1
|
Zhao C, Yan S, Wang L, Zhu L, Zhou Z, Li J, Wen L. Scalable Multistep Imprinting of Multiplexed Optical Anti-counterfeiting Patterns with Hierarchical Structures. NANO LETTERS 2024; 24:13638-13646. [PMID: 39364886 DOI: 10.1021/acs.nanolett.4c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Multiplexed optical techniques with multichannel patterns provide powerful strategies for high-capacity anti-counterfeiting. However, it is still a big challenge to meet the demands of achieving high encryption levels, excellent readability, and simple preparation simultaneously. Herein, we use a multistep imprinting technique, leveraging surface work-hardening to massively produce multiplexed encrypted patterns with hierarchical structures. These patterns with coupled nano- and microstructures can be instantaneously decoded into different pieces of information at different view angles under white light illumination. By incorporating perpendicular nano- and microgratings, we achieve four-channel encoded patterns, enhancing anti-counterfeiting capacity. This versatile method works on various metal/polymer materials, offering high-density information storage, direct visibility, broad material compatibility, and low-cost mass production. Our high-performance anti-counterfeiting patterns show significant potential in real-world applications.
Collapse
Affiliation(s)
- Chen Zhao
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Sisi Yan
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lang Wang
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Luting Zhu
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Ziqian Zhou
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jiye Li
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Liaoyong Wen
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, Zhejiang 311421, China
| |
Collapse
|
2
|
Ko J, Kim G, Kim I, Hwang SH, Jeon S, Ahn J, Jeong Y, Ha J, Heo H, Jeong J, Park I, Rho J. Metasurface-Embedded Contact Lenses for Holographic Light Projection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407045. [PMID: 39120024 PMCID: PMC11481215 DOI: 10.1002/advs.202407045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 08/10/2024]
Abstract
Contact lenses have been instrumental in vision correction and are expected to be utilized in augmented reality (AR) displays through the integration of electronic and optical components. In optics, metasurfaces, an array of sub-wavelength nanostructures, have offered optical multifunctionality in an ultra-compact form factor, facilitating integration into various imaging, and display systems. However, transferring metasurfaces onto contact lenses remains challenging due to the non-biocompatible materials of extant imprinting methods and the structural instability caused by the swelling and shrinking of the wetted surface. Here, a biocompatible method is presented to transfer metasurfaces onto contact lenses using hyaluronic acid (HA) as a soft mold and to allow for holographic light projection. A high-efficiency metahologram is obtained with an all-metallic 3D meta-atom enhanced by the anisotropy of a rectangular structure, and a reflective background metal layer. A corrugated metal layer on the HA mold is supported with a SiO2 capping layer, to avoid unwanted wrinkles and to ensure structural stability when transferred to the surface of pliable and wettable contact lenses. Biocompatible method of transferring metasurfaces onto contact lenses promises the integration of diverse optical components, including holograms, lenses, gratings and more, to advance the visual experience for AR displays and human-computer interfaces.
Collapse
Affiliation(s)
- Jiwoo Ko
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103South Korea
| | - Gyeongtae Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Inki Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Department of BiophysicsInstitute of Quantum BiophysicsSungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Soon Hyoung Hwang
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103South Korea
| | - Sohee Jeon
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103South Korea
| | - Junseong Ahn
- Department of Electro‐Mechanical Systems EngineeringKorea UniversitySejong30019Republic of Korea
| | - Yongrok Jeong
- Radioisotope Research DivisionKorea Atomic Energy Research InstituteDaejeon34057Republic of Korea
| | - Ji‐Hwan Ha
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103South Korea
| | - Hyeonsu Heo
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Jun‐Ho Jeong
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103South Korea
| | - Inkyu Park
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Junsuk Rho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- POSCO‐POSTECH‐RIST Convergence Research Center for Flat Optics and MetaphotonicsPohang37673Republic of Korea
- National Institute of Nanomaterials Technology (NINT)Pohang37673Republic of Korea
| |
Collapse
|
3
|
Yang C, Zhu K, Yan B. Hydrogen-Bonded Organic Frameworks for Antibiotic Fluorescent Sensing Artificial Intelligence-Enhanced Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39353101 DOI: 10.1021/acsami.4c10053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The paramount importance of anticounterfeiting measures in safeguarding consumers from counterfeit products lies in their ability to ensure product safety and reliability. Advanced luminescent anticounterfeiting materials, particularly those responsive to multiple stimuli, afford a dynamic and multilayered security assurance. This study presents the synthesis of a novel material, Eu/Tb@GC-3, via postsynthetic modification, which exhibits notable photoluminescent properties with emission at 544 and 614 nm. The material demonstrates high selectivity and sensitivity in detecting Nitrofural and Enrofloxacin, with limits of detection at 0.0122 and 0.0280 μM, respectively. Furthermore, multistimulus responsive luminescent fibers and inks were developed, facilitating intelligent anticounterfeiting labels. The integration of these labels with back-propagation neural networks (BPNNs) significantly enhances pattern recognition and authentication capabilities, providing an efficacious strategy to combat counterfeit products and ensure consumer safety.
Collapse
Affiliation(s)
- Chunyu Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Kai Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
4
|
Ma Z, Tian T, Liao Y, Feng X, Li Y, Cui K, Liu F, Sun H, Zhang W, Huang Y. Electrically switchable 2 N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces. Nat Commun 2024; 15:8370. [PMID: 39333169 PMCID: PMC11436973 DOI: 10.1038/s41467-024-52676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Metasurfaces with tunable functionalities are greatly desired for modern optical system and various applications. To increase the operating channels of polarization-multiplexed metasurfaces, we proposed a structure of N cascaded dual-channel metasurfaces to achieve 2N electrically switchable channels without intrinsic loss or cross-talk for certain functionalities, including beam steering, vortex beam generation, lens, etc. As proof of principles, we have implemented a 3-layer setup to achieve 8 channels. In success, we have demonstrated two typical functionalities of vortex beam generation with switchable topological charge of l = -3 ~ +4 or l = -1 ~ -8, and beam steering with the deflection direction switchable in an 8×1 line or a 4×2 grid. We believe that our proposal would provide a practical way to significantly increase the scalability and extend the functionality of polarization-multiplexed metasurfaces. Although this method is not universal, it is potential for the applications of LiDAR, glasses-free 3D display, OAM (de)multiplexing, and varifocal meta-lens.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Tian Tian
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Yuxuan Liao
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Xue Feng
- Department of Electronic Engineering, Tsinghua University, Beijing, China.
| | - Yongzhuo Li
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Kaiyu Cui
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Fang Liu
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Hao Sun
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Wei Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Yidong Huang
- Department of Electronic Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Yang ZQ, Chen J, Wang LG, Yang LH, Li Y, Wu ZS, Gong L. Composite scattering characteristics analysis of micro-ellipsoidal periodic structure optical surface and microdefects. Heliyon 2024; 10:e36039. [PMID: 39247298 PMCID: PMC11379595 DOI: 10.1016/j.heliyon.2024.e36039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
In order to adjust and detect micro-nano periodic structure optical surface accurately and efficiently, the problem of composite scattering between micro-ellipsoidal periodic structure optical surface and pore defects is studied use the multi-resolution time domain (MRTD) approach. A calculation model is established for the intensity distribution of composite scattering, which is modulated by the micro-ellipsoidal periodic structure optical surface and microdefects. Results are in good agreement with those obtained using CST Microwave Studio software and the finite-different time-domain (FDTD) approach, which demonstrates the effectiveness of the calculation model and method. By combining the field distribution of the micro-ellipsoidal periodic structure optical surface containing microdefects with the optical response at different wavelengths, it is necessary to study the influence of various parameters of the micro-ellipsoidal structure and microdefects on the optical system of metamaterials. The effects of the parameters such as roughness, structure of micro-ellipsoidal unit, defect sizes and buried depths on the composite scattering characteristics are analyzed numerically. The results provide technical support for the fields of functional surface design, ultrasensitive detection, scattering peak orientation and frequency selection.
Collapse
Affiliation(s)
- Zhi-Qiang Yang
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| | - Juan Chen
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| | - Li-Guo Wang
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| | - Li-Hong Yang
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| | - Yao Li
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| | - Zhen-Sen Wu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, shaanxi 710016, China
| | - Lei Gong
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| |
Collapse
|
6
|
Li Y, Wu ST. Advancing from scalar to vectorial liquid crystal holography: a paradigm shift. LIGHT, SCIENCE & APPLICATIONS 2024; 13:207. [PMID: 39179526 PMCID: PMC11343863 DOI: 10.1038/s41377-024-01538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
A versatile and tunable vectorial holography is demonstrated based on single-layer single-material liquid crystal superstructures. This novel approach advances the process from scalar to vectorial holography, opening new opportunities for advanced cryptography, super‑resolution imaging, and many other tunable photonic applications.
Collapse
Affiliation(s)
- Yan Li
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shin-Tson Wu
- College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
7
|
Wang J, Chen J, Yu F, Chen R, Wang J, Zhao Z, Li X, Xing H, Li G, Chen X, Lu W. Unlocking ultra-high holographic information capacity through nonorthogonal polarization multiplexing. Nat Commun 2024; 15:6284. [PMID: 39060283 PMCID: PMC11282074 DOI: 10.1038/s41467-024-50586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Contemporary studies in polarization multiplexing are hindered by the intrinsic orthogonality constraints of polarization states, which restrict the scope of multiplexing channels and their practical applications. This research transcends these barriers by introducing an innovative nonorthogonal polarization-basis multiplexing approach. Utilizing spatially varied eigen-polarization states within metaatoms, we successfully reconstruct globally nonorthogonal channels that exhibit minimal crosstalk. This method not only facilitates the generation of free-vector holograms, achieving complete degrees-of-freedom in three nonorthogonal channels with ultra-low energy leakage, but it also significantly enhances the dimensions of the Jones matrix, expanding it to a groundbreaking 10 × 10 scale. The fusion of a controllable eigen-polarization engineering mechanism with a vectorial diffraction neural network culminates in the experimental creation of 55 intricate holographic patterns across these expanded channels. This advancement represents a profound shift in the field of polarization multiplexing, unlocking opportunities in advanced holography and quantum encryption, among other applications.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
- College of Physics, DongHua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Jin Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
| | - Feilong Yu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
| | - Rongsheng Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
| | - Jiuxu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
| | - Zengyue Zhao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
| | - Xuenan Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
| | - Huaizhong Xing
- College of Physics, DongHua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Guanhai Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 SubLane Xiangshan, Hangzhou, 310024, China.
- University of Chinese Academy of Science, No. 19 Yuquan Road, 100049, Beijing, China.
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China.
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 SubLane Xiangshan, Hangzhou, 310024, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, 100049, Beijing, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 SubLane Xiangshan, Hangzhou, 310024, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, 100049, Beijing, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| |
Collapse
|
8
|
Wang H, Zhang Z, Huang W, Chen P, He Y, Ming Z, Wang Y, Cheng Z, Shen J, Zhang Z. Programmable Optical Encryption Based on Electrical-Field-Controlled Exciton-Trion Transitions in Monolayer WS 2. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39047193 DOI: 10.1021/acsami.4c06020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Optical encryption is receiving much attention with the rapid growth of information technology. Conventional optical encryption usually relies on specific configurations, such as metasurface-based holograms and structure colors, not meeting the requirements of increasing dynamic and programmable encryption. Here, we report a programmable optical encryption approach using WS2/SiO2/Au metal-oxide-semiconductor (MOS) devices, which is based on the electrical-field-controlled exciton-trion transitions in monolayer WS2. The modulation depth of the MOS device reflection amplitude up to 25% related to the excitons ensures the fidelity of information, and the decryption based on the near excitonic resonance assures security. With such devices, we successfully demonstrate their applications in real-time encryption of ASCII codes and visual images. For the latter, it can be implemented at the pixel level. The strategy shows significant potential for low-cost, low-energy-consumption, easily integrated, and high-security programmable optical encryptions.
Collapse
Affiliation(s)
- Hu Wang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Zheng Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Wentao Huang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Penghao Chen
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yaping He
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Ziyu Ming
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yue Wang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Zengguang Cheng
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jiabin Shen
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Zengxing Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
- National Integrated Circuit Innovation Center, Shanghai 201203, China
| |
Collapse
|
9
|
Saad-Falcon A, Howard C, Romberg J, Allen K. Level set methods for gradient-free optimization of metasurface arrays. Sci Rep 2024; 14:16674. [PMID: 39030316 PMCID: PMC11271647 DOI: 10.1038/s41598-024-67142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Global optimization techniques are increasingly preferred over human-driven methods in the design of electromagnetic structures such as metasurfaces, and careful construction and parameterization of the physical structure is critical in ensuring computational efficiency and convergence of the optimization algorithm to a globally optimal solution. While many design variables in physical systems take discrete values, optimization algorithms often benefit from a continuous design space. This work demonstrates the use of level set functions as a continuous basis for designing material distributions for metasurface arrays and introduces an improved parameterization which is termed the periodic level set function. We explore the use of alternate norms in the definition of the level set function and define a new pseudo-inverse technique for upsampling basis coefficients with these norms. The level set method is compared to the fragmented parameterization and shows improved electromagnetic responses for two dissimilar cost functions: a narrowband objective and a broadband objective. Finally, we manufacture an optimized level set metasurface and measure its scattering parameters to demonstrate real-world performance.
Collapse
Affiliation(s)
- Alex Saad-Falcon
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, 30332, USA.
| | - Christopher Howard
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, 30332, USA
- Georgia Tech Research Institute, Advanced Concepts Laboratory, Atlanta, GA, 30318, USA
| | - Justin Romberg
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, 30332, USA
| | - Kenneth Allen
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, 30332, USA
- Georgia Tech Research Institute, Advanced Concepts Laboratory, Atlanta, GA, 30318, USA
| |
Collapse
|
10
|
Wan S, Qu K, Shi Y, Li Z, Wang Z, Dai C, Tang J, Li Z. Multidimensional Encryption by Chip-Integrated Metasurfaces. ACS NANO 2024; 18:18693-18700. [PMID: 38958405 DOI: 10.1021/acsnano.4c05724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Facing the challenge of information security in the current era of information technology, optical encryption based on metasurfaces presents a promising solution to this issue. However, most metasurface-based encryption techniques rely on limited decoding keys and struggle to achieve multidimensional complex encryption. It hinders the progress of optical storage capacity and puts encryption security at a disclosing risk. Here, we propose and experimentally demonstrate a multidimensional encryption system based on chip-integrated metasurfaces that successfully incorporates the simultaneous manipulation of three-dimensional optical parameters, including wavelength, direction, and polarization. Hence, up to eight-channel augmented reality (AR) holograms are concealed by near- and far-field fused encryption, which can only be extracted by correctly providing the three-dimensional decoding keys and then vividly exhibit to the authorizer with low crosstalk, high definition, and no zero-order speckle noise. We envision that the miniature chip-integrated metasurface strategy for multidimensional encryption functionalities promises a feasible route toward the encryption capacity and information security enhancement of the anticounterfeiting performance and optically cryptographic storage.
Collapse
Affiliation(s)
- Shuai Wan
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Kening Qu
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Yangyang Shi
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zhe Li
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zejing Wang
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Jiao Tang
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| |
Collapse
|
11
|
Sui X, He Z, Chu D, Cao L. Non-convex optimization for inverse problem solving in computer-generated holography. LIGHT, SCIENCE & APPLICATIONS 2024; 13:158. [PMID: 38982035 PMCID: PMC11233576 DOI: 10.1038/s41377-024-01446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 07/11/2024]
Abstract
Computer-generated holography is a promising technique that modulates user-defined wavefronts with digital holograms. Computing appropriate holograms with faithful reconstructions is not only a problem closely related to the fundamental basis of holography but also a long-standing challenge for researchers in general fields of optics. Finding the exact solution of a desired hologram to reconstruct an accurate target object constitutes an ill-posed inverse problem. The general practice of single-diffraction computation for synthesizing holograms can only provide an approximate answer, which is subject to limitations in numerical implementation. Various non-convex optimization algorithms are thus designed to seek an optimal solution by introducing different constraints, frameworks, and initializations. Herein, we overview the optimization algorithms applied to computer-generated holography, incorporating principles of hologram synthesis based on alternative projections and gradient descent methods. This is aimed to provide an underlying basis for optimized hologram generation, as well as insights into the cutting-edge developments of this rapidly evolving field for potential applications in virtual reality, augmented reality, head-up display, data encryption, laser fabrication, and metasurface design.
Collapse
Affiliation(s)
- Xiaomeng Sui
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
- Department of Engineering, Centre for Photonic Devices and Sensors, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Zehao He
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Daping Chu
- Department of Engineering, Centre for Photonic Devices and Sensors, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
- Cambridge University Nanjing Centre of Technology and Innovation, 23 Rongyue Road, Jiangbei New Area, Nanjing, 210000, China.
| | - Liangcai Cao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Wang T, Wang Y, Fu Y, Chen Z, Jiang C, Ji Y, Lu Y. Angle-Multiplexed 3D Photonic Superstructures with Multi-Directional Switchable Structural Color for Information Transformation, Storage, and Encryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400442. [PMID: 38757669 PMCID: PMC11267312 DOI: 10.1002/advs.202400442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Indexed: 05/18/2024]
Abstract
Creating photonic crystals that can integrate and switch between multiple structural color images will greatly advance their utility in dynamic information transformation, high-capacity storage, and advanced encryption, but has proven to be highly challenging. Here, it is reported that by programmably integrating newly developed 1D quasi-periodic folding structures into a 3D photonic crystal, the generated photonic superstructure exhibits distinctive optical effects that combine independently manipulatable specular and anisotropic diffuse reflections within a versatile protein-based platform, thus creating different optical channels for structural color imaging. The polymorphic transition of the protein format allows for the facile modulation of both folding patterns and photonic lattices and, therefore, the superstructure's spectral response within each channel. The capacity to manipulate the structural assembly of the superstructure enables the programmable encoding of multiple independent patterns into a single system, which can be decoded by the simple adjustment of lighting directions. The multifunctional utility of the photonic platform is demonstrated in information processing, showcasing its ability to achieve multimode transformation of information codes, multi-code high-capacity storage, and high-level numerical information encryption. The present strategy opens new pathways for achieving multichannel transformable imaging, thereby facilitating the development of emerging information conversion, storage, and encryption media using photonic crystals.
Collapse
Affiliation(s)
- Tao Wang
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Yu Wang
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Yinghao Fu
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Zhaoxian Chen
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Chang Jiang
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Yue‐E Ji
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Yanqing Lu
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| |
Collapse
|
13
|
Kim J, Im JH, So S, Choi Y, Kang H, Lim B, Lee M, Kim YK, Rho J. Dynamic Hyperspectral Holography Enabled by Inverse-Designed Metasurfaces with Oblique Helicoidal Cholesterics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311785. [PMID: 38456592 DOI: 10.1002/adma.202311785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Indexed: 03/09/2024]
Abstract
Metasurfaces are flat arrays of nanostructures that allow exquisite control of phase and amplitude of incident light. Although metasurfaces offer new active element for both fundamental science and applications, the challenge still remains to overcome their low information capacity and passive nature. Here, by integrating an inverse-designed-metasurface with oblique helicoidal cholesteric liquid crystal (ChOH), simultaneous spatial and spectral tunable metasurfaces with a high information capacity for dynamic hyperspectral holography, are demonstrated. The inverse design facilitates a single-phase map encoding of ten independent holographic images at different wavelengths. ChOH provides precise spectral modulation with narrow bandwidth and wide tunable regime in response to programmed stimuli, thus enabling dynamic switching of the multicolor holography. The results provide simple and generalizable principles for the rational design of interactive metasurfaces that will find numerous applications, including security platform.
Collapse
Affiliation(s)
- Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jun-Hyung Im
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sunae So
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Control and Instrumentation Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Yeongseon Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Bogyu Lim
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Minjae Lee
- Department of Chemistry, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Young-Ki Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea
| |
Collapse
|
14
|
Ma ZY, Liu XJ, Peng YQ, Zhang DS, Liu ZZ, Xiao JJ. On-chip integrated metasystem for spin-dependent multi-channel color holography. OPTICS LETTERS 2024; 49:3114-3117. [PMID: 38824341 DOI: 10.1364/ol.520289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024]
Abstract
On-chip integrated metasurface driven by in-plane guided waves is of great interests in various light-field manipulation applications such as colorful augmented reality and holographic display. However, it remains a challenge to design colorful multichannel holography by a single on-chip metasurface. Here we present metasurfaces integrated on top of a guided-wave photonic slab that achieves multi-channel colorful holographic light display. An end-to-end scheme is used to inverse design the metasurface for projecting off-chip preset multiple patterns. Particular examples are presented for customized patterns that were encoded into the metasurface with a single-cell meta-atom, working simultaneously at RGB color channels and for several different diffractive distances, with polarization dependence. Holographic images are generated at 18 independent channels with such a single-cell metasurface. The proposed design scheme is easy to implement, and the resulting device is viable for fabrication, promising plenty of applications in nanophotonics.
Collapse
|
15
|
Dai P, Su W, Xian Z, Wei X, Tang S, Huang G, Sun C, Han W, Zhu L, You H. Rapid Fabrication of Large-Grain Opal Films and Photonic Crystal Hydrogel Sensors by a Filter Paper-Enhanced Evaporation Chip. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10936-10946. [PMID: 38738863 DOI: 10.1021/acs.langmuir.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Developing a rapid fabrication method for crack-free opal films is a significant challenge with broad applications. We developed a microfluidic platform known as the "filter paper-enhanced evaporation microfluidic chip" (FPEE-chip) for the fabrication of photonic crystal and inverse opal hydrogel (IOPH) films. The chip featured a thin channel formed by bonding double-sided adhesive poly(ethylene terephthalate) with a polymethyl methacrylate cover and a glass substrate. This channel was then filled with nanosphere colloids. The water was guided to evaporate rapidly at the surface of the filter paper, allowing the nanospheres to self-assemble and accumulate within the channel under capillary forces. Experimental results confirmed that the self-assembly method based on the FPEE-chip was a rapid platform for producing high-quality opal, with centimeter-sized opal films achievable in less than an hour. Furthermore, the filter paper altered the stress release mechanism of the opal films during drying, resulting in fewer cracks. This platform was proven capable of producing large-grain, crack-free opal films of up to 30 mm2 in size. We also fabricated crack-free IOPH pH sensors that exhibited color and size responsiveness to pH changes. The coefficient of variation of the gray color distribution for crack-free IOPH ranged from 0.03 to 0.07, which was lower than that of cracked IOPH (ranging from 0.07 to 0.14). Additionally, the grayscale peak value in 1 mm2 of the crack-free IOPH was more than twice that of the cracked IOPH at the same pH. The FPEE-chip demonstrated potential as a candidate for developing vision sensors.
Collapse
Affiliation(s)
| | | | | | - Xiangfu Wei
- Guangxi Vocational and Technical College of Communications, Nanning 530023, Guangxi, P. R. China
| | | | | | | | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | | |
Collapse
|
16
|
Wang B, Wei R, Shi H, Bao Y. Dynamic Spatial-Selective Metasurface with Multiple-Beam Interference. NANO LETTERS 2024; 24:5886-5893. [PMID: 38687301 DOI: 10.1021/acs.nanolett.4c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The emergence of the metasurface has provided a versatile platform for the manipulation of light at the nanoscale. Recent research in metasurfaces has explored a plethora of dynamic control and switching of multifunctionalities, paving the way for innovative applications in fields such as imaging, sensing, and communication. However, current dynamic multifunctional metasurfaces face challenges in terms of functional scalability and selective activation. In this work, we introduce and experimentally demonstrate a strategy that utilizes multiple plane waves to create arbitrary periodic patterns on the metasurface, thus enabling the dynamic and arbitrary spatial-selective activation of its embedded multiplexed functionalities. Furthermore, our strategy facilitates dynamic light control through mechanical translation, as demonstrated by a high-speed, dynamically switchable beam deflection scenario. Our method effectively overcomes the limitations associated with traditional spatially multiplexing techniques, offering greater flexibility and selectivity for dynamic control in multifunctional metasurfaces.
Collapse
Affiliation(s)
- Boyou Wang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Rui Wei
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Hongsheng Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Yanjun Bao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| |
Collapse
|
17
|
Xin YH, Hu KM, Yin HZ, Deng XL, Dong ZQ, Yan SZ, Jiang XS, Meng G, Zhang WM. Dynamic Optical Encryption Fueled via Tunable Mechanical Composite Micrograting Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312650. [PMID: 38339884 DOI: 10.1002/adma.202312650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Optical grating devices based on micro/nanostructured functional surfaces are widely employed to precisely manipulate light propagation, which is significant for information technologies, optical data storage, and light sensors. However, the parameters of rigid periodic structures are difficult to tune after manufacturing, which seriously limits their capacity for in situ light manipulation. Here, a novel anti-eavesdropping, anti-damage, and anti-tamper dynamic optical encryption strategy are reported via tunable mechanical composite wrinkle micrograting encryption systems (MCWGES). By mechanically composing multiple in-situ tunable ordered wrinkle gratings, the dynamic keys with large space capacity are generated to obtain encrypted diffraction patterns, which can provide a higher level of security for the encrypted systems. Furthermore, a multiple grating cone diffraction model is proposed to reveal the dynamic optical encryption principle of MCWGES. Optical encryption communication using dynamic keys has the effect of preventing eavesdropping, damage, and tampering. This dynamic encryption method based on optical manipulation of wrinkle grating demonstrates the potential applications of micro/nanostructured functional surfaces in the field of information security.
Collapse
Affiliation(s)
- Yi-Hang Xin
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai-Ming Hu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao-Zhe Yin
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Lu Deng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi-Qi Dong
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu-Zhen Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Song Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guang Meng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen-Ming Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
He G, Zheng Y, Zhou C, Li S, Shi Z, Deng Y, Zhou ZK. Multiplexed manipulation of orbital angular momentum and wavelength in metasurfaces based on arbitrary complex-amplitude control. LIGHT, SCIENCE & APPLICATIONS 2024; 13:98. [PMID: 38678015 PMCID: PMC11055872 DOI: 10.1038/s41377-024-01420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 03/10/2024] [Indexed: 04/29/2024]
Abstract
Due to its unbounded and orthogonal modes, the orbital angular momentum (OAM) is regarded as a key optical degree of freedom (DoF) for future information processing with ultra-high capacity and speed. Although the manipulation of OAM based on metasurfaces has brought about great achievements in various fields, such manipulation currently remains at single-DoF level, which means the multiplexed manipulation of OAM with other optical DoFs is still lacking, greatly hampering the application of OAM beams and advancement of metasurfaces. In order to overcome this challenge, we propose the idea of multiplexed coherent pixel (MCP) for metasurfaces. This approach enables the manipulation of arbitrary complex-amplitude under incident lights of both plane and OAM waves, on the basis of which we have realized the multiplexed DoF control of OAM and wavelength. As a result, the MCP method expands the types of incident lights which can be simultaneously responded by metasurfaces, enriches the information processing capability of metasurfaces, and creates applications of information encryption and OAM demultiplexer. Our findings not only provide means for the design of high-security and high-capacity metasurfaces, but also raise the control and application level of OAM, offering great potential for multifunctional nanophotonic devices in the future.
Collapse
Affiliation(s)
- Guoli He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaqin Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Changda Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Siyang Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhonghong Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanhui Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhang-Kai Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
19
|
Zheng H, Liu Q, Kravchenko II, Zhang X, Huo Y, Valentine JG. Multichannel meta-imagers for accelerating machine vision. NATURE NANOTECHNOLOGY 2024; 19:471-478. [PMID: 38177276 PMCID: PMC11031328 DOI: 10.1038/s41565-023-01557-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/27/2023] [Indexed: 01/06/2024]
Abstract
Rapid developments in machine vision technology have impacted a variety of applications, such as medical devices and autonomous driving systems. These achievements, however, typically necessitate digital neural networks with the downside of heavy computational requirements and consequent high energy consumption. As a result, real-time decision-making is hindered when computational resources are not readily accessible. Here we report a meta-imager designed to work together with a digital back end to offload computationally expensive convolution operations into high-speed, low-power optics. In this architecture, metasurfaces enable both angle and polarization multiplexing to create multiple information channels that perform positively and negatively valued convolution operations in a single shot. We use our meta-imager for object classification, achieving 98.6% accuracy in handwritten digits and 88.8% accuracy in fashion images. Owing to its compactness, high speed and low power consumption, our approach could find a wide range of applications in artificial intelligence and machine vision applications.
Collapse
Affiliation(s)
- Hanyu Zheng
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Quan Liu
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Ivan I Kravchenko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaomeng Zhang
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuankai Huo
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Jason G Valentine
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
20
|
Zeng P, Yang F, Chen Z, Wei Y, Cao A, Wen L, Zhong S, Wang Y, Zhang T, Li Y. Antielectric Potential Synthesis of Plasmonic Au-Ag Multidimensional Dimers Array for High-Resolution Encrypted Information. NANO LETTERS 2024; 24:3793-3800. [PMID: 38484388 DOI: 10.1021/acs.nanolett.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Plasmonic superstructures hold great potential in encrypted information chips but are still unsatisfactory in terms of resolution and maneuverability because of the limited fabrication strategies. Here, we develop an antielectric potential method in which the interfacial energy from the modification of 5-amino-2-mercapto benzimidazole (AMBI) ligand is used to overcome the electric resistance between the Au nanospheres (NSs) and substrate, thereby realizing the in situ growth of a Au-Ag heterodimers array in large scale. The morphology, number, and size of Ag domains on Au units can be controlled well by modulating the reaction kinetics and thermodynamics. Experiments and theoretical simulations reveal that patterned 3D Au-2D Ag and 3D Au-3D Ag dimer arrays with line widths of 400 nm exhibit cerulean and cyan colors, respectively, and achieve fine color modulation and ultrahigh information resolution. This work not only develops a facile strategy for fabricating patterned plasmonic superstructures but also pushes the plasmon-based high-resolution encrypted information chip into more complex applications.
Collapse
Affiliation(s)
- Pan Zeng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fan Yang
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Zhiming Chen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ying Wei
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Yifan Wang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
21
|
Ding Z, Su W, Ye L, Zhou Y, Li W, Zou J, Tang B, Yao H. Thermal controlled multi-functional metasurface for freely switching of absorption, reflection, and transmission. Phys Chem Chem Phys 2024; 26:8460-8468. [PMID: 38410887 DOI: 10.1039/d3cp05689a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Metasurfaces have garnered significant attention in recent years due to their substantial electromagnetic (EM) wave manipulation capabilities. However, most previously documented metasurfaces have been limited to controlling just a single EM wave mode, encompassing transmission, reflection, or absorption. Such limitations have impeded the broader applications of metasurfaces. To address this issue, this study introduces a multi-functional metasurface (MFM) in the utilization of Ge2Sb2Te5 (GST), vanadium dioxide (VO2), and graphene. This novel design enables real-time control over the transmission, absorption, and reflection of EM waves as necessitated through thermal control, allowing for seamless transitions from complete transmission to complete reflection. Furthermore, this configuration achieves extensive broadband perfect absorption, spanning up to 1.83 THz. The optical response mechanism of this MFM across distinct operational modes is meticulously analyzed through electric field distribution. Remarkably, this proposed MFM exhibits polarization insensitivity and maintains good optical performance even under conditions of wide-angle incidence. With the ability to switch to different operating modes according to the needs of different environments, the proposed MFM has the potential to be used in a wide range of scenarios, including radar stealth, wireless communications, and military search.
Collapse
Affiliation(s)
- Zhipeng Ding
- College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
| | - Wei Su
- College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
| | - Lipengan Ye
- College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
| | - Yuanhang Zhou
- College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
| | - Wenlong Li
- College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
| | - Jianfei Zou
- College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
| | - Bin Tang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Hongbing Yao
- College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
| |
Collapse
|
22
|
Yuan H, Zhong Z, Zhang B. 9-bit spin- and wavelength-encoded hologram using a hybrid metasurface. OPTICS LETTERS 2024; 49:498-501. [PMID: 38300043 DOI: 10.1364/ol.511078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
Metasurface holographic encryption, with high resolution and strong concealment, is promising for information security. However, traditional metasurface holographic encryption is limited by spin-polarization channels and monochromaticity, restricting the level of security and information capacity. In this Letter, we propose a 9-bit spin- and wavelength-encoded hologram achieved by encoding phase and amplitude information into full spin polarization and primary color channels using a hybrid metasurface. Our hybrid metasurface structure can break the limitations of traditional metasurfaces, significantly increasing the number of encoded channels by an order of magnitude. We believe that this strategy can provide a new, to the best of our knowledge, approach to high-capacity information encoding and encryption.
Collapse
|
23
|
Zhang S, Wang Q, Zeng R, Chang C, Zhang D, Zhuang S. Thermal tuning nanoprinting based on liquid crystal tunable dual-layered metasurfaces for optical information encryption. OPTICS EXPRESS 2024; 32:4639-4649. [PMID: 38297660 DOI: 10.1364/oe.514603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Dynamic tuning metasurfaces represent a significant advancement in optical encryption techniques, enabling highly secure multichannel responses. This paper proposes a liquid crystal (LC) tunable dual-layered metasurface to establish a thermal-encrypted optical platform for information storage. Through the screening of unit cells and coupling of characteristics, a dynamic polarization-dependent beam-steering metasurface is vertically cascaded with an angular multiplexing nanoprinting metasurface, separated by a dielectric layer. By integrating high-birefringence LCs into dual-layered metasurfaces, the cascaded meta-system can achieve dynamic thermal-switching for pre-encoded nanoprinting images. This work provides a promising solution for developing compact dynamic meta-systems for customized optical storage and information encryption.
Collapse
|
24
|
Ko B, Jeon N, Kim J, Kang H, Seong J, Yun S, Badloe T, Rho J. Hydrogels for active photonics. MICROSYSTEMS & NANOENGINEERING 2024; 10:1. [PMID: 38169527 PMCID: PMC10757998 DOI: 10.1038/s41378-023-00609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Conventional photonic devices exhibit static optical properties that are design-dependent, including the material's refractive index and geometrical parameters. However, they still possess attractive optical responses for applications and are already exploited in devices across various fields. Hydrogel photonics has emerged as a promising solution in the field of active photonics by providing primarily deformable geometric parameters in response to external stimuli. Over the past few years, various studies have been undertaken to attain stimuli-responsive photonic devices with tunable optical properties. Herein, we focus on the recent advancements in hydrogel-based photonics and micro/nanofabrication techniques for hydrogels. In particular, fabrication techniques for hydrogel photonic devices are categorized into film growth, photolithography (PL), electron-beam lithography (EBL), and nanoimprint lithography (NIL). Furthermore, we provide insights into future directions and prospects for deformable hydrogel photonics, along with their potential practical applications.
Collapse
Affiliation(s)
- Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Suhyeon Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Trevon Badloe
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673 Republic of Korea
| |
Collapse
|
25
|
Li Y, Ansari MA, Ahmed H, Wang R, Wang G, Chen X. Longitudinally variable 3D optical polarization structures. SCIENCE ADVANCES 2023; 9:eadj6675. [PMID: 37992179 PMCID: PMC10664995 DOI: 10.1126/sciadv.adj6675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Generation and manipulation of three-dimensional (3D) optical polarization structures have received considerable interest because of their distinctive optical features and potential applications. However, the realization of multiple 3D polarization structures in a queue along the light propagation direction has not yet been reported. We propose and experimentally demonstrate a metalens to create longitudinally variable 3D polarization knots. A single metalens can simultaneously generate three distinct 3D polarization knots, which are indirectly validated with a rotating polarizer. The 3D polarization profiles are dynamically modulated by manipulating the linear polarization direction of the incident light. We further showcase the 3D image steganography with the generated 3D polarization structures. The ultrathin nature of metasurfaces and unique properties of the developed metalenses hold promise for lightweight polarization systems applicable to areas such as 3D image steganography and virtual reality.
Collapse
Affiliation(s)
- Yan Li
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
- School of Materials, Zhengzhou University of Aeronautics, Zhengzhou 450015, China
| | - Muhammad Afnan Ansari
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Hammad Ahmed
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Ruoxing Wang
- Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
| | - Guanchao Wang
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Xianzhong Chen
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
26
|
Huang J, Jiang Y, Chen Q, Xie H, Zhou S. Bioinspired thermadapt shape-memory polymer with light-induced reversible fluorescence for rewritable 2D/3D-encoding information carriers. Nat Commun 2023; 14:7131. [PMID: 37932322 PMCID: PMC10628284 DOI: 10.1038/s41467-023-42795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Fluorescent materials have attracted widespread attention for information encryption owing to their stimuli-responsive color-shifting. However, the 2D encoding of fluorescent images poses a risk of information leakage. Herein, inspired by the mimic octopus capable of camouflage by changing colors and shapes, we develop a thermadapt shape-memory fluorescent film (TSFF) for integrating 2D/3D encoding in one system. The TSFF is based on anthracene group with reversible photo-cross-linking and poly (ethylene-co-vinyl acetate) network with thermadapt shape-memory properties. The reversible photo-cross-linking of anthracene is accompanied by repeatable fluorescence-shifting and enables rewritable 2D encoding. Meanwhile, the thermadapt shape-memory properties not only enables the reconfiguration of the permanent shape for creating and erasing 3D patterns, i.e., rewritable 3D information, but also facilitates recoverable shape programming for 3D encoding. This rewritable 2D/3D encoding strategy can enhance information security because only designated inspectors can decode the information by providing sequential heating for shape recovery and UV exposure. Overall, TSFF capable of rewritable 2D/3D encoding will inspire the design of smart materials for high-security information carriers.
Collapse
Affiliation(s)
- Jinhui Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yue Jiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Qiuyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Hui Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China.
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China.
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| |
Collapse
|
27
|
So S, Mun J, Park J, Rho J. Revisiting the Design Strategies for Metasurfaces: Fundamental Physics, Optimization, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206399. [PMID: 36153791 DOI: 10.1002/adma.202206399] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Over the last two decades, the capabilities of metasurfaces in light modulation with subwavelength thickness have been proven, and metasurfaces are expected to miniaturize conventional optical components and add various functionalities. Herein, various metasurface design strategies are reviewed thoroughly. First, the scalar diffraction theory is revisited to provide the basic principle of light propagation. Then, widely used design methods based on the unit-cell approach are discussed. The methods include a set of simplified steps, including the phase-map retrieval and meta-atom unit-cell design. Then, recently emerging metasurfaces that may not be accurately designed using unit-cell approach are introduced. Unconventional metasurfaces are examined where the conventional design methods fail and finally potential design methods for such metasurfaces are discussed.
Collapse
Affiliation(s)
- Sunae So
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jungho Mun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junghyun Park
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, 16678, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
28
|
Moitra P, Xu X, Maruthiyodan Veetil R, Liang X, Mass TWW, Kuznetsov AI, Paniagua-Domínguez R. Electrically Tunable Reflective Metasurfaces with Continuous and Full-Phase Modulation for High-Efficiency Wavefront Control at Visible Frequencies. ACS NANO 2023; 17:16952-16959. [PMID: 37585264 DOI: 10.1021/acsnano.3c04071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
All-dielectric optical metasurfaces can locally control the amplitude and phase of light at the nanoscale, enabling arbitrary wavefront shaping. However, lack of postfabrication tunability has limited the true potential of metasurfaces for many applications. Here, we utilize a thin liquid crystal (LC) layer as a tunable medium surrounding the metasurface to achieve a phase-only spatial light modulator (SLM) with high reflection in the visible frequency, exhibiting active and continuous resonance tuning with associated 2π phase control and uncoupled amplitude. Dynamic wavefront shaping is demonstrated by programming 96 individually addressable electrodes with a small pixel pitch of ∼1 μm. The small pixel size is facilitated by the reduced LC thickness, strongly suppressing cross-talk among pixels. This device is used to demonstrate dynamic beam steering with a wide field-of-view and high absolute diffraction efficiencies. We believe that our demonstration may help realize next-generation, high-resolution SLMs, with wide applications in dynamic holography, tunable optics, and light detection and ranging (LiDAR), to mention a few.
Collapse
Affiliation(s)
- Parikshit Moitra
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xuewu Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Rasna Maruthiyodan Veetil
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xinan Liang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Tobias W W Mass
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Arseniy I Kuznetsov
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ramón Paniagua-Domínguez
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
29
|
Abstract
Metalenses have the potential to revolutionize optical devices into the next generation of consumer devices. Through new inventive strategies, metalenses with advanced functionalities have been released to integrate multiple responses into a single flat device. Here, we design metalenses that are sensitive to the incident spin angular momentum to provide three distinct modes based on the handedness of the incident and transmitted light. Propagation phase is employed to encode a hyperbolic lens phase to the metalens, while geometric phase is exploited for additional spin-selective properties. We experimentally demonstrate two different metalenses: the co-polarized channels function as a standard metalens, while the cross-polarized channels (1) deflect and (2) introduce orbital angular momentum to the transmitted light. We experimentally characterize the metalenses and prove their use for spin-selective imaging of visible light. We envision that such trichannel metalenses could be employed in chiral bioimaging, optical computing, and computer vision.
Collapse
Affiliation(s)
- Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
30
|
Zhang S, Wang Q, Gao X, Zhang D, Zhuang S. Two-level optical encryption platform via an electrically driven liquid-crystal-integrated tri-channel metasurface. OPTICS LETTERS 2023; 48:4125-4128. [PMID: 37527134 DOI: 10.1364/ol.498558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Metasurface-based optical encryption techniques have garnered significant attention due to their ultracompact nature and ability to support multichannel optical responses. Here, we present a liquid-crystal (LC)-integrated metasurface that enables polarized-encrypted amplitude and phase multiplexing. This approach allows for simultaneously realizing trifold displays of both meta-holography and meta-nanoprinting. By combining propagation and geometric phase modulation, we meticulously screen the unit cells of the metasurface, establishing a comprehensive structural dictionary. As a proof-of-concept, we developed an electrically driven advanced optical encryption platform that boasts multifunctional channels and two-level encryption capabilities. This study paves the way for advanced optical encryption and identification techniques.
Collapse
|
31
|
Yang Y, Seong J, Choi M, Park J, Kim G, Kim H, Jeong J, Jung C, Kim J, Jeon G, Lee KI, Yoon DH, Rho J. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. LIGHT, SCIENCE & APPLICATIONS 2023; 12:152. [PMID: 37339970 DOI: 10.1038/s41377-023-01169-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 06/22/2023]
Abstract
Metasurfaces have been continuously garnering attention in both scientific and industrial fields, owing to their unprecedented wavefront manipulation capabilities using arranged subwavelength artificial structures. To date, research has mainly focused on the full control of electromagnetic characteristics, including polarization, phase, amplitude, and even frequencies. Consequently, versatile possibilities of electromagnetic wave control have been achieved, yielding practical optical components such as metalenses, beam-steerers, metaholograms, and sensors. Current research is now focused on integrating the aforementioned metasurfaces with other standard optical components (e.g., light-emitting diodes, charged-coupled devices, micro-electro-mechanical systems, liquid crystals, heaters, refractive optical elements, planar waveguides, optical fibers, etc.) for commercialization with miniaturization trends of optical devices. Herein, this review describes and classifies metasurface-integrated optical components, and subsequently discusses their promising applications with metasurface-integrated optical platforms including those of augmented/virtual reality, light detection and ranging, and sensors. In conclusion, this review presents several challenges and prospects that are prevalent in the field in order to accelerate the commercialization of metasurfaces-integrated optical platforms.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Minseok Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junkyeong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junhyeon Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gyoseon Jeon
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Kyung-Il Lee
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Dong Hyun Yoon
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
| |
Collapse
|
32
|
Liu CC, Hsiao HH, Chang YC. Nonlinear two-photon pumped vortex lasing based on quasi-bound states in the continuum from perovskite metasurface. SCIENCE ADVANCES 2023; 9:eadf6649. [PMID: 37256940 PMCID: PMC10413678 DOI: 10.1126/sciadv.adf6649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
The experimental observation of nonlinear two-photon pumped vortex lasing from perovskite metasurfaces is demonstrated. The vortex lasing beam is based on symmetry-protected quasi-bound states in the continuum (QBICs). The topological charge is estimated to be +1 according to the simulation result. The quality factor and lasing threshold are around 1100 and 4.28 mJ/cm2, respectively. Theoretical analysis reveals that the QBIC mode originates from the magnetic dipole mode. The lasing wavelength can be experimentally designed within a broad spectral range by changing the diameter and periodicity of the metasurface. The finite array size effect of QBIC can affect the quality factor of the lasing and be used to modulate the lasing. Results shown in this study can lead to more complex vortex beam lasing from a single chip and previously unidentified ways to obtain ultrafast modulation of the QBIC lasing via the finite array size effect.
Collapse
Affiliation(s)
- Chi-Ching Liu
- Department of Physics, National Taiwan University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Nano Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Hui-Hsin Hsiao
- Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan
| | - Yun-Chorng Chang
- Department of Physics, National Taiwan University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Nano Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Sun P, Liu B, Liu X, Zhang S, Shen D, Zheng Z. Ultra-broadband holography in visible and infrared regions with full-polarization nondispersive response. OPTICS LETTERS 2023; 48:3083-3086. [PMID: 37262286 DOI: 10.1364/ol.488010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Holography is promising to fully record and reconstruct the fundamental properties of light, while the limitations of working bandwidth, allowed polarization states, and dispersive response impede further advances in the integration level and functionality. Here, we propose an ultra-broadband holography based on twisted nematic liquid crystals (TNLCs), which can efficiently work in both the visible and infrared regions with a working spectrum of over 1000 nm. The underlying physics is that the electric field vector of light through TNLCs can be parallelly manipulated in the broad spectral range, thus enabling to build the ultra-broadband TNLC hologram by dynamic photopatterning. Furthermore, by introducing a simple nematic liquid crystal (NLC) element, the cascaded device allows for an excellent nondispersive polarization-maintaining performance that can adapt to full-polarization incidence. We expect our proposed methodology of holography may inspire new avenues for usages in polarization imaging, augmented/virtual reality display, and optical encryption.
Collapse
|
34
|
Yang Y, Fu H, Su H, Chen S, Wu S, Liang J, Wei T, Wang Y, Zhu S, Zhu J, Zhou L. Sodium-Based Concave Metasurfaces for High Performing Plasmonic Optical Filters by Templated Spin-on-Sodiophobic-Glass. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300272. [PMID: 37015024 DOI: 10.1002/adma.202300272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Optical filters have aroused tremendous excitement in advanced photonic instruments and modern digital displays due to their flexible capability of spectrum manipulation. Plasmonic metasurfaces of narrow bandwidth, high spectral contrast, and robust structure tolerance are highly desired for optical filtration (especially in the visible regime) but rather challenging as large spectral broadening from intrinsic ohmic loss and design/fabrication deviations. Here the high-performing sodium-based metasurfaces are demonstrated for optical filtration across 450 to 750 nm by unique structure design of spatially decoupled concave surfaces and precise fabrication through templated solidification of liquid metals. Thanks to the distinct suppression of metallic loss as well as fabrication tolerance of interfacial structures, the as-prepared concave metasurfaces enable a minimum linewidth of ≈15 nm, a maximal optical contrast of ≈93%, and a high measure-to-design spectral match ratio ≈1500. These results have for the first time pushed the operation wavelengths of sodium-based plasmonic devices from infrared to visible which in turn demonstrates the capability of filling the blank of commercial dielectric optical filters thus far.
Collapse
Affiliation(s)
- Yuhan Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Hanyu Fu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Huanhuan Su
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Shuying Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Shan Wu
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University, Fuyang, 236037, P. R. China
| | - Jie Liang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Tianqi Wei
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Yang Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Lin Zhou
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
35
|
So S, Kim J, Badloe T, Lee C, Yang Y, Kang H, Rho J. Multicolor and 3D Holography Generated by Inverse-Designed Single-Cell Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208520. [PMID: 36575136 DOI: 10.1002/adma.202208520] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/17/2022] [Indexed: 05/17/2023]
Abstract
Metasurface-generated holography has emerged as a promising route for fully reproducing vivid scenes by manipulating the optical properties of light using ultra-compact devices. However, achieving multiple holographic images using a single metasurface is still difficult due to the capacity limit of a single meta-atom. In this work, an inverse design method based on gradient-descent optimization is presented to encode multiple pieces of holographic information into a single metasurface. The proposed method allows the inverse design of single-cell metasurfaces without the need for complex meta-atom design strategies, facilitating high-throughput fabrication using broadband low-loss materials. By exploiting the proposed design method, both multiplane red-green-blue (RGB) color and three-dimensional (3D) holograms are designed and experimentally demonstrated. Multiplane RGB color holograms with nine distinct holograms are achieved, which demonstrate the state-of-the-art data capacity of a phase-only metasurface. The first experimental demonstration of metasurface-generated 3D holograms with completely independent and distinct images in each plane is also presented. The current research findings provide a viable route for practical metasurface-generated holography by demonstrating the high-density holography produced by a single metasurface. It is expected to ultimately lead to optical storage, display, and full-color imaging applications.
Collapse
Affiliation(s)
- Sunae So
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Electro-Mechanical Systems Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chihun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea
| |
Collapse
|
36
|
Yang H, He P, Ou K, Hu Y, Jiang Y, Ou X, Jia H, Xie Z, Yuan X, Duan H. Angular momentum holography via a minimalist metasurface for optical nested encryption. LIGHT, SCIENCE & APPLICATIONS 2023; 12:79. [PMID: 36977672 PMCID: PMC10050323 DOI: 10.1038/s41377-023-01125-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 05/28/2023]
Abstract
Metasurfaces can perform high-performance multi-functional integration by manipulating the abundant physical dimensions of light, demonstrating great potential in high-capacity information technologies. The orbital angular momentum (OAM) and spin angular momentum (SAM) dimensions have been respectively explored as the independent carrier for information multiplexing. However, fully managing these two intrinsic properties in information multiplexing remains elusive. Here, we propose the concept of angular momentum (AM) holography which can fully synergize these two fundamental dimensions to act as the information carrier, via a single-layer, non-interleaved metasurface. The underlying mechanism relies on independently controlling the two spin eigenstates and arbitrary overlaying them in each operation channel, thereby spatially modulating the resulting waveform at will. As a proof of concept, we demonstrate an AM meta-hologram allowing the reconstruction of two sets of holographic images, i.e., the spin-orbital locked and the spin-superimposed ones. Remarkably, leveraging the designed dual-functional AM meta-hologram, we demonstrate a novel optical nested encryption scheme, which is able to achieve parallel information transmission with ultra-high capacity and security. Our work opens a new avenue for optionally manipulating the AM, holding promising applications in the fields of optical communication, information security and quantum science.
Collapse
Affiliation(s)
- Hui Yang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060,, Guangdong, China
| | - Peng He
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kai Ou
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300,, Guangdong Province, China.
| | - Yuting Jiang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiangnian Ou
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Honghui Jia
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300,, Guangdong Province, China
| | - Zhenwei Xie
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060,, Guangdong, China.
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060,, Guangdong, China
| | - Huigao Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300,, Guangdong Province, China.
| |
Collapse
|
37
|
Fu P, Ni PN, Wu B, Pei XZ, Wang QH, Chen PP, Xu C, Kan Q, Chu WG, Xie YY. Metasurface Enabled On-Chip Generation and Manipulation of Vector Beams from Vertical Cavity Surface-Emitting Lasers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204286. [PMID: 36111553 DOI: 10.1002/adma.202204286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Metasurface polarization optics that consist of 2D array of birefringent nano-antennas have proven remarkable capabilities to generate and manipulate vectorial fields with subwavelength resolution and high efficiency. Integrating this new type of metasurface with the standard vertical cavity surface-emitting laser (VCSEL) platform enables an ultracompact and powerful solution to control both phase and polarization properties of the laser on a chip, which allows to structure a VCSEL into vector beams with on-demand wavefronts. Here, this concept is demonstrated by directly generating versatile vector beams from commercially available VCSELs through on-chip integration of high-index dielectric metasurfaces. Experimentally, the versatility of the approach for the development of vectorial VCSELs are validated by implementing a variety of functionalities, including directional emission of multibeam with specified polarizations, vectorial holographic display, and vector vortex beams generations. Notably, the proposed vectorial VCSELs integrated with a single layer of beam shaping metasurface bypass the requirements of multiple cascaded optical components, and thus have the potential to promote the advancements of ultracompact, lightweight, and scalable vector beams sources, enriching and expanding the applications of VCSELs in optical communications, laser manipulation and processing, information encryption, and quantum optics.
Collapse
Affiliation(s)
- Pan Fu
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
| | - Pei-Nan Ni
- Faculty of Engineering and Natural Science, Tampere University, Tampere, 33720, Finland
| | - Bo Wu
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
| | - Xian-Zhi Pei
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
| | - Qiu-Hua Wang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Pei-Pei Chen
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Key Laboratory for Nanosystems and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chen Xu
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
| | - Qiang Kan
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Wei-Guo Chu
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Key Laboratory for Nanosystems and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yi-Yang Xie
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
38
|
Zhang Z, Shi H, Wang L, Chen J, Chen X, Yi J, Zhang A, Liu H. Recent Advances in Reconfigurable Metasurfaces: Principle and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:534. [PMID: 36770494 PMCID: PMC9921398 DOI: 10.3390/nano13030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Metasurfaces have shown their great capability to manipulate electromagnetic waves. As a new concept, reconfigurable metasurfaces attract researchers' attention. There are many kinds of reconfigurable components, devices and materials that can be loaded on metasurfaces. When cooperating with reconfigurable structures, dynamic control of the responses of metasurfaces are realized under external excitations, offering new opportunities to manipulate electromagnetic waves dynamically. This review introduces some common methods to design reconfigurable metasurfaces classified by the techniques they use, such as special materials, semiconductor components and mechanical devices. Specifically, this review provides a comparison among all the methods mentioned and discusses their pros and cons. Finally, based on the unsolved problems in the designs and applications, the challenges and possible developments in the future are discussed.
Collapse
Affiliation(s)
- Ziyang Zhang
- Shaanxi Key Laboratory of Deep Space Exploration Intelligent Information Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hongyu Shi
- Shaanxi Key Laboratory of Deep Space Exploration Intelligent Information Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Luyi Wang
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Juan Chen
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaoming Chen
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jianjia Yi
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Anxue Zhang
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Haiwen Liu
- Shaanxi Key Laboratory of Deep Space Exploration Intelligent Information Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
39
|
Tang L, Cao Y, Shi W, Wang J, Li J, Dong ZG. Spin-selected bifunctional metasurface for grayscale image and metalens. OPTICS LETTERS 2023; 48:407-410. [PMID: 36638469 DOI: 10.1364/ol.479404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
With the extensive research on the Pancharatnam-Berry phase, metasurfaces have been widely designed as various cross-polarized nanodevices for circularly polarized (CP) illumination. However, co- and cross-polarized lights are rarely co-modulated by the metasurface. To fully utilize the transmitted light, we propose a spin-selected bifunctional metasurface composed of arrayed silver nanorods, integrating an amplitude-based grayscale imaging for co-polarized transmission and a phase-based metalens for cross-polarized transmission, under left-handed CP incidence. Moreover, such dual functionalities work well under right-handed CP incidence. Both experiments and simulations demonstrate the bifunctional performance as potential meta-devices.
Collapse
|
40
|
Jang J, Jeong M, Lee J, Kim S, Yun H, Rho J. Planar Optical Cavities Hybridized with Low-Dimensional Light-Emitting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203889. [PMID: 35861661 DOI: 10.1002/adma.202203889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional light-emitting materials have been actively investigated due to their unprecedented optical and optoelectronic properties that are not observed in their bulk forms. However, the emission from low-dimensional light-emitting materials is generally weak and difficult to use in nanophotonic devices without being amplified and engineered by optical cavities. Along with studies on various planar optical cavities over the last decade, the physics of cavity-emitter interactions as well as various integration methods are investigated deeply. These integrations not only enhance the light-matter interaction of the emitters, but also provide opportunities for realizing nanophotonic devices based on the new physics allowed by low-dimensional emitters. In this review, the fundamentals, strengths and weaknesses of various planar optical resonators are first provided. Then, commonly used low-dimensional light-emitting materials such as 0D emitters (quantum dots and upconversion nanoparticles) and 2D emitters (transition-metal dichalcogenide and hexagonal boron nitride) are discussed. The integration of these emitters and cavities and the expect interplay between them are explained in the following chapters. Finally, a comprehensive discussion and outlook of nanoscale cavity-emitter integrated systems is provided.
Collapse
Affiliation(s)
- Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seokwoo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huichang Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
41
|
Liang J, Jin Y, Yu H, Chen X, Zhou L, Huo P, Zhang Y, Ma H, Jiang Y, Zhu B, Xu T, Liu H, Zhu S, Zhu J. Lithium-plasmon-based low-powered dynamic color display. Natl Sci Rev 2023; 10:nwac120. [PMID: 36825119 PMCID: PMC9942666 DOI: 10.1093/nsr/nwac120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Display and power supply have been two essential and independent cornerstones of modern electronics. Here, we report a lithium-plasmon-based low-powered dynamic color display with intrinsic dual functionality (plasmonic display and energy recycling unit) which is a result of the electric-field-driven transformation of nanostructured lithium metals. Dynamic color displays are enabled by plasmonic transformation through electrodeposition (electrostripping) of lithium metals during the charging (discharging) process, while the consumed energy for coloring can be retrieved in the inverse process respectively. Energy recycling of lithium metals brings energy consumption down to 0.390 mW cm-2 (0.105 mW cm-2) for the active (static) coloration state of a proof-of-concept display/battery device, which approaches nearly-zero-energy-consumption in the near-100%-energy-efficiency limit of commercial lithium batteries. Combining the subwavelength feature of plasmonics with effective energy recycling, the lithium-plasmon-based dynamic display offers a promising route towards next-generation integrated photonic devices, with the intriguing advantages of low energy consumption, a small footprint and high resolution.
Collapse
Affiliation(s)
- Jie Liang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yan Jin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Huiling Yu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xinjie Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Lin Zhou
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Pengcheng Huo
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Haiyang Ma
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yi Jiang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Bin Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Ting Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Hui Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
42
|
Dai C, Wang Z, Shi Y, Li Z, Li Z. Scalable Hydrogel-Based Nanocavities for Switchable Meta-Holography with Dynamic Color Printing. NANO LETTERS 2022; 22:9990-9996. [PMID: 36490382 DOI: 10.1021/acs.nanolett.2c03570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Devices used for meta-optics display are currently undergoing a revolutionary transition from static to dynamic. Despite various tuning strategy demonstrations such as mechanical, electrical, optical, and thermal tunings, a longstanding challenge for their practical application has been the achievement of a conveniently accessible real-life tuning scheme for realizing versatile functionality dynamics outside the laboratory. In this study, we demonstrate a practical tuning strategy to realize a dynamic color printing with a switchable meta-holography exhibition based on hydrogel-based nanocavities. On the basis of the inflation sensitivity of a hydrogel to humidity alteration, its transmissive color was notably tuned from 450 to 750 nm. More intriguingly, by controlling the sample dry/immersed states in real time, we successfully enabled dual-channel switchable meta-holography. With the advantages of facile architecture, daily stimulus with large-area modulation, and high chromaticity, our proposed hydrogel-based nanocavities provide a promising path toward tunable display/encryption, optical sensors, and next-generation display technology.
Collapse
Affiliation(s)
- Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zejing Wang
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Yangyang Shi
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zhe Li
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| |
Collapse
|
43
|
Ou X, Zeng T, Zhang Y, Jiang Y, Gong Z, Fan F, Jia H, Duan H, Hu Y. Tunable Polarization-Multiplexed Achromatic Dielectric Metalens. NANO LETTERS 2022; 22:10049-10056. [PMID: 36473130 DOI: 10.1021/acs.nanolett.2c03798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tunable metasurfaces provide a compact and efficient strategy for optical active wavefront shaping. Varifocal metalens is one of the most important applications. However, the existing tunable metalens rarely serves broadband wavelengths restricting their applications in broadband imaging and color display due to chromatic aberration. Herein, an electrically tunable polarization-multiplexed achromatic metalens integrated with twisted nematic liquid crystals (TNLCs) in the visible region is demonstrated. The phase profiles at different wavelengths under two orthogonal polarization channels are customized by the particle swarm optimization algorithm and matched with the dielectric metaunits database to achieve polarization-multiplexed achromatic performance. By combining the broadband linear polarization conversion ability of TNLC, the tunability of varifocal achromatic metalens is realized by applying different voltages. Further, the electrically tunable customized dispersion-manipulated metalens and switchable color metaholograms are demonstrated. The proposed devices will accelerate the application of metasurfaces in broadband zoom imaging, AR/VR displays and spectral detection.
Collapse
Affiliation(s)
- Xiangnian Ou
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Tibin Zeng
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Yi Zhang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Yuting Jiang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Zhongwei Gong
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Fan Fan
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Honghui Jia
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Huigao Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou511300, China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
- Advanced Manufacturing Laboratory of Micro-Nano Optical Devices, Shenzhen Research Institute, Hunan University, Shenzhen518000, China
| |
Collapse
|
44
|
Ni PN, Fu P, Chen PP, Xu C, Xie YY, Genevet P. Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated Jones matrix metasurfaces. Nat Commun 2022; 13:7795. [PMID: 36528625 PMCID: PMC9759547 DOI: 10.1038/s41467-022-34977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Polarization response of artificially structured nano-antennas can be exploited to design innovative optical components, also dubbed "vectorial metasurfaces", for the modulation of phase, amplitude, and polarization with subwavelength spatial resolution. Recent efforts in conceiving Jones matrix formalism led to the advancement of vectorial metasurfaces to independently manipulate any arbitrary phase function of orthogonal polarization states. Here, we are taking advantages of this formalism to design and experimentally validate the performance of CMOS compatible Jones matrix metasurfaces monolithically integrated with standard VCSELs for on-chip spin-decoupling and phase shaping. Our approach enables accessing the optical spin states of VCSELs in an ultra-compact way with previously unattainable phase controllability. By exploiting spin states as a new degree of freedom for laser wavefront engineering, our platform is capable of operating and reading-out the spin-momentum of lasers associated with injected spin carriers, which would potentially play a pivotal role for the development of emerging spin-optoelectronic devices.
Collapse
Affiliation(s)
- Pei-Nan Ni
- grid.450300.2Université Côte d’Azur, CNRS, Centre de Recherche sur l’Hétéro-Epitaxie et ses Applications (CRHEA), Valbonne, France
| | - Pan Fu
- grid.28703.3e0000 0000 9040 3743Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, China
| | - Pei-Pei Chen
- grid.419265.d0000 0004 1806 6075Nanofabrication Laboratory, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, China
| | - Chen Xu
- grid.28703.3e0000 0000 9040 3743Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, China
| | - Yi-Yang Xie
- grid.28703.3e0000 0000 9040 3743Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, China
| | - Patrice Genevet
- grid.450300.2Université Côte d’Azur, CNRS, Centre de Recherche sur l’Hétéro-Epitaxie et ses Applications (CRHEA), Valbonne, France
| |
Collapse
|
45
|
Wang J, Cai W, He H, Cen M, Liu J, Kong D, Luo D, Lu YQ, Liu YJ. Cholesteric liquid crystal-enabled electrically programmable metasurfaces for simultaneous near- and far-field displays. NANOSCALE 2022; 14:17921-17928. [PMID: 36458471 DOI: 10.1039/d2nr05374h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metasurfaces can enable polarization multiplexing of light so as to carry more information. Specific polarized light necessitates bulk polarizers and waveplates, which significantly increases the form size of metasurface devices. We propose an electrically programmable metasurface enabled by dual-frequency cholesteric liquid crystals (DF-CLCs) for simultaneous near- and far-field displays. Moreover, the integrated device can be electrically programmed to demonstrate 6 different optical images by engineering the DF-CLCs with frequency-modulated voltage pulses. Such programmable metasurfaces are potentially useful for many applications including information storage, displays, anti-counterfeiting, and so on.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenfeng Cai
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huilin He
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Mengjia Cen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Delai Kong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
46
|
Wu G, Si L, Xu H, Niu R, Zhuang Y, Sun H, Ding J. Phase-to-pattern inverse design for a fast realization of a functional metasurface by combining a deep neural network and a genetic algorithm. OPTICS EXPRESS 2022; 30:45612-45623. [PMID: 36522964 DOI: 10.1364/oe.478084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Metasurface provides an unprecedented means to manipulate electromagnetic waves within a two-dimensional planar structure. Traditionally, the design of meta-atom follows the pattern-to-phase paradigm, which requires a time-consuming brute-forcing process. In this work, we present a fast inverse meta-atom design method for the phase-to-pattern mapping by combining the deep neural network (DNN) and genetic algorithm (GA). The trained classification DNN with an accuracy of 92% controls the population generated by the GA within an arbitrary preset small phase range, which could greatly enhance the optimization efficiency with less iterations and a higher accuracy. As proof-of-concept demonstrations, two reflective functional metasurfaces including an orbital angular momentum generator and a metalens have been numerically investigated. The simulated results agree very well with the design goals. In addition, the metalens is also experimentally validated. The proposed method could pave a new avenue for the fast design of the meta-atoms and functional meta-devices.
Collapse
|
47
|
Li Z, Wan C, Dai C, Li Z. Immersion-Triggered Active Switch for Spin-Decoupled Meta-Optics Multi-Display. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205041. [PMID: 36316231 DOI: 10.1002/smll.202205041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Meta-optics exhibits many promising applications in various fields of optical displays, imaging, and information encryption. However, heading towards next-generation intelligent displays, its broad implementation is critically restricted by the lack of practical active tuning capability. Beyond the conventional electrical/optical/mechanical/thermal tuning methods, liquid immersion has recently emerged as a facile mechanism for active spectral tuning. To further conquer the challenge in achieving active complicated optical-field manipulation, here, an environment-compliant switch for meta-optics multi-display is originally proposed and experimentally realized via the liquid immersion tuning scheme. By designing the spin-decoupled phase array for left-/right-handed circular polarizations, it flexibly presents quad-fold independent-encoded phase distributions for different medium-relevant and polarization-controlled channels, thus enabling four switchable holographic images through immersion tuning. Such a proposed immersion tuning design is quite a straightforward approach for meta-optics holographic displays, enjoying full-spatial usage, design flexibility, and large-scale facile implementation. Overall, the proposed liquid immersion tuning strategy for a meta-optics multi-display would strongly benefit the practical applications in biochemical sensing, environment-adaptive displays, and information encryption.
Collapse
Affiliation(s)
- Zhe Li
- Electronic Information School, Wuhan University, Wuhan, 430072, P. R. China
| | - Chengwei Wan
- School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
- School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
- Suzhou Institute of Wuhan University, Suzhou, 215123, P. R. China
| |
Collapse
|
48
|
Li M, Hu H, Liu B, Liu X, Zheng ZG, Tian H, Zhu WH. Light-Reconfiguring Inhomogeneous Soft Helical Pitch with Fatigue Resistance and Reversibility. J Am Chem Soc 2022; 144:20773-20784. [DOI: 10.1021/jacs.2c08505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglong Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Binghui Liu
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Liu
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Gang Zheng
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
49
|
Guo X, Li P, Zhong J, Wen D, Wei B, Liu S, Qi S, Zhao J. Stokes meta-hologram toward optical cryptography. Nat Commun 2022; 13:6687. [PMID: 36335215 PMCID: PMC9637117 DOI: 10.1038/s41467-022-34542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022] Open
Abstract
Optical cryptography manifests itself a powerful platform for information security, which involves encrypting secret images into visual patterns. Recently, encryption schemes demonstrated on metasurface platform have revolutionized optical cryptography, as the versatile design concept allows for unrestrained creativity. Despite rapid progresses, most efforts focus on the functionalities of cryptography rather than addressing performance issues, such as deep security, information capacity, and reconstruction quality. Here, we develop an optical encryption scheme by integrating visual cryptography with metasurface-assisted pattern masking, referred to as Stokes meta-hologram. Based on spatially structured polarization pattern masking, Stokes meta-hologram allows multichannel vectorial encryption to mask multiple secret images into unrecognizable visual patterns, and retrieve them following Stokes vector analysis. Further, an asymmetric encryption scheme based on Stokes vector rotation transformation is proposed to settle the inherent problem of the need to share the key in symmetric encryption. Our results show that Stokes meta-hologram can achieve optical cryptography with effectively improved security, and thereby paves a promising pathway toward optical and quantum security, optical communications, and anticounterfeiting. Achieving optical cryptography scheme with both high capacity and security is highly desirable. Here, authors report a Stokes meta-hologram with a hierarchical encryption strategy that allows vector encryptions to produce depth-masked ciphertexts.
Collapse
Affiliation(s)
- Xuyue Guo
- Key Laboratory of light field manipulation and information acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Peng Li
- Key Laboratory of light field manipulation and information acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Jinzhan Zhong
- Key Laboratory of light field manipulation and information acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Dandan Wen
- Key Laboratory of light field manipulation and information acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Bingyan Wei
- Key Laboratory of light field manipulation and information acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Sheng Liu
- Key Laboratory of light field manipulation and information acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shuxia Qi
- Key Laboratory of light field manipulation and information acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jianlin Zhao
- Key Laboratory of light field manipulation and information acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
50
|
Ko B, Badloe T, Yang Y, Park J, Kim J, Jeong H, Jung C, Rho J. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat Commun 2022; 13:6256. [PMID: 36270995 PMCID: PMC9587293 DOI: 10.1038/s41467-022-32987-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
The application of hydrogels in nanophotonics has been restricted due to their low fabrication feasibility and refractive index. Nevertheless, their elasticity and strength are attractive properties for use in flexible, wearable-devices, and their swelling characteristics in response to the relative humidity highlight their potential for use in tunable nanophotonics. We investigate the use of nanostructured polyvinyl alcohol (PVA) using a one-step nanoimprinting technique for tunable and erasable optical security metasurfaces with multiplexed structural coloration and metaholography. The resolution of the PVA nanoimprinting reaches sub-100 nm, with aspect ratios approaching 10. In response to changes in the relative humidity, the PVA nanostructures swell by up to ~35.5%, providing precise wavefront manipulation of visible light. Here, we demonstrate various highly-secure multiplexed optical encryption metasurfaces to display, hide, or destroy encrypted information based on the relative humidity both irreversibly and reversibly. PVA is a hydrogel that has attractive swelling properties for use in tunable photonic applications. Here, the authors exploit PVA with nanoimprint lithography to realize multiplexed optical encryption metasurfaces to display, hide, and destroy encrypted information.
Collapse
Affiliation(s)
- Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeonghoon Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Heonyeong Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea. .,National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea.
| |
Collapse
|