1
|
Di X, Li P, Wang J, Nowak V, Zhi S, Jin M, Liu L, He S. Genome Mining Analysis Uncovers the Previously Unknown Biosynthetic Capacity for Secondary Metabolites in Verrucomicrobia. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1324-1335. [PMID: 39316199 DOI: 10.1007/s10126-024-10374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Bacteria of the phylum Verrucomicrobia is widely distributed in diverse ecological environments. Their limited cultivability has greatly caused the significant knowledge gap surrounding their secondary metabolites and their mediating ecological functions. This study delved into the diversity and novelty of secondary metabolite biosynthetic gene clusters (BGCs) of Verrucomicrobia by employing a gene-first approach to investigate 2323 genomes. A total of 7552 BGCs, which encompassed 3744 terpene, 805 polyketide, 773 non-ribosomal peptide gene clusters, and 1933 BGCs of other biosynthetic origins, were identified. They were further classified into 3887 gene cluster families (GCFs) based on biosynthetic gene similarity clustering, of which only six GCFs contained reference biosynthetic gene clusters in the Minimum Information about a Biosynthetic Gene Cluster (MIBiG), indicating the striking novelty of secondary metabolites in Verrucomicrobia. Notably, 37.8% of these gene clusters were harbored by unclassified species of Verrucomicrobia phyla, members of which were highly abundant in soil environments. Furthermore, our comprehensive analysis also revealed Luteolibacter and Methylacidiphilum as the most prolific genera in terms of BGC abundance and diversity, with the discovery of a conservative and new NRPS-PKS BGC in Luteolibacter. This work not only unveiled the biosynthetic potential and genetic diversity of secondary metabolites of Verrucomicrobia but also provided a fresh insight for the exploration of new bioactive compounds.
Collapse
Affiliation(s)
- Xue Di
- Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Peng Li
- Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jingxuan Wang
- Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Vincent Nowak
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Meiling Jin
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Shenzhen, 518055, Guangdong, China
| | - Liwei Liu
- Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Shan He
- Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315800, Zhejiang, China
| |
Collapse
|
2
|
Zhi Y, Dai C, Fang X, Xiao X, Lu H, Chen F, Chen R, Ma W, Deng Z, Lu L, Liu T. Gene-Directed In Vitro Mining Uncovers the Insect-Repellent Constituent from Mugwort ( Artemisia argyi). J Am Chem Soc 2024. [PMID: 39485326 DOI: 10.1021/jacs.4c08857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Plants contain a vast array of natural products yet to be discovered, particularly those minor bioactive constituents. Identification of these constituents requires a significant amount of plant material, presenting considerable technical challenges. Mugwort (Artemisia argyi) is a widely recognized insect repellent herb, particularly renowned for its extensive usage during the Dragon Boat Festival in China, but the specific constituent responsible for its repellent activity remains unknown. Here, we employed a gene-directed in vitro mining approach to characterize mugwort terpene synthases (TPSs) systematically in a yeast expression system. Based on the establishment of "Terpene synthase-standard library", we have successfully identified 54 terpene products, including a novel compound designated as cyclosantalol. Through activity screening, we have identified that (+)-intermedeol, which presents in trace amount in plants, exhibits significant repellent activity against mosquitoes and ticks. After establishing its safety and efficacy, we then achieved its biosynthetic production in a yeast chassis, with an initial yield of 2.34 g/L. The methodology employed in this study not only identified a highly effective, safe, and commercially viable insect repellent derived from mugwort but also holds promise for uncovering and producing other valuable plant natural products in future research endeavors.
Collapse
Affiliation(s)
- Yao Zhi
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Wuhan Hesheng Technology Co., Ltd., Wuhan 430074, China
| | - Chong Dai
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xueting Fang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaochun Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Fangfang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Rong Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Weihua Ma
- Hubei Hongshan Laboratory, Wuhan 430071, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixin Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Li Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Hongshan Laboratory, Wuhan 430071, China
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Wuhan Hesheng Technology Co., Ltd., Wuhan 430074, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
3
|
Li S, Cai Q, Liu Q, Gong Y, Zhao D, Wan J, Wang D, Shao Y. Effective enhancement of the ability of Monascus pilosus to produce lipid-lowering compound Monacolin K via perturbation of metabolic flux and histone acetylation modification. Food Res Int 2024; 195:114961. [PMID: 39277234 DOI: 10.1016/j.foodres.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Monacolin K (MK), also known as lovastatin, is a polyketide compound with the ability to reduce plasma cholesterol levels and many other bio-activities. Red yeast rice (also named Hongqu) rich in MK derived from Monascus fermentation has attracted widespread attention due to its excellent performance in reducing blood lipids. However, industrial Monascus fermentation suffers from the limitations such as low yield of MK, long fermentation period, and susceptibility to contamination. In this study, we firstly blocked the competitive pathway of MK biosynthesis to create polyketide synthase gene pigA (the key gene responsible for the biosynthesis of Monascus azaphilone pigments) deficient strain A1. Then, based on the strategies to increase precursor supply for MK biosynthesis, acetyl-CoA carboxylase gene acc overexpression strains C1 and C2 were constructed with WT and A1 as the parent, respectively. Finally, histone deacetylase gene hos2 overexpression strain H1 was constructed by perturbation of histone acetylation modification. HPLC detection revealed all these four strains significantly increased their abilities to produce MK. After 14 days of solid-state fermentation, the MK yields of strains A1, C1, C2, and H1 reached 2.03 g/100 g, 1.81 g/100 g, 2.45 g/100 g and 2.52 g/100 g, which increased by 28.5 %, 14.7 %, 43.9 % and 36.1 % compared to WT, respectively. RT-qPCR results showed that overexpression of hos2 significantly increased the expression level of almost all genes responsible for MK biosynthesis after 5-day growth. Overall, the abilities of these strains to produce MK has been greatly improved, and MK production period has been shortened to 14 days from 20 days, providing new approaches for efficient production of Hongqu rich in MK.
Collapse
Affiliation(s)
- Shengfa Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinhua Cai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianrui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunxia Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Deqing Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Danjuan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Barrett SE, Mitchell DA. Advances in lasso peptide discovery, biosynthesis, and function. Trends Genet 2024; 40:950-968. [PMID: 39218755 PMCID: PMC11537843 DOI: 10.1016/j.tig.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Lasso peptides are a large and sequence-diverse class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products characterized by their slip knot-like shape. These unique, highly stable peptides are produced by bacteria for various purposes. Their stability and sequence diversity make them a potentially useful scaffold for biomedically relevant folded peptides. However, many questions remain about lasso peptide biosynthesis, ecological function, and diversification potential for biomedical and agricultural applications. This review discusses new insights and open questions about lasso peptide biosynthesis and biological function. The role that genome mining has played in the development of new methodologies for discovering and diversifying lasso peptides is also discussed.
Collapse
Affiliation(s)
- Susanna E Barrett
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Douglas A Mitchell
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
6
|
Fan J, Wei PL, Li Y, Zhang S, Ren Z, Li W, Yin WB. Developing filamentous fungal chassis for natural product production. BIORESOURCE TECHNOLOGY 2024; 415:131703. [PMID: 39477163 DOI: 10.1016/j.biortech.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for green and sustainable production of high-value chemicals has driven the interest in microbial chassis. Recent advances in synthetic biology and metabolic engineering have reinforced filamentous fungi as promising chassis cells to produce bioactive natural products. Compared to the most used model organisms, Escherichia coli and Saccharomyces cerevisiae, most filamentous fungi are natural producers of secondary metabolites and possess an inherent pre-mRNA splicing system and abundant biosynthetic precursors. In this review, we summarize recent advances in the application of filamentous fungi as chassis cells. Emphasis is placed on strategies for developing a filamentous fungal chassis, including the establishment of mature genetic manipulation and efficient genetic tools, the catalogue of regulatory elements, and the optimization of endogenous metabolism. Furthermore, we provide an outlook on the advanced techniques for further engineering and application of filamentous fungal chassis.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengquan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zedong Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
7
|
Brennan C, Belda-Ferre P, Zuffa S, Charron-Lamoureux V, Mohanty I, Ackermann G, Allaband C, Ambre M, Boyer T, Bryant M, Cantrell K, Gonzalez A, McDonald D, Salido RA, Song SJ, Wright G, Dorrestein PC, Knight R. Clearing the plate: a strategic approach to mitigate well-to-well contamination in large-scale microbiome studies. mSystems 2024; 9:e0098524. [PMID: 39283083 PMCID: PMC11494942 DOI: 10.1128/msystems.00985-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 10/23/2024] Open
Abstract
Large-scale studies are essential to answer questions about complex microbial communities that can be extremely dynamic across hosts, environments, and time points. However, managing acquisition, processing, and analysis of large numbers of samples poses many challenges, with cross-contamination being the biggest obstacle. Contamination complicates analysis and results in sample loss, leading to higher costs and constraints on mixed sample type study designs. While many researchers opt for 96-well plates for their workflows, these plates present a significant issue: the shared seal and weak separation between wells leads to well-to-well contamination. To address this concern, we propose an innovative high-throughput approach, termed as the Matrix method, which employs barcoded Matrix Tubes for sample acquisition. This method is complemented by a paired nucleic acid and metabolite extraction, utilizing 95% (vol/vol) ethanol to stabilize microbial communities and as a solvent for extracting metabolites. Comparative analysis between conventional 96-well plate extractions and the Matrix method, measuring 16S rRNA gene levels via quantitative polymerase chain reaction, demonstrates a notable decrease in well-to-well contamination with the Matrix method. Metagenomics, 16S rRNA gene amplicon sequencing (16S), and untargeted metabolomics analysis via liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed that the Matrix method recovers reproducible microbial and metabolite compositions that can distinguish between subjects. This advancement is critical for large-scale study design as it minimizes well-to-well contamination and technical variation, shortens processing times, and integrates with automated infrastructure for enhancing sample randomization and metadata generation. IMPORTANCE Understanding dynamic microbial communities typically requires large-scale studies. However, handling large numbers of samples introduces many challenges, with cross-contamination being a major issue. It not only complicates analysis but also leads to sample loss and increased costs and restricts diverse study designs. The prevalent use of 96-well plates for nucleic acid and metabolite extractions exacerbates this problem due to their wells having little separation and being connected by a single plate seal. To address this, we propose a new strategy using barcoded Matrix Tubes, showing a significant reduction in cross-contamination compared to conventional plate-based approaches. Additionally, this method facilitates the extraction of both nucleic acids and metabolites from a single tubed sample, eliminating the need to collect separate aliquots for each extraction. This innovation improves large-scale study design by shortening processing times, simplifying analysis, facilitating metadata curation, and producing more reliable results.
Collapse
Affiliation(s)
- Caitriona Brennan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Simone Zuffa
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, USA
| | - Vincent Charron-Lamoureux
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, USA
| | - Ipsita Mohanty
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Madison Ambre
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Tara Boyer
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Kalen Cantrell
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rodolfo A. Salido
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Se Jin Song
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Gillian Wright
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Pieter C. Dorrestein
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Massicard JM, Noel D, Calderari A, Le Jeune A, Pauthenier C, Weissman KJ. Modular Cloning Tools for Streptomyces spp. and Application to the De Novo Biosynthesis of Flavokermesic Acid. ACS Synth Biol 2024; 13:3354-3365. [PMID: 39307986 DOI: 10.1021/acssynbio.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The filamentous Streptomyces are among the most prolific producers of bioactive natural products and are thus attractive chassis for the heterologous expression of native and designed biosynthetic pathways. Although suitable Streptomyces hosts exist, including genetically engineered cluster-free mutants, the approach is currently limited by the relative paucity of synthetic biology tools facilitating the de novo assembly of multicomponent gene clusters. Here, we report a modular system (MoClo) for Streptomyces including a set of adapted vectors and genetic elements, which allow for the construction of complete genetic circuits. Critical functional validation of each of the elements was obtained using the previously reported β-glucuronidase (GusA) reporter system. Furthermore, we provide proof-of-principle for the toolbox inS. albus, demonstrating the efficient assembly of a biosynthetic pathway to flavokermesic acid (FK), an advanced precursor of the commercially valuable carminic acid.
Collapse
Affiliation(s)
| | - Delphine Noel
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - André Le Jeune
- Abolis Biotechnologies, 5 Rue Henri Auguste Desbruères Bâtiment 6, 91030 Évry, France
| | - Cyrille Pauthenier
- Abolis Biotechnologies, 5 Rue Henri Auguste Desbruères Bâtiment 6, 91030 Évry, France
| | | |
Collapse
|
9
|
Ancajas CMF, Oyedele AS, Butt CM, Walker AS. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Prod Rep 2024; 41:1543-1578. [PMID: 38912779 PMCID: PMC11484176 DOI: 10.1039/d4np00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Time span in literature: 1985-early 2024Natural products play a key role in drug discovery, both as a direct source of drugs and as a starting point for the development of synthetic compounds. Most natural products are not suitable to be used as drugs without further modification due to insufficient activity or poor pharmacokinetic properties. Choosing what modifications to make requires an understanding of the compound's structure-activity relationships. Use of structure-activity relationships is commonplace and essential in medicinal chemistry campaigns applied to human-designed synthetic compounds. Structure-activity relationships have also been used to improve the properties of natural products, but several challenges still limit these efforts. Here, we review methods for studying the structure-activity relationships of natural products and their limitations. Specifically, we will discuss how synthesis, including total synthesis, late-stage derivatization, chemoenzymatic synthetic pathways, and engineering and genome mining of biosynthetic pathways can be used to produce natural product analogs and discuss the challenges of each of these approaches. Finally, we will discuss computational methods including machine learning methods for analyzing the relationship between biosynthetic genes and product activity, computer aided drug design techniques, and interpretable artificial intelligence approaches towards elucidating structure-activity relationships from models trained to predict bioactivity from chemical structure. Our focus will be on these latter topics as their applications for natural products have not been extensively reviewed. We suggest that these methods are all complementary to each other, and that only collaborative efforts using a combination of these techniques will result in a full understanding of the structure-activity relationships of natural products.
Collapse
Affiliation(s)
| | | | - Caitlin M Butt
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Schmartz GP, Rehner J, Schuff MJ, Molano LAG, Becker SL, Krawczyk M, Tagirdzhanov A, Gurevich A, Francke R, Müller R, Keller V, Keller A. Exploring microbial diversity and biosynthetic potential in zoo and wildlife animal microbiomes. Nat Commun 2024; 15:8263. [PMID: 39327429 PMCID: PMC11427580 DOI: 10.1038/s41467-024-52669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Understanding human, animal, and environmental microbiota is essential for advancing global health and combating antimicrobial resistance (AMR). We investigate the oral and gut microbiota of 48 animal species in captivity, comparing them to those of wildlife animals. Specifically, we characterize the microbiota composition, metabolic pathways, AMR genes, and biosynthetic gene clusters (BGCs) encoding the production of specialized metabolites. Our results reveal a high diversity of microbiota, with 585 novel species-level genome bins (SGBs) and 484 complete BGCs identified. Functional gene analysis of microbiomes shows diet-dependent variations. Furthermore, by comparing our findings to wildlife-derived microbiomes, we observe the impact of captivity on the animal microbiome, including examples of converging microbiome compositions. Importantly, our study identifies AMR genes against commonly used veterinary antibiotics, as well as resistance to vancomycin, a critical antibiotic in human medicine. These findings underscore the importance of the 'One Health' approach and the potential for zoonotic transmission of pathogenic bacteria and AMR. Overall, our study contributes to a better understanding of the complexity of the animal microbiome and highlights its BGC diversity relevant to the discovery of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Georges P Schmartz
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Jacqueline Rehner
- Institute of Medical Microbiology and Hygiene, 66421 Saarland University, Homburg, Germany
| | - Miriam J Schuff
- Institute of Medical Microbiology and Hygiene, 66421 Saarland University, Homburg, Germany
| | | | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, 66421 Saarland University, Homburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, 66421 Saarland University, Homburg, Germany
| | - Azat Tagirdzhanov
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Alexey Gurevich
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
- Department of Computer Science, Saarland University, 66123, Saarbrücken, Germany
| | | | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Verena Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.
| |
Collapse
|
11
|
Paulo BS, Recchia MJJ, Lee S, Fergusson CH, Romanowski SB, Hernandez A, Krull N, Liu DY, Cavanagh H, Bos A, Gray CA, Murphy BT, Linington RG, Eustaquio AS. Discovery of megapolipeptins by genome mining of a Burkholderiales bacteria collection. Chem Sci 2024; 15:d4sc03594a. [PMID: 39309087 PMCID: PMC11411415 DOI: 10.1039/d4sc03594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Burkholderiales bacteria have emerged as a promising source of structurally diverse natural products that are expected to play important ecological and industrial roles. This order ranks in the top three in terms of predicted natural product diversity from available genomes, warranting further genome sequencing efforts. However, a major hurdle in obtaining the predicted products is that biosynthetic genes are often 'silent' or poorly expressed. Here we report complementary strain isolation, genomics, metabolomics, and synthetic biology approaches to enable natural product discovery. First, we built a collection of 316 rhizosphere-derived Burkholderiales strains over the course of five years. We then selected 115 strains for sequencing using the mass spectrometry pipeline IDBac to avoid strain redundancy. After predicting and comparing the biosynthetic potential of each strain, a biosynthetic gene cluster that was silent in the native Paraburkholderia megapolitana and Paraburkholderia acidicola producers was cloned and activated by heterologous expression in a Burkholderia sp. host, yielding megapolipeptins A and B. Megapolipeptins are unusual polyketide, nonribosomal peptide, and polyunsaturated fatty acid hybrids that show low structural similarity to known natural products, highlighting the advantage of our Burkholderiales genomics-driven and synthetic biology-enabled pipeline to discover novel natural products.
Collapse
Affiliation(s)
- Bruno S Paulo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | | | - Sanghoon Lee
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Claire H Fergusson
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Sean B Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Antonio Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Nyssa Krull
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Hannah Cavanagh
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Allyson Bos
- Department of Biological Sciences, University of New Brunswick Saint John New Brunswick E2L 4L5 Canada
| | - Christopher A Gray
- Department of Biological Sciences, University of New Brunswick Saint John New Brunswick E2L 4L5 Canada
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Alessandra S Eustaquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| |
Collapse
|
12
|
Lu M, Xu J, Wang Z, Wang Y, Wu J, Yang L. In silico mining and identification of a novel lipase from Paenibacillus larvae: Rational protein design for improving catalytic performance. Enzyme Microb Technol 2024; 179:110472. [PMID: 38889604 DOI: 10.1016/j.enzmictec.2024.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Lipases play a vital role in various biological processes, from lipid metabolism to industrial applications. However, the ever-evolving challenges and diverse substrates necessitate the continual exploration of novel high-performance lipases. In this study, we employed an in silico mining approach to search for lipases with potential high sn-1,3 selectivity and catalytic activity. The identified novel lipase, PLL, from Paenibacillus larvae subsp. larvae B-3650 exhibited a specific activity of 111.2 ± 5.5 U/mg towards the substrate p-nitrophenyl palmitate (pNPP) and 6.9 ± 0.8 U/mg towards the substrate olive oil when expressed in Escherichia coli (E. coli). Computational design of cysteine mutations was employed to enhance the catalytic performance of PLL. Superior stability was achieved with the mutant K7C/A386C/H159C/K108C (2M3/2M4), showing an increase in melting temperature (Tm) by 1.9°C, a 2.05-fold prolonged half-life at 45°C, and no decrease in enzyme activity. Another mutant, K7C/A386C/A174C/A243C (2M1/2M3), showed a 4.9-fold enhancement in specific activity without compromising stability. Molecular dynamics simulations were conducted to explore the mechanisms of these two mutants. Mutant 2M3/2M4 forms putative disulfide bonds in the loop region, connecting the N- and C-termini of PLL, thus enhancing overall structural rigidity without impacting catalytic activity. The cysteines introduced in mutant 2M1/2M3 not only form new intramolecular hydrogen bonds but also alter the polarity and volume of the substrate-binding pocket, facilitating the entry of large substrate pNPP. These results highlight an efficient in silico exploration approach for novel lipases, offering a rapid and efficient method for enhancing catalytic performance through rational protein design.
Collapse
Affiliation(s)
- Mengyao Lu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Ziyuan Wang
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yong Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| |
Collapse
|
13
|
Zhang Y, Wu L, Kerr TA, Garg NK, Tang Y. Fragment-Guided Genome Mining of Octacyclic Cyclophane Alkaloids from Fungi. J Am Chem Soc 2024; 146:23933-23942. [PMID: 39140852 PMCID: PMC11390344 DOI: 10.1021/jacs.4c06734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Nature uses compact but functionalized biosynthetic fragments as building blocks to generate complex natural products. To leverage this strategy for the discovery of natural products with new scaffolds, we performed genome mining to identify biosynthetic gene clusters (BGCs) in fungi that embed genes that can synthesize targeted fragments. The three-enzyme pathway that biosynthesizes the strained dityrosine cyclophane in the herquline A pathway was used to identify a large number of potential BGCs that may use the cyclophane as a fragment. Characterization of a conserved BGC from fungal strains led to the isolation of octacyclin A, an octacyclic natural product with an unprecedented structure, including two hetero-[3.3.1]bicycles and a combination of fused, bridged, and macrocyclic rings. Biosynthetic steps leading to octacyclin A were fully elucidated using pathway reconstitution and enzymatic assays, unveiling intriguing chemical logic and new enzymatic reactions in building the octacyclic core. Our work demonstrates the potential utility of fragment-guided genome mining in expanding natural product chemical space.
Collapse
Affiliation(s)
- Yalong Zhang
- Departments of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Lin Wu
- Departments of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Tyler A Kerr
- Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yi Tang
- Departments of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Chihomvu P, Ganesan A, Gibbons S, Woollard K, Hayes MA. Phytochemicals in Drug Discovery-A Confluence of Tradition and Innovation. Int J Mol Sci 2024; 25:8792. [PMID: 39201478 PMCID: PMC11354359 DOI: 10.3390/ijms25168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Phytochemicals have a long and successful history in drug discovery. With recent advancements in analytical techniques and methodologies, discovering bioactive leads from natural compounds has become easier. Computational techniques like molecular docking, QSAR modelling and machine learning, and network pharmacology are among the most promising new tools that allow researchers to make predictions concerning natural products' potential targets, thereby guiding experimental validation efforts. Additionally, approaches like LC-MS or LC-NMR speed up compound identification by streamlining analytical processes. Integrating structural and computational biology aids in lead identification, thus providing invaluable information to understand how phytochemicals interact with potential targets in the body. An emerging computational approach is machine learning involving QSAR modelling and deep neural networks that interrelate phytochemical properties with diverse physiological activities such as antimicrobial or anticancer effects.
Collapse
Affiliation(s)
- Patience Chihomvu
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - A. Ganesan
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz 616, Oman;
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, UK;
| | - Martin A. Hayes
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
15
|
Li X, Zhao S, Lu C, Shen Y. New secondary metabolites produced by an engineered strain Streptomyces sp. XZQH13OEΔastC. Nat Prod Res 2024:1-6. [PMID: 39105411 DOI: 10.1080/14786419.2024.2385701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Two previously undescribed alkaloids (1-2), five known alkaloids (3-7) and five cyclodipeptides (8-12) were obtained from an ansatrienin-producing mutant strain Streptomyces sp. XZQH13OEΔ astC. Their structures were elucidated by analysis of the 1D, 2D NMR and ESI HRMS data and by comparison with the reported data. The antibacterial activities of compounds 1-12 were evaluated.
Collapse
Affiliation(s)
- Xiaomei Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengliang Zhao
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Parthasarathy A, Miranda RR, Bedore TJ, Watts LM, Mantravadi PK, Wong NH, Chu J, Adjei JA, Rana AP, Savka MA, Bulman ZP, Borrego EJ, Hudson AO. Interaction of Acinetobacter sp. RIT 592 induces the production of broad-spectrum antibiotics in Exiguobacterium sp. RIT 594. Front Pharmacol 2024; 15:1456027. [PMID: 39148551 PMCID: PMC11324575 DOI: 10.3389/fphar.2024.1456027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the most alarming global public health challenges of the 21st century. Over 3 million antimicrobial-resistant infections occur in the United States annually, with nearly 50,000 cases being fatal. Innovations in drug discovery methods and platforms are crucial to identify novel antibiotics to combat AMR. We present the isolation and characterization of potentially novel antibiotic lead compounds produced by the cross-feeding of two rhizosphere bacteria, Acinetobacter sp. RIT 592 and Exiguobacterium sp. RIT 594. We used solid-phase extraction (SPE) followed by liquid chromatography (LC) to enrich antibiotic extracts and subsequently mass spectrometry (MS) analysis of collected fractions for compound structure identification and characterization. The MS data were processed through the Global Natural Product Social Molecular Networking (GNPS) database. The supernatant from RIT 592 induced RIT 594 to produce a cocktail of antimicrobial compounds active against Gram-positive and negative bacteria. The GNPS analysis indicated compounds with known antimicrobial activity in the bioactive samples, including oligopeptides and their derivatives. This work emphasizes the utility of microbial community-based platforms to discover novel clinically relevant secondary metabolites. Future work includes further structural characterization and antibiotic activity evaluation of the individual compounds against pathogenic multidrug-resistant (MDR) bacteria.
Collapse
Affiliation(s)
| | - Renata Rezende Miranda
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, United States
| | - T J Bedore
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Lizabeth M Watts
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | | | - Narayan H Wong
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Jonathan Chu
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Joseph A Adjei
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Amisha P Rana
- Department of Pharmacy Practice, University of Illinois at Chicago, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois at Chicago, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Eli J Borrego
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
17
|
Fiedler J, Trottmann F, Ishida K, Ishida-Ito M, Hertweck C. Direct α-Hydroxy Acid Loading onto a Bacterial Thiotemplate Assembly Line via a Multienzyme Gateway. Angew Chem Int Ed Engl 2024; 63:e202405165. [PMID: 38728443 DOI: 10.1002/anie.202405165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/12/2024]
Abstract
Various nonribosomal peptide synthetases (NRPSs) create structural and functional diversity by incorporating α-hydroxy acids into peptide backbones. Trigonic acid, an unusual cyclopropanol-substituted hydroxy acid, is the source of the molecular warhead of malleicyprol, a critical virulence factor of human and animal pathogens of the Burkholderia pseudomallei (BP) group. The process of selecting and loading this building block remained enigmatic as the NRPS module designated for this task is incomplete. Using a combination of bioinformatics, mutational analyses, targeted metabolomics, and in vitro biochemical assays, we show that two trans-acting enzymes are required to load this central building block onto the modular assembly line. An adenylation-thiolation didomain enzyme (BurJ) activates trigonic acid, followed by the translocation of the enzyme-bound α-hydroxy acid thioester by an FkbH-like protein with a mutated phosphatase domain (BurH). This specialized gateway is the first reported direct loading of an α-hydroxy acid onto a bona fide NRPS module in bacteria and expands the synthetic biology toolbox for the site-specific incorporation of non-canonical building blocks. Moreover, insight into the biochemical basis of virulence factor biosynthesis can provide a foundation for developing enzyme inhibitors as anti-virulence therapeutics against BP pathogen infections.
Collapse
Affiliation(s)
- Jonas Fiedler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product, Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product, Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product, Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Mie Ishida-Ito
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product, Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product, Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Natural Product Chemistry, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
18
|
Shen X, Lei C, Zhang A, Wang L, Chen D, Qi L, Hu Y, Chen G, Ran H, Yin WB. Stimulating Novel and Bioactive Metabolite Production by Cocultivation of Two Fungi ─Aspergillus oryzae and Epicoccum dendrobii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39020512 DOI: 10.1021/acs.jafc.4c04764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Fungi produce various bioactive secondary metabolites (SMs) as protective and weaponized tools to enhance survival in shared ecological niches. By mimicking a competitive ecosystem, cocultivation has been proven to be particularly successful in stimulating SM discovery. Here, we reported the identification of four novel metabolites, epiclactones A and B, epioxochromane and aoergostane, from the coculture of two biotechnologically important strains, Aspergillus oryzae and Epicoccum dendrobii. Transcriptome and metabolome analyses revealed widespread silent gene activation during fungal-fungal interaction. The majority of differentially expressed gene clusters were summarized for both strains. Based on these highly activated biosynthetic pathways, we suggested that a bidirectional chemical defense occurred under cocultivation. E. dendrobii enhanced the production of the spore inhibitor, fumigermin. Moreover, A. oryzae highly accumulated the antifungal agent kojic acid with a yield of up to 1.10 g/L. This study provides an excellent example for the discovery of hidden natural products by cocultivation.
Collapse
Affiliation(s)
- Xiangrui Shen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, PR China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chengzhi Lei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Anxin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Denghui Chen
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, PR China
| | - Landa Qi
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, PR China
| | - Yiliang Hu
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, PR China
| | - Guocan Chen
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, PR China
| | - Huomiao Ran
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, PR China
| | - Wen-Bing Yin
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, PR China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
19
|
Li J, Chen B, Fu Z, Mao J, Liu L, Chen X, Zheng M, Wang CY, Wang C, Guo YW, Xu B. Discovery of a terpene synthase synthesizing a nearly non-flexible eunicellane reveals the basis of flexibility. Nat Commun 2024; 15:5940. [PMID: 39009563 PMCID: PMC11250809 DOI: 10.1038/s41467-024-50209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Eunicellane diterpenoids, containing a typical 6,10-bicycle, are bioactive compounds widely present in marine corals, but rarely found in bacteria and plants. The intrinsic macrocycle exhibits innate structural flexibility resulting in dynamic conformational changes. However, the mechanisms controlling flexibility remain unknown. The discovery of a terpene synthase, MicA, that is responsible for the biosynthesis of a nearly non-flexible eunicellane skeleton, enable us to propose a feasible theory about the flexibility in eunicellane structures. Parallel studies of all eunicellane synthases in nature discovered to date, including 2Z-geranylgeranyl diphosphate incubations and density functional theory-based Boltzmann population computations, reveale that a trans-fused bicycle with a 2Z-configuration alkene restricts conformational flexibility resulting in a nearly non-flexible eunicellane skeleton. The catalytic route and the enzymatic mechanism of MicA are also elucidated by labeling experiments, density functional theory calculations, structural analysis of the artificial intelligence-based MicA model, and mutational studies.
Collapse
Affiliation(s)
- Jinfeng Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Bao Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Zunyun Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Jingjing Mao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Shanghai, 200031, China
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijun Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Xiaochen Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Chengyuan Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Shanghai, 200031, China.
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.
| |
Collapse
|
20
|
Mishra R, Kaur P, Soni R, Madan A, Agarwal P, Singh G. Decoding the photoprotection strategies and manipulating cyanobacterial photoprotective metabolites, mycosporine-like amino acids, for next-generation sunscreens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108744. [PMID: 38781638 DOI: 10.1016/j.plaphy.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The most recent evaluation of the impacts of UV-B radiation and depletion of stratospheric ozone points out the need for effective photoprotection strategies for both biological and nonbiological components. To mitigate the disruptive consequences of artificial sunscreens, photoprotective compounds synthesized from gram-negative, oxygenic, and photoautotrophic prokaryote, cyanobacteria have been studied. In a quest to counteract the harmful UV radiation, cyanobacterial species biosynthesize photoprotective metabolites named as mycosporine-like amino acids (MAAs). The investigation of MAAs as potential substitutes for commercial sunscreen compounds is motivated by their inherent characteristics, such as antioxidative properties, water solubility, low molecular weight, and high molar extinction coefficients. These attributes contribute to the stability of MAAs and make them promising candidates for natural alternatives in sunscreen formulations. They are effective at reducing direct damage caused by UV radiation and do not lead to the production of reactive oxygen radicals. In order to better understand the role, ecology, and its application at a commercial scale, tools like genome mining, heterologous expression, and synthetic biology have been explored in this review to develop next-generation sunscreens. Utilizing tactical concepts of bio-nanoconjugate formation for the development of an efficient MAA-nanoparticle conjugate structure would not only give the sunscreen complex stability but would also serve as a promising tool for the production of analogues. This review would provide insight on efforts to produce MAAs by diversifying the biosynthetic pathways, modulating the precursors and stress conditions, and comprehending the gene cluster arrangement for MAA biosynthesis and its application in developing effective sunscreen.
Collapse
Affiliation(s)
- Reema Mishra
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Pritam Kaur
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Renu Soni
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Akanksha Madan
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Preeti Agarwal
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Garvita Singh
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| |
Collapse
|
21
|
Gao Y, Zhong Z, Zhang D, Zhang J, Li YX. Exploring the roles of ribosomal peptides in prokaryote-phage interactions through deep learning-enabled metagenome mining. MICROBIOME 2024; 12:94. [PMID: 38790030 PMCID: PMC11118758 DOI: 10.1186/s40168-024-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.
Collapse
Affiliation(s)
- Ying Gao
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Zheng Zhong
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Dengwei Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Jian Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Yong-Xin Li
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
22
|
Xue Y, Zhou Z, Feng F, Zhao H, Tan S, Li J, Wu S, Ju Z, He S, Ding L. Genomic Analysis of Kitasatospora setae to Explore Its Biosynthetic Potential Regarding Secondary Metabolites. Antibiotics (Basel) 2024; 13:459. [PMID: 38786187 PMCID: PMC11117518 DOI: 10.3390/antibiotics13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Actinomycetes have long been recognized as important sources of clinical antibiotics. However, the exploration of rare actinomycetes, despite their potential for producing bioactive molecules, has remained relatively limited compared to the extensively studied Streptomyces genus. The extensive investigation of Streptomyces species and their natural products has led to a diminished probability of discovering novel bioactive compounds from this group. Consequently, our research focus has shifted towards less explored actinomycetes, beyond Streptomyces, with particular emphasis on Kitasatospora setae (K. setae). The genome of K. setae was annotated and analyzed through whole-genome sequencing using multiple bio-informatics tools, revealing an 8.6 Mbp genome with a 74.42% G + C content. AntiSMASH analysis identified 40 putative biosynthetic gene clusters (BGCs), approximately half of which were recessive and unknown. Additionally, metabolomic mining utilizing mass spectrometry demonstrated the potential for this rare actinomycete to generate numerous bioactive compounds such as glycosides and macrolides, with bafilomycin being the major compound produced. Collectively, genomics- and metabolomics-based techniques confirmed K. setae's potential as a bioactive secondary metabolite producer that is worthy of further exploration.
Collapse
Affiliation(s)
- Yutong Xue
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Zhiyan Zhou
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| | - Fangjian Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Hang Zhao
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Shuangling Tan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Jinling Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Sitong Wu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (S.W.); (Z.J.)
| | - Zhiran Ju
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (S.W.); (Z.J.)
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
23
|
Quan ND, Nguyen NL, Giang TTH, Ngan NTT, Hien NT, Tung NV, Trang NHT, Lien NTK, Nguyen HH. Genome Characteristics of the Endophytic Fungus Talaromyces sp. DC2 Isolated from Catharanthus roseus (L.) G. Don. J Fungi (Basel) 2024; 10:352. [PMID: 38786707 PMCID: PMC11122143 DOI: 10.3390/jof10050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Talaromyces sp. DC2 is an endophytic fungus that was isolated from the stem of Catharanthus roseus (L.) G. Don in Hanoi, Vietnam and is capable of producing vinca alkaloids. This study utilizes the PacBio Sequel technology to completely sequence the whole genome of Talaromyces sp. DC2The genome study revealed that DC2 contains a total of 34.58 Mb spanned by 156 contigs, with a GC content of 46.5%. The identification and prediction of functional protein-coding genes, tRNA, and rRNA were comprehensively predicted and highly annotated using various BLAST databases, including non-redundant (Nr) protein sequence, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Carbohydrate-Active Enzymes (CAZy) databases. The genome of DC2 has a total of 149, 227, 65, 153, 53, and 6 genes responsible for cellulose, hemicellulose, lignin, pectin, chitin, starch, and inulin degradation, respectively. The Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) analyses revealed that strain DC2 possesses 20 biosynthetic gene clusters responsible for producing secondary metabolites. The strain DC2 has also been found to harbor the DDC gene encoding aromatic L-amino acid decarboxylase enzyme. Conclusively, this study has provided a comprehensive understanding of the processes involved in secondary metabolites and the ability of the Talaromyces sp. DC2 strain to degrade plant cell walls.
Collapse
Affiliation(s)
- Nguyen Duc Quan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
| | - Ngoc-Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Tran Thi Huong Giang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Thanh Hien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Hoang Thanh Trang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Huy Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
24
|
Bruna P, Núñez-Montero K, Contreras MJ, Leal K, García M, Abanto M, Barrientos L. Biosynthetic gene clusters with biotechnological applications in novel Antarctic isolates from Actinomycetota. Appl Microbiol Biotechnol 2024; 108:325. [PMID: 38717668 PMCID: PMC11078813 DOI: 10.1007/s00253-024-13154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Actinomycetota have been widely described as valuable sources for the acquisition of secondary metabolites. Most microbial metabolites are produced via metabolic pathways encoded by biosynthetic gene clusters (BGCs). Although many secondary metabolites are not essential for the survival of bacteria, they play an important role in their adaptation and interactions within microbial communities. This is how bacteria isolated from extreme environments such as Antarctica could facilitate the discovery of new BGCs with biotechnological potential. This study aimed to isolate rare Actinomycetota strains from Antarctic soil and sediment samples and identify their metabolic potential based on genome mining and exploration of biosynthetic gene clusters. To this end, the strains were sequenced using Illumina and Oxford Nanopore Technologies platforms. The assemblies were annotated and subjected to phylogenetic analysis. Finally, the BGCs present in each genome were identified using the antiSMASH tool, and the biosynthetic diversity of the Micrococcaceae family was evaluated. Taxonomic annotation revealed that seven strains were new and two were previously reported in the NCBI database. Additionally, BGCs encoding type III polyketide synthases (T3PKS), beta-lactones, siderophores, and non-ribosomal peptide synthetases (NRPS) have been identified, among others. In addition, the sequence similarity network showed a predominant type of BGCs in the family Micrococcaceae, and some genera were distinctly grouped. The BGCs identified in the isolated strains could be associated with applications such as antimicrobials, anticancer agents, and plant growth promoters, among others, positioning them as excellent candidates for future biotechnological applications and innovations. KEY POINTS: • Novel Antarctic rare Actinomycetota strains were isolated from soil and sediments • Genome-based taxonomic affiliation revealed seven potentially novel species • Genome mining showed metabolic potential for novel natural products.
Collapse
Affiliation(s)
- Pablo Bruna
- Programa de Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco, Chile
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile
| | - Kattia Núñez-Montero
- Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Avenida Alemania 1090, Temuco, Chile
- Centro de Investigación en Biotecnología, Departamento de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - María José Contreras
- Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Avenida Alemania 1090, Temuco, Chile
| | - Karla Leal
- Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Avenida Alemania 1090, Temuco, Chile
| | - Matías García
- Programa de Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco, Chile
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile
- Biocontrol Research Laboratory, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - Michel Abanto
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile.
| | - Leticia Barrientos
- Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Avenida Alemania 1090, Temuco, Chile.
| |
Collapse
|
25
|
Dong X, Zhang T, Wu W, Peng Y, Liu X, Han Y, Chen X, Gao Z, Xia J, Shao Z, Greening C. A vast repertoire of secondary metabolites potentially influences community dynamics and biogeochemical processes in cold seeps. SCIENCE ADVANCES 2024; 10:eadl2281. [PMID: 38669328 PMCID: PMC11051675 DOI: 10.1126/sciadv.adl2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
In deep-sea cold seeps, microbial communities thrive on the geological seepage of hydrocarbons and inorganic compounds, differing from photosynthetically driven ecosystems. However, their biosynthetic capabilities remain largely unexplored. Here, we analyzed 81 metagenomes, 33 metatranscriptomes, and 7 metabolomes derived from nine different cold seep areas to investigate their secondary metabolites. Cold seep microbiomes encode diverse and abundant biosynthetic gene clusters (BGCs). Most BGCs are affiliated with understudied bacteria and archaea, including key mediators of methane and sulfur cycling. The BGCs encode diverse antimicrobial compounds that potentially shape community dynamics and various metabolites predicted to influence biogeochemical cycling. BGCs from key players are widely distributed and highly expressed, with their abundance and expression levels varying with sediment depth. Sediment metabolomics reveals unique natural products, highlighting uncharted chemical potential and confirming BGC activity in these sediments. Overall, these results demonstrate that cold seep sediments serve as a reservoir of hidden natural products and sheds light on microbial adaptation in chemosynthetically driven ecosystems.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Tianxueyu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310005, China
| | - Weichao Wu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiangwei Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jinmei Xia
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
26
|
Ji CH, Je HW, Kim H, Kang HS. Promoter engineering of natural product biosynthetic gene clusters in actinomycetes: concepts and applications. Nat Prod Rep 2024; 41:672-699. [PMID: 38259139 DOI: 10.1039/d3np00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Covering 2011 to 2022Low titers of natural products in laboratory culture or fermentation conditions have been one of the challenging issues in natural products research. Many natural product biosynthetic gene clusters (BGCs) are also transcriptionally silent in laboratory culture conditions, making it challenging to characterize the structures and activities of their metabolites. Promoter engineering offers a potential solution to this problem by providing tools for transcriptional activation or optimization of biosynthetic genes. In this review, we summarize the 10 years of progress in promoter engineering approaches in natural products research focusing on the most metabolically talented group of bacteria actinomycetes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
27
|
Harris LA, Saad H, Shelton K, Zhu L, Guo X, Mitchell DA. Tryptophan-Centric Bioinformatics Identifies New Lasso Peptide Modifications. Biochemistry 2024; 63:865-879. [PMID: 38498885 PMCID: PMC11197979 DOI: 10.1021/acs.biochem.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) defined by a macrolactam linkage between the N-terminus and the side chain of an internal aspartic acid or glutamic acid residue. Instead of adopting a branched-cyclic conformation, lasso peptides are "threaded", with the C-terminal tail passing through the macrocycle to present a kinetically trapped rotaxane conformation. The availability of enhanced bioinformatics methods has led to a significant increase in the number of secondary modifications found on lasso peptides. To uncover new ancillary modifications in a targeted manner, a bioinformatic strategy was developed to discover lasso peptides with modifications to tryptophan. This effort identified numerous putative lasso peptide biosynthetic gene clusters with core regions of the precursor peptides enriched in tryptophan. Parsing of these tryptophan (Trp)-rich biosynthetic gene clusters uncovered several putative ancillary modifying enzymes, including halogenases and dimethylallyltransferases expected to act upon Trp. Characterization of two gene products yielded a lasso peptide with two 5-Cl-Trp modifications (chlorolassin) and another bearing 5-dimethylallyl-Trp and 2,3-didehydro-Tyr modifications (wygwalassin). Bioinformatic analysis of the requisite halogenase and dimethylallyltransferase revealed numerous other putative Trp-modified lasso peptides that remain uncharacterized. We anticipate that the Trp-centric strategy reported herein may be useful in discovering ancillary modifications for other RiPP classes and, more generally, guide the functional prediction of enzymes that act on specific amino acids.
Collapse
Affiliation(s)
- Lonnie A. Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hamada Saad
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kyle Shelton
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaorui Guo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
28
|
Suárez‐Moo P, Prieto‐Davó A. Biosynthetic potential of the sediment microbial subcommunities of an unexplored karst ecosystem and its ecological implications. Microbiologyopen 2024; 13:e1407. [PMID: 38593340 PMCID: PMC11003711 DOI: 10.1002/mbo3.1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024] Open
Abstract
Microbial communities from various environments have been studied in the quest for new natural products with a broad range of applications in medicine and biotechnology. We employed an enrichment method and genome mining tools to examine the biosynthetic potential of microbial communities in the sediments of a coastal sinkhole within the karst ecosystem of the Yucatán Peninsula, Mexico. Our investigation led to the detection of 203 biosynthetic gene clusters (BGCs) and 55 secondary metabolites (SMs) within 35 high-quality metagenome-assembled genomes (MAGs) derived from these subcommunities. The most abundant types of BGCs were Terpene, Nonribosomal peptide-synthetase, and Type III polyketide synthase. Some of the in silico identified BGCs and SMs have been previously reported to exhibit biological activities against pathogenic bacteria and fungi. Others could play significant roles in the sinkhole ecosystem, such as iron solubilization and osmotic stress protection. Interestingly, 75% of the BGCs showed no sequence homology with bacterial BGCs previously reported in the MiBIG database. This suggests that the microbial communities in this environment could be an untapped source of genes encoding novel specialized compounds. The majority of the BGCs were identified in pathways found in the genus Virgibacillus, followed by Sporosarcina, Siminovitchia, Rhodococcus, and Halomonas. The latter, along with Paraclostridium and Lysinibacillus, had the highest number of identified BGC types. This study offers fresh insights into the potential ecological role of SMs from sediment microbial communities in an unexplored environment, underscoring their value as a source of novel natural products.
Collapse
Affiliation(s)
- Pablo Suárez‐Moo
- Unidad de Química‐Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoSisalYucatánMéxico
| | - Alejandra Prieto‐Davó
- Unidad de Química‐Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoSisalYucatánMéxico
| |
Collapse
|
29
|
Huang J, Li X, Zhan X, Pan S, Pan C, Li J, Fan S, Zhang L, Du K, Du Z, Zhang J, Huang H, Li J, Zhang H, Qin Z. A Streptomyces species from the ginseng rhizosphere exhibits biocontrol potential. PLANT PHYSIOLOGY 2024; 194:2709-2723. [PMID: 38206193 DOI: 10.1093/plphys/kiae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Plants and their associated microbes live in complicated, changeable, and unpredictable environments. They usually interact with each other in many ways through multidimensional, multiscale, and multilevel coupling manners, leading to challenges in the coexistence of randomness and determinism or continuity and discreteness. Gaining a deeper understanding of these diverse interaction mechanisms can facilitate the development of data-mining theories and methods for complex systems, coupled modeling for systems with different spatiotemporal scales and functional properties, or even a universal theory of information and information interactions. In this study, we use a "closed-loop" model to present a plant-microbe interaction system and describe the probable functions of microbial natural products. Specifically, we report a rhizosphere species, Streptomyces ginsengnesis G7, which produces polyketide lydicamycins and other active metabolites. Interestingly, these distinct molecules have the potential to function both as antibiotics and as herbicides for crop protection. Detailed laboratory experiments conducted in Arabidopsis (Arabidopsis thaliana), combined with a comprehensive bioinformatics analysis, allow us to rationalize a model for this specific plant-microbe interaction process. Our work reveals the benefits of exploring otherwise neglected resources for the identification of potential functional molecules and provides a reference to better understand the system biology of complex ecosystems.
Collapse
Affiliation(s)
- Jiaquan Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xiaojie Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xuanlin Zhan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Shiyu Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Chao Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jixiao Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Liner Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Kehan Du
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhiying Du
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jiayu Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Han Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jie Li
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| |
Collapse
|
30
|
Willetts A. The Role of Dioxygen in Microbial Bio-Oxygenation: Challenging Biochemistry, Illustrated by a Short History of a Long Misunderstood Enzyme. Microorganisms 2024; 12:389. [PMID: 38399793 PMCID: PMC10891995 DOI: 10.3390/microorganisms12020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
A Special Issue of Microorganisms devoted to 'Microbial Biocatalysis and Biodegradation' would be incomplete without some form of acknowledgement of the many important roles that dioxygen-dependent enzymes (principally mono- and dioxygenases) play in relevant aspects of bio-oxygenation. This is reflected by the multiple strategic roles that dioxygen -dependent microbial enzymes play both in generating valuable synthons for chemoenzymatic synthesis and in facilitating reactions that help to drive the global geochemical carbon cycle. A useful insight into this can be gained by reviewing the evolution of the current status of 2,5-diketocamphane 1,2-monooxygenase (EC 1.14.14.108) from (+)-camphor-grown Pseudomonas putida ATCC 17453, the key enzyme that promotes the initial ring cleavage of this natural bicyclic terpene. Over the last sixty years, the perceived nature of this monooxygenase has transmogrified significantly. Commencing in the 1960s, extensive initial studies consistently reported that the enzyme was a monomeric true flavoprotein dependent on both FMNH2 and nonheme iron as bound cofactors. However, over the last decade, all those criteria have changed absolutely, and the enzyme is currently acknowledged to be a metal ion-independent homodimeric flavin-dependent two-component mono-oxygenase deploying FMNH2 as a cosubstrate. That transition is a paradigm of the ever evolving nature of scientific knowledge.
Collapse
Affiliation(s)
- Andrew Willetts
- 4 Sv Ivan, 21400 Sutivan, Croatia;
- Curnow Consultancies, Helston TR13 9PQ, UK
| |
Collapse
|
31
|
Ariaeenejad S, Gharechahi J, Foroozandeh Shahraki M, Fallah Atanaki F, Han JL, Ding XZ, Hildebrand F, Bahram M, Kavousi K, Hosseini Salekdeh G. Precision enzyme discovery through targeted mining of metagenomic data. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:7. [PMID: 38200389 PMCID: PMC10781932 DOI: 10.1007/s13659-023-00426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With the accumulating number of available enzyme sequences and the increasing demand for discovering novel biocatalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic properties. Recent efforts to discover new polysaccharide-degrading enzymes from rumen metagenome data using homology-based searches and machine learning-based models have shown significant promise. Here, we will explore various computational approaches that can be employed to screen and shortlist metagenome-derived enzymes as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme characterization.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Foroozandeh Shahraki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fereshteh Fallah Atanaki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research, Institute (ILRI), Nairobi, 00100, Kenya
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | - Falk Hildebrand
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, Norfolk, UK
- Digital Biology, Earlham Institute, Norwich, Norfolk, UK
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51, Uppsala, Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | | |
Collapse
|
32
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
33
|
Dos Santos Arraes DR, Rodrigues ABL, Sanches PR, Costa Campos CE, Moreira da Silva de Almeida SS, Reis Ferreira Lima J, Dias Lima J, da Silva GA. Bioactive alkaloids from the venom of Dendrobatoidea Cope, 1865: a scoping review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:1-20. [PMID: 37889647 DOI: 10.1080/10937404.2023.2270408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Bioactive compounds derived from secondary metabolism in animals have refined selectivity and potency for certain biological targets. The superfamily Dendrobatoidea is adapted to the dietary sequestration and secretion of toxic alkaloids, which play a role in several biological activities, and thus serve as a potential source for pharmacological and biotechnological applications. This article constitutes a scoping review to understand the trends in experimental research involving bioactive alkaloids derived from Dendrobatoidea based upon scientometric approaches. Forty-eight (48) publications were found in 30 journals in the period of 60 years, between 1962 and 2022. More than 23 structural classes of alkaloids were cited, with 27.63% for batrachotoxins, 13.64% for pyridinics, with an emphasis on epibatidine, 16.36% for pumiliotoxins, and 11.82% for histrionicotoxins. These tests included in vivo (54.9%), in vitro (39.4%), and in silico simulations (5.6%). Most compounds (54.8%) were isolated from skin extracts, whereas the remainder were obtained through molecular synthesis. Thirteen main biological activities were identified, including acetylcholinesterase inhibitors (27.59%), sodium channel inhibitors (12.07%), cardiac (12.07%), analgesic (8.62%), and neuromuscular effects (8.62%). The substances were cited as being of natural origin in the "Dendrobatidae" family, genus "Phyllobates," "Dendrobates," and seven species: Epipedobates tricolor, Phyllobates aurotaenia, Oophaga histrionica, Oophaga pumilio, Phyllobates terribilis, Epipedobates anthonyi, and Ameerega flavopicta. To date, only a few biological activities have been experimentally tested; hence, further studies on the bioprospecting of animal compounds and ecological approaches are needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Janaina Reis Ferreira Lima
- Herpetology Laboratory, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Jucivaldo Dias Lima
- Herpetology Laboratory, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | | |
Collapse
|
34
|
Alas I, Braun DR, Ericksen SS, Salamzade R, Kalan L, Rajski SR, Bugni TS. Micromonosporaceae biosynthetic gene cluster diversity highlights the need for broad-spectrum investigations. Microb Genom 2024; 10:001167. [PMID: 38175683 PMCID: PMC10868606 DOI: 10.1099/mgen.0.001167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Investigations of the bacterial family Micromonosporaceae have enabled the development of secondary metabolites critical to human health. Historical investigation of bacterial families for natural product discovery has focused on terrestrial strains, where time-consuming isolation processes often lead to the rediscovery of known compounds. To investigate the secondary metabolite potential of marine-derived Micromonosporaceae , 38 strains were sequenced, assembled and analysed using antiSMASH and BiG-SLiCE. BiG-SLiCE contains a near-comprehensive dataset of approximately 1.2 million publicly available biosynthetic gene clusters from primarily terrestrial strains. Our marine-derived Micromonosporaceae were directly compared to BiG-SLiCE’s preprocessed database using BiG-SLiCE’s query mode; genetic diversity within our strains was uncovered using BiG-SCAPE and metric multidimensional scaling analysis. Our analysis of marine-derived Micromonosporaceae emphasizes the clear need for broader genomic investigations of marine strains to fully realize their potential as sources of new natural products.
Collapse
Affiliation(s)
- Imraan Alas
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
| | - Spencer S. Ericksen
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI, USA
| | - Rauf Salamzade
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Lindsay Kalan
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI, USA
- Lachman Institute for Pharmaceutical Development, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
35
|
Li X, Gadar-Lopez AE, Chen L, Jayachandran S, Cruz-Morales P, Keasling JD. Mining natural products for advanced biofuels and sustainable bioproducts. Curr Opin Biotechnol 2023; 84:103003. [PMID: 37769513 DOI: 10.1016/j.copbio.2023.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 10/03/2023]
Abstract
Recently, there has been growing interest in the sustainable production of biofuels and bioproducts derived from renewable sources. Natural products, the largest and more structurally diverse group of metabolites, hold significant promise as sources for such bio-based products. However, there are two primary challenges in harnessing natural products' potential: precise mining of biosynthetic gene clusters (BGCs) that can be used as scaffolds or bioparts and their functional expression for biofuel and bioproduct manufacture. In this review, we explore recent advances in the development of bioinformatic tools for BGC mining and the manipulation of various hosts for natural product-based biofuels and bioproducts manufacture. Moreover, we discuss potential strategies for expanding the chemical diversity of biofuels and bioproducts and enhancing their overall yield.
Collapse
Affiliation(s)
- Xiaowei Li
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Adrian E Gadar-Lopez
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Ling Chen
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Sidharth Jayachandran
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark.
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark; Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA 94720, USA; Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
36
|
Rathinam AJ, Santhaseelan H, Dahms HU, Dinakaran VT, Murugaiah SG. Bioprospecting of unexplored halophilic actinobacteria against human infectious pathogens. 3 Biotech 2023; 13:398. [PMID: 37974926 PMCID: PMC10645811 DOI: 10.1007/s13205-023-03812-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/08/2023] [Indexed: 11/19/2023] Open
Abstract
Human pathogenic diseases received much attention recently due to their uncontrolled spread of antimicrobial resistance (AMR) which causes several threads every year. Effective alternate antimicrobials are urgently required to combat those disease causing infectious microbes. Halophilic actinobacteria revealed huge potentials and unexplored cultivable/non-cultivable actinobacterial species producing enormous antimicrobials have been proved in several genomics approaches. Potential gene clusters, PKS and NRPKS from Nocardia, Salinospora, Rhodococcus, and Streptomyces have wide range coding genes of secondary metabolites. Biosynthetic pathways identification via various approaches like genome mining, In silico, OSMAC (one strain many compound) analysis provides better identification of knowing the active metabolites using several databases like AMP, APD and CRAMPR, etc. Genome constellations of actinobacteria particularly the prediction of BGCs (Biosynthetic Gene Clusters) to mine the bioactive molecules such as pigments, biosurfactants and few enzymes have been reported for antimicrobial activity. Saltpan, saltlake, lagoon and haloalkali environment exploring potential actinobacterial strains Micromonospora, Kocuria, Pseudonocardia, and Nocardiopsis revealed several acids and ester derivatives with antimicrobial potential. Marine sediments and marine macro organisms have been found as significant population holders of potential actinobacterial strains. Deadly infectious diseases (IDs) including tuberculosis, ventilator-associated pneumonia and Candidiasis, have been targeted by halo-actinobacterial metabolites with promising results. Methicillin resistant Staphylococus aureus and virus like Encephalitic alphaviruses were potentially targeted by halophilic actinobacterial metabolites by the compound Homoseongomycin from sponge associated antinobacterium. In this review, we discuss the potential antimicrobial properties of various biomolecules extracted from the unexplored halophilic actinobacterial strains specifically against human infectious pathogens along with prospective genomic constellations.
Collapse
Affiliation(s)
- Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Henciya Santhaseelan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | | | | |
Collapse
|
37
|
Carson DV, Zhang Y, So L, Cheung-Lee WL, Cartagena AJ, Darst SA, Link AJ. Discovery, Characterization, and Bioactivity of the Achromonodins: Lasso Peptides Encoded by Achromobacter. JOURNAL OF NATURAL PRODUCTS 2023; 86:2448-2456. [PMID: 37870195 PMCID: PMC10949989 DOI: 10.1021/acs.jnatprod.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Through genome mining efforts, two lasso peptide biosynthetic gene clusters (BGCs) within two different species of Achromobacter, a genus that contains pathogenic organisms that can infect patients with cystic fibrosis, were discovered. Using gene-refactored BGCs in E. coli, these lasso peptides, which were named achromonodin-1 and achromonodin-2, were heterologously expressed. Achromonodin-1 is naturally encoded by certain isolates from the sputum of patients with cystic fibrosis. The NMR structure of achromonodin-1 was determined, demonstrating that it is a threaded lasso peptide with a large loop and short tail structure, reminiscent of previously characterized lasso peptides that inhibit RNA polymerase (RNAP). Achromonodin-1 inhibits RNAP in vitro and has potent, focused activity toward Achromobacter pulmonis, another isolate from the sputum of a cystic fibrosis patient. These efforts expand the repertoire of antimicrobial lasso peptides and provide insights into how Achromobacter isolates from certain ecological niches interact with each other.
Collapse
Affiliation(s)
- Drew V. Carson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Yi Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Larry So
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Wai Ling Cheung-Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Alexis Jaramillo Cartagena
- Laboratory of Molecular Biophysics and Tri-Institutional Training Program in Chemical Biology, Rockefeller University, New York, NY 10065, United States
| | - Seth A. Darst
- Laboratory of Molecular Biophysics and Tri-Institutional Training Program in Chemical Biology, Rockefeller University, New York, NY 10065, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
38
|
Peng Q, Li Y, Fang J, Yu X. Effects of Epigenetic Modification and High Hydrostatic Pressure on Polyketide Synthase Genes and Secondary Metabolites of Alternaria alternata Derived from the Mariana Trench Sediments. Mar Drugs 2023; 21:585. [PMID: 37999409 PMCID: PMC10672368 DOI: 10.3390/md21110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The hadal biosphere is the most mysterious ecosystem on the planet, located in a unique and extreme environment on Earth. To adapt to extreme environmental conditions, hadal microorganisms evolve special strategies and metabolisms to survive and reproduce. However, the secondary metabolites of the hadal microorganisms are poorly understood. In this study, we focused on the isolation and characterization of hadal fungi, screening the potential strains with bioactive natural products. The isolates obtained were detected further for the polyketide synthase (PKS) genes. Two isolates of Alternaria alternata were picked up as the representatives, which had the potential to synthesize active natural products. The epigenetic modifiers were used for the two A. alternata isolates to stimulate functional gene expression in hadal fungi under laboratory conditions. The results showed that the chemical epigenetic modifier, 5-Azacytidine (5-Aza), affected the phenotype, PKS gene expression, production of secondary metabolites, and antimicrobial activity of the hadal fungus A. alternata. The influence of epigenetic modification on natural products was strongest when the concentration of 5-Aza was 50 μM. Furthermore, the modification of epigenetic agents on hadal fungi under high hydrostatic pressure (HHP) of 40 MPa displayed significant effects on PKS gene expression, and also activated the production of new compounds. Our study demonstrates the high biosynthetic potential of cultivable hadal fungi, but also provides evidence for the utility of chemical epigenetic modifiers on active natural products from hadal fungi, providing new ideas for the development and exploitation of microbial resources in extreme environments.
Collapse
Affiliation(s)
| | | | | | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Q.P.)
| |
Collapse
|
39
|
Yin QJ, Ying TT, Zhou ZY, Hu GA, Yang CL, Hua Y, Wang H, Wei B. Species-specificity of the secondary biosynthetic potential in Bacillus. Front Microbiol 2023; 14:1271418. [PMID: 37937215 PMCID: PMC10626522 DOI: 10.3389/fmicb.2023.1271418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Although Bacillus species have produced a wide variety of structurally diverse and biologically active natural products, the secondary biosynthetic potential of Bacillus species is widely underestimated due to the limited number of biosynthetic gene clusters (BGCs) in this genus. The significant variation in the diversity and novelty of BGCs across different species within the Bacillus genus presents a major obstacle to the efficient discovery of novel natural products from Bacillus. Methods In this study, the number of each class of BGCs in all 6,378 high-quality Bacillus genomes was predicted using antiSMASH, the species-specificity of BGC distribution in Bacillus was investigated by Principal component analysis. Then the structural diversity and novelty of the predicted secondary metabolites in Bacillus species with specific BGC distributions were analyzed using molecular networking. Results Our results revealed a certain degree of species-specificity in the distribution of BGCs in Bacillus, which was mainly contributed by siderophore, type III polyketide synthase (T3PKS), and transAT-PKS BGCs. B. wiedmannii, B. thuringiensis, and B. cereus are rich in RiPP-like and siderophore BGCs, but lack T3PKS BGCs, while B. amyloliquefaciens and B. velezensis are abundant in transAT-PKS BGCs. These Bacillus species collectively encode 77,541 BGCs, with NRPS and RiPPs being the two most dominant types, which are further categorized into 4,291 GCFs. Remarkably, approximately 54.5% of GCFs and 93.8% of the predicted metabolite scaffolds are found exclusively in a single Bacillus species. Notably, B. cereus, B. thuringiensis, and B. velezensis exhibit the highest potential for producing species-specific NRPS and PKS bioinformatic natural products. Taking two species-specific NRPS gene clusters as examples, the potential of Bacillus to synthesize novel species-specific natural products is illustrated. Conclusion This study highlights the species-specificity of the secondary biosynthetic potential in Bacillus and provides valuable insights for the targeted discovery of novel natural products from this genus.
Collapse
Affiliation(s)
- Qun-Jian Yin
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Ti-Ti Ying
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitation and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitation and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Gang-Ao Hu
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitation and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Cai-Ling Yang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitation and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Yi Hua
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitation and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitation and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitation and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
40
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
41
|
Chen H, Zhong L, Zhou H, Bai X, Sun T, Wang X, Zhao Y, Ji X, Tu Q, Zhang Y, Bian X. Biosynthesis and engineering of the nonribosomal peptides with a C-terminal putrescine. Nat Commun 2023; 14:6619. [PMID: 37857663 PMCID: PMC10587159 DOI: 10.1038/s41467-023-42387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The broad bioactivities of nonribosomal peptides rely on increasing structural diversity. Genome mining of the Burkholderiales strain Schlegelella brevitalea DSM 7029 leads to the identification of a class of dodecapeptides, glidonins, that feature diverse N-terminal modifications and a uniform putrescine moiety at the C-terminus. The N-terminal diversity originates from the wide substrate selectivity of the initiation module. The C-terminal putrescine moiety is introduced by the unusual termination module 13, the condensation domain directly catalyzes the assembly of putrescine into the peptidyl backbone, and other domains are essential for stabilizing the protein structure. Swapping of this module to another two nonribosomal peptide synthetases leads to the addition of a putrescine to the C-terminus of related nonribosomal peptides, improving their hydrophilicity and bioactivity. This study elucidates the mechanism for putrescine addition and provides further insights to generate diverse and improved nonribosomal peptides by introducing a C-terminal putrescine.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- School of Medicine, Linyi University, Shuangling Road, 276000, Linyi, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiaoqi Ji
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
42
|
Romanowski SB, Lee S, Kunakom S, Paulo BS, Recchia MJJ, Liu DY, Cavanagh H, Linington RG, Eustáquio AS. Identification of the lipodepsipeptide selethramide encoded in a giant nonribosomal peptide synthetase from a Burkholderia bacterium. Proc Natl Acad Sci U S A 2023; 120:e2304668120. [PMID: 37812712 PMCID: PMC10589681 DOI: 10.1073/pnas.2304668120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Bacterial natural products have found many important industrial applications. Yet traditional discovery pipelines often prioritize individual natural product families despite the presence of multiple natural product biosynthetic gene clusters in each bacterial genome. Systematic characterization of talented strains is a means to expand the known natural product space. Here, we report genomics, epigenomics, and metabolomics studies of Burkholderia sp. FERM BP-3421, a soil isolate and known producer of antitumor spliceostatins. Its genome is composed of two chromosomes and two plasmids encoding at least 29 natural product families. Metabolomics studies showed that FERM BP-3421 also produces antifungal aminopyrrolnitrin and approved anticancer romidepsin. From the orphan metabolome features, we connected a lipopeptide of 1,928 Da to an 18-module nonribosomal peptide synthetase encoded as a single gene in chromosome 1. Isolation and structure elucidation led to the identification of selethramide which contains a repeating pattern of serine and leucine and is cyclized at the side chain oxygen of the one threonine residue at position 13. A (R)-3-hydroxybutyric acid moiety decorates the N-terminal serine. Initial attempts to obtain deletion mutants to probe the role of selethramide failed. After acquiring epigenome (methylome) data for FERM BP-3421, we employed a mimicry by methylation strategy that improved DNA transfer efficiency. Mutants defective in selethramide biosynthesis showed reduced surfactant activity and impaired swarming motility that could be chemically complemented with selethramide. This work unveils a lipopeptide that promotes surface motility, establishes improved DNA transfer efficiency, and sets the stage for continued natural product identification from a prolific strain.
Collapse
Affiliation(s)
- Sean B. Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | - Sanghoon Lee
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | - Bruno S. Paulo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | | | - Dennis Y. Liu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Hannah Cavanagh
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Roger G. Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| |
Collapse
|
43
|
Chen H, Bai X, Sun T, Wang X, Zhang Y, Bian X, Zhou H. The Genomic-Driven Discovery of Glutarimide-Containing Derivatives from Burkholderia gladioli. Molecules 2023; 28:6937. [PMID: 37836780 PMCID: PMC10574677 DOI: 10.3390/molecules28196937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Glutarimide-containing polyketides exhibiting potent antitumor and antimicrobial activities were encoded via conserved module blocks in various strains that favor the genomic mining of these family compounds. The bioinformatic analysis of the genome of Burkholderia gladioli ATCC 10248 showed a silent trans-AT PKS biosynthetic gene cluster (BGC) on chromosome 2 (Chr2C8), which was predicted to produce new glutarimide-containing derivatives. Then, the silent polyketide synthase gene cluster was successfully activated via in situ promoter insertion and heterologous expression. As a result, seven glutarimide-containing analogs, including five new ones, gladiofungins D-H (3-7), and two known gladiofungin A/gladiostatin (1) and 2 (named gladiofungin C), were isolated from the fermentation of the activated mutant. Their structures were elucidated through the analysis of HR-ESI-MS and NMR spectroscopy. The structural diversities of gladiofungins may be due to the degradation of the butenolide group in gladiofungin A (1) during the fermentation and extraction process. Bioactivity screening showed that 2 and 4 had moderate anti-inflammatory activities. Thus, genome mining combined with promoter engineering and heterologous expression were proved to be effective strategies for the pathway-specific activation of the silent BGCs for the directional discovery of new natural products.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
- School of Medicine, Linyi University, Shuangling Road, Linyi 276000, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Tao Sun
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Xingyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| |
Collapse
|
44
|
Bader CD, Nichols AL, Yang D, Shen B. Interplay of emerging and established technologies drives innovation in natural product antibiotic discovery. Curr Opin Microbiol 2023; 75:102359. [PMID: 37517368 DOI: 10.1016/j.mib.2023.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
A continued rise of antibiotic resistance and shortages of effective antibiotics necessitate the discovery and development of new antibiotics with novel modes of action (MoAs) against resistant pathogens. While natural products remain the best resource for antibiotic discovery, their exploration faces many challenges, including (i) unknown MoAs, (ii) high rediscovery rates, (iii) tedious isolation and structure elucidation, and (iv) insufficient production for further development. We have identified recent innovations in screening methods, microbiology, bioinformatics, and metabolomics technologies, as well as natural product-inspired synthesis and synthetic biology, that have contributed to new natural product antibiotics in the past two years. We highlight their interplay as the key element for successful applications, driving future opportunities to increase the pool of natural product-based antibacterial antibiotics.
Collapse
Affiliation(s)
- Chantal D Bader
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States
| | - Angela L Nichols
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States; Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States; Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States; Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States; Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States; Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States.
| |
Collapse
|
45
|
Gattoni G, Di Costanzo F, de la Haba RR, Fernández AB, Guerrero-Flores S, Selem-Mojica N, Ventosa A, Corral P. Biosynthetic gene profiling and genomic potential of the novel photosynthetic marine bacterium Roseibaca domitiana. Front Microbiol 2023; 14:1238779. [PMID: 37860137 PMCID: PMC10584327 DOI: 10.3389/fmicb.2023.1238779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023] Open
Abstract
Shifting the bioprospecting targets toward underexplored bacterial groups combined with genome mining studies contributes to avoiding the rediscovery of known compounds by revealing novel, promising biosynthetic gene clusters (BGCs). With the aim of determining the biosynthetic potential of a novel marine bacterium, strain V10T, isolated from the Domitian littoral in Italy, a comparative phylogenomic mining study was performed across related photosynthetic bacterial groups from an evolutionary perspective. Studies on polyphasic and taxogenomics showed that this bacterium constitutes a new species, designated Roseibaca domitiana sp. nov. To date, this genus has only one other validly described species, which was isolated from a hypersaline Antarctic lake. The genomic evolutionary study linked to BGC diversity revealed that there is a close relationship between the phylogenetic distance of the members of the photosynthetic genera Roseibaca, Roseinatronobacter, and Rhodobaca and their BGC profiles, whose conservation pattern allows discriminating between these genera. On the contrary, the rest of the species related to Roseibaca domitiana exhibited an individual species pattern unrelated to genome size or source of isolation. This study showed that photosynthetic strains possess a streamlined content of BGCs, of which 94.34% of the clusters with biotechnological interest (NRPS, PKS, RRE, and RiPP) are completely new. Among these stand out T1PKS, exclusive of R. domitiana V10T, and RRE, highly conserved only in R. domitiana V10T and R. ekhonensis, both categories of BGCs involved in the synthesis of plant growth-promoting compounds and antitumoral compounds, respectively. In all cases, with very low homology with already patented molecules. Our findings reveal the high biosynthetic potential of infrequently cultured bacterial groups, suggesting the need to redirect attention to microbial minorities as a novel and vast source of bioactive compounds still to be exploited.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana B. Fernández
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, Pamplona, Spain
- Research & Development Department, Bioinsectis SL, Navarre, Spain
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Morelia, Mexico
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
46
|
Tanaka Y, Nagano H, Okano M, Kishimoto T, Tatsukawa A, Kunitake H, Fukumoto A, Anzai Y, Arakawa K. Isolation of Hydrazide-alkenes with Different Amino Acid Origins from an Azoxy-alkene-Producing Mutant of Streptomyces rochei 7434AN4. JOURNAL OF NATURAL PRODUCTS 2023; 86:2185-2192. [PMID: 37624992 DOI: 10.1021/acs.jnatprod.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
A triple mutant (strain KA57) of Streptomyces rochei 7434AN4 produces an azoxy-alkene compound, KA57A, which was not detected in a parent strain or other single and double mutants. This strain accumulated several additional minor components, whose structures were elucidated. HPLC analysis of strain KA57 indicated the presence of two UV active components (KA57D1 and KA57D2) as minor components. They exhibited a maximum UV absorbance at 218 nm, whereas a UV absorbance of azoxy-alkene KA57A was detected at 236 nm, suggesting that both KA57D1 and KA57D2 contain a different chromophore from KA57A. KA57D1 has a molecular formula of C12H22N2O2, and NMR analysis revealed KA57D1 is a novel hydrazide-alkene compound, (Z)-N-acetyl-N'-(hex-1-en-1-yl)isobutylhydrazide. Labeling studies indicated that nitrogen Nβ of KA57D1 is derived from l-glutamic acid, and the isobutylamide unit (C-1 to C-3, 2-Me, and Nα) originates from valine. KA57D2 has a molecular formula of C13H24N2O2, and its structure was determined to be (Z)-N-acetyl-N'-(hex-1-en-1-yl)-2-methylbutanehydrazide, in which a 2-methylbutanamide unit was shown to originate from isoleucine. Different biogenesis of the Nα atom (l-serine for KA57A, l-valine for KA57D1, and l-isoleucine for KA57D2) indicates the relaxed substrate recognition for nitrogen-nitrogen bond formation in the biosyntheses of KA57A, KA57D1, and KA57D2.
Collapse
Affiliation(s)
- Yu Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Haruka Nagano
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Mei Okano
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takuya Kishimoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ayaka Tatsukawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Hirofumi Kunitake
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Atsushi Fukumoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Yojiro Anzai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
47
|
Fanele A, Ndlovu SI. Endophytic fungal species Nigrospora oryzae and Alternaria alternata exhibit antimicrobial activity against gram-positive and gram-negative multi-drug resistant clinical bacterial isolates. BMC Complement Med Ther 2023; 23:323. [PMID: 37715184 PMCID: PMC10504728 DOI: 10.1186/s12906-023-04157-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND The emergence of multidrug-resistant pathogens and the lack of new antimicrobial drugs is a major public health concern that needs urgent and innovative solutions. Endophytic fungi living in unique niches such as in endosymbiosis with plants are increasingly drawing attention as alternative sources of novel and chemically diverse compounds with unique mechanisms of action. METHODS In the present study, ten endophytic fungi isolated from the medicinal plant, Sclerocarya birrea were screened for bioactivity against a panel of indicator bacteria. Three bioactive endophytic fungi (strains P02PL2, P02MS1, and P02MS2A) were selected and identified through ITS-rDNA sequencing. The whole broth extracts of the three selected isolates were further screened against contemporary drug-resistant bacterial pathogens. This was followed by partial purification by solid phase extraction and GC-MS analysis of bioactive fractions. RESULTS The bioactive endophytic fungi were identified as Alternaria alternata species (strains P02PL2 and P02MS1) and Nigrospora oryzae (strain P02MS2A). The whole broth extracts from N. oryzae P02MS2A exhibited a MIC of one μg/mL and 16 μg/mL against gram-negative, MDR Pseudomonas 5625574 and gram-positive MRSA 25775 clinical isolates, respectively. After partial purification and GC-MS analysis of whole broth extract from A. alternaria PO2MS1, 2-fluorobenzoic acid heptadecyl was putatively identified as the active compound in fraction C of this extract. This compound was also putatively identified in fraction E of A. alternata P02PL2, fraction B of A. alternata P02MS1 and fraction B of N. oryzae P02MS2A, and interestingly, all these fractions retained activity against the two MDR clinical isolates. CONCLUSION The putative identification of 2-fluorobenzoic acid heptadecyl compound showing a broad-spectrum of activity, more especially against gram-negative MDR contemporary pathogens is highly encouraging in the initiative at developing novel drugs to combat multi-drug resistance.
Collapse
Affiliation(s)
- Asiphe Fanele
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sizwe I Ndlovu
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
48
|
Yan F, Fang J, Ding W, Tang X, Chen X, Ma Z, Wang J. Structurally Diverse Metabolites from the Marine-Derived Streptomyces sp. DS-27 Based on Two Different Culture Conditions. Chem Biodivers 2023; 20:e202301017. [PMID: 37603393 DOI: 10.1002/cbdv.202301017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Nine new compounds, including streptothiomycin A-E (1-5), two cyclopentenones (6, 7), one α-pyrone (8), wailupemycin Q (20), along with sixteen known compounds were identified from a rhizosphere strain Streptomyces sp. DS-27 derived from the marine cordgrass Spartina alterniflora under two different culture conditions. All of the structures were elucidated by extensive analysis of 1D/2D NMR and HR-ESI-MS data. The absolute configurations were determined by NOESY analysis, ECD, specific rotation and GIAO NMR calculations, and DP4+ probability analysis. Bioactivity investigation showed that compounds 5 and 7 exhibited significant inhibitory effects on LPS-induced NO production in a dose-dependent manner, which indicates their anti-inflammatory potential.
Collapse
Affiliation(s)
- Feihang Yan
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Jiebin Fang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Xinyi Tang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Xiaoming Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jinhui Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| |
Collapse
|
49
|
D'Ambrosio HK, Keeler AM, Derbyshire ER. Examination of Secondary Metabolite Biosynthesis in Apicomplexa. Chembiochem 2023; 24:e202300263. [PMID: 37171468 DOI: 10.1002/cbic.202300263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Natural product discovery has traditionally relied on the isolation of small molecules from producing species, but genome-sequencing technology and advances in molecular biology techniques have expanded efforts to a wider array of organisms. Protists represent an underexplored kingdom for specialized metabolite searches despite bioinformatic analysis that suggests they harbor distinct biologically active small molecules. Specifically, pathogenic apicomplexan parasites, responsible for billions of global infections, have been found to possess multiple biosynthetic gene clusters, which hints at their capacity to produce polyketide metabolites. Biochemical studies have revealed unique features of apicomplexan polyketide synthases, but to date, the identity and function of the polyketides synthesized by these megaenzymes remains unknown. Herein, we discuss the potential for specialized metabolite production in protists and the possible evolution of polyketide biosynthetic gene clusters in apicomplexan parasites. We then focus on a polyketide synthase from the apicomplexan Toxoplasma gondii to discuss the unique domain architecture and properties of these proteins when compared to previously characterized systems, and further speculate on the possible functions for polyketides in these pathogenic parasites.
Collapse
Affiliation(s)
- Hannah K D'Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Aaron M Keeler
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
50
|
Huang R, Wang Y, Liu D, Wang S, Lv H, Yan Z. Long-Read Metagenomics of Marine Microbes Reveals Diversely Expressed Secondary Metabolites. Microbiol Spectr 2023; 11:e0150123. [PMID: 37409950 PMCID: PMC10434046 DOI: 10.1128/spectrum.01501-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Microbial secondary metabolites play crucial roles in microbial competition, communication, resource acquisition, antibiotic production, and a variety of other biotechnological processes. The retrieval of full-length BGC (biosynthetic gene cluster) sequences from uncultivated bacteria is difficult due to the technical constraints of short-read sequencing, making it impossible to determine BGC diversity. Using long-read sequencing and genome mining, 339 mainly full-length BGCs were recovered in this study, illuminating the wide range of BGCs from uncultivated lineages discovered in seawater from Aoshan Bay, Yellow Sea, China. Many extremely diverse BGCs were discovered in bacterial phyla such as Proteobacteria, Bacteroidota, Acidobacteriota, and Verrucomicrobiota as well as the previously uncultured archaeal phylum "Candidatus Thermoplasmatota." The data from metatranscriptomics showed that 30.1% of secondary metabolic genes were being expressed, and they also revealed the expression pattern of BGC core biosynthetic genes and tailoring enzymes. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional expression of BGCs in environmental processes. IMPORTANCE Genome mining of metagenomic data has become the preferred method for the bioprospecting of novel compounds by cataloguing secondary metabolite potential. However, the accurate detection of BGCs requires unfragmented genomic assemblies, which have been technically difficult to obtain from metagenomes until recently with new long-read technologies. We used high-quality metagenome-assembled genomes generated from long-read data to determine the biosynthetic potential of microbes found in the surface water of the Yellow Sea. We recovered 339 highly diverse and mostly full-length BGCs from largely uncultured and underexplored bacterial and archaeal phyla. Additionally, we present long-read metagenomic sequencing combined with metatranscriptomic analysis as a potential method for gaining access to the largely underutilized genetic reservoir of specialized metabolite gene clusters in the majority of microbes that are not cultured. The combination of long-read metagenomic and metatranscriptomic analyses is significant because it can more accurately assess the mechanisms of microbial adaptation to the environment through BGC expression based on metatranscriptomic data.
Collapse
Affiliation(s)
- Ranran Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Yafei Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Daixi Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Shaoyu Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Haibo Lv
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China
| |
Collapse
|