1
|
Hemminki K, Kiemeney LA, Morgans AK, Ranniko A, Pichler R, Hemminki O, Culig Z, Mulders P, Bangma CH. Hereditary and Familial Traits in Urological Cancers and Their Underlying Genes. EUR UROL SUPPL 2024; 69:13-20. [PMID: 39314911 PMCID: PMC11416669 DOI: 10.1016/j.euros.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Early recognition of hereditary urological cancers may influence diagnostic and therapeutic decision-making, and potentially alter the fate of patients and family members. Here, we introduce readers to the current knowledge on germline genetic testing and clinical practice in prostate, bladder, renal, and testicular carcinoma. Considering all urological cancer patients, routine inquiries about familial cancer history should become a standard practice in clinical settings. If suspicion arises, patients can opt for two avenues: referral to genetic counseling or undergoing genetic tests after consultation with the treating urologist. Patient summary Tumors of the urogenital tract (prostate, kidney, bladder, and testes) can sometimes be related to genetic mutations that are present in all the cells of the body. Such mutations can be inherited and run in families. Therefore, it is relevant to obtain information on the incidence of all cancers in the family history. The information obtained may initiate genetic testing, leading to the identification of mutations that are related to cancer in the current or next generation. In addition, these mutations may offer alternative treatment options for patients.
Collapse
Affiliation(s)
- Kari Hemminki
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Alicia K. Morgans
- Survivorship Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Antti Ranniko
- Research Program in Systems Oncology and ICAN-Digital Precision Cancer Medicine Flagship, Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Renate Pichler
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Otto Hemminki
- Research Program in Systems Oncology and ICAN-Digital Precision Cancer Medicine Flagship, Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Zoran Culig
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Mulders
- Department of Urology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Chris H. Bangma
- Department of Urology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Ní Leathlobhair M, Frangou A, Kinnersley B, Cornish AJ, Chubb D, Lakatos E, Arumugam P, Gruber AJ, Law P, Tapinos A, Jakobsdottir GM, Peneva I, Sahli A, Smyth EM, Ball RY, Sylva R, Benes K, Stark D, Young RJ, Lee ATJ, Wolverson V, Houlston RS, Sosinsky A, Protheroe A, Murray MJ, Wedge DC, Verrill C. Genomic landscape of adult testicular germ cell tumours in the 100,000 Genomes Project. Nat Commun 2024; 15:9247. [PMID: 39461959 PMCID: PMC11513037 DOI: 10.1038/s41467-024-53193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Testicular germ cell tumours (TGCT), which comprise seminoma and non-seminoma subtypes, are the most common cancers in young men. In this study, we present a comprehensive whole genome sequencing analysis of adult TGCTs. Leveraging samples from participants recruited via the UK National Health Service and data from the Genomics England 100,000 Genomes Project, our results provide an extended description of genomic elements underlying TGCT pathogenesis. This catalogue offers a comprehensive, high-resolution map of copy number alterations, structural variation, and key global genome features, including mutational signatures and analysis of extrachromosomal DNA amplification. This study establishes correlations between genomic alterations and histological diversification, revealing divergent evolutionary trajectories among TGCT subtypes. By reconstructing the chronological order of driver events, we identify a subgroup of adult TGCTs undergoing relatively late whole genome duplication. Additionally, we present evidence that human leukocyte antigen loss is a more prevalent mechanism of immune disruption in seminomas. Collectively, our findings provide valuable insights into the developmental and immune modulatory processes implicated in TGCT pathogenesis and progression.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Anna Frangou
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- University College London Cancer Institute, 72 Huntley Street, London, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Eszter Lakatos
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | | | - Andreas J Gruber
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464, Konstanz, Germany
| | - Philip Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Avraam Tapinos
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - G Maria Jakobsdottir
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Iliana Peneva
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Atef Sahli
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Evie M Smyth
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Richard Y Ball
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Rushan Sylva
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ksenija Benes
- Department of Pathology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Dan Stark
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Robin J Young
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Alexander T J Lee
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Andrew Protheroe
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Matthew J Murray
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Clare Verrill
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Zhang L, Muscat JE, Chinchilli VM, Behura CG. Trends in Cancer Incidence and Mortality in US Adolescents and Young Adults, 2016-2021. Cancers (Basel) 2024; 16:3153. [PMID: 39335125 PMCID: PMC11430075 DOI: 10.3390/cancers16183153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: The incidence rate of early onset-cancer (<50) has increased since 1995. Among younger people, cancers in AYAs (aged 15-39 y) are often biologically distinct tumors from those treated in the pediatric and older adult population. The current study describes trends in the United States for the most recent years including the first year of the COVID-19 epidemic. We aimed to describe the recent incidence and mortality trends of cancers in AYAs (aged 15-39 y). (2) Methods: We used data from the Surveillance, Epidemiology, and End Results (SEER 22) from 1 January 2016 to 31 December 2021. Age-adjusted incidence and mortality rates were assessed by SEER*Stat 8.4.3 for major cancer types by sex, race/ethnicity, age, and metropolitan/nonmetropolitan status. Time trends of age-adjusted incidence and mortality rates were examined by sex and metropolitan/nonmetropolitan status. (3) Results: Age-adjusted overall cancer incidence and mortality rates were stable during this study period. The age-adjusted incidence rates declined significantly for ependymoma, melanoma, carcinomas of lung, bronchus, and trachea, unspecified malignant neoplasms, and non-Hodgkin's lymphoma. Significant increases were found for gastrointestinal tract cancers and non-Kaposi sarcomas. The age-adjusted mortality rate decreased for acute myeloid leukemia, melanoma, carcinomas of liver and intrahepatic bile ducts, kidney and, in women, leukemia. For some cancers, rates differed by sex, race, ethnicity, and geography. Monitoring the rates and time trends of AYA cancer emphasizes the distinct health concern for this age group.
Collapse
Affiliation(s)
- Li Zhang
- Center for Research on Tobacco and Health, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua E Muscat
- Center for Research on Tobacco and Health, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Chandrika G Behura
- Department of Pediatrics, Penn State Children's Hospital, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Ujfaludi Z, Fazekas F, Biró K, Oláh-Németh O, Buzogany I, Sükösd F, Beöthe T, Pankotai T. miR-21, miR-29a, and miR-106b: serum and tissue biomarkers with diagnostic potential in metastatic testicular cancer. Sci Rep 2024; 14:20151. [PMID: 39215008 PMCID: PMC11364861 DOI: 10.1038/s41598-024-70552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The imperative need for sensitive and precise tools is underscored in cancer diagnostics, with biomarkers playing a pivotal role in facilitating early detection and tumor diagnosis. Despite their classical pathological classification, testicular tumors lack valuable markers, emphasizing the necessity to identify and apply serum tumor markers in clinical management. Unfortunately, existing biomarkers exhibit limited sensitivities and specificities. Recent years have witnessed the discovery of novel RNA molecules, presenting a potential breakthrough as diagnostic tools and promising biomarkers. This report presents compelling evidence supporting the detection of early testicular cancer by applying a set of nine microRNAs (miRNAs), establishing them as valuable serum biomarkers for diagnosis. We developed a standardized serum-based measurement protocol and conducted comprehensive statistical analyses on the dataset to underscore the diagnostic accuracy of the miRNA pool. Notably, with a sensitivity exceeding 93%, miR-21, miR-29a, and miR-106b surpass classical serum tumor markers in the context of testicular cancer. Specifically, these miRNAs are poised to enhance clinical decision-making in testicular cancer detection and hold the potential for assessing tumor growth in monitoring chemotherapy outcomes.
Collapse
Affiliation(s)
- Zsuzsanna Ujfaludi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Fruzsina Fazekas
- Department of Urology, Péterfy Sándor street Hospital and Clinic, Budapest, Hungary
| | - Krisztina Biró
- Department of Genitourinary Oncology and Clinical Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Orsolya Oláh-Németh
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, University of Szeged, Szeged, Hungary
| | - Istvan Buzogany
- Department of Urology, Péterfy Sándor street Hospital and Clinic, Budapest, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Beöthe
- Department of Urology, Péterfy Sándor street Hospital and Clinic, Budapest, Hungary.
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, University of Szeged, Szeged, Hungary.
| |
Collapse
|
5
|
Soto-Heras S, Reinacher L, Wang B, Oh JE, Bunnell M, Park CJ, Hess RA, Ko CJ. Cryptorchidism and testicular cancer in the dog: unresolved questions and challenges in translating insights from human studies†. Biol Reprod 2024; 111:269-291. [PMID: 38738783 DOI: 10.1093/biolre/ioae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Cryptorchidism, the failure of one or both testes to descend into the scrotum, and testicular cancer show a strong correlation in both dogs and humans. Yet, long-standing medical debates persist about whether the location of undescended testes directly causes testicular cancer in humans or if both conditions stem from a common origin. Although testicular cancer is a prevalent disease in dogs, even less is known about its cause and correlation with testicular descent in this species. This review investigates the relation between these two disorders in dogs, drawing insights from human studies, and examines key biomarkers identified thus far. In addition, it explores potential causal links, including the impact of temperature on maturing testicular cells and a potential shared genetic origin. Notably, this literature review reveals significant differences between men and dogs in reproductive development, histological and molecular features of testicular tumors, and the prevalence of specific tumor types, such as Sertoli cell tumors in cryptorchid dogs and germ cell tumors in humans. These disparities caution against using dogs as models for human testicular cancer research and underscore the limitations when drawing comparisons between species. The paper concludes by suggesting specific research initiatives to enhance our understanding of the complex interplay between cryptorchidism and testicular cancer in dogs.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Lindsey Reinacher
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Bensen Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ji Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Chan Jin Park
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Rex A Hess
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - CheMyong Jay Ko
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
6
|
Dholaria H, Tran B. Time to diversify: germline exome sequencing for men with testicular germ cell tumour. Transl Androl Urol 2024; 13:1329-1332. [PMID: 39100820 PMCID: PMC11291399 DOI: 10.21037/tau-24-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 08/06/2024] Open
Affiliation(s)
- Hetal Dholaria
- Department of Paediatric Oncology and Hematology, Perth Children’s Hospital, Perth, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Australia
- Paediatrics, School of Medicine, University of Western Australia, Perth, Australia
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
7
|
Pera MF. A brief chronicle of research on human pluripotent stem cells. Bioessays 2024:e2400092. [PMID: 39058898 DOI: 10.1002/bies.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Today, human pluripotent stem cell technologies find widespread application across biomedical research, as models for early human development, as platforms for functional human genomics, as tools for the study of disease, drug screening and toxicology, and as a renewable source of cellular therapeutics for a range of intractable diseases. The foundations of this human pluripotent stem cell revolution rest on advances in a wide range of disciplines, including cancer biology, assisted reproduction, cell culture and organoid technology, somatic cell nuclear transfer, primate embryology, single-cell biology, and gene editing. This review surveys the slow emergence of the study of human pluripotency and the exponential growth of the field during the past several decades.
Collapse
Affiliation(s)
- Martin F Pera
- JAX Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
8
|
Yang Y, Chen Y, Xu S, Guo X, Jia G, Ping J, Shu X, Zhao T, Yuan F, Wang G, Xie Y, Ci H, Liu H, Qi Y, Liu Y, Liu D, Li W, Ye F, Shu XO, Zheng W, Li L, Cai Q, Long J. Integrating muti-omics data to identify tissue-specific DNA methylation biomarkers for cancer risk. Nat Commun 2024; 15:6071. [PMID: 39025880 PMCID: PMC11258330 DOI: 10.1038/s41467-024-50404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
The relationship between tissue-specific DNA methylation and cancer risk remains inadequately elucidated. Leveraging resources from the Genotype-Tissue Expression consortium, here we develop genetic models to predict DNA methylation at CpG sites across the genome for seven tissues and apply these models to genome-wide association study data of corresponding cancers, namely breast, colorectal, renal cell, lung, ovarian, prostate, and testicular germ cell cancers. At Bonferroni-corrected P < 0.05, we identify 4248 CpGs that are significantly associated with cancer risk, of which 95.4% (4052) are specific to a particular cancer type. Notably, 92 CpGs within 55 putative novel loci retain significant associations with cancer risk after conditioning on proximal signals identified by genome-wide association studies. Integrative multi-omics analyses reveal 854 CpG-gene-cancer trios, suggesting that DNA methylation at 309 distinct CpGs might influence cancer risk through regulating the expression of 205 unique cis-genes. These findings substantially advance our understanding of the interplay between genetics, epigenetics, and gene expression in cancer etiology.
Collapse
Affiliation(s)
- Yaohua Yang
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Yaxin Chen
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuai Xu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiang Shu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tianying Zhao
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fangcheng Yuan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gang Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufang Xie
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Ci
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongmo Liu
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yawen Qi
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjun Liu
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Dan Liu
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Li
- Department of Family Medicine, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Coetzee SG, Hazelett DJ. MotifbreakR v2: extended capability and database integration. ARXIV 2024:arXiv:2407.03441v1. [PMID: 39010878 PMCID: PMC11247919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
MotifbreakR is a software tool that scans genetic variants against position weight matrices of transcription factors (TF) to determine the potential for the disruption of TF binding at the site of the variant. It leverages the Bioconductor suite of software packages and annotations to operate across a diverse array of genomes and motif databases. Initially developed to interrogate the effect of single nucleotide variants (common and rare SNVs) on potential TF binding sites, in motifbreakR v2, we have updated the functionality. New features include the ability to query other types of more complex genetic variants, such as short insertions and deletions (indels). This function allows modeling a more extensive array of variants that may have more significant effects on TF binding. Additionally, while TF binding is based partly on sequence preference, predictions of TF binding based on sequence preference alone can indicate many more potential binding events than observed. Adding information from DNA-binding sequencing datasets lends confidence to motif disruption prediction by demonstrating TF binding in cell lines and tissue types. Therefore, motifbreakR implements querying the ReMap2022 database for evidence that a TF matching the disrupted motif binds over the disrupting variant. Finally, in motifbreakR, in addition to the existing interface, we have implemented an R/Shiny graphical user interface to simplify and enhance access to researchers with different skill sets.
Collapse
Affiliation(s)
- Simon G Coetzee
- Department of Computational Biomedicine at Cedars-Sinai Medical Center
| | - Dennis J Hazelett
- Department of Computational Biomedicine at Cedars-Sinai Medical Center
- Cancer Prevention and Control - Samuel Oschin Cancer Center, Cedars-Sinai
| |
Collapse
|
10
|
Fazekas FE, Ujfaludi Z, Biró K, Páhi ZG, Buzogány I, Sükösd F, Pankotai T, Beöthe T. Complex treatment of residual metastatic germ cell cancer: A single center experience. J Biotechnol 2024; 389:61-67. [PMID: 38692356 DOI: 10.1016/j.jbiotec.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Testicular cancer is the most common solid malignancy among men aged 15-35. Radical orchiectomy and platinum-based chemotherapy (BEP) are curative in the majority of patients, including advanced, metastatic cases. According to current urooncology guidelines all non-seminoma patients harbouring post-chemotherapy residual masses of ≥ 1 cm should undergo salvage retroperitoneal lymph node dissection (RPLND). However, only 10% of residual tumors contain viable disease. OBJECTIVE To assess patient outcomes and complications considering different treatment regimens and clinical characteristics. MATERIALS AND METHODS In a retrospective cross-sectional study patients (n=127) who underwent postchemotherapy RPLND between 2007 and 2023 at our referral center were evaluated. The patients received systemic treatment at various oncology centers. The number of BEP cycles received were occasionally different from standard. Only patients with normal postchemotherapy serum tumor markers and primary testicular or extragonadal germ cell neoplasms were included. Treatment groups were established according to the number of BEP cycles received, and the extent of RPLND (bilateral or modified template). Treatment outcomes and complications were assessed. RESULTS Standard 3-4 courses of BEP were received by 100 (78,7%) patients, while 11 (8,7%) patients underwent less, and 16 (12,6%) more courses than standard. On histopathologic evaluation viable germ cell tumor, teratoma, and necrosis/fibrosis was present in 26 (20,5%), 67 (52,7%) and 34 (26,8%) of specimen, respectively. In the 5-6 BEP series subgroup high rate of viable disease (37,5%) was found and significantly more nephrectomies were performed, than other chemotherapy subgroups. Extratesticular GCT, viable disease in residual mass or progression after RPLND indicated lower survival. Mild (Clavien-Dindo I-II) or no postoperative complications were reported in 93,7% of cases. CONCLUSIONS The study suggests no significant benefit from exceeding 3-4 courses of BEP. Timely salvage RPLND should be performed in high volume centers for optimal treatment outcomes with acceptable complication rates. Adherence to the Heidenreich criteria is advisable where practical.
Collapse
Affiliation(s)
| | - Zsuzsanna Ujfaludi
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér, 13, Szeged H-6720, Hungary
| | - Krisztina Biró
- National Institute of Oncology, Dept. of Genitourinary Oncology and Clinical Pharmacology, Budapest, Hungary
| | - Zoltán Gábor Páhi
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, Budapesti út 9, Szeged H-6728, Hungary; Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér, 13, Szeged H-6720, Hungary
| | - István Buzogány
- Péterfy Sándor Hospital, Dept. of Urology, Budapest, Hungary
| | - Farkas Sükösd
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, Budapesti út 9, Szeged H-6728, Hungary; Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér, 13, Szeged H-6720, Hungary.
| | - Tamás Beöthe
- Péterfy Sándor Hospital, Dept. of Urology, Budapest, Hungary.
| |
Collapse
|
11
|
Almstrup K, Rajpert-De Meyts E. Sequencing Identifies Novel Genetic Variants Associated with High-risk Testicular Cancer. Eur Urol 2024; 85:346-347. [PMID: 37271631 DOI: 10.1016/j.eururo.2023.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Affiliation(s)
- Kristian Almstrup
- Department of Growth & Reproduction, Rigshospitalet, Copenhagen University, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth & Reproduction, Rigshospitalet, Copenhagen University, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Pyle LC, Kim J, Bradfield J, Damrauer SM, D'Andrea K, Einhorn LH, Godse R, Hakonarson H, Kanetsky PA, Kember RL, Jacobs LA, Maxwell KN, Rader DJ, Vaughn DJ, Weathers B, Wubbenhorst B, Regeneron Genetics Center Research Team, Cancer Genomics Research Laboratory, Greene MH, Nathanson KL, Stewart DR. Germline Exome Sequencing for Men with Testicular Germ Cell Tumor Reveals Coding Defects in Chromosomal Segregation and Protein-targeting Genes. Eur Urol 2024; 85:337-345. [PMID: 37246069 PMCID: PMC10676450 DOI: 10.1016/j.eururo.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Testicular germ cell tumor (TGCT) is the most common cancer among young White men. TGCT is highly heritable, although there are no known high-penetrance predisposition genes. CHEK2 is associated with moderate TGCT risk. OBJECTIVE To identify coding genomic variants associated with predisposition to TGCT. DESIGN, SETTING, AND PARTICIPANTS The study involved 293 men with familial or bilateral (high risk; HR)-TGCT representing 228 unique families and 3157 cancer-free controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We carried out exome sequencing and gene burden analysis to identify associations with TGCT risk. RESULTS AND LIMITATIONS Gene burden association identified several genes, including loss-of-function variants of NIN and QRSL1. We identified no statistically significant association with the sex- and germ-cell development pathways (hypergeometric overlap test: p = 0.65 for truncating variants, p = 0.47 for all variants) or evidence of associations with the regions previously identified via genome-wide association studies (GWAS). When considering all significant coding variants together with genes associated with TGCT on GWAS, there were associations with three major pathways: mitosis/cell cycle (Gene Ontology identity GO:1903047: observed/expected variant ratio [O/E] 6.17, false discovery rate [FDR] 1.53 × 10-11), co-translational protein targeting (GO:0006613: O/E 18.62, FDR 1.35 × 10-10), and sex differentiation (GO:0007548: O/E 5.25, FDR 1.90 × 10-4). CONCLUSIONS To the best of our knowledge, this study is the largest to date on men with HR-TGCT. As in previous studies, we identified associations with variants for several genes, suggesting multigenic heritability. We identified associations with co-translational protein targeting, and chromosomal segregation and sex determination, identified via GWAS. Our results suggest potentially druggable targets for TGCT prevention or treatment. PATIENT SUMMARY We searched for gene variations that increase the risk of testicular cancer and found numerous new specific variants that contribute to this risk. Our results support the idea that many gene variants inherited together contribute to the risk of testicular cancer.
Collapse
Affiliation(s)
- Louise C Pyle
- Rare Disease Institute, Center for Genetic Medicine, Children's National Hospital, Washington, DC, USA; Department of Precision Medicine, George Washington University, Washington, DC, USA; Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Rama Godse
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rachel L Kember
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda A Jacobs
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N Maxwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Vaughn
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
13
|
Chen Y, Xie Y, Ci H, Cheng Z, Kuang Y, Li S, Wang G, Qi Y, Tang J, Liu D, Li W, Yang Y. Plasma metabolites and risk of seven cancers: a two-sample Mendelian randomization study among European descendants. BMC Med 2024; 22:90. [PMID: 38433226 PMCID: PMC10910673 DOI: 10.1186/s12916-024-03272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND While circulating metabolites have been increasingly linked to cancer risk, the causality underlying these associations remains largely uninterrogated. METHODS We conducted a comprehensive 2-sample Mendelian randomization (MR) study to evaluate the potential causal relationship between 913 plasma metabolites and the risk of seven cancers among European-ancestry individuals. Data on variant-metabolite associations were obtained from a genome-wide association study (GWAS) of plasma metabolites among 14,296 subjects. Data on variant-cancer associations were gathered from large-scale GWAS consortia for breast (N = 266,081), colorectal (N = 185,616), lung (N = 85,716), ovarian (N = 63,347), prostate (N = 140,306), renal cell (N = 31,190), and testicular germ cell (N = 28,135) cancers. MR analyses were performed with the inverse variance-weighted (IVW) method as the primary strategy to identify significant associations at Bonferroni-corrected P < 0.05 for each cancer type separately. Significant associations were subjected to additional scrutiny via weighted median MR, Egger regression, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and reverse MR analyses. Replication analyses were performed using an independent dataset from a plasma metabolite GWAS including 8,129 participants of European ancestry. RESULTS We identified 94 significant associations, suggesting putative causal associations between 66 distinct plasma metabolites and the risk of seven cancers. Remarkably, 68.2% (45) of these metabolites were each associated with the risk of a specific cancer. Among the 66 metabolites, O-methylcatechol sulfate and 4-vinylphenol sulfate demonstrated the most pronounced positive and negative associations with cancer risk, respectively. Genetically proxied plasma levels of these two metabolites were significantly associated with the risk of lung cancer and renal cell cancer, with an odds ratio and 95% confidence interval of 2.81 (2.33-3.37) and 0.49 (0.40-0.61), respectively. None of these 94 associations was biased by weak instruments, horizontal pleiotropy, or reverse causation. Further, 64 of these 94 were eligible for replication analyses, and 54 (84.4%) showed P < 0.05 with association patterns consistent with those shown in primary analyses. CONCLUSIONS Our study unveils plausible causal relationships between 66 plasma metabolites and cancer risk, expanding our understanding of the role of circulating metabolites in cancer genetics and etiology. These findings hold promise for enhancing cancer risk assessment and prevention strategies, meriting further exploration.
Collapse
Affiliation(s)
- Yaxin Chen
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufang Xie
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Ci
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China
| | - Zhengpei Cheng
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, 560 Ray C. Hunt Dr., Rm 4408, Charlottesville, VA, USA
| | - Yongjie Kuang
- Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Shuqing Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China
| | - Gang Wang
- Innovation Laboratory for Precision Diagnostics, Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yawen Qi
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China
| | - Jun Tang
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China.
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yaohua Yang
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, 560 Ray C. Hunt Dr., Rm 4408, Charlottesville, VA, USA.
| |
Collapse
|
14
|
McHugh DJ, Gleeson JP, Feldman DR. Testicular cancer in 2023: Current status and recent progress. CA Cancer J Clin 2024; 74:167-186. [PMID: 37947355 DOI: 10.3322/caac.21819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023] Open
Abstract
Testicular germ cell tumor (GCT) is the most common solid tumor in adolescent and young adult men. Progress in the management of GCT has been made in the last 50 years, with a substantial improvement in cure rates for advanced disease, from 25% in the 1970s to nearly 80%. However, relapsed or platinum-refractory disease occurs in a proportion, 20% of whom will die from disease progression. This article reviews the current evidence-based treatments for extracranial GCT, the acute and chronic toxic effects that may result, and highlights contemporary advances and progress in the field.
Collapse
Affiliation(s)
- Deaglan J McHugh
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medicine, New York, New York, USA
| | - Jack P Gleeson
- Cancer Research, College of Medicine and Health, University College Cork, Cork, Ireland
- Medical Oncology Department, Cork University Hospital, Cork, Ireland
| | - Darren R Feldman
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
15
|
Estevão-Pereira H, Guimarães-Teixeira C, Flores BCT, Moreira-Silva F, Tavares NT, Guimarães R, Braga I, Maurício J, Henrique R, Jerónimo C, Lobo J. EHMT2/G9a and EZH2: Epimarkers in testicular germ cell tumors. Andrology 2024. [PMID: 38380739 DOI: 10.1111/andr.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Testicular germ cell tumors remain the most frequent solid malignancies in young males. Despite excellent prognosis, the fact that only 60% of patients at diagnosis have elevated serum tumor markers (dependent on stage and histology) and the poor quality of life of patients who develop resistance to chemotherapy cannot be neglected. Consequently, it is mandatory to bring out novel biomarkers. OBJECTIVES The main goal was to evaluate EZH2 and EHMT2/G9a immunoexpression in a well-characterized patients' cohort of primary and metastatic testicular germ cell tumors, seeking associations with clinicopathological features and discovering differential immunoexpression patterns among specific subtypes. MATERIALS AND METHODS First, an in silico analysis of the Cancer Genome Atlas database was performed regarding EZH2 and EHMT2/G9a. Then, immunohistochemistry for EZH2 and EHMT2/G9a was carried out in a cohort of testicular germ cell tumor patients, comprising 155 chemo-naïve primary tumors and 11 chemo-treated metastases. Immunoexpression was evaluated using a digital pathology analysis software. RESULTS Higher EZH2 and EHMT2/G9a expression levels were found in non-seminoma in the in silico analysis, particularly in embryonal carcinoma. Through digital pathology analysis, non-seminomas showed significantly higher EZH2 and EHMT2/G9a immunoexpression, with embryonal carcinoma showing higher expression. Moreover, mixed tumors with 50% or more of embryonal carcinoma component revealed the highest nuclei positivity for both biomarkers. Cisplatin-exposed metastases demonstrated a higher EZH2-positive nuclei and H-score, as well as higher EHMT2/G9a-positive nuclei. DISCUSSION AND CONCLUSION Overall, our data suggest that EZH2 and EHMT2/G9a might be associated with greater aggressiveness and, eventually, involved in the metastatic setting, paving the way for testing targeted therapies.
Collapse
Affiliation(s)
- Helena Estevão-Pereira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Catarina Guimarães-Teixeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Bianca C T Flores
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Rita Guimarães
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Isaac Braga
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
- Clinical Oncology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Travis LB, Feldman DR, Fung C, Poynter JN, Lockley M, Frazier AL. Adolescent and Young Adult Germ Cell Tumors: Epidemiology, Genomics, Treatment, and Survivorship. J Clin Oncol 2024; 42:696-706. [PMID: 37820296 DOI: 10.1200/jco.23.01099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 10/13/2023] Open
Abstract
Innovations in the care of adolescent and young adult (AYA) germ cell tumors (GCTs) are needed for one of the most common AYA cancers for which treatment has not significantly changed for several decades. Testicular GCTs (TGCTs) are the most common cancers in 15- to 39-year-old men, and ovarian GCTs (OvGCTs) are the leading gynecologic malignancies in women younger than 25 years. Excellent outcomes, even in widely metastatic disease using cisplatin-based chemotherapy, can be achieved since Einhorn and Donohue's landmark 1977 study in TGCT. However, as the severity of accompanying late effects (ototoxicity, neurotoxicity, cardiovascular disease, second malignant neoplasms, nephrotoxicity, and others) has emerged, efforts to deintensity treatment and find alternatives to cisplatin have taken on new urgency. Current innovations include the collaborative design of clinical trials that accrue GCTs across all ages and both sexes, including adolescents (previously on pediatric trials), and OvGCT (previously on gynecologic-only trials). Joint trials accrue larger sample sizes at a faster rate and therefore evaluate new approaches more rapidly. These joint trials also allow for biospecimen collection to further probe GCT etiology and underlying mechanisms of tumor growth, thus providing new therapeutic options. This AYA approach has been fostered by The Malignant Germ Cell International Consortium, which includes over 115 GCT disease experts from pediatric, gynecologic, and genitourinary oncologies in 16 countries. Trials in development incorporate, to our knowledge, for the first time, molecular risk stratification and precision oncology approaches on the basis of specific GCT biology. This collaborative AYA approach pioneering successfully in GCT could serve as a model for impactful research for other AYA cancer types.
Collapse
Affiliation(s)
- Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, IN
| | | | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Jenny N Poynter
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Michelle Lockley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - A Lindsay Frazier
- Dana Farber-Boston Children's Cancer and Blood Disorders Center, Boston, MA
| |
Collapse
|
17
|
van der Meer DJ, Karim-Kos HE, Elzevier HW, Dinkelman-Smit M, Kerst JM, Atema V, Lehmann V, Husson O, van der Graaf WTA. The increasing burden of testicular seminomas and non-seminomas in adolescents and young adults (AYAs): incidence, treatment, disease-specific survival and mortality trends in the Netherlands between 1989 and 2019. ESMO Open 2024; 9:102231. [PMID: 38244349 PMCID: PMC10937200 DOI: 10.1016/j.esmoop.2023.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/11/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Testicular cancer incidence among adolescents and young adults (AYAs, aged 18-39 years at diagnosis) is increasing worldwide and most patients will survive the initial disease. Still, detailed epidemiological information about testicular cancer among AYAs is scarce. This study aimed to provide a detailed overview of testicular cancer trends in incidence, treatment, long-term relative survival and mortality by histological subtype among AYAs diagnosed in the Netherlands between 1989 and 2019. MATERIALS AND METHODS Data of all malignant testicular cancers (ICD-code C62) were extracted from the Netherlands Cancer Registry. Mortality data were retrieved from Statistics Netherlands. European age-standardized incidence and mortality rates with average annual percentage change statistics and relative survival estimates up to 20 years of follow-up were calculated. RESULTS A total of 12 528 testicular cancers were diagnosed between 1989 and 2019. Comparing 1989-1999 to 2010-2019, the incidence increased from 4.4 to 11.4 for seminomas and from 5.7 to 11.1 per 100 000 person-years for non-seminomas. Rising trends were most prominent for localized disease. Radiotherapy use in localized testicular seminomas declined from 78% in 1989-1993 to 5% in 2015-2019. Meanwhile, there was a slight increase in chemotherapy use. Most AYAs with localized seminomas and non-seminomas received active surveillance only (>80%). Overall, relative survival estimates remained well above 90% even at 20 years of follow-up for both seminomas and non-seminomas. Mortality rates declined from 0.5 to 0.4 per 100 000 person-years between 1989-1999 and 2010-2019. CONCLUSIONS The incidence of seminoma and non-seminoma testicular cancers significantly increased in AYAs in the Netherlands between 1989 and 2019. There was a shift towards less-aggressive treatment regimens without negative survival effects. Relative survival estimates remained well above 90% at 20 years of follow-up in most cases. Testicular cancer mortality was already low, but has improved further over time, which makes survivorship care an important issue for these young adults.
Collapse
Affiliation(s)
- D J van der Meer
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam; Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam; Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam.
| | - H E Karim-Kos
- Princess Máxima Center for Pediatric Oncology, Utrecht; Department of Research and Development, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht
| | - H W Elzevier
- Department of Urology and Medical Decision Making, Leiden University Medical Centre, Leiden
| | - M Dinkelman-Smit
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam
| | - J M Kerst
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam
| | - V Atema
- Department of Research and Development, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht
| | - V Lehmann
- Department of Medical Psychology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam; Cancer Center Amsterdam (CCA), Amsterdam
| | - O Husson
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam; Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam; Department of Surgical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W T A van der Graaf
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam; Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam
| |
Collapse
|
18
|
Dupont C, Stathopoulou MG, Illy PJ, Sermondade N, Levy R, Trabucchi M, Prades M, Haj Hamid R, Berthaut I, Grandjean V. Impact of testicular cancer on sperm small non-coding RNA signature: a pilot study. Epigenetics 2023; 18:2241009. [PMID: 37515809 PMCID: PMC10388827 DOI: 10.1080/15592294.2023.2241009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are the most common tumours in young adults of European ancestry. The high heritability and the constantly increased incidence, which has doubled over the last 20 years, strongly suggest that both genetic and environmental factors are likely to shape the TGCT susceptibility. While genome-wide association studies have identified loci associated with TGCT susceptibility, the role played by environmental molecular vectors in TGCT susceptibility remains unclear. Evidence shows that sperm non-coding RNAs provide a good vision of the environmental stresses experienced by men. Here, to determine whether TGCT impacts the abundance of specific non-coding RNAs in sperm, small RNA deep sequencing analysis of sperm of 25 men aged between 19 and 42 years, diagnosed with (n = 16) or without (n = 9) TGCT was performed. The primary analysis showed no statistical significance in the sncRNA population between the TGCT and non-TGCT groups. However, when sperm physiological parameters were considered to look for differentially expressed sncRNA, we evidenced 11 differentially expressed sncRNA between patients and control which allow a clear discrimination between control and TGCT samples after Hierarchical Clustering analysis. Together, these findings indicate that sperm small non-coding RNAs abundance may have the potential for diagnosing men with TGCT. However, specific care should be taken regarding sperm physiological parameters of the TGCT patients. Hence, larger studies are needed to confirm our findings and to determine whether such a signature associates with the risks to develop TGCT.
Collapse
Affiliation(s)
- Charlotte Dupont
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon (AP-HP. Sorbonne-Université, Paris, France
| | | | | | - Nathalie Sermondade
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon (AP-HP. Sorbonne-Université, Paris, France
| | - Rachel Levy
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon (AP-HP. Sorbonne-Université, Paris, France
| | | | - Marie Prades
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Rahaf Haj Hamid
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Isabelle Berthaut
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon (AP-HP. Sorbonne-Université, Paris, France
| | | |
Collapse
|
19
|
Kirchner K, Seidel C, Paulsen FO, Sievers B, Bokemeyer C, Lessel D. Further Association of Germline CHEK2 Loss-of-Function Variants with Testicular Germ Cell Tumors. J Clin Med 2023; 12:7065. [PMID: 38002677 PMCID: PMC10672725 DOI: 10.3390/jcm12227065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) represent the most frequent malignancy in young adult men and have one the highest heritability rates among all cancers. A recent multicenter case-control study identified CHEK2 as the first moderate-penetrance TGCT predisposition gene. Here, we analyzed CHEK2 in 129 TGCT cases unselected for age of onset, histology, clinical outcome, and family history of any cancer, and the frequency of identified variants was compared to findings in 27,173 ancestry-matched cancer-free men. We identified four TGCT cases harboring a P/LP variant in CHEK2 (4/129, 3.10%), which reached statistical significance (p = 0.0191; odds ratio (OR), 4.06; 95% CI, 1.59-10.54) as compared to the control group. Cases with P/LP variants in CHEK2 developed TGCT almost 6 years earlier than individuals with CHEK2 wild-type alleles (5.67 years; 29.5 vs. 35.17). No association was found between CHEK2 status and further clinical and histopathological characteristics, including histological subtypes, the occurrence of aggressive TGCT, family history of TGCT, and family history of any cancer. In addition, we found significant enrichment for the low-penetrance CHEK2 variant p.Ile157Thr (p = 0.0259; odds ratio (OR), 3.69; 95% CI, 1.45-9.55). Thus, we provide further independent evidence of CHEK2 being a moderate-penetrance TGCT predisposition gene.
Collapse
Affiliation(s)
- Kira Kirchner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
| | - Christoph Seidel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Finn-Ole Paulsen
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Bianca Sievers
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
20
|
Bhuta R, Shah R, Gell JJ, Poynter JN, Bagrodia A, Dicken BJ, Pashankar F, Frazier AL, Shaikh F. Children's Oncology Group's 2023 blueprint for research: Germ cell tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30562. [PMID: 37449938 PMCID: PMC10529374 DOI: 10.1002/pbc.30562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Extracranial germ cell tumors (GCT) are a biologically diverse group of tumors occurring in children, adolescents, and young adults. The majority of patients have excellent outcomes, but treatment-related toxicities impact their quality of survivorship. A subset of patients succumbs to the disease. Current unmet needs include clarifying which patients can be safely observed after initial surgical resection, refinement of risk stratification to reduce chemotherapy burden in patients with standard-risk disease, and intensify therapy for patients with poor-risk disease. Furthermore, enhancing strategies for detection of minimal residual disease and early detection of relapse, particularly in serum tumor marker-negative histologies, is critical. Improving the understanding of the developmental and molecular origins of GCTs may facilitate discovery of novel targets. Future efforts should be directed toward assessing novel therapies in a biology-driven, biomarker-defined, histology-specific, risk-stratified patient population. Fragmentation of care between subspecialists restricts the unified study of these rare tumors. It is imperative that trials be conducted in collaboration with national and international cooperative groups, with harmonized data and biospecimen collection. Key priorities for the Children's Oncology Group (COG) GCT Committee include (a) better understanding the biology of GCTs, with a focus on molecular targets and mechanisms of treatment resistance; (b) strategic development of pediatric and young adult clinical trials; (c) understanding late effects of therapy and identifying individuals most at risk; and (d) prioritizing diversity, equity, and inclusion to reduce cancer health disparities and studying the impacts of social determinants of health on outcomes.
Collapse
Affiliation(s)
- Roma Bhuta
- Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Rachana Shah
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joanna J. Gell
- The Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT, USA
- Department of Pediatrics, University of Connecticut Medical School, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jenny N. Poynter
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aditya Bagrodia
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Bryan J. Dicken
- Department of Surgery, University of Alberta, Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Farzana Pashankar
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - A Lindsay Frazier
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Furqan Shaikh
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Jansson AK, Söderling J, Reutfors J, Thor A, Sköld C, Cohn-Cedermark G, Ståhl O, Smedby KE, Pettersson A, Glimelius I. Risk and mortality of testicular cancer in patients with neurodevelopmental or other psychiatric disorders. Br J Cancer 2023; 128:2261-2269. [PMID: 37088800 PMCID: PMC10241835 DOI: 10.1038/s41416-023-02260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Both testicular germ cell tumours (TGCT) and neurodevelopmental disorders are associated with urogenital malformations. Few studies have investigated the association between psychiatric disorders and TGCT. We investigated whether history of any psychiatric or neurodevelopmental disorder is associated with increased risk or mortality of TGCT. METHOD This is a nested case-control study including 6166 TGCT patients diagnosed during 1992-2014, individually matched for age and calendar period to 61,660 controls. We calculated odds ratios (ORs) for the association between type of psychiatric diagnoses and TGCT risk. Among the cases, we used a cohort design and calculated hazard ratios (HRs) of the association between psychiatric diagnose and all-cause and TGCT-specific death. RESULTS History of a neurodevelopmental disorder (attention deficit hyperactivity disorder, autism spectrum disorder and intellectual disabilities) was associated with an increased risk of seminoma (OR: 1.54; 1.09-2.19). Seminoma patients with neurodevelopmental disorders were younger (34 versus 38 years, p = 0.004) and had more stage IV disease (5.4% versus 1.2%) than those without. Psychiatric history overall was not associated with TGCT. Patient history of any psychiatric disorder was associated with an increased all-cause and TGCT-specific death. CONCLUSIONS We report an association between neurodevelopmental disorders and testicular seminoma, and an increased TGCT-specific mortality for TGCT patients with psychiatric disorders.
Collapse
Affiliation(s)
- Anna K Jansson
- Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Jonas Söderling
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Johan Reutfors
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anna Thor
- Division of Urology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Sköld
- Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Gabriella Cohn-Cedermark
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Genitourinary Oncology Unit, Department of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Olof Ståhl
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Karin E Smedby
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Pettersson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Glimelius
- Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden.
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Ward SV, Autuori I, Luo L, LaPilla E, Yoo S, Sharma A, Busam KJ, Olilla DW, Dwyer T, Anton-Culver H, Zanetti R, Sacchetto L, Cust AE, Gallagher RP, Kanetsky PA, Rosso S, Begg CB, Berwick M, Thomas NE, Orlow I. Sex-Specific Associations of MDM2 and MDM4 Variants with Risk of Multiple Primary Melanomas and Melanoma Survival in Non-Hispanic Whites. Cancers (Basel) 2023; 15:2707. [PMID: 37345045 PMCID: PMC10216616 DOI: 10.3390/cancers15102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
MDM2-SNP309 (rs2279744), a common genetic modifier of cancer incidence in Li-Fraumeni syndrome, modifies risk, age of onset, or prognosis in a variety of cancers. Melanoma incidence and outcomes vary by sex, and although SNP309 exerts an effect on the estrogen receptor, no consensus exists on its effect on melanoma. MDM2 and MDM4 restrain p53-mediated tumor suppression, independently or together. We investigated SNP309, an a priori MDM4-rs4245739, and two coinherited variants, in a population-based cohort of 3663 primary incident melanomas. Per-allele and per-haplotype (MDM2_SNP309-SNP285; MDM4_rs4245739-rs1563828) odds ratios (OR) for multiple-melanoma were estimated with logistic regression models. Hazard ratios (HR) for melanoma death were estimated with Cox proportional hazards models. In analyses adjusted for covariates, females carrying MDM4-rs4245739*C were more likely to develop multiple melanomas (ORper-allele = 1.25, 95% CI 1.03-1.51, and Ptrend = 0.03), while MDM2-rs2279744*G was inversely associated with melanoma-death (HRper-allele = 0.63, 95% CI 0.42-0.95, and Ptrend = 0.03). We identified 16 coinherited expression quantitative loci that control the expression of MDM2, MDM4, and other genes in the skin, brain, and lungs. Our results suggest that MDM4/MDM2 variants are associated with the development of subsequent primaries and with the death of melanoma in a sex-dependent manner. Further investigations of the complex MDM2/MDM4 motif, and its contribution to the tumor microenvironment and observed associations, are warranted.
Collapse
Affiliation(s)
- Sarah V. Ward
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- School of Population and Global Health, The University of Western Australia, Perth, WA 6009, Australia
| | - Isidora Autuori
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Li Luo
- Department of Internal Medicine, The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87106, USA
| | - Emily LaPilla
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Yoo
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ajay Sharma
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Klaus J. Busam
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David W. Olilla
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Terence Dwyer
- Clinical Sciences Theme, Heart Group, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Carlton, VIC 3010, Australia
- Oxford Martin School, University of Oxford, Oxford OX1 3BD, UK
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Hoda Anton-Culver
- Department of Medicine, University of California, Irvine, CA 92617, USA
| | - Roberto Zanetti
- Piedmont Cancer Registry, Centre for Epidemiology and Prevention in Oncology in Piedmont, 10126 Turin, Italy
| | - Lidia Sacchetto
- Piedmont Cancer Registry, Centre for Epidemiology and Prevention in Oncology in Piedmont, 10126 Turin, Italy
| | - Anne E. Cust
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council NSW, Sydney, NSW 2006, Australia
- Melanoma Institute Australia, The University of Sydney, Wollstonecraft, NSW 2065, Australia
| | - Richard P. Gallagher
- BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V5Z 4E8, Canada
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Stefano Rosso
- Piedmont Cancer Registry, Centre for Epidemiology and Prevention in Oncology in Piedmont, 10126 Turin, Italy
| | - Colin B. Begg
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marianne Berwick
- Department of Internal Medicine, The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87106, USA
| | - Nancy E. Thomas
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA
- Department of Dermatology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Irene Orlow
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
23
|
Cuevas-Estrada B, Montalvo-Casimiro M, Munguia-Garza P, Ríos-Rodríguez JA, González-Barrios R, Herrera LA. Breaking the Mold: Epigenetics and Genomics Approaches Addressing Novel Treatments and Chemoresponse in TGCT Patients. Int J Mol Sci 2023; 24:ijms24097873. [PMID: 37175579 PMCID: PMC10178517 DOI: 10.3390/ijms24097873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Testicular germ-cell tumors (TGCT) have been widely recognized for their outstanding survival rates, commonly attributed to their high sensitivity to cisplatin-based therapies. Despite this, a subset of patients develops cisplatin resistance, for whom additional therapeutic options are unsuccessful, and ~20% of them will die from disease progression at an early age. Several efforts have been made trying to find the molecular bases of cisplatin resistance. However, this phenomenon is still not fully understood, which has limited the development of efficient biomarkers and precision medicine approaches as an alternative that could improve the clinical outcomes of these patients. With the aim of providing an integrative landscape, we review the most recent genomic and epigenomic features attributed to chemoresponse in TGCT patients, highlighting how we can seek to combat cisplatin resistance through the same mechanisms by which TGCTs are particularly hypersensitive to therapy. In this regard, we explore ongoing treatment directions for resistant TGCT and novel targets to guide future clinical trials. Through our exploration of recent findings, we conclude that epidrugs are promising treatments that could help to restore cisplatin sensitivity in resistant tumors, shedding light on potential avenues for better prognosis for the benefit of the patients.
Collapse
Affiliation(s)
- Berenice Cuevas-Estrada
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Juan Alberto Ríos-Rodríguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| |
Collapse
|
24
|
Yazici S, Del Biondo D, Napodano G, Grillo M, Calace FP, Prezioso D, Crocetto F, Barone B. Risk Factors for Testicular Cancer: Environment, Genes and Infections-Is It All? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040724. [PMID: 37109682 PMCID: PMC10145700 DOI: 10.3390/medicina59040724] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
The incidence of testicular cancer is steadily increasing over the past several decades in different developed countries. If on one side better diagnosis and treatment have shone a light on this disease, on the other side, differently from other malignant diseases, few risk factors have been identified. The reasons for the increase in testicular cancer are however unknown while risk factors are still poorly understood. Several studies have suggested that exposure to various factors in adolescence as well as in adulthood could be linked to the development of testicular cancer. Nevertheless, the role of environment, infections, and occupational exposure are undoubtedly associated with an increase or a decrease in this risk. The aim of this narrative review is to summarize the most recent evidence regarding the risk factors associated with testicular cancer, starting from the most commonly evaluated (cryptorchidism, family history, infections) to the newer identified and hypothesized risk factors.
Collapse
Affiliation(s)
- Sertac Yazici
- Department of Urology, Hacettepe University School of Medicine, 06230 Ankara, Turkey
| | - Dario Del Biondo
- Department of Urology, ASL NA1 Centro Ospedale del Mare, 80147 Naples, Italy
| | - Giorgio Napodano
- Department of Urology, ASL NA1 Centro Ospedale del Mare, 80147 Naples, Italy
| | - Marco Grillo
- Department of Urology, ASL NA1 Centro Ospedale del Mare, 80147 Naples, Italy
- University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Paolo Calace
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Domenico Prezioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
25
|
Palermo J, Chesi A, Zimmerman A, Sonti S, Pahl MC, Lasconi C, Brown EB, Pippin JA, Wells AD, Doldur-Balli F, Mazzotti DR, Pack AI, Gehrman PR, Grant SF, Keene AC. Variant-to-gene mapping followed by cross-species genetic screening identifies GPI-anchor biosynthesis as a regulator of sleep. SCIENCE ADVANCES 2023; 9:eabq0844. [PMID: 36608130 PMCID: PMC9821868 DOI: 10.1126/sciadv.abq0844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 05/13/2023]
Abstract
Genome-wide association studies (GWAS) in humans have identified loci robustly associated with several heritable diseases or traits, yet little is known about the functional roles of the underlying causal variants in regulating sleep duration or quality. We applied an ATAC-seq/promoter focused Capture C strategy in human iPSC-derived neural progenitors to carry out a "variant-to-gene" mapping campaign that identified 88 candidate sleep effector genes connected to relevant GWAS signals. To functionally validate the role of the implicated effector genes in sleep regulation, we performed a neuron-specific RNA interference screen in the fruit fly, Drosophila melanogaster, followed by validation in zebrafish. This approach identified a number of genes that regulate sleep including a critical role for glycosylphosphatidylinositol (GPI)-anchor biosynthesis. These results provide the first physical variant-to-gene mapping of human sleep genes followed by a model organism-based prioritization, revealing a conserved role for GPI-anchor biosynthesis in sleep regulation.
Collapse
Affiliation(s)
- Justin Palermo
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Zimmerman
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Shilpa Sonti
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chiara Lasconi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Diego R. Mazzotti
- Division of Medical Informatics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Allan I. Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Phillip R. Gehrman
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
26
|
Advancing clinical and translational research in germ cell tumours (GCT): recommendations from the Malignant Germ Cell International Consortium. Br J Cancer 2022; 127:1577-1583. [PMID: 36229581 PMCID: PMC9596690 DOI: 10.1038/s41416-022-02000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023] Open
Abstract
Germ cell tumours (GCTs) are a heterogeneous group of rare neoplasms that present in different anatomical sites and across a wide spectrum of patient ages from birth through to adulthood. Once these strata are applied, cohort numbers become modest, hindering inferences regarding management and therapeutic advances. Moreover, patients with GCTs are treated by different medical professionals including paediatric oncologists, neuro-oncologists, medical oncologists, neurosurgeons, gynaecological oncologists, surgeons, and urologists. Silos of care have thus formed, further hampering knowledge dissemination between specialists. Dedicated biobank specimen collection is therefore critical to foster continuous growth in our understanding of similarities and differences by age, gender, and site, particularly for rare cancers such as GCTs. Here, the Malignant Germ Cell International Consortium provides a framework to create a sustainable, global research infrastructure that facilitates acquisition of tissue and liquid biopsies together with matched clinical data sets that reflect the diversity of GCTs. Such an effort would create an invaluable repository of clinical and biological data which can underpin international collaborations that span professional boundaries, translate into clinical practice, and ultimately impact patient outcomes.
Collapse
|
27
|
Grasso C, Popovic M, Isaevska E, Lazzarato F, Fiano V, Zugna D, Pluta J, Weathers B, D’Andrea K, Almstrup K, Anson-Cartwright L, Bishop DT, Chanock SJ, Chen C, Cortessis VK, Dalgaard MD, Daneshmand S, Ferlin A, Foresta C, Frone MN, Gamulin M, Gietema JA, Greene MH, Grotmol T, Hamilton RJ, Haugen TB, Hauser R, Karlsson R, Kiemeney LA, Lessel D, Lista P, Lothe RA, Loveday C, Meijer C, Nead KT, Nsengimana J, Skotheim RI, Turnbull C, Vaughn DJ, Wiklund F, Zheng T, Zitella A, Schwartz SM, McGlynn KA, Kanetsky PA, Nathanson KL, Richiardi L. Association Study between Polymorphisms in DNA Methylation-Related Genes and Testicular Germ Cell Tumor Risk. Cancer Epidemiol Biomarkers Prev 2022; 31:1769-1779. [PMID: 35700037 PMCID: PMC9444936 DOI: 10.1158/1055-9965.epi-22-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Testicular germ cell tumors (TGCT), histologically classified as seminomas and nonseminomas, are believed to arise from primordial gonocytes, with the maturation process blocked when they are subjected to DNA methylation reprogramming. SNPs in DNA methylation machinery and folate-dependent one-carbon metabolism genes have been postulated to influence the proper establishment of DNA methylation. METHODS In this pathway-focused investigation, we evaluated the association between 273 selected tag SNPs from 28 DNA methylation-related genes and TGCT risk. We carried out association analysis at individual SNP and gene-based level using summary statistics from the Genome Wide Association Study meta-analysis recently conducted by the international Testicular Cancer Consortium on 10,156 TGCT cases and 179,683 controls. RESULTS In individual SNP analyses, seven SNPs, four mapping within MTHFR, were associated with TGCT risk after correction for multiple testing (q ≤ 0.05). Queries of public databases showed that three of these SNPs were associated with MTHFR changes in enzymatic activity (rs1801133) or expression level in testis tissue (rs12121543, rs1476413). Gene-based analyses revealed MTHFR (q = 8.4 × 10-4), methyl-CpG-binding protein 2 (MECP2; q = 2 × 10-3), and ZBTB4 (q = 0.03) as the top TGCT-associated genes. Stratifying by tumor histology, four MTHFR SNPs were associated with seminoma. In gene-based analysis MTHFR was associated with risk of seminoma (q = 2.8 × 10-4), but not with nonseminomatous tumors (q = 0.22). CONCLUSIONS Genetic variants within MTHFR, potentially having an impact on the DNA methylation pattern, are associated with TGCT risk. IMPACT This finding suggests that TGCT pathogenesis could be associated with the folate cycle status, and this relation could be partly due to hereditary factors.
Collapse
Affiliation(s)
- Chiara Grasso
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Fulvio Lazzarato
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Valentina Fiano
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Daniela Zugna
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D’Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynn Anson-Cartwright
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - D. Timothy Bishop
- Department of Haematology and Immunology, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Stephen J. Chanock
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victoria K. Cortessis
- Department of Population and Public Health Sciences, and Obstetrics and Gynecology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Marlene D. Dalgaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Siamak Daneshmand
- Department of Urology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Megan N. Frone
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Marija Gamulin
- Department of Oncology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jourik A. Gietema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mark H. Greene
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Robert J. Hamilton
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trine B. Haugen
- Faculty of Health Sciences, OsloMet – Oslo Metropolitan University, Oslo, Norway
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrizia Lista
- Division of Medical Oncology1, AOU “Città della Salute e della Scienza di Torino”, Turin, Italy
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Chey Loveday
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kevin T. Nead
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Hospital, London, United Kingdom
| | - David J. Vaughn
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tongzhang Zheng
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI, USA
| | - Andrea Zitella
- Division of Urology, Department of Surgical Science, AOU “Città della Salute e della Scienza di Torino”, University of Turin, Turin, Italy
| | - Stephen M. Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Katherine A. McGlynn
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | | |
Collapse
|
28
|
Znaor A, Skakkebaek NE, Rajpert-De Meyts E, Kuliš T, Laversanne M, Gurney J, Sarfati D, McGlynn KA, Bray F. Global patterns in testicular cancer incidence and mortality in 2020. Int J Cancer 2022; 151:692-698. [PMID: 35277970 DOI: 10.1002/ijc.33999] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
With 74 500 new cases worldwide in 2020, testicular cancer ranks as the 20th leading cancer type, but is the most common cancer in young men of European ancestry. While testicular cancer incidence has been rising in many populations, mortality trends, at least those in high-income settings, have been in decline since the 1970s following the introduction of platinum-based chemotherapy. To examine current incidence and mortality patterns, we extracted the new cases of, and deaths from cancers of the testis from the GLOBOCAN 2020 database. In 2020, testicular cancer was the most common cancer in men aged 15 to 44 in 62 countries worldwide. Incidence rates were highest in West-, North- and South-Europe and Oceania (age-standardised rate, ASR ≥7/100 000), followed by North America (5.6/100 000 and lowest (<2/100 000) in Asia and Africa. The mortality rates were highest in Central and South America (0.84 and 0.54 per 100 000, respectively), followed by Eastern and Southern Europe, and Western and Southern Africa. The lowest mortality rates were in Northern Europe, Northern Africa and Eastern Asia (0.16, 0.14, 0.9 per 100 000, respectively). At the country level, incidence rates varied over 100-fold, from 10/100 000 in Norway, Slovenia, Denmark and Germany to ≤0.10/100 000 in Gambia, Guinea, Liberia, Lesotho. Mortality rates were highest in Fiji, Argentina and Mexico. Our results indicate a higher mortality burden in countries undergoing economic transitions and reinforce the need for more equitable access to testicular cancer diagnosis and treatment globally.
Collapse
Affiliation(s)
- Ariana Znaor
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Niels Erik Skakkebaek
- Department of Growth & Reproduction, Copenhagen University Hospital (Ringshospitalet), Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth & Reproduction, Copenhagen University Hospital (Ringshospitalet), Copenhagen, Denmark
| | - Tomislav Kuliš
- Department of Urology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mathieu Laversanne
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Jason Gurney
- Department of Urology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Diana Sarfati
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Freddie Bray
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
29
|
A common deletion at BAK1 reduces enhancer activity and confers risk of intracranial germ cell tumors. Nat Commun 2022; 13:4478. [PMID: 35918310 PMCID: PMC9346128 DOI: 10.1038/s41467-022-32005-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
Intracranial germ cell tumors (IGCTs) are rare brain neoplasms that mainly occur in children and adolescents with a particularly high incidence in East Asian populations. Here, we conduct a genome-wide association study (GWAS) of 133 patients with IGCTs and 762 controls of Japanese ancestry. A common 4-bp deletion polymorphism in an enhancer adjacent to BAK1 is significantly associated with the disease risk (rs3831846; P = 2.4 × 10−9, odds ratio = 2.46 [95% CI: 1.83–3.31], minor allele frequency = 0.43). Rs3831846 is in strong linkage disequilibrium with a testicular GCTs susceptibility variant rs210138. In-vitro reporter assays reveal rs3831846 to be a functional variant attenuating the enhancer activity, suggesting its contribution to IGCTs predisposition through altering BAK1 expression. Risk alleles of testicular GCTs derived from the European GWAS show significant positive correlations in the effect sizes with the Japanese IGCTs GWAS (P = 1.3 × 10−4, Spearman’s ρ = 0.48). These results suggest the shared genetic susceptibility of GCTs beyond ethnicity and primary sites. Intracranial germ cell tumors (IGCTs) are rare brain tumors mainly diagnosed in children and young adults. Here, the authors conduct a genome-wide association study for IGCTs, identify a risk locus at BAK1, and characterize its functional consequences.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Testicular germ cell tumours (TGCTs) are the most common solid malignant cancer diagnosed in young males and the incidence is increasing. Understanding the genetic basis of this disease will help us to navigate the challenges of early detection, diagnosis, treatment, surveillance, and long-term outcomes for patients. RECENT FINDINGS TGCTs are highly heritable. Current understanding of germline risk includes the identification of one moderate-penetrance predisposition gene, checkpoint kinase 2 (CHEK2), and 78 low-to-moderate-risk single nucleotide polymorphisms identified in genome-wide-associated studies, which account for 44% of familial risk. Biomarker research in TGCTs has been challenging for multiple reasons: oncogenesis is complex, actionable mutations are uncommon, clonal evolution unpredictable and tumours can be histologically and molecularly heterogeneous. Three somatic mutations have thus far been identified by DNA exome sequencing, exclusively in seminomas: KIT, KRAS and NRAS. Several genetic markers appear to be associated with risk of TGCT and treatment resistance. TP53 mutations appear to be associated with platinum resistance. MicroRNA expression may be a useful biomarker of residual disease and relapse in future. SUMMARY The biology of testicular germ cells tumours is complex, and further research is needed to fully explain the high heritability of these cancers, as well as the molecular signatures which may drive their biological behaviour.
Collapse
|
31
|
Burton J, Wojewodzic MW, Rounge TB, Haugen TB. A Role of the TEX101 Interactome in the Common Aetiology Behind Male Subfertility and Testicular Germ Cell Tumor. Front Oncol 2022; 12:892043. [PMID: 35774118 PMCID: PMC9237224 DOI: 10.3389/fonc.2022.892043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Patients who develop testicular germ cell tumours (TGCT) are at higher risk to be subfertile than the general population. The conditions are believed to originate during foetal life, however, the mechanisms behind a common aetiology of TGCT and male subfertility remains unknown. Testis-expressed 101 (TEX101) is a glycoprotein that is related to male fertility, and downregulation of the TEX101 gene was shown in pre-diagnostic TGCT patients. In this review, we summarize the current knowledge of TEX101 and its interactome related to fertility and TGCT development. We searched literature and compilation of data from curated databases. There are studies from both human and animals showing that disruption of TEX101 result in abnormal semen parameters and sperm function. Members of the TEX101 interactome, like SPATA19, Ly6k, PICK1, and ODF genes are important for normal sperm function. We found only two studies of TEX101 related to TGCT, however, several genes in its interactome may be associated with TGCT development, such as PLAUR, PRSS21, CD109, and ALP1. Some of the interactome members are related to both fertility and cancer. Of special interest is the presence of the glycosylphosphatidylinositol anchored proteins TEX101 and PRSS21 in basophils that may be coupled to the immune response preventing further development of TGCT precursor cells. The findings of this review indicate that members of the TEX101 interactome could be a part of the link between TGCT and male subfertility.
Collapse
Affiliation(s)
- Joshua Burton
- Department of Life Sciences and Health, OsloMet − Oslo Metropolitan University, Oslo, Norway
| | - Marcin W. Wojewodzic
- Department of Environmental and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Trine B. Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
- *Correspondence: Trine B. Haugen, ; Trine B. Rounge,
| | - Trine B. Haugen
- Department of Life Sciences and Health, OsloMet − Oslo Metropolitan University, Oslo, Norway
- *Correspondence: Trine B. Haugen, ; Trine B. Rounge,
| |
Collapse
|
32
|
González-Barrios R, Alcaraz N, Montalvo-Casimiro M, Cervera A, Arriaga-Canon C, Munguia-Garza P, Hinojosa-Ugarte D, Sobrevilla-Moreno N, Torres-Arciga K, Mendoza-Perez J, Diaz-Chavez J, Cortes-González CC, Castro-Hernández C, Martínez-Cedillo J, Scavuzzo A, Pérez-Montiel D, Jiménez-Ríos MA, Herrera LA. Genomic Profile in a Non-Seminoma Testicular Germ-Cell Tumor Cohort Reveals a Potential Biomarker of Sensitivity to Platinum-Based Therapy. Cancers (Basel) 2022; 14:cancers14092065. [PMID: 35565196 PMCID: PMC9101377 DOI: 10.3390/cancers14092065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite having a favorable response to platinum-based chemotherapies, ~15% of Testicular Germ-Cell Tumor (TGCT) patients are platinum-resistant. Mortality rates among Latin American countries have remained constant over time, which makes the study of this population of particular interest. To gain insight into this phenomenon, we conducted whole-exome sequencing, microarray-based comparative genomic hybridization, and copy number analysis of 32 tumors from a Mexican cohort, of which 18 were platinum-sensitive and 14 were platinum-resistant. We incorporated analyses of mutational burden, driver mutations, and SNV and CNV signatures. DNA breakpoints in genes were also investigated and might represent an interesting research opportunity. We observed that sensitivity to chemotherapy does not seem to be explained by any of the mutations detected. Instead, we uncovered CNVs, particularly amplifications on segment 2q11.1 as a novel variant with chemosensitivity biomarker potential. Our data shed light into understanding platinum resistance in a Latin-origin population.
Collapse
Affiliation(s)
- Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Nicolás Alcaraz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Diego Hinojosa-Ugarte
- Departamento de Cirugía, Hospital Regional de Alta Especialidad del Bajío, Leon 37660, Mexico;
| | - Nora Sobrevilla-Moreno
- Departamento de Oncología Médica, Clínica de Tumores Genitourinarios, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.S.-M.); (J.M.-C.)
| | - Karla Torres-Arciga
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Julia Mendoza-Perez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - José Diaz-Chavez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Carlo Cesar Cortes-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Jorge Martínez-Cedillo
- Departamento de Oncología Médica, Clínica de Tumores Genitourinarios, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.S.-M.); (J.M.-C.)
| | - Ana Scavuzzo
- Departamento de Urología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (A.S.); (M.A.J.-R.)
| | - Delia Pérez-Montiel
- Departamento de Patología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Miguel A. Jiménez-Ríos
- Departamento de Urología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (A.S.); (M.A.J.-R.)
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
- Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
- Correspondence: ; Tel.: +52-55-5350-1900
| |
Collapse
|
33
|
Diverse Roles and Targets of miRNA in the Pathogenesis of Testicular Germ Cell Tumour. Cancers (Basel) 2022; 14:cancers14051190. [PMID: 35267498 PMCID: PMC8909779 DOI: 10.3390/cancers14051190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Testicular germ cell tumour (TGCT) is the most common cancer type among young adults in many parts of the world. Although the pathogenesis of TGCT is not well understood, the involvement of heritable components is evident, and the risk is polygenic. Genome-wide association studies have so far found 78 susceptibility loci for TGCT, and many of the loci are in non-coding regions indicating the involvement of non-coding RNAs in TGCT pathogenesis. MicroRNAs (miRNAs), a class of non-coding RNAs, have emerged as important gene regulators at the post-transcriptional level. They are crucial in controlling many cellular processes, such as proliferation, differentiation, and apoptosis, and an aberrant miRNA expression may contribute to the pathogenesis of several cancers, including TGCT. In support of this notion, several studies reported differential expression of miRNAs in TGCTs. We previously demonstrated that miRNAs were the most common group of small non-coding RNAs in TGCTs, and several functional studies of miRNAs in TGCTs suggest that they may act as either oncogene or tumour suppressors. Moreover, individual miRNA targets and downstream pathways in the context of TGCT development have been explored. In this review, we will focus on the diverse roles and targets of miRNAs in TGCT pathogenesis.
Collapse
|