively. Specifically, a hybrid model based on ResNet1d and long short-term memory (LSTM) is designed for signal branch, which can focus on both the features in time and space dimension, while a ResNet2d with a Convolutional Block Attention Module (CBAM) is constructed for TFpic branch, by which more attention is paid to useful information of TF images. Then the outputs of two branches are fused to realize end-to-end automatic identification of HFOs. Our method is verified on 5 patients with intractable epilepsy. In intravalidation, the proposed method obtained high sensitivity of 94.62%, specificity of 92.7%, and F1-score of 93.33%, and in cross-validation, our method achieved high sensitivity of 92.00%, specificity of 88.26%, and F1-score of 89.11% on average. The results show that the proposed method outperforms the existing detection paradigms of either single signal or single time-frequency diagram strategy. In addition, the average kappa coefficient of visual analysis and automatic detection results is 0.795. The method shows strong generalization ability and high degree of consistency with the gold standard meanwhile. Therefore, it has great potential to be a clinical assistant tool.
Collapse
Affiliation(s)
- Zimo Liu
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China
| | - Penghu Wei
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yiping Wang
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yang Dai
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Gongpeng Cao
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China
| | - Guixia Kang
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China
- Beijing Baihui Weikang Technology Co., Ltd., Beijing 100083, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Da Liu
- Beijing Baihui Weikang Technology Co., Ltd., Beijing 100083, China
| | - Yongzhao Xie
- Beijing Baihui Weikang Technology Co., Ltd., Beijing 100083, China
| |
Collapse
|
28
|
Yoo J, Shoaran M. Neural interface systems with on-device computing: machine learning and neuromorphic architectures. Curr Opin Biotechnol 2021; 72:95-101. [PMID: 34735990 DOI: 10.1016/j.copbio.2021.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
Development of neural interface and brain-machine interface (BMI) systems enables the treatment of neurological disorders including cognitive, sensory, and motor dysfunctions. While neural interfaces have steadily decreased in form factor, recent developments target pervasive implantables. Along with advances in electrodes, neural recording, and neurostimulation circuits, integration of disease biomarkers and machine learning algorithms enables real-time and on-site processing of neural activity with no need for power-demanding telemetry. This recent trend on combining artificial intelligence and machine learning with modern neural interfaces will lead to a new generation of low-power, smart, and miniaturized therapeutic devices for a wide range of neurological and psychiatric disorders. This paper reviews the recent development of the 'on-chip' machine learning and neuromorphic architectures, which is one of the key puzzles in devising next-generation clinically viable neural interface systems.
Collapse
Affiliation(s)
- Jerald Yoo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117585, Singapore; The N.1 Institute for Health, Singapore, Singapore, 117456, Singapore
| | - Mahsa Shoaran
- Institute of Electrical Engineering, Center for Neuroprosthetics, École polytechnique federal de Lausanne (EPFL), 1202, Geneva, Switzerland.
| |
Collapse
|
29
|
Dimakopoulos V, Mégevand P, Boran E, Momjian S, Seeck M, Vulliémoz S, Sarnthein J. Blinded study: prospectively defined high-frequency oscillations predict seizure outcome in individual patients. Brain Commun 2021; 3:fcab209. [PMID: 34541534 PMCID: PMC8445392 DOI: 10.1093/braincomms/fcab209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/01/2021] [Accepted: 06/14/2020] [Indexed: 11/16/2022] Open
Abstract
Interictal high-frequency oscillations are discussed as biomarkers for epileptogenic brain tissue that should be resected in epilepsy surgery to achieve seizure freedom. The prospective classification of tissue sampled by individual electrode contacts remains a challenge. We have developed an automated, prospective definition of clinically relevant high-frequency oscillations in intracranial EEG from Montreal and tested it in recordings from Zurich. We here validated the algorithm on intracranial EEG that was recorded in an independent epilepsy centre so that the analysis was blinded to seizure outcome. We selected consecutive patients who underwent resective epilepsy surgery in Geneva with post-surgical follow-up > 12 months. We analysed long-term recordings during sleep that we segmented into intervals of 5 min. High-frequency oscillations were defined in the ripple (80–250 Hz) and the fast ripple (250–500 Hz) frequency bands. Contacts with the highest rate of ripples co-occurring with fast ripples designated the relevant area. As a validity criterion, we calculated the test–retest reliability of the high-frequency oscillations area between the 5 min intervals (dwell time ≥50%). If the area was not fully resected and the patient suffered from recurrent seizures, this was classified as a true positive prediction. We included recordings from 16 patients (median age 32 years, range 18–53 years) with stereotactic depth electrodes and/or with subdural electrode grids (median follow-up 27 months, range 12–55 months). For each patient, we included several 5 min intervals (median 17 intervals). The relevant area had high test–retest reliability across intervals (median dwell time 95%). In two patients, the test–retest reliability was too low (dwell time < 50%) so that outcome prediction was not possible. The area was fully included in the resected volume in 2/4 patients who achieved post-operative seizure freedom (specificity 50%) and was not fully included in 9/10 patients with recurrent seizures (sensitivity 90%), leading to an accuracy of 79%. An additional exploratory analysis suggested that high-frequency oscillations were associated with interictal epileptic discharges only in channels within the relevant area and not associated in channels outside the area. We thereby validated the automated procedure to delineate the clinically relevant area in each individual patient of an independently recorded dataset and achieved the same good accuracy as in our previous studies. The reproducibility of our results across datasets is promising for a multicentre study to test the clinical application of high-frequency oscillations to guide epilepsy surgery.
Collapse
Affiliation(s)
- Vasileios Dimakopoulos
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zürich, Switzerland
| | - Pierre Mégevand
- Département des neurosciences fondamentales, Faculté de médecine, Université de Genève, Geneva, Switzerland.,Service de neurologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Ece Boran
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zürich, Switzerland
| | - Shahan Momjian
- Service de neurochirurgie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Margitta Seeck
- Service de neurologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Serge Vulliémoz
- Service de neurologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zürich, Switzerland.,Klinisches Neurowissenschaften Zentrum, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
30
|
Krause R, van Bavel JJA, Wu C, Vos MA, Nogaret A, Indiveri G. Robust neuromorphic coupled oscillators for adaptive pacemakers. Sci Rep 2021; 11:18073. [PMID: 34508121 PMCID: PMC8433448 DOI: 10.1038/s41598-021-97314-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Neural coupled oscillators are a useful building block in numerous models and applications. They were analyzed extensively in theoretical studies and more recently in biologically realistic simulations of spiking neural networks. The advent of mixed-signal analog/digital neuromorphic electronic circuits provides new means for implementing neural coupled oscillators on compact, low-power, spiking neural network hardware platforms. However, their implementation on this noisy, low-precision and inhomogeneous computing substrate raises new challenges with regards to stability and controllability. In this work, we present a robust, spiking neural network model of neural coupled oscillators and validate it with an implementation on a mixed-signal neuromorphic processor. We demonstrate its robustness showing how to reliably control and modulate the oscillator's frequency and phase shift, despite the variability of the silicon synapse and neuron properties. We show how this ultra-low power neural processing system can be used to build an adaptive cardiac pacemaker modulating the heart rate with respect to the respiration phases and compare it with surface ECG and respiratory signal recordings from dogs at rest. The implementation of our model in neuromorphic electronic hardware shows its robustness on a highly variable substrate and extends the toolbox for applications requiring rhythmic outputs such as pacemakers.
Collapse
Affiliation(s)
- Renate Krause
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Joanne J A van Bavel
- Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chenxi Wu
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Marc A Vos
- Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|