1
|
McCoullough LC, Fareh M, Hu W, Sozzi V, Makhlouf C, Droungas Y, Lee CL, Takawy M, Fabb SA, Payne TJ, Pouton CW, Netter HJ, Lewin SR, Purcell DF, Holmes JA, Trapani JA, Littlejohn M, Revill PA. CRISPR-Cas13b-mediated suppression of HBV replication and protein expression. J Hepatol 2024; 81:794-805. [PMID: 38815932 DOI: 10.1016/j.jhep.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND & AIMS New antiviral approaches that target multiple aspects of the HBV replication cycle to improve rates of functional cure are urgently required. HBV RNA represents a novel therapeutic target. Here, we programmed CRISPR-Cas13b endonuclease to specifically target the HBV pregenomic RNA and viral mRNAs in a novel approach to reduce HBV replication and protein expression. METHODS Cas13b CRISPR RNAs (crRNAs) were designed to target multiple regions of HBV pregenomic RNA. Mammalian cells transfected with replication competent wild-type HBV DNA of different genotypes, a HBV-expressing stable cell line, a HBV infection model and a hepatitis B surface antigen (HBsAg)-expressing stable cell line were transfected with PspCas13b-BFP (blue fluorescent protein) and crRNA plasmids, and the impact on HBV replication and protein expression was measured. Wild-type HBV DNA, PspCas13b-BFP and crRNA plasmids were simultaneously hydrodynamically injected into mice, and serum HBsAg was measured. PspCas13b mRNA and crRNA were also delivered to a HBsAg-expressing stable cell line via lipid nanoparticles and the impact on secreted HBsAg determined. RESULTS Our HBV-targeting crRNAs strongly suppressed HBV replication and protein expression in mammalian cells by up to 96% (p <0.0001). HBV protein expression was also reduced in a HBV-expressing stable cell line and in the HBV infection model. CRISPR-Cas13b crRNAs reduced HBsAg expression by 50% (p <0.0001) in vivo. Lipid nanoparticle-encapsulated PspCas13b mRNA reduced secreted HBsAg by 87% (p = 0.0168) in a HBsAg-expressing stable cell line. CONCLUSIONS Together, these results show that CRISPR-Cas13b can be programmed to specifically target and degrade HBV RNAs to reduce HBV replication and protein expression, demonstrating its potential as a novel therapeutic option for chronic HBV infection. IMPACT AND IMPLICATIONS Owing to the limitations of current antiviral therapies for hepatitis B, there is an urgent need for new treatments that target multiple aspects of the HBV replication cycle to improve rates of functional cure. Here, we present CRISPR-Cas13b as a novel strategy to target HBV replication and protein expression, paving the way for its development as a potential new treatment option for patients living with chronic hepatitis B.
Collapse
Affiliation(s)
- Laura C McCoullough
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mohamed Fareh
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Wenxin Hu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Christina Makhlouf
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Yianni Droungas
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chee Leng Lee
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Mina Takawy
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Thomas J Payne
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Hans J Netter
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Damian Fj Purcell
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jacinta A Holmes
- Department of Gastroenterology, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Andersson K, Azatyan A, Ekenberg M, Güçlüler G, Sardon Puig L, Puumalainen M, Pramer T, Monteil VM, Mirazimi A. A CRISPR-Cas13b System Degrades SARS-CoV and SARS-CoV-2 RNA In Vitro. Viruses 2024; 16:1539. [PMID: 39459873 PMCID: PMC11512209 DOI: 10.3390/v16101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
In a time of climate change, population growth, and globalization, the risk of viral spread has significantly increased. The 21st century has already witnessed outbreaks of Severe Acute Respiratory Syndrome virus (SARS-CoV), Severe Acute Respiratory Syndrome virus 2 (SARS-CoV-2), Ebola virus and Influenza virus, among others. Viruses rapidly adapt and evade human immune systems, complicating the development of effective antiviral countermeasures. Consequently, the need for novel antivirals resilient to viral mutations is urgent. In this study, we developed a CRISPR-Cas13b system to target SARS-CoV-2. Interestingly, this system was also efficient against SARS-CoV, demonstrating broad-spectrum potential. Our findings highlight CRISPR-Cas13b as a promising tool for antiviral therapeutics, underscoring its potential in RNA-virus-associated pandemic responses.
Collapse
Affiliation(s)
- Klara Andersson
- Department of Laboratory Medicine, Unit of Clinical Microbiology, Karolinska Institutet, 17177 Stockholm, Sweden; (K.A.); (A.M.)
- Biomedrex Genetics, Alfred Nobels allé 8, 14152 Stockholm, Sweden; (A.A.); (M.E.); (G.G.); (L.S.P.); (M.P.); (T.P.)
| | - Ani Azatyan
- Biomedrex Genetics, Alfred Nobels allé 8, 14152 Stockholm, Sweden; (A.A.); (M.E.); (G.G.); (L.S.P.); (M.P.); (T.P.)
| | - Martin Ekenberg
- Biomedrex Genetics, Alfred Nobels allé 8, 14152 Stockholm, Sweden; (A.A.); (M.E.); (G.G.); (L.S.P.); (M.P.); (T.P.)
| | - Gözde Güçlüler
- Biomedrex Genetics, Alfred Nobels allé 8, 14152 Stockholm, Sweden; (A.A.); (M.E.); (G.G.); (L.S.P.); (M.P.); (T.P.)
| | - Laura Sardon Puig
- Biomedrex Genetics, Alfred Nobels allé 8, 14152 Stockholm, Sweden; (A.A.); (M.E.); (G.G.); (L.S.P.); (M.P.); (T.P.)
| | - Marjo Puumalainen
- Biomedrex Genetics, Alfred Nobels allé 8, 14152 Stockholm, Sweden; (A.A.); (M.E.); (G.G.); (L.S.P.); (M.P.); (T.P.)
| | - Theodor Pramer
- Biomedrex Genetics, Alfred Nobels allé 8, 14152 Stockholm, Sweden; (A.A.); (M.E.); (G.G.); (L.S.P.); (M.P.); (T.P.)
| | - Vanessa M. Monteil
- Department of Laboratory Medicine, Unit of Clinical Microbiology, Karolinska Institutet, 17177 Stockholm, Sweden; (K.A.); (A.M.)
- Public Health Agency of Sweden, 17182 Solna, Sweden
| | - Ali Mirazimi
- Department of Laboratory Medicine, Unit of Clinical Microbiology, Karolinska Institutet, 17177 Stockholm, Sweden; (K.A.); (A.M.)
- Public Health Agency of Sweden, 17182 Solna, Sweden
- National Veterinary Institute, 75189 Uppsala, Sweden
| |
Collapse
|
3
|
Asadbeigi A, Bakhtiarizadeh MR, Saffari M, Modarressi MH, Sadri N, Kafi ZZ, Fazilaty H, Ghalyanchilangeroudi A, Esmaeili H. Protection of animals against devastating RNA viruses using CRISPR-Cas13s. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102235. [PMID: 39021763 PMCID: PMC11253668 DOI: 10.1016/j.omtn.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
The intrinsic nature of CRISPR-Cas in conferring immunity to bacteria and archaea has been repurposed to combat pathogenic agents in mammalian and plant cells. In this regard, CRISPR-Cas13 systems have proved their remarkable potential for single-strand RNA viruses targeting. Here, different types of Cas13 orthologs were applied to knockdown foot-and-mouth disease virus (FMDV), a highly contagious disease of a wide variety of species with genetically diverse strains and is widely geographically distributed. Using programmable CRISPR RNAs capable of targeting conserved regions of the viral genome, all Cas13s from CRISPR system type VI (subtype A/B/D) could comprehensively target and repress different serotypes of FMDV virus. This approach has the potential to destroy all strains of a virus as targets the ultra-conserved regions of genome. We experimentally compared the silencing efficiency of CRISPR and RNAi by designing the most effective short hairpin RNAs according to our developed scoring system and observed comparable results. This study showed successful usage of various Cas13 enzymes for suppression of FMDV, which provides a flexible strategy to battle with other animal infectious RNA viruses, an underdeveloped field in the biotechnology scope.
Collapse
Affiliation(s)
- Adnan Asadbeigi
- Cancer Institute, Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417613151, Iran
| | | | - Mojtaba Saffari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417613151, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417613151, Iran
| | - Naser Sadri
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Zahra Ziafati Kafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Hossein Esmaeili
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| |
Collapse
|
4
|
Hu W, Kumar A, Ahmed SF, Qi S, Ma DKG, Chen H, Singh GJ, Casan JML, Haber M, Voskoboinik I, McKay MR, Trapani JA, Ekert PG, Fareh M. Single-base tiled screen unveils design principles of PspCas13b for potent and off-target-free RNA silencing. Nat Struct Mol Biol 2024:10.1038/s41594-024-01336-0. [PMID: 38951623 DOI: 10.1038/s41594-024-01336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
The development of precise RNA-editing tools is essential for the advancement of RNA therapeutics. CRISPR (clustered regularly interspaced short palindromic repeats) PspCas13b is a programmable RNA nuclease predicted to offer superior specificity because of its 30-nucleotide spacer sequence. However, its design principles and its on-target, off-target and collateral activities remain poorly characterized. Here, we present single-base tiled screening and computational analyses that identify key design principles for potent and highly selective RNA recognition and cleavage in human cells. We show that the de novo design of spacers containing guanosine bases at precise positions can greatly enhance the catalytic activity of inefficient CRISPR RNAs (crRNAs). These validated design principles (integrated into an online tool, https://cas13target.azurewebsites.net/ ) can predict highly effective crRNAs with ~90% accuracy. Furthermore, the comprehensive spacer-target mutagenesis revealed that PspCas13b can tolerate only up to four mismatches and requires ~26-nucleotide base pairing with the target to activate its nuclease domains, highlighting its superior specificity compared to other RNA or DNA interference tools. On the basis of this targeting resolution, we predict an extremely low probability of PspCas13b having off-target effects on other cellular transcripts. Proteomic analysis validated this prediction and showed that, unlike other Cas13 orthologs, PspCas13b exhibits potent on-target activity and lacks collateral effects.
Collapse
Affiliation(s)
- Wenxin Hu
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Amit Kumar
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Diagnostic Genomics, Monash Health Pathology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Syed Faraz Ahmed
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shijiao Qi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - David K G Ma
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Honglin Chen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gurjeet J Singh
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joshua M L Casan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ilia Voskoboinik
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew R McKay
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul G Ekert
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mohamed Fareh
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Yang H, Patel DJ. Structures, mechanisms and applications of RNA-centric CRISPR-Cas13. Nat Chem Biol 2024; 20:673-688. [PMID: 38702571 PMCID: PMC11375968 DOI: 10.1038/s41589-024-01593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
Prokaryotes are equipped with a variety of resistance strategies to survive frequent viral attacks or invading mobile genetic elements. Among these, CRISPR-Cas surveillance systems are abundant and have been studied extensively. This Review focuses on CRISPR-Cas type VI Cas13 systems that use single-subunit RNA-guided Cas endonucleases for targeting and subsequent degradation of foreign RNA, thereby providing adaptive immunity. Notably, distinct from single-subunit DNA-cleaving Cas9 and Cas12 systems, Cas13 exhibits target RNA-activated substrate RNase activity. This Review outlines structural, biochemical and cell biological studies toward elucidation of the unique structural and mechanistic principles underlying surveillance effector complex formation, precursor CRISPR RNA (pre-crRNA) processing, self-discrimination and RNA degradation in Cas13 systems as well as insights into suppression by bacteriophage-encoded anti-CRISPR proteins and regulation by endogenous accessory proteins. Owing to its programmable ability for RNA recognition and cleavage, Cas13 provides powerful RNA targeting, editing, detection and imaging platforms with emerging biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Qin M, Deng C, Wen L, Luo G, Meng Y. CRISPR-Cas and CRISPR-based screening system for precise gene editing and targeted cancer therapy. J Transl Med 2024; 22:516. [PMID: 38816739 PMCID: PMC11138051 DOI: 10.1186/s12967-024-05235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Target cancer therapy has been developed for clinical cancer treatment based on the discovery of CRISPR (clustered regularly interspaced short palindromic repeat) -Cas system. This forefront and cutting-edge scientific technique improves the cancer research into molecular level and is currently widely utilized in genetic investigation and clinical precision cancer therapy. In this review, we summarized the genetic modification by CRISPR/Cas and CRISPR screening system, discussed key components for successful CRISPR screening, including Cas enzymes, guide RNA (gRNA) libraries, target cells or organs. Furthermore, we focused on the application for CAR-T cell therapy, drug target, drug screening, or drug selection in both ex vivo and in vivo with CRISPR screening system. In addition, we elucidated the advantages and potential obstacles of CRISPR system in precision clinical medicine and described the prospects for future genetic therapy.In summary, we provide a comprehensive and practical perspective on the development of CRISPR/Cas and CRISPR screening system for the treatment of cancer defects, aiming to further improve the precision and accuracy for clinical treatment and individualized gene therapy.
Collapse
Affiliation(s)
- Mingming Qin
- Reproductive Medical Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Women and Children Hospital), Foshan, Guangdong, 528000, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chunhao Deng
- Chinese Medicine and Translational Medicine R&D center, Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, 519031, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, 519000, China
| | - Guoqun Luo
- Reproductive Medical Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Women and Children Hospital), Foshan, Guangdong, 528000, China.
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
7
|
Li J, Xuan H, Kuang X, Li Y, Lian H, Yu N. Cas13b-mediated RNA targeted therapy alleviates genetic dilated cardiomyopathy in mice. Cell Biosci 2024; 14:4. [PMID: 38178244 PMCID: PMC10768345 DOI: 10.1186/s13578-023-01143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Recent advances in gene editing technology have opened up new avenues for in vivo gene therapy, which holds great promise as a potential treatment method for dilated cardiomyopathy (DCM). The CRISPR-Cas13 system has been shown to be an effective tool for knocking down RNA expression in mammalian cells. PspCas13b, a type VI-B effector that can be packed into adeno-associated viruses and improve RNA knockdown efficiency, is a potential treatment for diseases characterized by abnormal gene expression. RESULTS Using PspCas13b, we were able to efficiently and specifically knockdown the mutant transcripts in the AC16 cell line carrying the heterozygous human TNNT2R141W (hTNNT2R141W) mutation. We used adeno-associated virus vector serotype 9 to deliver PspCas13b with specific single guide RNA into the hTNNT2R141W transgenic DCM mouse model, effectively knocking down hTNNT2R141W transcript expression. PspCas13b-mediated knockdown significantly increased myofilament sensitivity to Ca2+, improved cardiac function, and reduced myocardial fibrosis in hTNNT2R141W DCM mice. CONCLUSIONS These findings suggest that targeting genes through Cas13b is a promising approach for in vivo gene therapy for genetic diseases caused by aberrant gene expression. Our study provides further evidence of Cas13b's application in genetic disease therapy and paves the way for future applicability of genetic therapies for cardiomyopathy.
Collapse
Affiliation(s)
- Jiacheng Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - He Xuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xin Kuang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yahuan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Nie Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, 450046, China.
| |
Collapse
|
8
|
Nie X, Wang D, Pan Y, Hua Y, Lü P, Yang Y. Discovery, classification and application of the CPISPR-Cas13 system. Technol Health Care 2024; 32:525-544. [PMID: 37545273 DOI: 10.3233/thc-230258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is an acquired immune system of bacteria and archaea. Continued research has resulted in the identification of other Cas13 proteins. OBJECTIVE This review briefly describes the discovery, classification, and application of the CRISPR-Cas13 system, including recent technological advances in addition to factors affecting system performance. METHODS Cas13-based molecular therapy of human, animal, and plant transcriptomes was discussed, including regulation of gene expression to combat pathogenic RNA viruses. In addition, the latest progress, potential shortcomings, and challenges of the CRISPR-Cas system for treatment of animal and plant diseases are reviewed. RESULTS The CRISPR-Cas system VI is characterized by two RNA-guided higher eukaryotes and prokaryotes nucleotide-binding domains. CRISPR RNA can cleave specific RNA through the interaction between the stem-loop rich chain of uracil residues and the Cas13a protein. The CRISPR-Cas13 system has been applied for gene editing in animal and plant cells, in addition to biological detection via accurate targeting of single-stranded RNA. CONCLUSION The CRISPR-Cas13 system offers a high-throughput and convenient technology for detection of viruses and potentially the development of anti-cancer drugs in the near future.
Collapse
Affiliation(s)
- Xiaojuan Nie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dandan Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Pan
- School of Experimental Animal Center, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
Koonin EV, Gootenberg JS, Abudayyeh OO. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry 2023; 62:3465-3487. [PMID: 37192099 PMCID: PMC10734277 DOI: 10.1021/acs.biochem.3c00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Indexed: 05/18/2023]
Abstract
CRISPR systems mediate adaptive immunity in bacteria and archaea through diverse effector mechanisms and have been repurposed for versatile applications in therapeutics and diagnostics thanks to their facile reprogramming with RNA guides. RNA-guided CRISPR-Cas targeting and interference are mediated by effectors that are either components of multisubunit complexes in class 1 systems or multidomain single-effector proteins in class 2. The compact class 2 CRISPR systems have been broadly adopted for multiple applications, especially genome editing, leading to a transformation of the molecular biology and biotechnology toolkit. The diversity of class 2 effector enzymes, initially limited to the Cas9 nuclease, was substantially expanded via computational genome and metagenome mining to include numerous variants of Cas12 and Cas13, providing substrates for the development of versatile, orthogonal molecular tools. Characterization of these diverse CRISPR effectors uncovered many new features, including distinct protospacer adjacent motifs (PAMs) that expand the targeting space, improved editing specificity, RNA rather than DNA targeting, smaller crRNAs, staggered and blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage, etc. These unique properties enabled multiple applications, such as harnessing the promiscuous RNase activity of the type VI effector, Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systems have been adopted for genome editing, as well, despite the challenge of expressing and delivering the multiprotein class 1 effectors. The rich diversity of CRISPR enzymes led to rapid maturation of the genome editing toolbox, with capabilities such as gene knockout, base editing, prime editing, gene insertion, DNA imaging, epigenetic modulation, transcriptional modulation, and RNA editing. Combined with rational design and engineering of the effector proteins and associated RNAs, the natural diversity of CRISPR and related bacterial RNA-guided systems provides a vast resource for expanding the repertoire of tools for molecular biology and biotechnology.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Jonathan S. Gootenberg
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Omar O. Abudayyeh
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Wang B, Yang H. Progress of CRISPR-based programmable RNA manipulation and detection. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1804. [PMID: 37282821 DOI: 10.1002/wrna.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeats and CRISPR associated (CRISPR-Cas) systems provide adaptive immunity by using RNA-guided endonucleases to recognize and eliminate invading foreign nucleic acids. Type II Cas9, type V Cas12, type VI Cas13, and type III Csm/Cmr complexes have been well characterized and developed as programmable platforms for selectively targeting and manipulating RNA molecules of interest in prokaryotic and eukaryotic cells. These Cas effectors exhibit remarkable diversity of ribonucleoprotein (RNP) composition, target recognition and cleavage mechanisms, and self discrimination mechanisms, which are leveraged for various RNA targeting applications. Here, we summarize the current understanding of mechanistic and functional characteristics of these Cas effectors, give an overview on RNA detection and manipulation toolbox established so far including knockdown, editing, imaging, modification, and mapping RNA-protein interactions, and discuss the future directions for CRISPR-based RNA targeting tools. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Fan T, Li C, Liu X, Xu H, Li W, Wang M, Mei X, Li D. Development of practical techniques for simultaneous detection and distinction of current and emerging SARS-CoV-2 variants. ANAL SCI 2023; 39:1839-1856. [PMID: 37517003 DOI: 10.1007/s44211-023-00396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Countless individuals have fallen victim to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have generated antibodies, reducing the risk of secondary infection in the short term. However, with the emergence of mutated strains, the probability of subsequent infections remains high. Consequently, the demand for simple and accessible methods for distinguishing between different variants is soaring. Although monitoring viral gene sequencing is an effective approach for differentiating between various types of SARS-CoV-2 variants, it may not be easily accessible to the general public. In this article, we provide an overview of the reported techniques that use combined approaches and adaptable testing methods that use editable recognition receptors for simultaneous detection and distinction of current and emerging SARS-CoV-2 variants. These techniques employ straightforward detection strategies, including tests capable of simultaneously identifying and differentiating between different variants. Furthermore, we recommend advancing the development of uncomplicated protocols for distinguishing between current and emerging variants. Additionally, we propose further development of facile protocols for the differentiation of existing and emerging variants.
Collapse
Affiliation(s)
- Tuocen Fan
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Chengjie Li
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Xinlei Liu
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Hongda Xu
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Wenhao Li
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Minghao Wang
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, 121000, China.
| | - Dan Li
- Jinzhou Medical University, Jinzhou, 121000, China.
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
12
|
Sharma S, Myhrvold C. Optimizing the Cas13 antiviral train: cargo and delivery. EMBO Mol Med 2023; 15:e17146. [PMID: 37231981 PMCID: PMC10331568 DOI: 10.15252/emmm.202217146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2020 highlighted the need for rapid, widespread responses against infectious disease. One such innovation uses CRISPR-Cas13 technology to directly target and cleave viral RNA, thereby inhibiting replication. Due to their programmability, Cas13-based antiviral therapies can be rapidly deployed to target emerging viruses, in comparison with traditional therapeutic development that takes at least 12-18 months, and often many years. Moreover, similar to the programmability of mRNA vaccines, Cas13 antivirals can be developed to target mutations as the virus evolves.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Electrical and Computer EngineeringPrinceton UniversityPrincetonNJUSA
| | - Cameron Myhrvold
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
| |
Collapse
|
13
|
Silva SJRD, Kohl A, Pena L, Pardee K. Clinical and laboratory diagnosis of monkeypox (mpox): Current status and future directions. iScience 2023; 26:106759. [PMID: 37206155 PMCID: PMC10183700 DOI: 10.1016/j.isci.2023.106759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
The emergence and rapid spread of the monkeypox virus (MPXV) to non-endemic countries has brought this once obscure pathogen to the forefront of global public health. Given the range of conditions that cause similar skin lesions, and because the clinical manifestation may often be atypical in the current mpox outbreak, it can be challenging to diagnose patients based on clinical signs and symptoms. With this perspective in mind, laboratory-based diagnosis assumes a critical role for the clinical management, along with the implementation of countermeasures. Here, we review the clinical features reported in mpox patients, the available laboratory tests for mpox diagnosis, and discuss the principles, advances, advantages, and drawbacks of each assay. We also highlight the diagnostic platforms with the potential to guide ongoing clinical response, particularly those that increase diagnostic capacity in low- and middle-income countries. With the outlook of this evolving research area, we hope to provide a resource to the community and inspire more research and the development of diagnostic alternatives with applications to this and future public health crises.
Collapse
Affiliation(s)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto ON M5S 3M2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto ON M5S 3G8, Canada
| |
Collapse
|
14
|
Yu D, Han HJ, Yu J, Kim J, Lee GH, Yang JH, Song BM, Tark D, Choi BS, Kang SM, Heo WD. Pseudoknot-targeting Cas13b combats SARS-CoV-2 infection by suppressing viral replication. Mol Ther 2023; 31:1675-1687. [PMID: 36945774 PMCID: PMC10028249 DOI: 10.1016/j.ymthe.2023.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
CRISPR-Cas13-mediated viral genome targeting is a novel strategy for defending against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here, we generated mRNA-encoded Cas13b targeting the open reading frame 1b (ORF1b) region to effectively degrade the RNA-dependent RNA polymerase gene. Of the 12 designed CRISPR RNAs (crRNAs), those targeting the pseudoknot site upstream of ORF1b were found to be the most effective in suppressing SARS-CoV-2 propagation. Pseudoknot-targeting Cas13b reduced expression of the spike protein and attenuated viral replication by 99%. It also inhibited the replication of multiple SARS-CoV-2 variants, exhibiting broad potency. We validated the therapeutic efficacy of this system in SARS-CoV-2-infected hACE2 transgenic mice, demonstrating that crRNA treatment significantly reduced viral titers. Our findings suggest that the pseudoknot region is a strategic site for targeted genomic degradation of SARS-CoV-2. Hence, pseudoknot-targeting Cas13b could be a breakthrough therapy for overcoming infections by SARS-CoV-2 or other RNA viruses.
Collapse
Affiliation(s)
- Daseuli Yu
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hee-Jeong Han
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Jeonghye Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihye Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Gun-Hee Lee
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Ju-Hee Yang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Byeong-Min Song
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Byeong-Sun Choi
- Honam Regional Center for Disease Control and Prevention, RCDC, Korea Disease Control and Prevention Agency, Gwangju 61947, Republic of Korea
| | - Sang-Min Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea.
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Ohata PJ, Avihingsanon A, Thammapiwan S, Han WM, Hiransuthikul A, Su Lwin HM, Ubolyam S, Boonrungsirisap J, Kerr SJ, Gatechompol S, Puthanakit T, Putcharoen O, Ruxrungtham K, Phanuphak P. Conference proceedings from hybrid 25th Bangkok International Symposium on HIV Medicine. Future Virol 2023. [DOI: 10.2217/fvl-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The Bangkok International Symposium on HIV Medicine has commenced on the 3rd Wednesday in January since 1998. The Symposium aims to provide professional healthcare workers in Thailand and the region an opportunity to receive the most up-to-date information on HIV and its related conditions if they are unable to attend other HIV conferences abroad. This year’s hybrid symposium was held from 18 January to 20 January 2023. A total of six plenary sessions were held in the mornings, and four afternoon workshops held on Wednesday and Thursday. Expert speakers from Thailand, China, Malaysia, Singapore, India, Hong Kong, Philippines, Australia, UK, The Netherlands and the USA participated in the symposium.
Collapse
|
16
|
Yang X, Huang J, Chen Y, Ying X, Tan Q, Chen X, Zeng X, Lei S, Wang Y, Li S. Development of CRISPR/Cas12b-Based Multiple Cross Displacement Amplification Technique for the Detection of Mycobacterium tuberculosis Complex in Clinical Settings. Microbiol Spectr 2023; 11:e0347522. [PMID: 36975805 PMCID: PMC10100757 DOI: 10.1128/spectrum.03475-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease with high mortality caused by the Mycobacterium tuberculosis complex (MTC). Its clinical symptoms include a prolonged cough with mucus, pleuritic chest pain, hemoptysis, etc., and predominant complications such as tuberculous meningitis and pleural effusion. Thus, developing rapid, ultrasensitive, and highly specific detection techniques plays an important role in controlling TB. Here, we devised CRISPR/CRISPR-associated 12b nuclease (CRISPR/Cas12b)-based multiple cross displacement amplification technique (CRISPR-MCDA) targeting the IS6110 sequence and used it to detect MTC pathogens. A newly engineered protospacer adjacent motif (PAM) site (TTTC) was modified in the linker region of the CP1 primer. In the CRISPR-MCDA system, the exponentially amplified MCDA amplicons with the PAM sites can guide the Cas12b/gRNA complex to quickly and accurately recognize its target regions, which successfully activates the CRISPR/Cas12b effector and enables ultrafast trans-cleavage of single-stranded DNA reporter molecules. The limit of detection of the CRISPR-MCDA assay was 5 fg/μL of genomic DNA extracted from the MTB reference strain H37Rv. The CRISPR-MCDA assay successfully detected all examined MTC strains and there was no cross-reaction with non-MTC pathogens, confirming that its specificity is 100%. The entire detection process can be completed within 70 min using real-time fluorescence analysis. Moreover, visualization detection (under UV light) was also designed to verify the results, eliminating the use of specialized instruments. In conclusion, the CRISPR-MCDA assay established in this report can be used as a valuable detection technique for MTC infection. IMPORTANCE The Mycobacterium tuberculosis complex pathogen is a crucial infectious agent of tuberculosis. Hence, improving the capability of MTC detection is one of the most urgently required strategies for preventing and controlling TB. In this report, we successfully developed and implemented CRISPR/Cas12b-based multiple cross displacement amplification targeting the IS6110 sequence to detect MTC pathogens. These results demonstrated that the CRISPR-MCDA assay developed in this study was a rapid, ultrasensitive, highly specific, and readily available method which can be used as a valuable diagnostic tool for MTC infection in clinical settings.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Yijiang Chen
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Xia Ying
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Qinqin Tan
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Xu Chen
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoyan Zeng
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Shiguang Lei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
17
|
McCollum C, Courtney CM, O’Connor NJ, Aunins TR, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Safety and Biodistribution of Nanoligomers Targeting the SARS-CoV-2 Genome for the Treatment of COVID-19. ACS Biomater Sci Eng 2023; 9:1656-1671. [PMID: 36853144 PMCID: PMC10000012 DOI: 10.1021/acsbiomaterials.2c00669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
As the world braces to enter its fourth year of the coronavirus disease 2019 (COVID-19) pandemic, the need for accessible and effective antiviral therapeutics continues to be felt globally. The recent surge of Omicron variant cases has demonstrated that vaccination and prevention alone cannot quell the spread of highly transmissible variants. A safe and nontoxic therapeutic with an adaptable design to respond to the emergence of new variants is critical for transitioning to the treatment of COVID-19 as an endemic disease. Here, we present a novel compound, called SBCoV202, that specifically and tightly binds the translation initiation site of RNA-dependent RNA polymerase within the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, inhibiting viral replication. SBCoV202 is a Nanoligomer, a molecule that includes peptide nucleic acid sequences capable of binding viral RNA with single-base-pair specificity to accurately target the viral genome. The compound has been shown to be safe and nontoxic in mice, with favorable biodistribution, and has shown efficacy against SARS-CoV-2 in vitro. Safety and biodistribution were assessed using three separate administration methods, namely, intranasal, intravenous, and intraperitoneal. Safety studies showed the Nanoligomer caused no outward distress, immunogenicity, or organ tissue damage, measured through observation of behavior and body weight, serum levels of cytokines, and histopathology of fixed tissue, respectively. SBCoV202 was evenly biodistributed throughout the body, with most tissues measuring Nanoligomer concentrations well above the compound KD of 3.37 nM. In addition to favorable availability to organs such as the lungs, lymph nodes, liver, and spleen, the compound circulated through the blood and was rapidly cleared through the renal and urinary systems. The favorable biodistribution and lack of immunogenicity and toxicity set Nanoligomers apart from other antisense therapies, while the adaptability of the nucleic acid sequence of Nanoligomers provides a defense against future emergence of drug resistance, making these molecules an attractive potential treatment for COVID-19.
Collapse
Affiliation(s)
- Colleen
R. McCollum
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Colleen M. Courtney
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Nolan J. O’Connor
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Thomas R. Aunins
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Tristan X. Jordan
- Department
of Microbiology, New York University Langone, New York, New York 10016, United States
| | - Keegan L. Rogers
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Stephen Brindley
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jared M. Brown
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
- Antimicrobial
Regeneration Consortium Labs, Louisville, Colorado 80027, United States
| | - Anushree Chatterjee
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
- Antimicrobial
Regeneration Consortium Labs, Louisville, Colorado 80027, United States
| |
Collapse
|
18
|
Liu Z, Gao X, Kan C, Li L, Zhang Y, Gao Y, Zhang S, Zhou L, Zhao H, Li M, Zhang Z, Sun Y. CRISPR-Cas13d effectively targets SARS-CoV-2 variants, including Delta and Omicron, and inhibits viral infection. MedComm (Beijing) 2023; 4:e208. [PMID: 36744219 PMCID: PMC9887993 DOI: 10.1002/mco2.208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
The recent pandemic of variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for innovative anti-SARS-CoV-2 approaches in addition to vaccines and antiviral therapeutics. Here, we demonstrate that a CRISPR-Cas13-based strategy against SARS-CoV-2 can effectively degrade viral RNA. First, we conducted a cytological infection experiment, screened CRISPR-associated RNAs (crRNAs) targeting conserved regions of viruses, and used an in vitro system to validate functional crRNAs. Reprogrammed Cas13d effectors targeting NSP13, NSP14, and nucleocapsid transcripts achieved >99% silencing efficiency in human cells which are infected with coronavirus 2, including the emerging variants in the last 2 years, B.1, B.1.1.7 (Alpha), D614G B.1.351 (Beta), and B.1.617 (Delta). Furthermore, we conducted bioinformatics data analysis. We collected the sequence information of COVID-19 and its variants from China, and phylogenetic analysis revealed that these crRNA oligos could target almost 100% of the SARS-CoV family, including the emerging new variant, Omicron. The reprogrammed Cas13d exhibited high specificity, efficiency, and rapid deployment properties; therefore, it is promising for antiviral drug development. This system could possibly be used to protect against unexpected SARS-CoV-2 variants carrying multiple mutations.
Collapse
Affiliation(s)
- Zongzhi Liu
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina,University of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences/China National Center for BioinformationBeijingChina
| | - Xiang Gao
- Institute of HepatologyNational Clinical Research Center for Infectious DiseaseSchool of MedicineShenzhen Third People's HospitalThe Second Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Chuanwen Kan
- University of Chinese Academy of SciencesBeijingChina,Beijing Institute of GenomicsChinese Academy of Sciences, China National Center for BioinformationBeijingChina
| | - Lingyu Li
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina,University of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences/China National Center for BioinformationBeijingChina
| | - Yuan Zhang
- Key Laboratory for Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong
| | - Yibo Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shengyuan Zhang
- Institute of HepatologyNational Clinical Research Center for Infectious DiseaseSchool of MedicineShenzhen Third People's HospitalThe Second Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Liangji Zhou
- Key Laboratory for Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong
| | - Hui Zhao
- Key Laboratory for Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong,Kunming Institute of Zoology, The Chinese University of Hong Kong (KIZ‐CUHK) Joint Laboratory of Bioresources and Molecular Research of Common DiseasesThe Chinese University of Hong KongHong Kong,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsThe Chinese University of Hong KongHong Kong
| | - Mingkun Li
- University of Chinese Academy of SciencesBeijingChina,Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesChina National Center for BioinformationBeijingChina
| | - Zheng Zhang
- Institute of HepatologyNational Clinical Research Center for Infectious DiseaseSchool of MedicineShenzhen Third People's HospitalThe Second Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yingli Sun
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina,University of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences/China National Center for BioinformationBeijingChina
| |
Collapse
|
19
|
Zhou Q, Chen Y, Wang R, Jia F, He F, Yuan F. Advances of CRISPR-Cas13 system in COVID-19 diagnosis and treatment. Genes Dis 2022; 10:S2352-3042(22)00317-8. [PMID: 36591005 PMCID: PMC9793954 DOI: 10.1016/j.gendis.2022.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/28/2022] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in over 570 million infections and 6 million deaths worldwide. Early detection and quarantine are essential to arrest the spread of the highly contagious COVID-19. High-risk groups, such as older adults and individuals with comorbidities, can present severe symptoms, including pyrexia, pertussis, and acute respiratory distress syndrome, on SARS-CoV-2 infection that can prove fatal, demonstrating a clear need for high-throughput and sensitive platforms to detect and eliminate SARS-CoV-2. CRISPR-Cas13, an emerging CRISPR system targeting RNA with high specificity and efficiency, has recently drawn much attention for COVID-19 diagnosis and treatment. Here, we summarized the current research progress on CRISPR-Cas13 in COVID-19 diagnosis and treatment and highlight the challenges and future research directions of CRISPR-Cas13 for effectively counteracting COVID-19.
Collapse
Affiliation(s)
| | | | - Ruolei Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fengjing Jia
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
20
|
Bagchi R, Tinker-Kulberg R, Salehin M, Supakar T, Chamberlain S, Ligaba-Osena A, Josephs EA. Polyvalent guide RNAs for CRISPR antivirals. iScience 2022; 25:105333. [PMID: 36325075 PMCID: PMC9618770 DOI: 10.1016/j.isci.2022.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
CRISPR effector Cas13 recognizes and degrades RNA molecules that are complementary to its guide RNA (gRNA) and possesses potential as an antiviral biotechnology because it can degrade viral mRNA and RNA genomes. Because multiplexed targeting is a critical strategy to improve viral suppression, we developed a strategy to design of gRNAs where individual gRNAs have maximized activity at multiple viral targets, simultaneously, by exploiting the molecular biophysics of promiscuous target recognition by Cas13. These "polyvalent" gRNA sequences ("pgRNAs") provide superior antiviral elimination across tissue/organ scales in a higher organism (Nicotiana benthamiana) compared to conventionally-designed gRNAs-reducing detectable viral RNA by >30-fold, despite lacking perfect complementarity with either of their targets and, when multiplexed, reducing viral RNA by >99.5%. Pairs of pgRNA-targetable sequences are abundant in the genomes of RNA viruses, and this work highlights the need for specific approaches to the challenges of targeting viruses in eukaryotes using CRISPR.
Collapse
Affiliation(s)
- Rammyani Bagchi
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Rachel Tinker-Kulberg
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Mohammad Salehin
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Tinku Supakar
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Sydney Chamberlain
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Ayalew Ligaba-Osena
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Eric A. Josephs
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
21
|
Arriaga-Canon C, Contreras-Espinosa L, Rebollar-Vega R, Montiel-Manríquez R, Cedro-Tanda A, García-Gordillo JA, Álvarez-Gómez RM, Jiménez-Trejo F, Castro-Hernández C, Herrera LA. Transcriptomics and RNA-Based Therapeutics as Potential Approaches to Manage SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:11058. [PMID: 36232363 PMCID: PMC9570475 DOI: 10.3390/ijms231911058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 is a coronavirus family member that appeared in China in December 2019 and caused the disease called COVID-19, which was declared a pandemic in 2020 by the World Health Organization. In recent months, great efforts have been made in the field of basic and clinical research to understand the biology and infection processes of SARS-CoV-2. In particular, transcriptome analysis has contributed to generating new knowledge of the viral sequences and intracellular signaling pathways that regulate the infection and pathogenesis of SARS-CoV-2, generating new information about its biology. Furthermore, transcriptomics approaches including spatial transcriptomics, single-cell transcriptomics and direct RNA sequencing have been used for clinical applications in monitoring, detection, diagnosis, and treatment to generate new clinical predictive models for SARS-CoV-2. Consequently, RNA-based therapeutics and their relationship with SARS-CoV-2 have emerged as promising strategies to battle the SARS-CoV-2 pandemic with the assistance of novel approaches such as CRISPR-CAS, ASOs, and siRNA systems. Lastly, we discuss the importance of precision public health in the management of patients infected with SARS-CoV-2 and establish that the fusion of transcriptomics, RNA-based therapeutics, and precision public health will allow a linkage for developing health systems that facilitate the acquisition of relevant clinical strategies for rapid decision making to assist in the management and treatment of the SARS-CoV-2-infected population to combat this global public health problem.
Collapse
Affiliation(s)
- Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Rosa Rebollar-Vega
- Genomics Laboratory, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Alberto Cedro-Tanda
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan. C.P., Mexico City 14610, Mexico
| | - José Antonio García-Gordillo
- Oncología Médica, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Francisco Jiménez-Trejo
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C, Coyoacán. C.P., Mexico City 04530, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan. C.P., Mexico City 14610, Mexico
| |
Collapse
|
22
|
Zhang M, He Y, Jie Z. Delta Variant: Partially Sensitive To Vaccination, but Still Worth Global Attention. J Transl Int Med 2022; 10:227-235. [PMID: 36776232 PMCID: PMC9901554 DOI: 10.2478/jtim-2022-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pandemic coronavirus disease 2019 (COVID-19) has rapidly spread to all countries worldwide. The emergence of its variants has exacerbated this problem. To date, many variants have been identified across the viral genome; the variants of concern are the focus of attention due to their higher transmissibility and resistance to vaccines, especially the delta variant. The delta variant has become the dominant severe acute respiratory syndrome novel coronavirus (SARS-CoV-2) variant worldwide, causing severe panic as it is highly infectious. A better understanding of these variants may help in the development of possible treatments and save more lives. In this study, we summarize the characteristics of the variants of concern. More importantly, we summarize the results of previous studies on the delta variant. The delta variant has a high transmissibility rate and increases the risk of hospitalization and death. However, it is partially sensitive to vaccines. In addition, nonpharmaceutical interventions are valuable during epidemics. These interventions can be used against the delta variant, but managing this variant should still be taken seriously.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai200240, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai200240, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai200240, China
| |
Collapse
|
23
|
Wei X, Pu A, Liu Q, Hou Q, Zhang Y, An X, Long Y, Jiang Y, Dong Z, Wu S, Wan X. The Bibliometric Landscape of Gene Editing Innovation and Regulation in the Worldwide. Cells 2022; 11:cells11172682. [PMID: 36078090 PMCID: PMC9454589 DOI: 10.3390/cells11172682] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Gene editing (GE) has become one of the mainstream bioengineering technologies over the past two decades, mainly fueled by the rapid development of the CRISPR/Cas system since 2012. To date, plenty of articles related to the progress and applications of GE have been published globally, but the objective, quantitative and comprehensive investigations of them are relatively few. Here, 13,980 research articles and reviews published since 1999 were collected by using GE-related queries in the Web of Science. We used bibliometric analysis to investigate the competitiveness and cooperation of leading countries, influential affiliations, and prolific authors. Text clustering methods were used to assess technical trends and research hotspots dynamically. The global application status and regulatory framework were also summarized. This analysis illustrates the bottleneck of the GE innovation and provides insights into the future trajectory of development and application of the technology in various fields, which will be helpful for the popularization of gene editing technology.
Collapse
Affiliation(s)
- Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
- Correspondence: (X.W.); (X.W.); Tel.: +86-189-1087-6260 (X.W.); +86-186-0056-1850 (X.W.)
| | - Aqing Pu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
| | - Qianqian Liu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yong Zhang
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yilin Jiang
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
| | - Zhenying Dong
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
- Correspondence: (X.W.); (X.W.); Tel.: +86-189-1087-6260 (X.W.); +86-186-0056-1850 (X.W.)
| |
Collapse
|
24
|
Forgham H, Kakinen A, Qiao R, Davis TP. Keeping up with the COVID's-Could siRNA-based antivirals be a part of the answer? EXPLORATION (BEIJING, CHINA) 2022; 2:20220012. [PMID: 35941991 PMCID: PMC9349879 DOI: 10.1002/exp.20220012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/11/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This deadly infection has resulted in more than 5.2 million deaths worldwide. The global rollout of COVID-19 vaccines has without doubt saved countless lives by reducing the severity of symptoms for patients. However, as the virus continues to evolve, there is a risk that the vaccines and antiviral designed to target the infection will no longer be therapeutically viable. Furthermore, there remain fears over both the short and long-term side effects of repeat exposure to currently available vaccines. In this review, we discuss the pros and cons of the vaccine rollout and promote the idea of a COVID medicinal toolbox made up of different antiviral treatment modalities, and present some of the latest therapeutic strategies that are being explored in this respect to try to combat the COVID-19 virus and other COVID viruses that are predicted to follow. Lastly, we review current literature on the use of siRNA therapeutics as a way to remain adaptable and in tune with the ever-evolving mutation rate of the COVID-19 virus.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- Institute of Biotechnology, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Ruirui Qiao
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
25
|
Targeted Nanocarrier Delivery of RNA Therapeutics to Control HIV Infection. Pharmaceutics 2022; 14:pharmaceutics14071352. [PMID: 35890248 PMCID: PMC9324444 DOI: 10.3390/pharmaceutics14071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Our understanding of HIV infection has greatly advanced since the discovery of the virus in 1983. Treatment options have improved the quality of life of people living with HIV/AIDS, turning it from a fatal disease into a chronic, manageable infection. Despite all this progress, a cure remains elusive. A major barrier to attaining an HIV cure is the presence of the latent viral reservoir, which is established early in infection and persists for the lifetime of the host, even during prolonged anti-viral therapy. Different cure strategies are currently being explored to eliminate or suppress this reservoir. Several studies have shown that a functional cure may be achieved by preventing infection and also inhibiting reactivation of the virus from the latent reservoir. Here, we briefly describe the main HIV cure strategies, focussing on the use of RNA therapeutics, including small interfering RNA (siRNA) to maintain HIV permanently in a state of super latency, and CRISPR gRNA to excise the latent reservoir. A challenge with progressing RNA therapeutics to the clinic is achieving effective delivery into the host cell. This review covers recent nanotechnological strategies for siRNA delivery using liposomes, N-acetylgalactosamine conjugation, inorganic nanoparticles and polymer-based nanocapsules. We further discuss the opportunities and challenges of those strategies for HIV treatment.
Collapse
|
26
|
Zeng L, Liu Y, Nguyenla XH, Abbott TR, Han M, Zhu Y, Chemparathy A, Lin X, Chen X, Wang H, Rane DA, Spatz JM, Jain S, Rustagi A, Pinsky B, Zepeda AE, Kadina AP, Walker JA, Holden K, Temperton N, Cochran JR, Barron AE, Connolly MD, Blish CA, Lewis DB, Stanley SA, La Russa MF, Qi LS. Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro. Nat Commun 2022; 13:2766. [PMID: 35589813 PMCID: PMC9119983 DOI: 10.1038/s41467-022-30546-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
A major challenge in coronavirus vaccination and treatment is to counteract rapid viral evolution and mutations. Here we demonstrate that CRISPR-Cas13d offers a broad-spectrum antiviral (BSA) to inhibit many SARS-CoV-2 variants and diverse human coronavirus strains with >99% reduction of the viral titer. We show that Cas13d-mediated coronavirus inhibition is dependent on the crRNA cellular spatial colocalization with Cas13d and target viral RNA. Cas13d can significantly enhance the therapeutic effects of diverse small molecule drugs against coronaviruses for prophylaxis or treatment purposes, and the best combination reduced viral titer by over four orders of magnitude. Using lipid nanoparticle-mediated RNA delivery, we demonstrate that the Cas13d system can effectively treat infection from multiple variants of coronavirus, including Omicron SARS-CoV-2, in human primary airway epithelium air-liquid interface (ALI) cultures. Our study establishes CRISPR-Cas13 as a BSA which is highly complementary to existing vaccination and antiviral treatment strategies.
Collapse
Affiliation(s)
- Leiping Zeng
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Yanxia Liu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Xammy Huu Nguyenla
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, 94720, USA
| | - Timothy R Abbott
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Mengting Han
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Yanyu Zhu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Xueqiu Lin
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Draven A Rane
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jordan M Spatz
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Saket Jain
- University of California San Francisco, San Francisco, CA, 94143, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Benjamin Pinsky
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham, Kent ME4 4TB, UK
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg BioHub, San Francisco, CA, 94158, USA
| | - David B Lewis
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Sarah A Stanley
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, 94720, USA.
| | - Marie F La Russa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg BioHub, San Francisco, CA, 94158, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Ye J, Xi H, Chen Y, Chen Q, Lu X, Lv J, Chen Y, Gu F, Zhao J. Can SpRY recognize any PAM in human cells? J Zhejiang Univ Sci B 2022; 23:382-391. [PMID: 35557039 PMCID: PMC9110322 DOI: 10.1631/jzus.b2100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) can be limited due to a lack of compatible protospacer adjacent motif (PAM) sequences in the DNA regions of interest. Recently, SpRY, a variant of Streptococcus pyogenes Cas9 (SpCas9), was reported, which nearly completely fulfils the PAM requirement. Meanwhile, PAMs for SpRY have not been well addressed. In our previous study, we developed the PAM Definition by Observable Sequence Excision (PAM-DOSE) and green fluorescent protein (GFP)-reporter systems to study PAMs in human cells. Herein, we endeavored to identify the PAMs of SpRY with these two methods. The results indicated that 5'-NRN-3', 5'-NTA-3', and 5'-NCK-3' could be considered as canonical PAMs. 5'-NCA-3' and 5'-NTK-3' may serve as non-priority PAMs. At the same time, PAM of 5'-NYC-3' is not recommended for human cells. These findings provide further insights into the application of SpRY for human genome editing.
Collapse
Affiliation(s)
- Jinbin Ye
- Reproduction Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haitao Xi
- Reproduction Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yilu Chen
- Reproduction Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qishu Chen
- Reproduction Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaosheng Lu
- Reproduction Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jineng Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325000, China
| | - Yamin Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325000, China
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325000, China. ,
| | - Junzhao Zhao
- Reproduction Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
28
|
Liu Y, Li L, Timani KA, He JJ. A Unique Robust Dual-Promoter-Driven and Dual-Reporter-Expressing SARS-CoV-2 Replicon: Construction and Characterization. Viruses 2022; 14:974. [PMID: 35632716 PMCID: PMC9143625 DOI: 10.3390/v14050974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2, SARS2) remains a great global health threat and demands identification of more effective and SARS2-targeted antiviral drugs, even with successful development of anti-SARS2 vaccines. Viral replicons have proven to be a rapid, safe, and readily scalable platform for high-throughput screening, identification, and evaluation of antiviral drugs against positive-stranded RNA viruses. In the study, we report a unique robust HIV long terminal repeat (LTR)/T7 dual-promoter-driven and dual-reporter firefly luciferase (fLuc) and green fluorescent protein (GFP)-expressing SARS2 replicon. The genomic organization of the replicon was designed with quite a few features that were to ensure the replication fidelity of the replicon, to maximize the expression of the full-length replicon, and to offer the monitoring flexibility of the replicon replication. We showed the success of the construction of the replicon and expression of reporter genes fLuc and GFP and SARS structural N from the replicon DNA or the RNA that was in vitro transcribed from the replicon DNA. We also showed detection of the negative-stranded genomic RNA (gRNA) and subgenomic RNA (sgRNA) intermediates, a hallmark of replication of positive-stranded RNA viruses from the replicon. Lastly, we showed that expression of the reporter genes, N gene, gRNA, and sgRNA from the replicon was sensitive to inhibition by Remdesivir. Taken together, our results support use of the replicon for identification of anti-SARS2 drugs and development of new anti-SARS strategies targeted at the step of virus replication.
Collapse
Affiliation(s)
- Ying Liu
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA; (Y.L.); (L.L.); (K.A.T.)
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Lu Li
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA; (Y.L.); (L.L.); (K.A.T.)
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Khalid A. Timani
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA; (Y.L.); (L.L.); (K.A.T.)
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Johnny J. He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA; (Y.L.); (L.L.); (K.A.T.)
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| |
Collapse
|
29
|
Becker J, Stanifer ML, Leist SR, Stolp B, Maiakovska O, West A, Wiedtke E, Börner K, Ghanem A, Ambiel I, Tse LV, Fackler OT, Baric RS, Boulant S, Grimm D. Ex vivo and in vivo suppression of SARS-CoV-2 with combinatorial AAV/RNAi expression vectors. Mol Ther 2022; 30:2005-2023. [PMID: 35038579 PMCID: PMC8758558 DOI: 10.1016/j.ymthe.2022.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels. Strikingly, in control experiments using single shRNAs, multiple SARS-CoV-2 escape mutants quickly emerged from infected cells within 24-48 h. Importantly, such adverse viral adaptation was fully prevented with the triple-shRNA AAV vector even during long-term cultivation. In addition, AAV-SAVIOR efficiently purged SARS-CoV-2 in a new model of chronically infected human intestinal cells. Finally, intranasal AAV-SAVIOR delivery using an AAV9 capsid moderately diminished viral loads and/or alleviated disease symptoms in hACE2-transgenic or wild-type mice infected with human or mouse SARS-CoV-2 strains, respectively. Our combinatorial and customizable AAV/RNAi vector complements ongoing global efforts to control the coronavirus disease 2019 (COVID-19) pandemic and holds great potential for clinical translation as an original and flexible preventive or therapeutic antiviral measure.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Megan Lynn Stanifer
- Department of Infectious Diseases/Molecular Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Sarah Rebecca Leist
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Bettina Stolp
- Department of Infectious Diseases/Integrative Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Olena Maiakovska
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ande West
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Ellen Wiedtke
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany; Department of Infectious Diseases/Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Ali Ghanem
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ina Ambiel
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Longping Victor Tse
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Oliver Till Fackler
- Department of Infectious Diseases/Integrative Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Ralph Steven Baric
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany; Department of Infectious Diseases/Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
McMillan NAJ, Morris KV, Idris A. RNAi to treat SARS-CoV-2-variant proofing the next generation of therapies. EMBO Mol Med 2022; 14:e15811. [PMID: 35285158 PMCID: PMC8988212 DOI: 10.15252/emmm.202215811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
There is an urgent need to bring new antivirals to SARS‐CoV‐2 to the market. Indeed, in the last 3 months, we have seen at least two new antivirals approved, molnupiravir and paxlovid. Both are older established antivirals that show some efficacy against SARS‐CoV‐2. The work by Chang et al (2022) in the current issue of EMBO Molecular Medicine explores the use of short interfering RNAs to directly target SARS‐CoV‐2 and shows that RNAi is an effective approach to reducing, or even eliminating viral replication, depending on the experimental setting. This antiviral effect results in significant prevention of infection‐related pathology in animals. The key feature of this approach, besides its simplicity as naked siRNAs, is that all current variants are covered by this treatment.
Collapse
Affiliation(s)
- Nigel A J McMillan
- Centre for Cell and Gene Medicine, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Kevin V Morris
- Centre for Cell and Gene Medicine, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Adi Idris
- Centre for Cell and Gene Medicine, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| |
Collapse
|
31
|
Lo N, Xu X, Soares F, He HH. The Basis and Promise of Programmable RNA Editing and Modification. Front Genet 2022; 13:834413. [PMID: 35154288 PMCID: PMC8831800 DOI: 10.3389/fgene.2022.834413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
One key advantage of RNA over genomic editing is its temporary effects. Aside from current use of DNA-targeting CRISPR-Cas9, the more recently discovered CRISPR-Cas13 has been explored as a means of editing due to its RNA-targeting capabilities. Specifically, there has been a recent interest in identifying and functionally characterizing biochemical RNA modifications, which has spurred a new field of research known as "epitranscriptomics". As one of the most frequently occurring transcriptome modifications, N6-methyladenosine (m6A) has generated much interest. The presence of m6A modifications is under the tight control of a series of regulators, and the ability of fusing these proteins or demethylases to catalytically inactive CRISPR proteins have resulted in a new wave of programmable RNA methylation tools. In addition, studies have been conducted to develop different CRISPR/Cas and base editor systems capable of more efficient editing, and some have explored the effects of in vivo editing for certain diseases. As well, the application of CRISPR and base editors for screening shows promise in revealing the phenotypic outcomes from m6A modification, many of which are linked to physiological, and pathological effects. Thus, the therapeutic potential of CRISPR/Cas and base editors for not only m6A related, but other RNA and DNA related disease has also garnered insight. In this review, we summarize/discuss the recent findings on RNA editing with CRISPR, base editors and non-CRISPR related tools and offer a perspective regarding future applications for basic and clinical research.
Collapse
Affiliation(s)
- Nicholas Lo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Xin Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Shademan B, Nourazarian A, Hajazimian S, Isazadeh A, Biray Avci C, Oskouee MA. CRISPR Technology in Gene-Editing-Based Detection and Treatment of SARS-CoV-2. Front Mol Biosci 2022; 8:772788. [PMID: 35087864 PMCID: PMC8787289 DOI: 10.3389/fmolb.2021.772788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Outbreak and rapid spread of coronavirus disease (COVID-19) caused by coronavirus acute respiratory syndrome (SARS-CoV-2) caused severe acute respiratory syndrome (SARS-CoV-2) that started in Wuhan, and has become a global problem because of the high rate of human-to-human transmission and severe respiratory infections. Because of high prevalence of SARS-CoV-2, which threatens many people worldwide, rapid diagnosis and simple treatment are needed. Genome editing is a nucleic acid-based approach to altering the genome by artificially changes in genetic information and induce irreversible changes in the function of target gene. Clustered, regularly interspaced short palindromic repeats (CRISPR/Cas) could be a practical and straightforward approach to this disease. CRISPR/Cas system contains Cas protein, which is controlled by a small RNA molecule to create a double-stranded DNA gap. Evidence suggested that CRISPR/Cas was also usable for diagnosis and treatment of SARS-CoV-2 infection. In this review study, we discoursed on application of CRISPR technology in detection and treatment of SARS-CoV-2 infection. Another aspect of this study was to introduce potential future problems in use of CRISPR/Cas technology.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Mahin Ahangar Oskouee
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Ianevski A, Ahmad S, Anunnitipat K, Oksenych V, Zusinaite E, Tenson T, Bjørås M, Kainov DE. Seven classes of antiviral agents. Cell Mol Life Sci 2022; 79:605. [PMID: 36436108 PMCID: PMC9701656 DOI: 10.1007/s00018-022-04635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
The viral epidemics and pandemics have stimulated the development of known and the discovery of novel antiviral agents. About a hundred mono- and combination antiviral drugs have been already approved, whereas thousands are in development. Here, we briefly reviewed 7 classes of antiviral agents: neutralizing antibodies, neutralizing recombinant soluble human receptors, antiviral CRISPR/Cas systems, interferons, antiviral peptides, antiviral nucleic acid polymers, and antiviral small molecules. Interferons and some small molecules alone or in combinations possess broad-spectrum antiviral activity, which could be beneficial for treatment of emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Shahzaib Ahmad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Kraipit Anunnitipat
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway ,Institute of Technology, University of Tartu, 50411 Tartu, Estonia ,Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
34
|
Baci GM, Cucu AA, Giurgiu AI, Muscă AS, Bagameri L, Moise AR, Bobiș O, Rațiu AC, Dezmirean DS. Advances in Editing Silkworms ( Bombyx mori) Genome by Using the CRISPR-Cas System. INSECTS 2021; 13:28. [PMID: 35055871 PMCID: PMC8777690 DOI: 10.3390/insects13010028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) represents a powerful genome editing technology that revolutionized in a short period of time numerous natural sciences branches. Therefore, extraordinary progress was made in various fields, such as entomology or biotechnology. Bombyx mori is one of the most important insects, not only for the sericulture industry, but for numerous scientific areas. The silkworms play a key role as a model organism, but also as a bioreactor for the recombinant protein production. Nowadays, the CRISPR-Cas genome editing system is frequently used in order to perform gene analyses, to increase the resistance against certain pathogens or as an imaging tool in B. mori. Here, we provide an overview of various studies that made use of CRISPR-Cas for B. mori genome editing, with a focus on emphasizing the high applicability of this system in entomology and biological sciences.
Collapse
Affiliation(s)
- Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandru-Ioan Giurgiu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adriana-Sebastiana Muscă
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Lilla Bagameri
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Otilia Bobiș
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | | | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| |
Collapse
|
35
|
Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021; 9:1823. [PMID: 34944639 PMCID: PMC8698532 DOI: 10.3390/biomedicines9121823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Sami Ullah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Thomas M. H. Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|