1
|
Wever MJA, Scommegna FR, Egea-Rodriguez S, Dehghani-Tafti S, Brandao-Neto J, Poisson JF, Helfrich I, Antson AA, Rodeschini V, Bax B, Roche D, Sanders CM. Structure-based discovery of first inhibitors targeting the helicase activity of human PIF1. Nucleic Acids Res 2024:gkae897. [PMID: 39417423 DOI: 10.1093/nar/gkae897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
PIF1 is a conserved helicase and G4 DNA binding and unwinding enzyme, with roles in genome stability. Human PIF1 (hPIF1) is poorly understood, but its functions can become critical for tumour cell survival during oncogene-driven replication stress. Here we report the discovery, via an X-ray crystallographic fragment screen (XChem), of hPIF1 DNA binding and unwinding inhibitors. A structure was obtained with a 4-phenylthiazol-2-amine fragment bound in a pocket between helicase domains 2A and 2B, with additional contacts to Valine 258 from domain 1A. The compound makes specific interactions, notably through Leucine 548 and Alanine 551, that constrain conformational adjustments between domains 2A and 2B, previously linked to ATP hydrolysis and DNA unwinding. We next synthesized a range of related compounds and characterized their effects on hPIF1 DNA-binding and helicase activity in vitro, expanding the structure activity relationship (SAR) around the initial hit. A systematic analysis of clinical cancer databases is also presented here, supporting the notion that hPIF1 upregulation may represent a specific cancer cell vulnerability. The research demonstrates that hPIF1 is a tractable target through 4-phenylthiazol-2-amine derivatives as inhibitors of its helicase action, setting a foundation for creation of a novel class of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Mark J A Wever
- Edelris, Bioparc, Bioserra 1 Building, 69008 Lyon, France
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Francesca R Scommegna
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom
| | - Sara Egea-Rodriguez
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität (LMU) Munich & German Cancer Consortium (DKTK), partner site Munich, Frauenlobstrasse 9-11, D-80337 Munich, Germany
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Saba Dehghani-Tafti
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Research Complex at Harwell, Harwell Campus, Didcot, United Kingdom
| | | | - Iris Helfrich
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität (LMU) Munich & German Cancer Consortium (DKTK), partner site Munich, Frauenlobstrasse 9-11, D-80337 Munich, Germany
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Ben Bax
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Didier Roche
- Edelris, Bioparc, Bioserra 1 Building, 69008 Lyon, France
| | - Cyril M Sanders
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom
| |
Collapse
|
2
|
Li A, Zhao K, Duan Y, Zhang B, Zheng Y, Zhu C, Chen Q, Liu WB, Hui L, Xia Y, Cheng X. SARS-CoV-2 nsp13 suppresses hepatitis B virus replication by targeting cccDNA transcription. J Virol 2024:e0104224. [PMID: 39373477 DOI: 10.1128/jvi.01042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
SARS-CoV-2 nonstructural protein 13 (nsp13) has been shown to selectively suppress the transcription of episomal DNA while sparing chromosomal DNA. Hepatitis B Virus (HBV) harbors covalently closed circular DNA (cccDNA), a form of viral episomal DNA found within infected hepatocyte nuclei. The persistence of cccDNA is the major cause of chronic HBV infection. In this study, we investigated the impact of SARS-CoV-2 nsp13 on HBV replication, particularly in the context of cccDNA. Our findings demonstrate that nsp13 effectively hinders HBV replication by suppressing the transcription of HBV cccDNA, both in vitro and in vivo. Additionally, we observed that SARS-CoV-2 nsp13 binds to HBV cccDNA and its NTPase and helicase activities contribute significantly to inhibiting HBV replication. Furthermore, our screening identified the interaction between nsp13 and structural maintenance of chromosomes 4, opening new avenues for future mechanistic inquiries. This study presents the evidence suggesting the potential utilization of SARS-CoV-2 nsp13 as a strategy to impede HBV replication by specifically targeting cccDNA. These findings provide a proof of concept for exploring nsp13 as a prospective approach in combating HBV infection. IMPORTANCE To effectively combat hepatitis B virus (HBV), it is imperative to develop potent antiviral medications targeting covalently closed circular DNA (cccDNA). Our investigation aimed to assess the impact of SARS-CoV-2 nsp13 on HBV replication across diverse HBV models, confirming its ability to significantly reduce several HBV replication markers. Additionally, our identification of the interaction between nsp13 and SMC4 opens the door for further mechanistic exploration. This marks a paradigm shift in our approach to HBV antiviral therapy, introducing an entirely novel perspective. Our findings propose a novel strategy for developing anti-HBV drugs that specifically target HBV cccDNA.
Collapse
Affiliation(s)
- Aixin Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yurong Duan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Bei Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- School of Life Sciences, Hubei University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiongrong Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Chile
| | - Wen-Bo Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lixia Hui
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
- Pingyuan Laboratory, Henan, China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Chile
- Hubei Jiangxia Laboratory, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
3
|
Schwalbe H, Audergon P, Haley N, Amaro CA, Agirre J, Baldus M, Banci L, Baumeister W, Blackledge M, Carazo JM, Carugo KD, Celie P, Felli I, Hart DJ, Hauß T, Lehtiö L, Lindorff-Larsen K, Márquez J, Matagne A, Pierattelli R, Rosato A, Sobott F, Sreeramulu S, Steyaert J, Sussman JL, Trantirek L, Weiss MS, Wilmanns M. The future of integrated structural biology. Structure 2024; 32:1563-1580. [PMID: 39293444 DOI: 10.1016/j.str.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Instruct-ERIC, "the European Research Infrastructure Consortium for Structural biology research," is a pan-European distributed research infrastructure making high-end technologies and methods in structural biology available to users. Here, we describe the current state-of-the-art of integrated structural biology and discuss potential future scientific developments as an impulse for the scientific community, many of which are located in Europe and are associated with Instruct. We reflect on where to focus scientific and technological initiatives within the distributed Instruct research infrastructure. This review does not intend to make recommendations on funding requirements or initiatives directly, neither at the national nor the European level. However, it addresses future challenges and opportunities for the field, and foresees the need for a stronger coordination within the European and international research field of integrated structural biology to be able to respond timely to thematic topics that are often prioritized by calls for funding addressing societal needs.
Collapse
Affiliation(s)
- Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany; Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK.
| | - Pauline Audergon
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Natalie Haley
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Claudia Alen Amaro
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, UK
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Lucia Banci
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS UMR5075, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jose Maria Carazo
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | - Patrick Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Isabella Felli
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Darren J Hart
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS UMR5075, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Thomas Hauß
- Macromolecular Crystallography, Helmholtz-Zentrum, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - José Márquez
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Roberta Pierattelli
- Department of Chemistry "Ugo Schiff", University of Florence and Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
| | - Joel L Sussman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lukas Trantirek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL) Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Nazir F, John Kombe Kombe A, Khalid Z, Bibi S, Zhang H, Wu S, Jin T. SARS-CoV-2 replication and drug discovery. Mol Cell Probes 2024; 77:101973. [PMID: 39025272 DOI: 10.1016/j.mcp.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
Collapse
Affiliation(s)
- Farah Nazir
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zunera Khalid
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shaheen Bibi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
5
|
Bak DW, Weerapana E. Proteomic strategies to interrogate the Fe-S proteome. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119791. [PMID: 38925478 PMCID: PMC11365765 DOI: 10.1016/j.bbamcr.2024.119791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Iron‑sulfur (Fe-S) clusters, inorganic cofactors composed of iron and sulfide, participate in numerous essential redox, non-redox, structural, and regulatory biological processes within the cell. Though structurally and functionally diverse, the list of all proteins in an organism capable of binding one or more Fe-S clusters is referred to as its Fe-S proteome. Importantly, the Fe-S proteome is highly dynamic, with continuous cluster synthesis and delivery by complex Fe-S cluster biogenesis pathways. This cluster delivery is balanced out by processes that can result in loss of Fe-S cluster binding, such as redox state changes, iron availability, and oxygen sensitivity. Despite continued expansion of the Fe-S protein catalogue, it remains a challenge to reliably identify novel Fe-S proteins. As such, high-throughput techniques that can report on native Fe-S cluster binding are required to both identify new Fe-S proteins, as well as characterize the in vivo dynamics of Fe-S cluster binding. Due to the recent rapid growth in mass spectrometry, proteomics, and chemical biology, there has been a host of techniques developed that are applicable to the study of native Fe-S proteins. This review will detail both the current understanding of the Fe-S proteome and Fe-S cluster biology as well as describing state-of-the-art proteomic strategies for the study of Fe-S clusters within the context of a native proteome.
Collapse
Affiliation(s)
- Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States of America.
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States of America.
| |
Collapse
|
6
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Bolinger AA, Li J, Xie X, Li H, Zhou J. Lessons learnt from broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov 2024; 19:1023-1041. [PMID: 39078037 PMCID: PMC11390334 DOI: 10.1080/17460441.2024.2385598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality. AREAS COVERED The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs. EXPERT OPINION Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Otsuka Y, Kim E, Krueger A, Shumate J, Wang C, Bdiri B, Ullah S, Park H, Scampavia L, Bannister TD, Chung D, Spicer TP. High throughput screening for SARS-CoV-2 helicase inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100180. [PMID: 39173831 DOI: 10.1016/j.slasd.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for nearly 7 million deaths worldwide since its outbreak in late 2019. Even with the rapid development and production of vaccines and intensive research, there is still a huge need for specific anti-viral drugs that address the rapidly arising new variants. To address this concern, the National Institute of Allergy and Infectious Diseases (NIAID) established nine Antiviral Drug Discovery (AViDD) Centers, tasked with exploring approaches to target pathogens with pandemic potential, including SARS-CoV-2. In this study, we sought inhibitors of SARS-CoV2 non-structural protein 13 (nsP13) as potential antivirals, first developing a HTS-compatible assay to measure SARS-CoV2 nsP13 helicase activity. Here we present our effort in implementing the assay in a 1,536 well-plate format and in identifying nsP13 inhibitor hit compounds from a ∼650,000 compound library. The primary screen was robust (average Z' = 0.86 ± 0.05) and resulted in 7,009 primary hits. 1,763 of these compounds upon repeated retests were further confirmed, showing consistent inhibition. Following in-silico analysis, an additional orthogonal assay and titration assays, we identified 674 compounds with IC50 <10 μM. We confirmed activity of independent compound batches from de novo powders while also incorporating multiple counterscreen assays. Our study highlights the potential of this assay for use on HTS platforms to discover novel compounds inhibiting SARS-CoV2 nsP13, which merit further development as an effective SARS-CoV2 antiviral.
Collapse
Affiliation(s)
- Yuka Otsuka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Molecular Medicine, Midwest AViDD HTS Core B, Jupiter, FL 33458, United States
| | - Eunjung Kim
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Austin Krueger
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Justin Shumate
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Molecular Medicine, Midwest AViDD HTS Core B, Jupiter, FL 33458, United States
| | - Chao Wang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Bilel Bdiri
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Sultan Ullah
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - HaJeung Park
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Molecular Medicine, Midwest AViDD HTS Core B, Jupiter, FL 33458, United States
| | - Thomas D Bannister
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Donghoon Chung
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, Midwest AViDD Project 5, University of Louisville, Louisville, KY 40202, United States
| | - Timothy P Spicer
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Molecular Medicine, Midwest AViDD HTS Core B, Jupiter, FL 33458, United States.
| |
Collapse
|
9
|
Kirkman T, Dos Santos Silva C, Tosin M, Bertacine Dias MV. How to Find a Fragment: Methods for Screening and Validation in Fragment-Based Drug Discovery. ChemMedChem 2024:e202400342. [PMID: 39198213 DOI: 10.1002/cmdc.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Fragment-based drug discovery (FBDD) is a crucial strategy for developing new drugs that have been applied to diverse targets, from neglected infectious diseases to cancer. With at least seven drugs already launched to the market, this approach has gained interest in both academics and industry in the last 20 years. FBDD relies on screening small libraries with about 1000-2000 compounds of low molecular weight (about 300 Da) using several biophysical methods. Because of the reduced size of the compounds, the chemical space and diversity can be better explored than large libraries used in high throughput screenings. This review summarises the most common biophysical techniques used in fragment screening and orthogonal validation. We also explore the advantages and drawbacks of the different biophysical techniques and examples of applications and strategies.
Collapse
Affiliation(s)
- Tim Kirkman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Catharina Dos Santos Silva
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP, Brazil
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Grimes SL, Denison MR. The Coronavirus helicase in replication. Virus Res 2024; 346:199401. [PMID: 38796132 PMCID: PMC11177069 DOI: 10.1016/j.virusres.2024.199401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
The coronavirus nonstructural protein (nsp) 13 encodes an RNA helicase (nsp13-HEL) with multiple enzymatic functions, including unwinding and nucleoside phosphatase (NTPase) activities. Attempts for enzymatic inactivation have defined the nsp13-HEL as a critical enzyme for viral replication and a high-priority target for antiviral development. Helicases have been shown to play numerous roles beyond their canonical ATPase and unwinding activities, though these functions are just beginning to be explored in coronavirus biology. Recent genetic and biochemical studies, as well as work in structurally-related helicases, have provided evidence that supports new hypotheses for the helicase's potential role in coronavirus replication. Here, we review several aspects of the coronavirus nsp13-HEL, including its reported and proposed functions in viral replication and highlight fundamental areas of research that may aid the development of helicase inhibitors.
Collapse
Affiliation(s)
- Samantha L Grimes
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Hekstra DR, Wang HK, Klureza MA, Greisman JB, Dalton KM. Sensitive Detection of Structural Differences using a Statistical Framework for Comparative Crystallography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604476. [PMID: 39091831 PMCID: PMC11291090 DOI: 10.1101/2024.07.22.604476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Chemical and conformational changes underlie the functional cycles of proteins. Comparative crystallography can reveal these changes over time, over ligands, and over chemical and physical perturbations in atomic detail. A key difficulty, however, is that the resulting observations must be placed on the same scale by correcting for experimental factors. We recently introduced a Bayesian framework for correcting (scaling) X-ray diffraction data by combining deep learning with statistical priors informed by crystallographic theory. To scale comparative crystallography data, we here combine this framework with a multivariate statistical theory of comparative crystallography. By doing so, we find strong improvements in the detection of protein dynamics, element-specific anomalous signal, and the binding of drug fragments.
Collapse
Affiliation(s)
- Doeke R. Hekstra
- Department of Molecular and Cellular Biology
- School of Engineering and Applied Sciences
| | - Harrison K. Wang
- Department of Molecular and Cellular Biology
- Graduate Program in Biophysics, Harvard University, Boston, MA 02115, USA
| | - Margaret A. Klureza
- Department of Molecular and Cellular Biology
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack B. Greisman
- Department of Molecular and Cellular Biology
- Current address: D. E. Shaw Research New York, NY 10036, USA
| | - Kevin M. Dalton
- Department of Molecular and Cellular Biology
- New York University, New York, NY 10003, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| |
Collapse
|
12
|
Soper N, Yardumian I, Chen E, Yang C, Ciervo S, Oom AL, Desvignes L, Mulligan MJ, Zhang Y, Lupoli TJ. A Repurposed Drug Interferes with Nucleic Acid to Inhibit the Dual Activities of Coronavirus Nsp13. ACS Chem Biol 2024; 19:1593-1603. [PMID: 38980755 PMCID: PMC11267572 DOI: 10.1021/acschembio.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a critical need to discover more effective antivirals. While therapeutics for SARS-CoV-2 exist, its nonstructural protein 13 (Nsp13) remains a clinically untapped target. Nsp13 is a helicase responsible for unwinding double-stranded RNA during viral replication and is essential for propagation. Like other helicases, Nsp13 has two active sites: a nucleotide binding site that hydrolyzes nucleoside triphosphates (NTPs) and a nucleic acid binding channel that unwinds double-stranded RNA or DNA. Targeting viral helicases with small molecules, as well as the identification of ligand binding pockets, have been ongoing challenges, partly due to the flexible nature of these proteins. Here, we use a virtual screen to identify ligands of Nsp13 from a collection of clinically used drugs. We find that a known ion channel inhibitor, IOWH-032, inhibits the dual ATPase and helicase activities of SARS-CoV-2 Nsp13 at low micromolar concentrations. Kinetic and binding assays, along with computational and mutational analyses, indicate that IOWH-032 interacts with the RNA binding interface, leading to displacement of nucleic acid substrate, but not bound ATP. Evaluation of IOWH-032 with microbial helicases from other superfamilies reveals that it is selective for coronavirus Nsp13. Furthermore, it remains active against mutants representative of observed SARS-CoV-2 variants. Overall, this work provides a new inhibitor for Nsp13 and provides a rationale for a recent observation that IOWH-032 lowers SARS-CoV-2 viral loads in human cells, setting the stage for the discovery of other potent viral helicase modulators.
Collapse
Affiliation(s)
- Nathan Soper
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Isabelle Yardumian
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Eric Chen
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Chao Yang
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Samantha Ciervo
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Aaron L. Oom
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Ludovic Desvignes
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
- High
Containment Laboratories, Office of Science and Research, NYU Langone Health, New York, New York 10016, United States
| | - Mark J. Mulligan
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Yingkai Zhang
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
13
|
Wei X, Chan CL, Zhou Y, Tang K, Chen J, Wang S, Chan JFW, Yuan S, Li H, Sun H. Mechanistic insights into bismuth(iii) inhibition of SARS-CoV-2 helicase. Chem Sci 2024; 15:10065-10072. [PMID: 38966375 PMCID: PMC11220592 DOI: 10.1039/d3sc06961c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/03/2024] [Indexed: 07/06/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 resulted in a global public health crisis. In addition to vaccines, the development of effective therapy is highly desirable. Targeting a protein that plays a critical role in virus replication may allow pan-spectrum antiviral drugs to be developed. Among SARS-CoV-2 proteins, helicase (i.e., non-structural protein 13) is considered as a promising antiviral drug target due to its highly conserved sequence, unique structure and function. Herein, we demonstrate SARS-CoV-2 helicase as a target of bismuth-based antivirals in virus-infected mammalian cells by a metal-tagged antibody approach. To search for more potent bismuth-based antivirals, we further screened a panel of bismuth compounds towards inhibition of ATPase and DNA unwinding activity of nsp13 and identified a highly potent bismuth compound Bi(5-aminotropolonate)3, namely Bi(Tro-NH2)3 with an IC50 of 30 nM for ATPase. We show that bismuth-based compounds inhibited nsp13 unwinding activity via disrupting the binding of ATP and the DNA substrate to viral helicase. Binding of Bi(iii) to nsp13 also abolished the interaction between nsp12 and nsp13 as evidenced by immunofluorescence and co-immunoprecipitation assays. Finally, we validate our in vitro data in SARS-CoV-2 infected mammalian cells. Notably, Bi(6-TG)3 exhibited an EC50 of 1.18 ± 0.09 μM with a selective index of 847 in VeroE6-TMPRSS2 infected cells. This study highlights the important role of helicase for the development of more effective antiviral drugs to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xueying Wei
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Chun-Lung Chan
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Kaiming Tang
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jingxin Chen
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Suyu Wang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| |
Collapse
|
14
|
Xiao Q, Wu T, Bao K, Tang J, Zhang Y, Zhang W, Zhu Z, Gu Y, Zhou S, Li C, Lu L, Jiang L, Liu Y, Qin W. Upgrade of crystallography beamline BL19U1 at the Shanghai Synchrotron Radiation Facility. J Appl Crystallogr 2024; 57:630-637. [PMID: 38846766 PMCID: PMC11151664 DOI: 10.1107/s1600576724002188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/07/2024] [Indexed: 06/09/2024] Open
Abstract
BL19U1, an energy-tunable protein complex crystallography beamline at the Shanghai Synchrotron Radiation Facility, has emerged as one of the most productive MX beamlines since opening to the public in July 2015. As of October 2023, it has contributed to over 2000 protein structures deposited in the Protein Data Bank (PDB), resulting in the publication of more than 1000 scientific papers. In response to increasing interest in structure-based drug design utilizing X-ray crystallography for fragment library screening, enhancements have been implemented in both hardware and data collection systems on the beamline to optimize efficiency. Hardware upgrades include the transition from MD2 to MD2S for the diffractometer, alongside the installation of a humidity controller featuring a rapid nozzle exchanger. This allows users to opt for either low-temperature or room-temperature data collection modes. The control system has been upgraded from Blu-Ice to MXCuBE3, which supports website-mode data collection, providing enhanced compatibility and easy expansion with new features. An automated data processing pipeline has also been developed to offer users real-time feedback on data quality.
Collapse
Affiliation(s)
- Qingjie Xiao
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Tingting Wu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Kangwen Bao
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Jianchao Tang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Yupu Zhang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Weizhe Zhang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Zhongjie Zhu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Yijun Gu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Shuyu Zhou
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Chunyu Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Lanlu Lu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Luozhen Jiang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Yang Liu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| | - Wenming Qin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China
| |
Collapse
|
15
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Di Paco G, Macchiagodena M, Procacci P. Identification of Potential Inhibitors of the SARS-CoV-2 NSP13 Helicase via Structure-Based Ligand Design, Molecular Docking and Nonequilibrium Alchemical Simulations. ChemMedChem 2024; 19:e202400095. [PMID: 38456332 DOI: 10.1002/cmdc.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
We have assembled a computational pipeline based on virtual screening, docking techniques, and nonequilibrium molecular dynamics simulations, with the goal of identifying possible inhibitors of the SARS-CoV-2 NSP13 helicase, catalyzing by ATP hydrolysis the unwinding of double or single-stranded RNA in the viral replication process inside the host cell. The druggable sites for broad-spectrum inhibitors are represented by the RNA binding sites at the 5' entrance and 3' exit of the central channel, a structural motif that is highly conserved across coronaviruses. Potential binders were first generated using structure-based ligand techniques. Their potency was estimated by using four popular docking scoring functions. Common docking hits for NSP13 were finally tested using advanced nonequilibrium alchemical techniques for binding free energy calculations on a high-performing parallel cluster. Four potential NSP13 inhibitors with potency from submicrimolar to nanomolar were finally identified.
Collapse
Affiliation(s)
- Giorgio Di Paco
- Dipartimento di Chimica "Ugo Schiff", Universit'a degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marina Macchiagodena
- Dipartimento di Chimica "Ugo Schiff", Universit'a degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Piero Procacci
- Dipartimento di Chimica "Ugo Schiff", Universit'a degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
17
|
Zhang C, Yu J, Deng M, Zhang Q, Jin F, Chen L, Li Y, He B. Development of a Fluorescent Assay and Imidazole-Containing Inhibitors by Targeting SARS-CoV-2 Nsp13 Helicase. Molecules 2024; 29:2301. [PMID: 38792162 PMCID: PMC11124022 DOI: 10.3390/molecules29102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Nsp13, a non-structural protein belonging to the coronavirus family 1B (SF1B) helicase, exhibits 5'-3' polarity-dependent DNA or RNA unwinding using NTPs. Crucially, it serves as a key component of the viral replication-transcription complex (RTC), playing an indispensable role in the coronavirus life cycle and thereby making it a promising target for broad-spectrum antiviral therapies. The imidazole scaffold, known for its antiviral potential, has been proposed as a potential scaffold. In this study, a fluorescence-based assay was designed by labeling dsDNA substrates with a commercial fluorophore and monitoring signal changes upon Nsp13 helicase activity. Optimization and high-throughput screening validated the feasibility of this approach. In accordance with the structural characteristics of ADP, we employed a structural-based design strategy to synthesize three classes of imidazole-based compounds through substitution reaction. Through in vitro activity research, pharmacokinetic parameter analysis, and molecular docking simulation, we identified compounds A16 (IC50 = 1.25 μM) and B3 (IC50 = 0.98 μM) as potential lead antiviral compounds for further targeted drug research.
Collapse
Affiliation(s)
- Chuang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Mingzhenlong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
18
|
Kuzikov M, Reinshagen J, Wycisk K, Corona A, Esposito F, Malune P, Manelfi C, Iaconis D, Beccari A, Tramontano E, Nowotny M, Windshügel B, Gribbon P, Zaliani A. Drug repurposing screen to identify inhibitors of the RNA polymerase (nsp12) and helicase (nsp13) from SARS-CoV-2 replication and transcription complex. Virus Res 2024; 343:199356. [PMID: 38490582 PMCID: PMC10958470 DOI: 10.1016/j.virusres.2024.199356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Coronaviruses contain one of the largest genomes among the RNA viruses, coding for 14-16 non-structural proteins (nsp) that are involved in proteolytic processing, genome replication and transcription, and four structural proteins that build the core of the mature virion. Due to conservation across coronaviruses, nsps form a group of promising drug targets as their inhibition directly affects viral replication and, therefore, progression of infection. A minimal but fully functional replication and transcription complex was shown to be formed by one RNA-dependent RNA polymerase (nsp12), one nsp7, two nsp8 accessory subunits, and two helicase (nsp13) enzymes. Our approach involved, targeting nsp12 and nsp13 to allow multiple starting point to interfere with virus infection progression. Here we report a combined in-vitro repurposing screening approach, identifying new and confirming reported SARS-CoV-2 nsp12 and nsp13 inhibitors.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany; Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
| | - Jeanette Reinshagen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Krzysztof Wycisk
- Laboratory of Protein Structure - International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Francesca Esposito
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Paolo Malune
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Candida Manelfi
- EXSCALATE, Dompé farmaceutici S.p.A., Via Tommaso De Amicis, 95, Napoli, 80131, Italy
| | - Daniela Iaconis
- EXSCALATE, Dompé farmaceutici S.p.A., Via Tommaso De Amicis, 95, Napoli, 80131, Italy
| | - Andrea Beccari
- EXSCALATE, Dompé farmaceutici S.p.A., Via Tommaso De Amicis, 95, Napoli, 80131, Italy
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Marcin Nowotny
- Laboratory of Protein Structure - International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany; Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
19
|
Zheng T, Shen B, Bai Y, Li E, Zhang X, Hu Y, Gao T, Dong Q, Zhu L, Jin R, Shi H, Liu H, Gao Y, Liu X, Cao C. The PKA-CREB1 axis regulates coronavirus proliferation by viral helicase nsp13 association. J Virol 2024; 98:e0156523. [PMID: 38445884 PMCID: PMC11019953 DOI: 10.1128/jvi.01565-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/09/2024] [Indexed: 03/07/2024] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.
Collapse
Affiliation(s)
- Tong Zheng
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yu Bai
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xun Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Yong Hu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Ting Gao
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Qincai Dong
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Lin Zhu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Rui Jin
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Hui Shi
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Hainan Liu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xuan Liu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Cheng Cao
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
20
|
Inniss NL, Rzhetskaya M, Ling-Hu T, Lorenzo-Redondo R, Bachta KE, Satchell KJF, Hultquist JF. Activity and inhibition of the SARS-CoV-2 Omicron nsp13 R392C variant using RNA duplex unwinding assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100145. [PMID: 38301954 PMCID: PMC11160173 DOI: 10.1016/j.slasd.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
SARS-CoV-2 nsp13 helicase is an essential enzyme for viral replication and a promising target for antiviral drug development. This study compares the double-stranded RNA (dsRNA) unwinding activity of nsp13 and the Omicron nsp13R392C variant, which is predominant in currently circulating lineages. Using in vitro gel- and fluorescence-based assays, we found that both nsp13 and nsp13R392C have dsRNA unwinding activity with equivalent kinetics. Furthermore, the R392C mutation had no effect on the efficiency of the nsp13-specific helicase inhibitor SSYA10-001. We additionally confirmed the activity of several other helicase inhibitors against nsp13, including punicalagin that inhibited dsRNA unwinding at nanomolar concentrations. Overall, this study reveals the utility of using dsRNA unwinding assays to screen small molecules for antiviral activity against nsp13 and the Omicron nsp13R392C variant. Continual monitoring of newly emergent variants will be essential for considering resistance profiles of lead compounds as they are advanced towards next-generation therapeutic development.
Collapse
Affiliation(s)
- Nicole L Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Margarita Rzhetskaya
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Ted Ling-Hu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Kelly E Bachta
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA.
| | - Judd F Hultquist
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA.
| |
Collapse
|
21
|
Zhou Y, Shen W, Gao Y, Peng J, Li Q, Wei X, Liu S, Lam FS, Mayol-Llinàs J, Zhao G, Li G, Li Y, Sun H, Cao Y, Li X. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem 2024; 16:543-555. [PMID: 38326646 DOI: 10.1038/s41557-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.
Collapse
Grants
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G, and 2122-7S04 Research Grants Council, University Grants Committee (RGC, UGC)
- 21877093, 22222702, and 91953119 National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
- Health@InnoHK Innovation and Technology Commission (ITF)
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Gao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qingrong Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Joan Mayol-Llinàs
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
22
|
Utgés JS, MacGowan SA, Ives CM, Barton GJ. Classification of likely functional class for ligand binding sites identified from fragment screening. Commun Biol 2024; 7:320. [PMID: 38480979 PMCID: PMC10937669 DOI: 10.1038/s42003-024-05970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Fragment screening is used to identify binding sites and leads in drug discovery, but it is often unclear which binding sites are functionally important. Here, data from 37 experiments, and 1309 protein structures binding to 1601 ligands were analysed. A method to group ligands by binding sites is introduced and sites clustered according to profiles of relative solvent accessibility. This identified 293 unique ligand binding sites, grouped into four clusters (C1-4). C1 includes larger, buried, conserved, and population missense-depleted sites, enriched in known functional sites. C4 comprises smaller, accessible, divergent, missense-enriched sites, depleted in functional sites. A site in C1 is 28 times more likely to be functional than one in C4. Seventeen sites, which to the best of our knowledge are novel, in 13 proteins are identified as likely to be functionally important with examples from human tenascin and 5-aminolevulinate synthase highlighted. A multi-layer perceptron, and K-nearest neighbours model are presented to predict cluster labels for ligand binding sites with an accuracy of 96% and 100%, respectively, so allowing functional classification of sites for proteins not in this set. Our findings will be of interest to those studying protein-ligand interactions and developing new drugs or function modulators.
Collapse
Affiliation(s)
- Javier S Utgés
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Stuart A MacGowan
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Callum M Ives
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Geoffrey J Barton
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
23
|
Chen J, Zhou Y, Wei X, Xu X, Qin Z, Ong CP, Ye ZW, Jin DY, Boitrel B, Yuan S, Chan JFW, Li H, Sun H. Development of Pan-Anti-SARS-CoV-2 Agents through Allosteric Inhibition of nsp14/nsp10 Complex. ACS Infect Dis 2024; 10:858-869. [PMID: 37897418 DOI: 10.1021/acsinfecdis.3c00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
SARS-CoV-2 nsp14 functions both as an exoribonuclease (ExoN) together with its critical cofactor nsp10 and as an S-adenosyl methionine-dependent (guanine-N7) methyltransferase (MTase), which makes it an attractive target for the development of pan-anti-SARS-CoV-2 drugs. Herein, we screened a panel of compounds (and drugs) and found that certain compounds, especially Bi(III)-based compounds, could allosterically inhibit both MTase and ExoN activities of nsp14 potently. We further demonstrated that Bi(III) binds to both nsp14 and nsp10, resulting in the release of Zn(II) ions from the enzymes as well as alternation of protein quaternary structures. The in vitro activities of the compounds were also validated in SARS-CoV-2-infected mammalian cells. Importantly, we showed that nsp14 serves as an authentic target of Bi(III)-based antivirals in SARS-CoV-2-infected mammalian cells by quantification of both the protein and inhibitor. This study highlights the importance of nsp14/nsp10 as a potential target for the development of pan-antivirals against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jingxin Chen
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Ying Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Xiaohan Xu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Zhenzhi Qin
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Chon Phin Ong
- School of Biomedical Sciences, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Zi-Wei Ye
- School of Biomedical Sciences, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Bernard Boitrel
- University of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes 35000, France
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Jasper F-W Chan
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
| |
Collapse
|
24
|
Rani JMS, Akkarshana P, Neelaveni V, Mohan S, Rekha PD, Rao RM, Muthulakshmi L. Evaluation of the inhibitory potential of bioactive compounds against SARS-CoV-2 by in silico approach. J Mol Model 2024; 30:60. [PMID: 38321299 DOI: 10.1007/s00894-024-05858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
CONTEXT The COVID-19 (coronavirus disease 19) pandemic brought on by the SARS-CoV-2 outbreak (severe acute respiratory syndrome coronavirus 2) has stimulated the exploration of various available chemical compounds that could be used to treat the infection. This has driven numerous researchers to investigate the antiviral potential of several bioactive compounds from medicinal plants due to their reduced adverse effects compared to chemicals. Some of the bioactive compounds used in folklore treatment strategies are reported as effective inhibitors against the proliferative and infective cycles of SARS-CoV-2. The secondary metabolites from plants are generally used to treat various diseases due to their intact medicinal properties. The present study analyzes the inhibitory potential of phytochemicals from medicinal plants like Sphaeranthus indicus, Lantana camara, and Nelumbo nucifera against SARS-CoV-2 by molecular docking. METHODS Ten druggable protein targets from SARS-CoV-2 are docked against the phytochemicals from the selected medicinal plants. The phytocompounds astragalin, isoquercetin, and 5-hydroxy-7-methoxy-6-c-glycosy flavone were found to have lower binding energy depicting their inhibitive potential compared with the reported inhibitors that are used in the treatment of SARS-CoV-2 infection. The phytocompounds found to have the least binding energy were selected for further analyses. To assess the compounds' potential as drugs, their ADMET characteristics were also examined. Sphaeranthus indicus, Lantana camara, and Nelumbo nucifera six possible compounds were separately screened for ADME and toxicity characteristics; then, the results were analyzed. To assess the impact of the phytocompound binding on the dynamics of SARS-CoV-2 ribonuclease protein NSP15, microsecond-level all atomistic molecular dynamics simulations were performed, and their dynamics were analyzed. Microsecond-level molecular dynamics simulations of both the ligands complexed with NSP15 revealed that the ligand induces allosteric effects on NSP15, which could lead to destabilization of NSP15 hexameric interface and loss of RNA binding. The low binding energy exhibited by the phytochemicals from Lantana camera, Sphaeranthus indicus, and Nelumbo nucifera against the protein targets of SARS-CoV-2 showed inhibitory potential by the selected molecules. Their predicted interference of the enzymes involved in the molecular mechanisms aiding the proliferation of SARS-CoV-2 indicated the inhibitive ability of the phytochemicals.
Collapse
Affiliation(s)
- J Mariya Sneha Rani
- Department of Biotechnology, Biomaterials and Product Development Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - P Akkarshana
- Department of Biotechnology, Biomaterials and Product Development Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - V Neelaveni
- Department of Biotechnology, Biomaterials and Product Development Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - Shalini Mohan
- Department of Biotechnology, Biomaterials and Product Development Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangaluru, 575018, India
| | - Rajas M Rao
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangaluru, 575018, India.
| | - Lakshmanan Muthulakshmi
- Department of Biotechnology, Biomaterials and Product Development Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India.
| |
Collapse
|
25
|
Hymon D, Martins J, Richter C, Sreeramulu S, Wacker A, Ferner J, Patwardhan NN, Hargrove AE, Schwalbe H. NMR 1H, 19F-based screening of the four stem-looped structure 5_SL1-SL4 located in the 5'-untranslated region of SARS-CoV 2 RNA. RSC Med Chem 2024; 15:165-177. [PMID: 38283228 PMCID: PMC10809358 DOI: 10.1039/d3md00322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2023] [Indexed: 01/30/2024] Open
Abstract
Development of new antiviral medication against the beta-coronavirus SARS-CoV-2 (SCoV2) is actively being pursued. Both NMR spectroscopy and crystallography as structural screening technologies have been utilised to screen the viral proteome for binding to fragment libraries. Here, we report on NMR screening of elements of the viral RNA genome with two different ligand libraries using 1H-NMR-screening experiments and 1H and 19F NMR-screening experiments for fluorinated compounds. We screened against the 5'-terminal 119 nucleotides located in the 5'-untranslated region of the RNA genome of SCoV2 and further dissected the four stem-loops into its constituent RNA elements to test specificity of binding of ligands to shorter and longer viral RNA stretches. The first library (DRTL-F library) is enriched in ligands binding to RNA motifs, while the second library (DSI-poised library) represents a fragment library originally designed for protein screening. Conducting screens with two different libraries allows us to compare different NMR screening methodologies, describe NMR screening workflows, validate the two different fragment libraries, and derive initial leads for further downstream medicinal chemistry optimisation.
Collapse
Affiliation(s)
- Daniel Hymon
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
| | - Jason Martins
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
| | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
| | | | - Amanda E Hargrove
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
| |
Collapse
|
26
|
Lawal MM, Roy P, McCullagh M. Role of ATP Hydrolysis and Product Release in the Translocation Mechanism of SARS-CoV-2 NSP13. J Phys Chem B 2024; 128:492-503. [PMID: 38175211 PMCID: PMC11256563 DOI: 10.1021/acs.jpcb.3c06714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In response to the emergence of COVID-19, caused by SARS-CoV-2, there has been a growing interest in understanding the functional mechanisms of the viral proteins to aid in the development of new therapeutics. Nonstructural protein 13 (nsp13) helicase is an attractive target for antivirals because it is essential for viral replication and has a low mutation rate, yet the structural mechanisms by which this enzyme binds and hydrolyzes ATP to cause unidirectional RNA translocation remain elusive. Using Gaussian accelerated molecular dynamics (GaMD), we generated comprehensive conformational ensembles of all substrate states along the ATP-dependent cycle. Shape-GMM clustering of the protein yields four protein conformations that describe an opening and closing of both the ATP pocket and the RNA cleft that is achieved through a combination of conformational selection and induction along the ATP hydrolysis cycle. Furthermore, three protein-RNA conformations are observed that implicate motifs Ia, IV, and V as playing a pivotal role in an ATP-dependent inchworm translocation mechanism. Finally, based on a linear discriminant analysis of protein conformations, we identify L405 as a pivotal residue for the opening and closing mechanism and propose a L405D mutation as a way to disrupt translocation. This research enhances our understanding of nsp13's role in viral replication and could contribute to the development of antiviral strategies.
Collapse
Affiliation(s)
- Monsurat M. Lawal
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74074, USA
- These authors contributed equally to this work
| | - Priti Roy
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74074, USA
- These authors contributed equally to this work
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74074, USA
| |
Collapse
|
27
|
Ramsey JR, Shelton PM, Heiss TK, Olinares PDB, Vostal LE, Soileau H, Grasso M, Casebeer SW, Adaniya S, Miller M, Sun S, Huggins DJ, Myers RW, Chait BT, Vinogradova EV, Kapoor TM. Using a Function-First "Scout Fragment"-Based Approach to Develop Allosteric Covalent Inhibitors of Conformationally Dynamic Helicase Mechanoenzymes. J Am Chem Soc 2024; 146:62-67. [PMID: 38134034 PMCID: PMC10958666 DOI: 10.1021/jacs.3c10581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity. Therefore, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop chemical inhibitors for helicases, enzymes with high conformational dynamics. We envisioned that electrophilic "scout fragments", which have been used in chemical proteomic studies, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest an approach to discover covalent inhibitor starting points and druggable allosteric sites in conformationally dynamic mechanoenzymes.
Collapse
Affiliation(s)
- Jared R. Ramsey
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Patrick M.M Shelton
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Tyler K. Heiss
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Paul Dominic B. Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, United States
| | - Lauren E. Vostal
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Heather Soileau
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Michael Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Sara W. Casebeer
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Stephanie Adaniya
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY 10065, United States
| | - Michael Miller
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - Shan Sun
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - David J. Huggins
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, United States
| | - Robert W. Myers
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, United States
| | - Ekaterina V. Vinogradova
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY 10065, United States
| | - Tarun M. Kapoor
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| |
Collapse
|
28
|
Song L, Gao S, Ye B, Yang M, Cheng Y, Kang D, Yi F, Sun JP, Menéndez-Arias L, Neyts J, Liu X, Zhan P. Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 M pro inhibitors. Acta Pharm Sin B 2024; 14:87-109. [PMID: 38239241 PMCID: PMC10792984 DOI: 10.1016/j.apsb.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 01/22/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
Collapse
Affiliation(s)
- Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Autonomous University of Madrid), Madrid 28049, Spain
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven 3000, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
29
|
Shiryaev V, Klimochkin Y. Computer-aided Design of Wide-spectrum Coronavirus Helicase NSP13 Cage Inhibitors: A Molecular Modelling Approach. Curr Comput Aided Drug Des 2024; 20:1027-1041. [PMID: 37921184 DOI: 10.2174/0115734099247900231016055626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The coronavirus helicase NSP13 plays a critical role in its life cycle. The found NSP13 inhibitors have been tested only in vitro but they definitely have the potential to become antiviral drugs. Thus, the search for NSP13 inhibitors is of great importance. OBJECTIVES The goal of the present work was to develop a general approach to the design of ligands of coronaviral NSP13 helicase and to propose on its basis potential inhibitors. METHODS The structure of the NSP13 protein was refined by molecular dynamics and the cavity, responsible for RNA binding, was chosen as the inhibitor binding site. The potential inhibitor structures were identified by molecular docking and their binding was verified by molecular dynamics simulation. RESULTS A number of potential NSP13 inhibitors were identified and the binding modes and probable mechanism of action of potential inhibitors was clarified. CONCLUSION Using the molecular dynamics and molecular docking techniques, we have refined the structure of the coronavirus NSP13 helicase, a number of potential inhibitors, containing cage fragment were proposed and their probable mechanism of action was clarified. The proposed approach is also suitable for the design of ligands interacting with other viral helicases.
Collapse
Affiliation(s)
- Vadim Shiryaev
- Department of Organic Chemistry, Faculty of Chemical Technology, Samara State Technical University, 443100, Samara, Russia
| | - Yuri Klimochkin
- Department of Organic Chemistry, Faculty of Chemical Technology, Samara State Technical University, 443100, Samara, Russia
| |
Collapse
|
30
|
Srivastava R, Panda SK, Sen Gupta PS, Chaudhary A, Naaz F, Yadav AK, Ram NK, Rana MK, Singh RK, Srivastava R. In silico evaluation of S-adenosyl-L-homocysteine analogs as inhibitors of nsp14-viral cap N7 methyltranferase and PLpro of SARS-CoV-2: synthesis, molecular docking, physicochemical data, ADMET and molecular dynamics simulations studies. J Biomol Struct Dyn 2023:1-18. [PMID: 38147408 DOI: 10.1080/07391102.2023.2297005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
A series of S-adenosyl-L-homosysteine (SAH) analogs, with modification in the base and sugar moiety, have been designed, synthesized and screened as nsp14 and PLpro inhibitors of severe acute respiratory syndrome corona virus (SARS-CoV-2). The outcomes of ADMET (Adsorption, Distribution, Metabolism, Excretion, and Toxicity) studies demonstrated that the physicochemical properties of all analogs were permissible for development of these SAH analogs as antiviral agents. All molecules were screened against different SARS-CoV-2 targets using molecular docking. The docking results revealed that the SAH analogs interacted well in the active site of nsp14 protein having H-bond interactions with the amino acid residues Arg289, Val290, Asn388, Arg400, Phe401 and π-alkyl interactions with Arg289, Val290 and Phe426 of Nsp14-MTase site. These analogs also formed stable H-bonds with Leu163, Asp165, Arg167, Ser246, Gln270, Tyr274 and Asp303 residues of PLpro proteins and found to be quite stable complexes therefore behaved as probable nsp14 and PLpro inhibitors. Interestingly, analog 3 showed significant in silico activity against the nsp14 N7 methyltransferase of SARS-CoV-2. The molecular dynamics (MD) and post-MD results of analog 3 unambiguously established the higher stability of the nsp14 (N7 MTase):3 complex and also indicated its behavior as probable nsp14 inhibitor like the reference sinefungin. The docking and MD simulations studies also suggested that sinefungin did act as SARS-CoV-2 PLpro inhibitor as well. This study's findings not only underscore the efficacy of the designed SAH analogs as potent inhibitors against crucial SARS-CoV-2 proteins but also pinpoint analog 3 as a particularly promising candidate. All the study provides valuable insights, paving the way for potential advancements in antiviral drug development against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ritika Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, India
| | - Anvita Chaudhary
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Aditya K Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Nand Kumar Ram
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Richa Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
31
|
Zhang C, Liu J, Sui Y, Liu S, Yang M. In silico drug repurposing carvedilol and its metabolites against SARS-CoV-2 infection using molecular docking and molecular dynamic simulation approaches. Sci Rep 2023; 13:21404. [PMID: 38049492 PMCID: PMC10696093 DOI: 10.1038/s41598-023-48398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a significant impact on the economy and public health worldwide. Therapeutic options such as drugs and vaccines for this newly emerged disease are eagerly desired due to the high mortality. Using the U.S. Food and Drug Administration (FDA) approved drugs to treat a new disease or entirely different diseases, in terms of drug repurposing, minimizes the time and cost of drug development compared to the de novo design of a new drug. Drug repurposing also has some other advantages such as reducing safety evaluation to accelerate drug application on time. Carvedilol, a non-selective beta-adrenergic blocker originally designed to treat high blood pressure and manage heart disease, has been shown to impact SARS-CoV-2 infection in clinical observation and basic studies. Here, we applied computer-aided approaches to investigate the possibility of repurposing carvedilol to combat SARS-CoV-2 infection. The molecular mechanisms and potential molecular targets of carvedilol were identified by evaluating the interactions of carvedilol with viral proteins. Additionally, the binding affinities of in vivo metabolites of carvedilol with selected targets were evaluated. The docking scores for carvedilol and its metabolites with RdRp were - 10.0 kcal/mol, - 9.8 kcal/mol (1-hydroxyl carvedilol), - 9.7 kcal/mol (3-hydroxyl carvedilol), - 9.8 kcal/mol (4-hydroxyl carvedilol), - 9.7 kcal/mol (5-hydroxyl carvedilol), - 10.0 kcal/mol (8-hydroxyl carvedilol), and - 10.1 kcal/mol (O-desmethyl carvedilol), respectively. Using the molecular dynamics simulation (100 ns) method, we further confirmed the stability of formed complexes of RNA-dependent RNA polymerase (RdRp) and carvedilol or its metabolites. Finally, the drug-target interaction mechanisms that contribute to the complex were investigated. Overall, this study provides the molecular targets and mechanisms of carvedilol and its metabolites as repurposed drugs to fight against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA
| | - Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen, 041004, Shanxi, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA.
- NextGen Precision Health Institution, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
32
|
Arya R, Tripathi P, Nayak K, Ganesh J, Bihani SC, Ghosh B, Prashar V, Kumar M. Insights into the evolution of mutations in SARS-CoV-2 non-spike proteins. Microb Pathog 2023; 185:106460. [PMID: 37995880 DOI: 10.1016/j.micpath.2023.106460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The COVID-19 pandemic has been driven by the emergence of SARS-CoV-2 variants with mutations across all the viral proteins. Although mutations in the spike protein have received significant attention, understanding the prevalence and potential impact of mutations in other viral proteins is essential for comprehending the evolution of SARS-CoV-2. Here, we conducted a comprehensive analysis of approximately 14 million sequences of SARS-CoV-2 deposited in the GISAID database until December 2022 to identify prevalent mutations in the non-spike proteins at the global and country levels. Additionally, we evaluated the energetics of each mutation to better understand their impact on protein stability. While the consequences of many mutations remain unclear, we discuss potential structural and functional significance of some mutations. Our study highlights the ongoing evolutionary process of SARS-CoV-2 and underscores the importance of understanding changes in non-spike proteins.
Collapse
Affiliation(s)
- Rimanshee Arya
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Preeti Tripathi
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Karthik Nayak
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Janani Ganesh
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Biplab Ghosh
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Vishal Prashar
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| | - Mukesh Kumar
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
33
|
Akbari B, Ahmadi E, Zabihi MR, Zamir MR, Shaker MS, Noorbakhsh F. SARS-CoV-2 helicase might interfere with cellular nonsense-mediated RNA decay: insights from a bioinformatics study. BMC Genom Data 2023; 24:68. [PMID: 37980504 PMCID: PMC10657555 DOI: 10.1186/s12863-023-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Viruses employ diverse strategies to interfere with host defense mechanisms, including the production of proteins that mimic or resemble host proteins. This study aimed to analyze the similarities between SARS-CoV-2 and human proteins, investigate their impact on virus-host interactions, and elucidate underlying mechanisms. RESULTS Comparing the proteins of SARS-CoV-2 with human and mammalian proteins revealed sequence and structural similarities between viral helicase with human UPF1. The latter is a protein that is involved in nonsense-mediated RNA decay (NMD), an mRNA surveillance pathway which also acts as a cellular defense mechanism against viruses. Protein sequence similarities were also observed between viral nsp3 and human Poly ADP-ribose polymerase (PARP) family of proteins. Gene set enrichment analysis on transcriptomic data derived from SARS-CoV-2 positive samples illustrated the enrichment of genes belonging to the NMD pathway compared with control samples. Moreover, comparing transcriptomic data from SARS-CoV-2-infected samples with transcriptomic data derived from UPF1 knockdown cells demonstrated a significant overlap between datasets. CONCLUSIONS These findings suggest that helicase/UPF1 sequence and structural similarity might have the ability to interfere with the NMD pathway with pathogenic and immunological implications.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Roshan Zamir
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Sadeghi Shaker
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
34
|
Zhou K, Chen D. Conventional Understanding of SARS-CoV-2 M pro and Common Strategies for Developing Its Inhibitors. Chembiochem 2023; 24:e202300301. [PMID: 37577869 DOI: 10.1002/cbic.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has brought a widespread influence on the world, especially in the face of sudden coronavirus infections, and there is still an urgent need for specific small molecule therapies to cope with possible future pandemics. The pathogen responsible for this pandemic is Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and understanding its structure and lifecycle is beneficial for designing specific drugs of treatment for COVID-19. The main protease (Mpro ) which has conservative and specific advantages is essential for viral replication and transcription. It is regarded as one of the most potential targets for anti-SARS-CoV-2 drug development. This review introduces the popular knowledge of SARS-CoV-2 Mpro in drug development and lists a series of design principles and relevant activities of advanced Mpro inhibitors, hoping to provide some new directions and ideas for researchers.
Collapse
Affiliation(s)
- Kun Zhou
- School of Pharmacy, Yantai University, Yantai, Shandong, RT 264005, P. R. China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, Shandong, RT 264005, P. R. China
| |
Collapse
|
35
|
Grand RJ. SARS-CoV-2 and the DNA damage response. J Gen Virol 2023; 104:001918. [PMID: 37948194 PMCID: PMC10768691 DOI: 10.1099/jgv.0.001918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is characterized by respiratory distress, multiorgan dysfunction and, in some cases, death. The virus is also responsible for post-COVID-19 condition (commonly referred to as 'long COVID'). SARS-CoV-2 is a single-stranded, positive-sense RNA virus with a genome of approximately 30 kb, which encodes 26 proteins. It has been reported to affect multiple pathways in infected cells, resulting, in many cases, in the induction of a 'cytokine storm' and cellular senescence. Perhaps because it is an RNA virus, replicating largely in the cytoplasm, the effect of SARS-Cov-2 on genome stability and DNA damage responses (DDRs) has received relatively little attention. However, it is now becoming clear that the virus causes damage to cellular DNA, as shown by the presence of micronuclei, DNA repair foci and increased comet tails in infected cells. This review considers recent evidence indicating how SARS-CoV-2 causes genome instability, deregulates the cell cycle and targets specific components of DDR pathways. The significance of the virus's ability to cause cellular senescence is also considered, as are the implications of genome instability for patients suffering from long COVID.
Collapse
Affiliation(s)
- Roger J. Grand
- Institute for Cancer and Genomic Science, The Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Kosenko M, Onkhonova G, Susloparov I, Ryzhikov A. SARS-CoV-2 proteins structural studies using synchrotron radiation. Biophys Rev 2023; 15:1185-1194. [PMID: 37974992 PMCID: PMC10643813 DOI: 10.1007/s12551-023-01153-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
In the process of the development of structural biology, both the size and the complexity of the determined macromolecular structures have grown significantly. As a result, the range of application areas for the results of structural studies of biological macromolecules has expanded. Significant progress in the development of structural biology methods has been largely achieved through the use of synchrotron radiation. Modern sources of synchrotron radiation allow to conduct high-performance structural studies with high temporal and spatial resolution. Thus, modern techniques make it possible to obtain not only static structures, but also to study dynamic processes, which play a key role in understanding biological mechanisms. One of the key directions in the development of structural research is the drug design based on the structures of biomolecules. Synchrotron radiation offers insights into the three-dimensional time-resolved structure of individual viral proteins and their complexes at atomic resolution. The rapid and accurate determination of protein structures is crucial for understanding viral pathogenicity and designing targeted therapeutics. Through the application of experimental techniques, including X-ray crystallography and small-angle X-ray scattering (SAXS), it is possible to elucidate the structural details of SARS-CoV-2 virion containing 4 structural, 16 nonstructural proteins (nsp), and several accessory proteins. The most studied potential targets for vaccines and drugs are the structural spike (S) protein, which is responsible for entering the host cell, as well as nonstructural proteins essential for replication and transcription, such as main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp). This article provides a brief overview of structural analysis techniques, with focus on synchrotron radiation-based methods applied to the analysis of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Maksim Kosenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Galina Onkhonova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Ivan Susloparov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexander Ryzhikov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| |
Collapse
|
37
|
Knany HR, Elsabbagh SA, Shehata MA, Eldehna WM, Bekhit AA, Ibrahim TM. In silico screening of SARS-CoV2 helicase using African natural products: Docking and molecular dynamics approaches. Virology 2023; 587:109863. [PMID: 37586235 DOI: 10.1016/j.virol.2023.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
In the current medical era, there is an urgent necessity to identify new effective drugs to enrich the COVID-19's therapeutic arsenal. The SARS-COV-2 NSP13/helicase enzyme has been identified as a potential target for developing novel COVID-19 inhibitors. In this work, we aimed at endorsing effective natural products with potential inhibitory action towards the NSP13 through the virtual screening of 1012 natural products of botanical and marine origin from the South African Natural Compounds Database (SANCDB). The molecules were docked into the NTPase active site, and the best twelve compounds were chosen for further analysis. Thereafter, a combination of molecular dynamics simulations and MM-GBSA free energy calculations were carried out for a subset of best hits complexed with NSP13 helicase. We believe that the findings of this work will pave the way for additional research and experimental validation of some natural products as viable NSP13 helicase inhibitors.
Collapse
Affiliation(s)
- Hamada R Knany
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherif A Elsabbagh
- Biochemistry Department, Institute of Pharmacy, Eberhard-Karls University, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Moustafa A Shehata
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
38
|
Ramsey JR, Shelton PMM, Heiss TK, Olinares PDB, Vostal LE, Soileau H, Grasso M, Warrington S, Adaniya S, Miller M, Sun S, Huggins DJ, Myers RW, Chait BT, Vinogradova EV, Kapoor TM. Using a function-first 'scout fragment'-based approach to develop allosteric covalent inhibitors of conformationally dynamic helicase mechanoenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559391. [PMID: 37808863 PMCID: PMC10557574 DOI: 10.1101/2023.09.25.559391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as genome replication and maintenance, ribosome assembly and translation. Helicases with essential functions only in certain cancer cells have been identified and helicases expressed by certain viruses are required for their pathogenicity. As a result, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop selective chemical inhibitors for helicases, enzymes with highly dynamic conformations. We envisioned that electrophilic 'scout fragments', which have been used for chemical proteomic based profiling, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest a covalent inhibitor discovery approach to target helicases and potentially other conformationally dynamic mechanoenzymes.
Collapse
|
39
|
Marx SK, Mickolajczyk KJ, Craig J, Thomas C, Pfeffer A, Abell S, Carrasco J, Franzi M, Huang J, Kim H, Brinkerhoff H, Kapoor T, Gundlach J, Laszlo A. Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution. Nucleic Acids Res 2023; 51:9266-9278. [PMID: 37560916 PMCID: PMC10516658 DOI: 10.1093/nar/gkad660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.
Collapse
Affiliation(s)
- Sinduja K Marx
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Keith J Mickolajczyk
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Jonathan M Craig
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Akira M Pfeffer
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Sarah J Abell
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Michaela C Franzi
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Jesse R Huang
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Hwanhee C Kim
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Henry Brinkerhoff
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
40
|
Justo Arevalo S, Castillo-Chávez A, Uribe Calampa CS, Zapata Sifuentes D, Huallpa CJ, Landa Bianchi G, Garavito-Salini Casas R, Quiñones Aguilar M, Pineda Chavarría R. What do we know about the function of SARS-CoV-2 proteins? Front Immunol 2023; 14:1249607. [PMID: 37790934 PMCID: PMC10544941 DOI: 10.3389/fimmu.2023.1249607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
The COVID-19 pandemic has highlighted the importance in the understanding of the biology of SARS-CoV-2. After more than two years since the first report of COVID-19, it remains crucial to continue studying how SARS-CoV-2 proteins interact with the host metabolism to cause COVID-19. In this review, we summarize the findings regarding the functions of the 16 non-structural, 6 accessory and 4 structural SARS-CoV-2 proteins. We place less emphasis on the spike protein, which has been the subject of several recent reviews. Furthermore, comprehensive reviews about COVID-19 therapeutic have been also published. Therefore, we do not delve into details on these topics; instead we direct the readers to those other reviews. To avoid confusions with what we know about proteins from other coronaviruses, we exclusively report findings that have been experimentally confirmed in SARS-CoV-2. We have identified host mechanisms that appear to be the primary targets of SARS-CoV-2 proteins, including gene expression and immune response pathways such as ribosome translation, JAK/STAT, RIG-1/MDA5 and NF-kβ pathways. Additionally, we emphasize the multiple functions exhibited by SARS-CoV-2 proteins, along with the limited information available for some of these proteins. Our aim with this review is to assist researchers and contribute to the ongoing comprehension of SARS-CoV-2's pathogenesis.
Collapse
Affiliation(s)
- Santiago Justo Arevalo
- Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru
- Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Daniela Zapata Sifuentes
- Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru
- Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - César J. Huallpa
- Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | | | | | | | |
Collapse
|
41
|
Mihalič F, Benz C, Kassa E, Lindqvist R, Simonetti L, Inturi R, Aronsson H, Andersson E, Chi CN, Davey NE, Överby AK, Jemth P, Ivarsson Y. Identification of motif-based interactions between SARS-CoV-2 protein domains and human peptide ligands pinpoint antiviral targets. Nat Commun 2023; 14:5636. [PMID: 37704626 PMCID: PMC10499821 DOI: 10.1038/s41467-023-41312-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
The virus life cycle depends on host-virus protein-protein interactions, which often involve a disordered protein region binding to a folded protein domain. Here, we used proteomic peptide phage display (ProP-PD) to identify peptides from the intrinsically disordered regions of the human proteome that bind to folded protein domains encoded by the SARS-CoV-2 genome. Eleven folded domains of SARS-CoV-2 proteins were found to bind 281 peptides from human proteins, and affinities of 31 interactions involving eight SARS-CoV-2 protein domains were determined (KD ∼ 7-300 μM). Key specificity residues of the peptides were established for six of the interactions. Two of the peptides, binding Nsp9 and Nsp16, respectively, inhibited viral replication. Our findings demonstrate how high-throughput peptide binding screens simultaneously identify potential host-virus interactions and peptides with antiviral properties. Furthermore, the high number of low-affinity interactions suggest that overexpression of viral proteins during infection may perturb multiple cellular pathways.
Collapse
Affiliation(s)
- Filip Mihalič
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eszter Kassa
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Hanna Aronsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
42
|
Corona A, Madia VN, De Santis R, Manelfi C, Emmolo R, Ialongo D, Patacchini E, Messore A, Amatore D, Faggioni G, Artico M, Iaconis D, Talarico C, Di Santo R, Lista F, Costi R, Tramontano E. Diketo acid inhibitors of nsp13 of SARS-CoV-2 block viral replication. Antiviral Res 2023; 217:105697. [PMID: 37562607 DOI: 10.1016/j.antiviral.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
For RNA viruses, RNA helicases have long been recognized to play critical roles during virus replication cycles, facilitating proper folding and replication of viral RNAs, therefore representing an ideal target for drug discovery. SARS-CoV-2 helicase, the non-structural protein 13 (nsp13) is a highly conserved protein among all known coronaviruses, and, at the moment, is one of the most explored viral targets to identify new possible antiviral agents. In the present study, we present six diketo acids (DKAs) as nsp13 inhibitors able to block both SARS-CoV-2 nsp13 enzymatic functions. Among them four compounds were able to inhibit viral replication in the low micromolar range, being active also on other human coronaviruses such as HCoV229E and MERS CoV. The experimental investigation of the binding mode revealed ATP-non-competitive kinetics of inhibition, not affected by substrate-displacement effect, suggesting an allosteric binding mode that was further supported by molecular modelling calculations predicting the binding into an allosteric conserved site located in the RecA2 domain.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Riccardo De Santis
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Candida Manelfi
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Roberta Emmolo
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Elisa Patacchini
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Donatella Amatore
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Giovanni Faggioni
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, "Sapienza" Università di Roma, V.le Regina Elena 324, I-00161, Rome, Italy
| | - Daniela Iaconis
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Carmine Talarico
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy.
| |
Collapse
|
43
|
Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers AJ, Agostini ML, Abu-Shmais A, Lu X, Darst SA, Campbell E, Denison MR. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. mBio 2023; 14:e0106023. [PMID: 37338298 PMCID: PMC10470589 DOI: 10.1128/mbio.01060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
Coronaviruses (CoVs) encode nonstructural proteins 1-16 (nsps 1-16) which form replicase complexes that mediate viral RNA synthesis. Remdesivir (RDV) is an adenosine nucleoside analog antiviral that inhibits CoV RNA synthesis. RDV resistance mutations have been reported only in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp). We here show that a substitution mutation in the nsp13-helicase (nsp13-HEL A335V) of the betacoronavirus murine hepatitis virus (MHV) that was selected during passage with the RDV parent compound confers partial RDV resistance independently and additively when expressed with co-selected RDV resistance mutations in the nsp12-RdRp. The MHV A335V substitution did not enhance replication or competitive fitness compared to WT MHV and remained sensitive to the active form of the cytidine nucleoside analog antiviral molnupiravir (MOV). Biochemical analysis of the SARS-CoV-2 helicase encoding the homologous substitution (A336V) demonstrates that the mutant protein retained the ability to associate with the core replication proteins nsps 7, 8, and 12 but had impaired helicase unwinding and ATPase activity. Together, these data identify a novel determinant of nsp13-HEL enzymatic activity, define a new genetic pathway for RDV resistance, and demonstrate the importance of surveillance for and testing of helicase mutations that arise in SARS-CoV-2 genomes. IMPORTANCE Despite the development of effective vaccines against COVID-19, the continued circulation and emergence of new variants support the need for antivirals such as RDV. Understanding pathways of antiviral resistance is essential for surveillance of emerging variants, development of combination therapies, and for identifying potential new targets for viral inhibition. We here show a novel RDV resistance mutation in the CoV helicase also impairs helicase functions, supporting the importance of studying the individual and cooperative functions of the replicase nonstructural proteins 7-16 during CoV RNA synthesis. The homologous nsp13-HEL mutation (A336V) has been reported in the GISAID database of SARS-CoV-2 genomes, highlighting the importance of surveillance of and genetic testing for nucleoside analog resistance in the helicase.
Collapse
Affiliation(s)
- Samantha L. Grimes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J. Choi
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Anoosha Banerjee
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, New York, USA
| | - Gabriel Small
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Jordan Anderson-Daniels
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer Gribble
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
| | - Maria L. Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandra Abu-Shmais
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Elizabeth Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Mark R. Denison
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Tam D, Lorenzo-Leal AC, Hernández LR, Bach H. Targeting SARS-CoV-2 Non-Structural Proteins. Int J Mol Sci 2023; 24:13002. [PMID: 37629182 PMCID: PMC10455537 DOI: 10.3390/ijms241613002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped respiratory β coronavirus that causes coronavirus disease (COVID-19), leading to a deadly pandemic that has claimed millions of lives worldwide. Like other coronaviruses, the SARS-CoV-2 genome also codes for non-structural proteins (NSPs). These NSPs are found within open reading frame 1a (ORF1a) and open reading frame 1ab (ORF1ab) of the SARS-CoV-2 genome and encode NSP1 to NSP11 and NSP12 to NSP16, respectively. This study aimed to collect the available literature regarding NSP inhibitors. In addition, we searched the natural product database looking for similar structures. The results showed that similar structures could be tested as potential inhibitors of the NSPs.
Collapse
Affiliation(s)
- Donald Tam
- Division of Infectious Disease, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.T.); (A.C.L.-L.)
| | - Ana C. Lorenzo-Leal
- Division of Infectious Disease, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.T.); (A.C.L.-L.)
| | - Luis Ricardo Hernández
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico;
| | - Horacio Bach
- Division of Infectious Disease, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.T.); (A.C.L.-L.)
| |
Collapse
|
45
|
Maio N, Raza MK, Li Y, Zhang DL, Bollinger JM, Krebs C, Rouault TA. An iron-sulfur cluster in the zinc-binding domain of the SARS-CoV-2 helicase modulates its RNA-binding and -unwinding activities. Proc Natl Acad Sci U S A 2023; 120:e2303860120. [PMID: 37552760 PMCID: PMC10438387 DOI: 10.1073/pnas.2303860120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, uses an RNA-dependent RNA polymerase along with several accessory factors to replicate its genome and transcribe its genes. Nonstructural protein (nsp) 13 is a helicase required for viral replication. Here, we found that nsp13 ligates iron, in addition to zinc, when purified anoxically. Using inductively coupled plasma mass spectrometry, UV-visible absorption, EPR, and Mössbauer spectroscopies, we characterized nsp13 as an iron-sulfur (Fe-S) protein that ligates an Fe4S4 cluster in the treble-clef metal-binding site of its zinc-binding domain. The Fe-S cluster in nsp13 modulates both its binding to the template RNA and its unwinding activity. Exposure of the protein to the stable nitroxide TEMPOL oxidizes and degrades the cluster and drastically diminishes unwinding activity. Thus, optimal function of nsp13 depends on a labile Fe-S cluster that is potentially targetable for COVID-19 treatment.
Collapse
Affiliation(s)
- Nunziata Maio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| | - Md Kausar Raza
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Yan Li
- National Institute of Neurological Disorders and Stroke, NIH, Proteomics Core Facility, Bethesda, MD20892
| | - De-Liang Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Tracey A. Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| |
Collapse
|
46
|
Rosário JDS, Moreira FH, Rosa LHF, Guerra W, Silva-Caldeira PP. Biological Activities of Bismuth Compounds: An Overview of the New Findings and the Old Challenges Not Yet Overcome. Molecules 2023; 28:5921. [PMID: 37570891 PMCID: PMC10421188 DOI: 10.3390/molecules28155921] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Bismuth-based drugs have been used primarily to treat ulcers caused by Helicobacter pylori and other gastrointestinal ailments. Combined with antibiotics, these drugs also possess synergistic activity, making them ideal for multiple therapy regimens and overcoming bacterial resistance. Compounds based on bismuth have a low cost, are safe for human use, and some of them are also effective against tumoral cells, leishmaniasis, fungi, and viruses. However, these compounds have limited bioavailability in physiological environments. As a result, there is a growing interest in developing new bismuth compounds and approaches to overcome this challenge. Considering the beneficial properties of bismuth and the importance of discovering new drugs, this review focused on the last decade's updates involving bismuth compounds, especially those with potent activity and low toxicity, desirable characteristics for developing new drugs. In addition, bismuth-based compounds with dual activity were also highlighted, as well as their modes of action and structure-activity relationship, among other relevant discoveries. In this way, we hope this review provides a fertile ground for rationalizing new bismuth-based drugs.
Collapse
Affiliation(s)
- Jânia dos Santos Rosário
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte 30421-169, MG, Brazil
| | - Fábio Henrique Moreira
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte 30421-169, MG, Brazil
| | - Lara Hewilin Fernandes Rosa
- Institute of Chemistry, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia 38400-142, MG, Brazil
| | - Wendell Guerra
- Institute of Chemistry, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia 38400-142, MG, Brazil
| | | |
Collapse
|
47
|
Yu J, Im H, Lee G. Unwinding mechanism of SARS-CoV helicase (nsp13) in the presence of Ca 2+, elucidated by biochemical and single-molecular studies. Biochem Biophys Res Commun 2023; 668:35-41. [PMID: 37235917 PMCID: PMC10193821 DOI: 10.1016/j.bbrc.2023.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The recent outbreak of COVID-19 has created a serious health crisis with fatFal infectious viral diseases, such as Severe Acute Respiratory Syndrome (SARS). The nsp13, a helicase of coronaviruses is an essential element for viral replication that unwinds secondary structures of DNA and RNA, and is thus considered a major therapeutic target for treatment. The replication of coronaviruses and other retroviruses occurs in the cytoplasm of infected cells, in association with viral replication organelles, called virus-induced cytosolic double-membrane vesicles (DMVs). In addition, an increase in cytosolic Ca2+ concentration accelerates viral replication. However, the molecular mechanism of nsp13 in the presence of Ca2+ is not well understood. In this study, we applied biochemical methods and single-molecule techniques to demonstrate how nsp13 achieves its unwinding activity while performing ATP hydrolysis in the presence of Ca2+. Our study found that nsp13 could efficiently unwind double stranded (ds) DNA under physiological concentration of Ca2+ of cytosolic DMVs. These findings provide new insights into the properties of nsp13 in the range of calcium in cytosolic DMVs.
Collapse
Affiliation(s)
- Jeongmin Yu
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Hyeryeon Im
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
48
|
Moradi S, Wu Y, Walden P, Cui Z, Johnston WA, Petrov D, Alexandrov K. In Vitro Reconstitution and Analysis of SARS-CoV-2/Host Protein-Protein Interactions. ACS OMEGA 2023; 8:25009-25019. [PMID: 37483225 PMCID: PMC10357528 DOI: 10.1021/acsomega.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
The emergence of viral threats such as Ebola, ZIKA, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requires a rapid and efficient approach for elucidating mechanisms of pathogenesis and development of therapeutics. In this context, cell-free protein synthesis (CFPS) holds a promise to resolve the bottlenecks of multiplexed protein production and interaction analysis among host and pathogen proteins. Here, we applied a eukaryotic CFPS system based on Leishmania tarentolae extract (LTE) protein expression in combination with AlphaLISA proximity-based protein interaction technology to identify intraviral and viral-human protein interactions of SARS-CoV-2 virus that can potentially be targeted by the existing or novel antiviral therapeutics. We produced and tested 54 putative human-viral protein pairs in vitro and identified 45 direct binary protein interactions. As a casing example of the assay's suitability for drug development applications, we analyzed the effect of a putative biologic on the human angiotensin-converting enzyme 2/receptor-binding domain (hACE2/RBD) interaction. This suggests that the presented pathogen characterization platform can facilitate the development of new therapeutic agents.
Collapse
Affiliation(s)
- Shayli
Varasteh Moradi
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yue Wu
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Patricia Walden
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Zhenling Cui
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wayne A. Johnston
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Dmitri Petrov
- Department
of Biology, Stanford University, Stanford, California 94305-5020, United
States
| | - Kirill Alexandrov
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
49
|
von Delft A, Hall MD, Kwong AD, Purcell LA, Saikatendu KS, Schmitz U, Tallarico JA, Lee AA. Accelerating antiviral drug discovery: lessons from COVID-19. Nat Rev Drug Discov 2023; 22:585-603. [PMID: 37173515 PMCID: PMC10176316 DOI: 10.1038/s41573-023-00692-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, a wave of rapid and collaborative drug discovery efforts took place in academia and industry, culminating in several therapeutics being discovered, approved and deployed in a 2-year time frame. This article summarizes the collective experience of several pharmaceutical companies and academic collaborations that were active in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral discovery. We outline our opinions and experiences on key stages in the small-molecule drug discovery process: target selection, medicinal chemistry, antiviral assays, animal efficacy and attempts to pre-empt resistance. We propose strategies that could accelerate future efforts and argue that a key bottleneck is the lack of quality chemical probes around understudied viral targets, which would serve as a starting point for drug discovery. Considering the small size of the viral proteome, comprehensively building an arsenal of probes for proteins in viruses of pandemic concern is a worthwhile and tractable challenge for the community.
Collapse
Affiliation(s)
- Annette von Delft
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK.
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | | - Alpha A Lee
- PostEra, Inc., Cambridge, MA, USA.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
50
|
Watts NR, Eren E, Palmer I, Huang PL, Huang PL, Shoemaker RH, Lee-Huang S, Wingfield PT. The ribosome-inactivating proteins MAP30 and Momordin inhibit SARS-CoV-2. PLoS One 2023; 18:e0286370. [PMID: 37384752 PMCID: PMC10310010 DOI: 10.1371/journal.pone.0286370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The continuing emergence of SARS-CoV-2 variants has highlighted the need to identify additional points for viral inhibition. Ribosome inactivating proteins (RIPs), such as MAP30 and Momordin which are derived from bitter melon (Momordica charantia), have been found to inhibit a broad range of viruses. MAP30 has been shown to potently inhibit HIV-1 with minimal cytotoxicity. Here we show that MAP30 and Momordin potently inhibit SARS-CoV-2 replication in A549 human lung cells (IC50 ~ 0.2 μM) with little concomitant cytotoxicity (CC50 ~ 2 μM). Both viral inhibition and cytotoxicity remain unaltered by appending a C-terminal Tat cell-penetration peptide to either protein. Mutation of tyrosine 70, a key residue in the active site of MAP30, to alanine completely abrogates both viral inhibition and cytotoxicity, indicating the involvement of its RNA N-glycosylase activity. Mutation of lysine 171 and lysine 215, residues corresponding to those in Ricin which when mutated prevented ribosome binding and inactivation, to alanine in MAP30 decreased cytotoxicity (CC50 ~ 10 μM) but also the viral inhibition (IC50 ~ 1 μM). Unlike with HIV-1, neither Dexamethasone nor Indomethacin exhibited synergy with MAP30 in the inhibition of SARS-CoV-2. From a structural comparison of the two proteins, one can explain their similar activities despite differences in both their active-sites and ribosome-binding regions. We also note points on the viral genome for potential inhibition by these proteins.
Collapse
Affiliation(s)
- Norman R. Watts
- Protein Expression Laboratory, NIAMS, NIH, Bethesda, Maryland, United States of America
| | - Elif Eren
- Protein Expression Laboratory, NIAMS, NIH, Bethesda, Maryland, United States of America
| | - Ira Palmer
- Protein Expression Laboratory, NIAMS, NIH, Bethesda, Maryland, United States of America
| | - Paul L. Huang
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Philip Lin Huang
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, NIH, Bethesda, Maryland, United States of America
| | - Sylvia Lee-Huang
- Department of Biochemistry and Molecular Pharmacology, New York University, Grossman School of Medicine, New York, New York, United States of America
| | - Paul T. Wingfield
- Protein Expression Laboratory, NIAMS, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|