1
|
Min D, Fiedler J, Anandasabapathy N. Tissue-resident memory cells in antitumoral immunity and cancer immunotherapy. Curr Opin Immunol 2024; 91:102499. [PMID: 39486215 DOI: 10.1016/j.coi.2024.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
As cancer immunotherapy evolves, tissue-resident memory (TRM) cells remain key contributors to the antitumoral immune response due to their ability to mediate local tumor control, high expression of immune checkpoints, potential to respond to immunotherapy, and location across tissue sites where distal tumor metastases occur. This review synthesizes recent findings on the biology of TRM cells, their role in cancer, and their interactions with the tumor microenvironment. We also identify several critical research gaps, such as how mechanistic interrogation of TRM cell function is required for integration into therapeutics, proposing a focused research agenda to better exploit their potential.
Collapse
Affiliation(s)
- Daniel Min
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA; Immunology & Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Fiedler
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA; Immunology & Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
2
|
Gnanagurusamy J, Krishnamoorthy S, Muthusami S. Transforming growth factor-β micro-environment mediated immune cell functions in cervical cancer. Int Immunopharmacol 2024; 140:112837. [PMID: 39111147 DOI: 10.1016/j.intimp.2024.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024]
Abstract
Propensity to develop cervical cancer (CC) in human papilloma virus (HPV) infected individual could potentially involve the impaired immune functioning. Several stages of HPV surveillance by immune cells in tumor micro-environment (TME) is regulated mainly by transforming growth factor-beta (TGF-β) and is crucial for the establishment of CC. The role of TGF-β in the initiation and progression of CC is very complex and involve different suppressor of mothers against decapentaplegic homolog (SMAD) dependent and SMAD independent signaling mechanism(s). This review summarizes the handling of HPV by immune cells such as T lymphocytes, B lymphocytes, natural killer cells (NK), dendritic cells (DC), monocytes, macrophages, myeloid derived suppressor cells (MDSC) and their regulation by TGF-β. The hijack mechanisms adapted by HPV to evade this surveillance process is discussed. Biomarkers indicating the stages of CC and immune checkpoints that can be targeted for improved outcome are included for immune-based theragnostics. This review also addresses the direct actions of TGF-β on CC cells and tumor/immune cell interactions. Therapies focused on targeting TGF-β using small molecule inhibitors, monoclonal antibodies and TGF-β chimeric antigen receptor (CAR)T cells are collated to understand the current strategies related to TGF-β in the management of CC.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India.
| |
Collapse
|
3
|
Huang S, Lin Y, Deng Q, Zhang Y, Peng S, Qiu Y, Huang W, Wang Z, Lai X. Suppression of OGN in lung myofibroblasts attenuates pulmonary fibrosis by inhibiting integrin αv-mediated TGF-β/Smad pathway activation. Matrix Biol 2024; 132:87-97. [PMID: 39019241 DOI: 10.1016/j.matbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) represents a severe and progressive manifestation of idiopathic interstitial pneumonia marked by an uncertain etiology along with an unfavorable prognosis. Osteoglycin (OGN), belonging to the small leucine-rich proteoglycans family, assumes pivotal functions in both tissue formation and damage response. However, the roles and potential mechanisms of OGN in the context of lung fibrosis remain unexplored. METHODS The assessment of OGN expression levels in fibrotic lungs was conducted across various experimental lung fibrosis mouse models. To elucidate the effects of OGN on the differentiation of lung myofibroblasts, both OGN knockdown and OGN overexpression were employed in vitro. The expression of integrin αv, along with its colocalization with lysosomes and latency-associated peptide (LAP), was monitored in OGN-knockdown lung myofibroblasts. Furthermore, the role of OGN in lung fibrosis was investigated through OGN knockdown utilizing adeno-related virus serotype 6 (AAV6)-mediated delivery. RESULTS OGN exhibited upregulation in both lungs and myofibroblasts across diverse lung fibrosis mouse models. And laboratory experiments in vitro demonstrated that OGN knockdown inhibited the TGF-β/Smad signaling pathway in lung myofibroblasts. Conversely, OGN overexpression promoted TGF-β/Smad pathway in these cells. Mechanistic insights revealed that OGN knockdown facilitated lysosome-mediated degradation of integrin αv while inhibiting its binding to latency-associated peptide (LAP). Remarkably, AAV6-targeted OGN knockdown ameliorated the extent of lung fibrosis in experimental mouse models. CONCLUSION Our results indicate that inhibiting OGN signaling could serve as a promising therapeutic way for lung fibrosis.
Collapse
Affiliation(s)
- Shaojie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingying Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiwen Deng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanjia Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Senyi Peng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
5
|
Fattahi AS, Jafari M, Farahavar G, Abolmaali SS, Tamaddon AM. Expanding horizons in cancer therapy by immunoconjugates targeting tumor microenvironments. Crit Rev Oncol Hematol 2024; 201:104437. [PMID: 38977144 DOI: 10.1016/j.critrevonc.2024.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Immunoconjugates are promising molecules combining antibodies with different agents, such as toxins, drugs, radionuclides, or cytokines that primarily aim to target tumor cells. However, tumor microenvironment (TME), which comprises a complex network of various cells and molecular cues guiding tumor growth and progression, remains a major challenge for effective cancer therapy. Our review underscores the pivotal role of TME in cancer therapy with immunoconjugates, examining the intricate interactions with TME and recent advancements in TME-targeted immunoconjugates. We explore strategies for targeting TME components, utilizing diverse antibodies such as neutralizing, immunomodulatory, immune checkpoint inhibitors, immunostimulatory, and bispecific antibodies. Additionally, we discuss different immunoconjugates, elucidating their mechanisms of action, advantages, limitations, and applications in cancer immunotherapy. Furthermore, we highlight emerging technologies enhancing the safety and efficacy of immunoconjugates, such as antibody engineering, combination therapies, and nanotechnology. Finally, we summarize current advancements, perspectives, and future developments of TME-targeted immunoconjugates.
Collapse
Affiliation(s)
- Amir Saamaan Fattahi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Jafari
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| |
Collapse
|
6
|
Lopez-Cerda M, Lorenzo-Sanz L, da Silva-Diz V, Llop S, Penin RM, Bermejo JO, de Goeij-de Haas R, Piersma SR, Pham TV, Jimenez CR, Martin-Liberal J, Muñoz P. IGF1R signaling induces epithelial-mesenchymal plasticity via ITGAV in cutaneous carcinoma. J Exp Clin Cancer Res 2024; 43:211. [PMID: 39075581 PMCID: PMC11285232 DOI: 10.1186/s13046-024-03119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Early cutaneous squamous cell carcinomas (cSCCs) generally show epithelial differentiation features and good prognosis, whereas advanced cSCCs present mesenchymal traits associated with tumor relapse, metastasis, and poor survival. Currently, the mechanisms involved in cSCC progression are unclear, and the established markers are suboptimal for accurately predicting the clinical course of the disease. METHODS Using a mouse model of cSCC progression, expression microarray analysis, immunofluorescence and flow cytometry assays, we have identified a prognostic biomarker of tumor relapse, which has been evaluated in a cohort of cSCC patient samples. Phosphoproteomic analysis have revealed signaling pathways induced in epithelial plastic cancer cells that promote epithelial-mesenchymal plasticity (EMP) and tumor progression. These pathways have been validated by genetic and pharmacological inhibition assays. RESULTS We show that the emergence of epithelial cancer cells expressing integrin αV (ITGAV) promotes cSCC progression to a mesenchymal state. Consistently, ITGAV expression allows the identification of patients at risk of cSCC relapse above the currently employed clinical histopathological parameters. We also demonstrate that activation of insulin-like growth factor-1 receptor (IGF1R) pathway in epithelial cancer cells is necessary to induce EMP and mesenchymal state acquisition in response to tumor microenvironment-derived factors, while promoting ITGAV expression. Likewise, ITGAV knockdown in epithelial plastic cancer cells also blocks EMP acquisition, generating epithelial tumors. CONCLUSIONS Our results demonstrate that ITGAV is a prognostic biomarker of relapse in cSCCs that would allow improved patient stratification. ITGAV also collaborates with IGF1R to induce EMP in epithelial cancer cells and promotes cSCC progression, revealing a potential therapeutic strategy to block the generation of advanced mesenchymal cSCCs.
Collapse
Affiliation(s)
- Marta Lopez-Cerda
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laura Lorenzo-Sanz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victoria da Silva-Diz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Rutgers Cancer Institute of New Jersey, Rutgers University, 08901, New Brunswick, NJ, USA
| | - Sandra Llop
- Medical Oncology Department, Catalan Institute of Oncology (ICO) L'Hospitalet, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rosa M Penin
- Pathology Service, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Oriol Bermejo
- Plastic Surgery Unit, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Richard de Goeij-de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO) L'Hospitalet, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Purificación Muñoz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
7
|
Ha CP, Hua TNM, Vo VTA, Om J, Han S, Cha SK, Park KS, Jeong Y. Humanin activates integrin αV-TGFβ axis and leads to glioblastoma progression. Cell Death Dis 2024; 15:464. [PMID: 38942749 PMCID: PMC11213926 DOI: 10.1038/s41419-024-06790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024]
Abstract
The role of mitochondria peptides in the spreading of glioblastoma remains poorly understood. In this study, we investigated the mechanism underlying intracranial glioblastoma progression. Our findings demonstrate that the mitochondria-derived peptide, humanin, plays a significant role in enhancing glioblastoma progression through the intratumoral activation of the integrin alpha V (ITGAV)-TGF beta (TGFβ) signaling axis. In glioblastoma tissues, humanin showed a significant upregulation in the tumor area compared to the corresponding normal region. Utilizing multiple in vitro pharmacological and genetic approaches, we observed that humanin activates the ITGAV pathway, leading to cellular attachment and filopodia formation. This process aids the subsequent migration and invasion of attached glioblastoma cells through intracellular TGFβR signaling activation. In addition, our in vivo orthotopic glioblastoma model provides further support for the pro-tumoral function of humanin. We observed a correlation between poor survival and aggressive invasiveness in the humanin-treated group, with noticeable tumor protrusions and induced angiogenesis compared to the control. Intriguingly, the in vivo effect of humanin on glioblastoma was significantly reduced by the treatment of TGFBR1 inhibitor. To strengthen these findings, public database analysis revealed a significant association between genes in the ITGAV-TGFβR axis and poor prognosis in glioblastoma patients. These results collectively highlight humanin as a pro-tumoral factor, making it a promising biological target for treating glioblastoma.
Collapse
Affiliation(s)
- Cuong P Ha
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Tuyen N M Hua
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Pharmacology - Clinical Pharmacy, Faculty of Pharmacy, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Vu T A Vo
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Jiyeon Om
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Sangwon Han
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Seung-Kuy Cha
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Kyu-Sang Park
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| | - Yangsik Jeong
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| |
Collapse
|
8
|
Pan Y, Xue Q, Yang Y, Shi T, Wang H, Song X, Luo Y, Liu W, Ren S, Cai Y, Nie Y, Song Z, Liu B, Li JP, Wei J. Glycoengineering-based anti-PD-1-iRGD peptide conjugate boosts antitumor efficacy through T cell engagement. Cell Rep Med 2024; 5:101590. [PMID: 38843844 PMCID: PMC11228665 DOI: 10.1016/j.xcrm.2024.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Despite the important breakthroughs of immune checkpoint inhibitors in recent years, the objective response rates remain limited. Here, we synthesize programmed cell death protein-1 (PD-1) antibody-iRGD cyclic peptide conjugate (αPD-1-(iRGD)2) through glycoengineering methods. In addition to enhancing tissue penetration, αPD-1-(iRGD)2 simultaneously engages tumor cells and PD-1+ T cells via dual targeting, thus mediating tumor-specific T cell activation and proliferation with mild effects on non-specific T cells. In multiple syngeneic mouse models, αPD-1-(iRGD)2 effectively reduces tumor growth with satisfactory biosafety. Moreover, results of flow cytometry and single-cell RNA-seq reveal that αPD-1-(iRGD)2 remodels the tumor microenvironment and expands a population of "better effector" CD8+ tumor infiltrating T cells expressing stem- and memory-associated genes, including Tcf7, Il7r, Lef1, and Bach2. Conclusively, αPD-1-(iRGD)2 is a promising antibody conjugate therapeutic beyond antibody-drug conjugate for cancer immunotherapy.
Collapse
Affiliation(s)
- Yunfeng Pan
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi Xue
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi Yang
- Glyco-therapy Biotechnology Co. Ltd., Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha Street, Qiantang District, Hangzhou, China
| | - Tao Shi
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hanbing Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xueru Song
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuting Luo
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shiji Ren
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yiran Cai
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Nie
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhentao Song
- Glyco-therapy Biotechnology Co. Ltd., Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha Street, Qiantang District, Hangzhou, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie P Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Jia Wei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Chen Y, Sun H, Luo Z, Mei Y, Xu Z, Tan J, Xie Y, Li M, Xia J, Yang B, Su B. Crosstalk between CD8 + T cells and mesenchymal stromal cells in intestine homeostasis and immunity. Adv Immunol 2024; 162:23-58. [PMID: 38866438 DOI: 10.1016/bs.ai.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The intestine represents the most complex cellular network in the whole body. It is constantly faced with multiple types of immunostimulatory agents encompassing from food antigen, gut microbiome, metabolic waste products, and dead cell debris. Within the intestine, most T cells are found in three primary compartments: the organized gut-associated lymphoid tissue, the lamina propria, and the epithelium. The well-orchestrated epithelial-immune-microbial interaction is critically important for the precise immune response. The main role of intestinal mesenchymal stromal cells is to support a structural framework within the gut wall. However, recent evidence from stromal cell studies indicates that they also possess significant immunomodulatory functions, such as maintaining intestinal tolerance via the expression of PDL1/2 and MHC-II molecules, and promoting the development of CD103+ dendritic cells, and IgA+ plasma cells, thereby enhancing intestinal homeostasis. In this review, we will summarize the current understanding of CD8+ T cells and stromal cells alongside the intestinal tract and discuss the reciprocal interactions between T subsets and mesenchymal stromal cell populations. We will focus on how the tissue residency, migration, and function of CD8+ T cells could be potentially regulated by mesenchymal stromal cell populations and explore the molecular mediators, such as TGF-β, IL-33, and MHC-II molecules that might influence these processes. Finally, we discuss the potential pathophysiological impact of such interaction in intestine hemostasis as well as diseases of inflammation, infection, and malignancies.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisong Mei
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengda Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Xia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beichun Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Fuller AM, Pruitt HC, Liu Y, Irizarry-Negron VM, Pan H, Song H, DeVine A, Katti RS, Devalaraja S, Ciotti GE, Gonzalez MV, Williams EF, Murazzi I, Ntekoumes D, Skuli N, Hakonarson H, Zabransky DJ, Trevino JG, Weeraratna A, Weber K, Haldar M, Fraietta JA, Gerecht S, Eisinger-Mathason TSK. Oncogene-induced matrix reorganization controls CD8+ T cell function in the soft-tissue sarcoma microenvironment. J Clin Invest 2024; 134:e167826. [PMID: 38652549 PMCID: PMC11142734 DOI: 10.1172/jci167826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
CD8+ T cell dysfunction impedes antitumor immunity in solid cancers, but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition modulates CD8+ T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient cohorts, we discovered a multifaceted mechanism wherein the transcriptional coactivator YAP1 promotes collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8+ T cell dysfunction and immune evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen I (COLI) opposed COLVI in this setting, promoting CD8+ T cell function and acting as a tumor suppressor. Thus, CD8+ T cell responses in sarcoma depend on oncogene-mediated ECM composition and remodeling.
Collapse
Affiliation(s)
- Ashley M Fuller
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hawley C Pruitt
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ying Liu
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Valerie M Irizarry-Negron
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hehai Pan
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hoogeun Song
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ann DeVine
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rohan S Katti
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Samir Devalaraja
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gabrielle E Ciotti
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Erik F Williams
- Department of Microbiology, Center for Cellular Immunotherapies, Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ileana Murazzi
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dimitris Ntekoumes
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel J Zabransky
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jose G Trevino
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ashani Weeraratna
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kristy Weber
- Department of Orthopaedic Surgery, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Malay Haldar
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph A Fraietta
- Department of Microbiology, Center for Cellular Immunotherapies, Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Giustiniani J, Ta VA, Belkhelouat S, Battistella M, Ouahbi D, Ram-Wolff C, Louveau B, Mourah S, Bagot M, Moins-Teisserenc H, Ortonne N, Bensussan A, De Masson A. Targeting TGF-β Activation in Cutaneous T-Cell Lymphomas. J Invest Dermatol 2024:S0022-202X(24)00259-8. [PMID: 38555062 DOI: 10.1016/j.jid.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Jérôme Giustiniani
- INSERM U955, Institut Mondor de Recherche Biomédicale, Team Ortonne (Neurofibromatosis and lymphoma oncogenesis - NFL), Créteil, France; Université Paris Est Créteil, Créteil, France
| | - Van Anh Ta
- INSERM U1160, Institut de Recherche Saint-Louis, Paris, France; Université Paris Cité, Paris, France
| | - Sadjia Belkhelouat
- INSERM U955, Institut Mondor de Recherche Biomédicale, Team Ortonne (Neurofibromatosis and lymphoma oncogenesis - NFL), Créteil, France; Université Paris Est Créteil, Créteil, France
| | - Maxime Battistella
- Université Paris Cité, Paris, France; INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Pathology Department, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Dina Ouahbi
- Department of Bioinformatics, Institut de Recherche Saint-Louis, Paris, France
| | - Caroline Ram-Wolff
- Department of Dermatology, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Baptiste Louveau
- Université Paris Cité, Paris, France; INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Department of Solid Tumor Genomics, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Samia Mourah
- Université Paris Cité, Paris, France; INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Department of Solid Tumor Genomics, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Martine Bagot
- Université Paris Cité, Paris, France; INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Department of Dermatology, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Hélène Moins-Teisserenc
- INSERM U1160, Institut de Recherche Saint-Louis, Paris, France; Université Paris Cité, Paris, France; Hematology Laboratory, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Nicolas Ortonne
- INSERM U955, Institut Mondor de Recherche Biomédicale, Team Ortonne (Neurofibromatosis and lymphoma oncogenesis - NFL), Créteil, France; Université Paris Est Créteil, Créteil, France; Department of Pathology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Creteil, France
| | - Armand Bensussan
- INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Institut Jean Godinot, Reims, France; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Adèle De Masson
- Université Paris Cité, Paris, France; INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Department of Dermatology, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
12
|
张 怡, 邓 丹, 尹 万, 罗 俊, 刘 金, 谢 臣, 季 星, 马 立, 张 莉, 夏 仙, 程 胜, 黄 安, 杨 帆. [Relationship Between Tim-3 and Galectin-9 Expression Levels, Clinical Pathological Characteristics, and Prognosis in Patients After Radical Resection of Colorectal Cancer]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:375-382. [PMID: 38645842 PMCID: PMC11026871 DOI: 10.12182/20240360603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 04/23/2024]
Abstract
Objective Some colorectal cancer patients still face high recurrence rates and poor prognoses even after they have undergone the surgical treatment of radical resection. Identifying potential biochemical markers and therapeutic targets for the prognostic evaluation of patients undergoing radical resection of colorectal cancer is crucial for improving their clinical outcomes. Recently, it has been reported that the T cell immunoglobulin and mucin domain protein 3 (Tim-3) and its ligand galactose lectin 9 (galectin-9) play crucial roles in immune dysfunction caused by various tumors, such as colorectal cancer. However, their expressions, biological functions, and prognostic value in colorectal cancer are still unclear. This study aims to investigate the relationship between Tim-3 and galectin-9 expression levels and the clinicopathological characteristics and prognosis of patients undergoing radical resection of colorectal cancer. Methods A total of 171 patients who underwent radical resection of colorectal cancer at Chengdu Fifth People's Hospital between February 2018 and March 2019 were selected. Immunohistochemistry was performed to assess the expression levels of Tim-3 and galectin-9 in the cancer tissue samples and the paracancerous tissue samples of the patients. The relationship between Tim-3 and galectin-9 expression levels and the baseline clinical parameters of the patients was analyzed accordingly. Kaplan-Meier analysis was performed to assess the association between Tim-3 and galectin-9 expression levels and the relapse-free survival (RFS) and the overall survival (OS) of colorectal cancer patients. Cox regression analysis was conducted to identify factors associated with adverse prognosis in the patients. Results The immunohistochemical results showed that the high expression levels of Tim-3 and galectin-9 were observed in 70.18% (120/171) and 32.16% (55/171), respectively, of the colorectal cancer tissues, whereas the low expression levels were 29.82% (51/171) and 67.84% (116/171), respectively. Furthermore, the expression score of Tim-3 was significantly higher in colorectal cancer tissues than that in the paracancerous tissues, while the expression score of galectin-9 was lower than that in the paracancerous tissues (P<0.05). Further analysis revealed that the expression of Tim-3 and galectin-9 was associated with the depth of tumor infiltration, vascular infiltration, and clinical staging (P<0.05). During the follow-up period of 14-63 months, 7 out of 171 patients were lost to follow-up. Among the remaining patients, 49 and 112 cases presented abnormally low expression of Tim-3 and galectin-9, respectively, whereas 115 and 52 cases presented high expression of Tim-3 and galectin-9, respectively. Kaplan-Meier survival analysis demonstrated that patients with high Tim-3 expression in colorectal cancer tissues had significantly lower RFS and OS than those with low expression did (RFS: log-rank=22.66, P<0.001; OS: log-rank=19.71, P<0.001). Conversely, patients with low galectin-9 expression had significantly lower RFS and OS than those with high expression did (RFS: log-rank=19.45, P<0.001; OS: log-rank=22.24, P<0.001). Cox multivariate analysis indicated that TNM stage Ⅲ (HR=2.26, 95% CI: 1.20-5.68), high expression of Tim-3 (HR=0.80, 95% CI: 0.33-0.91), and low expression of galectin-9 (HR=1.80, 95% CI: 1.33-4.70) were independent risk factors affecting RFS and OS in patients (P<0.05). Conclusion Aberrant expression of Tim-3 and galectin-9 is observed in colorectal cancer tissues. High expression of Tim-3 and low expression of galectin-9 are closely associated with adverse clinico-pathological characteristics and prognosis. They are identified as independent influencing factors that may trigger adverse prognostic events in patients. These findings suggest that Tim-3 and galectin-9 have potential as new therapeutic targets and clinical indicators.
Collapse
Affiliation(s)
- 怡然 张
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- 成都市第五人民医院(成都中医药大学附属第五人民医院/第二临床医学院) 病理科,成都市肿瘤防治所 (成都 611137)Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, China
| | - 丹 邓
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 万 尹
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 俊 罗
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 金星 刘
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 臣健 谢
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 星利 季
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 立 马
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 莉 张
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 仙根 夏
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 胜君 程
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 安亮 黄
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - 帆 杨
- 成都中医药大学医学与生命科学学院 (成都 611137)School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Belitškin D, Munne P, Pant SM, Anttila JM, Suleymanova I, Belitškina K, Kirchhofer D, Janetka J, Käsper T, Jalil S, Pouwels J, Tervonen TA, Klefström J. Hepsin promotes breast tumor growth signaling via the TGFβ-EGFR axis. Mol Oncol 2024; 18:547-561. [PMID: 37872868 PMCID: PMC10920082 DOI: 10.1002/1878-0261.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
Hepsin, a type II transmembrane serine protease, is commonly overexpressed in prostate and breast cancer. The hepsin protein is stabilized by the Ras-MAPK pathway, and, downstream, this protease regulates the degradation of extracellular matrix components and activates growth factor pathways, such as the hepatocyte growth factor (HGF) and transforming growth factor beta (TGFβ) pathway. However, how exactly active hepsin promotes cell proliferation machinery to sustain tumor growth is not fully understood. Here, we show that genetic deletion of the gene encoding hepsin (Hpn) in a WAP-Myc model of aggressive MYC-driven breast cancer inhibits tumor growth in the primary syngrafted sites and the growth of disseminated tumors in the lungs. The suppression of tumor growth upon loss of hepsin was accompanied by downregulation of TGFβ and EGFR signaling together with a reduction in epidermal growth factor receptor (EGFR) protein levels. We further demonstrate in 3D cultures of patient-derived breast cancer explants that both basal TGFβ signaling and EGFR protein expression are inhibited by neutralizing antibodies or small-molecule inhibitors of hepsin. The study demonstrates a role for hepsin as a regulator of cell proliferation and tumor growth through TGFβ and EGFR pathways, warranting consideration of hepsin as a potential indirect upstream target for therapeutic inhibition of TGFβ and EGFR pathways in cancer.
Collapse
Affiliation(s)
- Denis Belitškin
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Pauliina Munne
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Shishir M. Pant
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Johanna M. Anttila
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Ilida Suleymanova
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Kati Belitškina
- Pathology DepartmentNorth Estonia Medical CentreTallinnEstonia
| | - Daniel Kirchhofer
- Department of Early Discovery BiochemistryGenentech, Inc.South San FranciscoCAUSA
| | - James Janetka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | | | - Sami Jalil
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Jeroen Pouwels
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Topi A. Tervonen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
- Foundation for the Finnish Cancer Institute, Helsinki & FICAN SouthHelsinki University HospitalFinland
| |
Collapse
|
14
|
Liao X, Li W, Zhou H, Rajendran BK, Li A, Ren J, Luan Y, Calderwood DA, Turk B, Tang W, Liu Y, Wu D. The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8 + T cells. Nat Commun 2024; 15:603. [PMID: 38242867 PMCID: PMC10798966 DOI: 10.1038/s41467-024-44885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
CD8+ T cells play an important role in anti-tumor immunity. Better understanding of their regulation could advance cancer immunotherapies. Here we identify, via stepwise CRISPR-based screening, that CUL5 is a negative regulator of the core signaling pathways of CD8+ T cells. Knocking out CUL5 in mouse CD8+ T cells significantly improves their tumor growth inhibiting ability, with significant proteomic alterations that broadly enhance TCR and cytokine signaling and their effector functions. Chemical inhibition of neddylation required by CUL5 activation, also enhances CD8 effector activities with CUL5 validated as a major target. Mechanistically, CUL5, which is upregulated by TCR stimulation, interacts with the SOCS-box-containing protein PCMTD2 and inhibits TCR and IL2 signaling. Additionally, CTLA4 is markedly upregulated by CUL5 knockout, and its inactivation further enhances the anti-tumor effect of CUL5 KO. These results together reveal a negative regulatory mechanism for CD8+ T cells and have strong translational implications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaofeng Liao
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hongyue Zhou
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Barani Kumar Rajendran
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ao Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jingjing Ren
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yi Luan
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Benjamin Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wenwen Tang
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Research Institute, Yale University School of Medicine, West Haven, CT, 06516, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Dianqing Wu
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
15
|
Shi R, Zhao W, Zhu L, Wang R, Wang D. Identification of basement membrane markers in diabetic kidney disease and immune infiltration by using bioinformatics analysis and experimental verification. IET Syst Biol 2023; 17:316-326. [PMID: 37776100 PMCID: PMC10725710 DOI: 10.1049/syb2.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease worldwide. Basement membranes (BMs) are ubiquitous extracellular matrices which are affected in many diseases including DKD. Here, the authors aimed to identify BM-related markers in DKD and explored the immune cell infiltration in this process. The expression profiles of three datasets were downloaded from the Gene Expression Omnibus database. BM-related differentially expression genes (DEGs) were identified and Kyoto encyclopaedia of genes and genomes pathway enrichment analysis were applied to biological functions. Immune cell infiltration and immune function in the kidneys of patients with DKD and healthy controls were evaluated and compared using the ssGSEA algorithm. The association of hub genes and immune cells and immune function were explored. A total of 30 BM-related DEGs were identified. The functional analysis showed that BM-related DEGs were notably associated with basement membrane alterations. Crucially, BM-related hub genes in DKD were finally identified, which were able to distinguish patients with DKD from controls. Moreover, the authors observed that laminin subunit gamma 1(LAMC1) expression was significantly high in HK2 cells treated with high glucose. Immunohistochemistry results showed that, compared with those in db/m mouse kidneys, the levels of LAMC1 in db/db mouse kidneys were significantly increased. The biomarkers genes may prove crucial for DKD treatment as they could be targeted in future DKD treatment protocols.
Collapse
Affiliation(s)
- Rui Shi
- Department of NephrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Wen‐Man Zhao
- Department of NephrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Li Zhu
- Department of NephrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Rui‐Feng Wang
- Department of NephrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - De‐Guang Wang
- Department of NephrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
16
|
Ulibarri MR, Lin Y, Ramprashad JR, Han G, Hasan MH, Mithila FJ, Ma C, Gopinath S, Zhang N, Milner JJ, Beura LK. Epithelial organoid supports resident memory CD8 T cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569395. [PMID: 38076957 PMCID: PMC10705482 DOI: 10.1101/2023.12.01.569395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Resident Memory T cells (TRM) play a vital role in regional immune defense in barrier organs. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency, sampling bias and low cell survival rates have limited our ability to conduct TRM-focused high-throughput assays. Here, we engineered a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation in vitro. The three-dimensional VEOs established from murine adult stem cells resembled stratified squamous vaginal epithelium and induced gradual differentiation of activated CD8 T cells into epithelial TRM. These in vitro generated TRM were phenotypically and transcriptionally similar to in vivo TRM, and key tissue residency features were reinforced with a second cognate-antigen exposure during co-culture. TRM differentiation was not affected even when VEOs and CD8 T cells were separated by a semipermeable barrier, indicating soluble factors' involvement. Pharmacological and genetic approaches showed that TGF-β signaling played a crucial role in their differentiation. We found that the VEOs in our model remained susceptible to viral infections and the CD8 T cells were amenable to genetic manipulation; both of which will allow detailed interrogation of antiviral CD8 T cell biology in a reductionist setting. In summary, we established a robust model which captures bonafide TRM differentiation that is scalable, open to iterative sampling, and can be subjected to high throughput assays that will rapidly add to our understanding of TRM.
Collapse
Affiliation(s)
- Max R. Ulibarri
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Ying Lin
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
- Pathobiology Graduate Program, Brown University, Providence, RI, 02912
| | - Julian R. Ramprashad
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Mohammad H. Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Farha J. Mithila
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Brown University, Providence, RI, 02912
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, 78229
| | - Smita Gopinath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA, 02115
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, 78229
- South Texas Veterans Health Care System, San Antonio, TX, 78229
| | - J. Justin Milner
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599
| | - Lalit K. Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| |
Collapse
|
17
|
Zemanek T, Nova Z, Nicodemou A. Tumor-Infiltrating Lymphocytes and Adoptive Cell Therapy: State of the Art in Colorectal, Breast and Lung Cancer. Physiol Res 2023; 72:S209-S224. [PMID: 37888965 PMCID: PMC10669950 DOI: 10.33549/physiolres.935155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of tumor-infiltrating lymphocytes (TILs) is dramatically expanding. These cells have proven prognostic and therapeutic value for many cancer outcomes and potential to treat also disseminated breast, colorectal, or lung cancer. However, the therapeutical outcome of TILs is negatively affected by tumor mutational burden and neoantigens. On the other hand, it can be improved in combination with checkpoint blockade therapy. This knowledge and rapid detection techniques alongside gene editing allow us to classify and modify T cells in many ways. Hence, to tailor them precisely to the patient´s needs as to program T cell receptors to recognize specific tumor-associated neoantigens and to insert them into lymphocytes or to select tumor neoantigen-specific T cells, for the development of vaccines that recognize tumor-specific antigens in tumors or metastases. Further studies and clinical trials in the field are needed for an even better-detailed understanding of TILs interactions and aiming in the fight against multiple cancers.
Collapse
Affiliation(s)
- T Zemanek
- Lambda Life, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
18
|
Tsai CC, Yang YCSH, Chen YF, Huang LY, Yang YN, Lee SY, Wang WL, Lee HL, Whang-Peng J, Lin HY, Wang K. Integrins and Actions of Androgen in Breast Cancer. Cells 2023; 12:2126. [PMID: 37681860 PMCID: PMC10486718 DOI: 10.3390/cells12172126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023] Open
Abstract
Androgen has been shown to regulate male physiological activities and cancer proliferation. It is used to antagonize estrogen-induced proliferative effects in breast cancer cells. However, evidence indicates that androgen can stimulate cancer cell growth in estrogen receptor (ER)-positive and ER-negative breast cancer cells via different types of receptors and different mechanisms. Androgen-induced cancer growth and metastasis link with different types of integrins. Integrin αvβ3 is predominantly expressed and activated in cancer cells and rapidly dividing endothelial cells. Programmed death-ligand 1 (PD-L1) also plays a vital role in cancer growth. The part of integrins in action with androgen in cancer cells is not fully mechanically understood. To clarify the interactions between androgen and integrin αvβ3, we carried out molecular modeling to explain the potential interactions of androgen with integrin αvβ3. The androgen-regulated mechanisms on PD-L1 and its effects were also addressed.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.T.); (Y.-F.C.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yi-Fong Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.T.); (Y.-F.C.)
| | - Lin-Yi Huang
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (L.-Y.H.); (Y.-N.Y.)
| | - Yung-Ning Yang
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (L.-Y.H.); (Y.-N.Y.)
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Sheng-Yang Lee
- Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei 11031, Taiwan;
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Long Wang
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | | | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.T.); (Y.-F.C.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
19
|
Ramirez DE, Mohamed A, Huang YH, Turk MJ. In the right place at the right time: tissue-resident memory T cells in immunity to cancer. Curr Opin Immunol 2023; 83:102338. [PMID: 37229984 PMCID: PMC10631801 DOI: 10.1016/j.coi.2023.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Tissue-resident memory (Trm) cells have recently emerged as essential components of the immune response to cancer. Here, we highlight new studies that demonstrate how CD8+ Trm cells are ideally suited to accumulate in tumors and associated tissues, to recognize a wide range of tumor antigens (Ags), and to persist as durable memory. We discuss compelling evidence that Trm cells maintain potent recall function and serve as principal mediators of immune checkpoint blockade (ICB) therapeutic efficacy in patients. Finally, we propose that Trm and circulating memory T-cell compartments together form a formidable barrier against metastatic cancer. These studies affirm Trm cells as potent, durable, and necessary mediators of cancer immunity.
Collapse
Affiliation(s)
- Delaney E Ramirez
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA
| | - Asmaa Mohamed
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA
| | - Yina H Huang
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA
| | - Mary Jo Turk
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA.
| |
Collapse
|
20
|
Damei I, Trickovic T, Mami-Chouaib F, Corgnac S. Tumor-resident memory T cells as a biomarker of the response to cancer immunotherapy. Front Immunol 2023; 14:1205984. [PMID: 37545498 PMCID: PMC10399960 DOI: 10.3389/fimmu.2023.1205984] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) often include a substantial subset of CD8+ tissue-resident memory T (TRM) cells enriched in tumor-specific T cells. These TRM cells play a major role in antitumor immune response. They are identified on the basis of their expression of the CD103 (αE(CD103)β7) and/or CD49a (α1(CD49a)β1) integrins, and the C-type lectin CD69, which are involved in tissue residency. TRM cells express several T-cell inhibitory receptors on their surface but they nevertheless react strongly to malignant cells, exerting a strong cytotoxic function, particularly in the context of blocking interactions of PD-1 with PD-L1 on target cells. These TRM cells form stable conjugates with autologous tumor cells and interact with dendritic cells and other T cells within the tumor microenvironment to orchestrate an optimal in situ T-cell response. There is growing evidence to indicate that TGF-β is essential for the formation and maintenance of TRM cells in the tumor, through the induction of CD103 expression on activated CD8+ T cells, and for the regulation of TRM effector functions through bidirectional integrin signaling. CD8+ TRM cells were initially described as a prognostic marker for survival in patients with various types of cancer, including ovarian, lung and breast cancers and melanoma. More recently, these tumor-resident CD8+ T cells have been shown to be a potent predictive biomarker of the response of cancer patients to immunotherapies, including therapeutic cancer vaccines and immune checkpoint blockade. In this review, we will highlight the major characteristics of tumor TRM cell populations and the possibilities for their exploitation in the design of more effective immunotherapy strategies for cancer.
Collapse
|
21
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Lee S, Ma J, Im SJ. Expression and function of CD51 on CD8 T cells as an immunomodulatory target. Biochem Biophys Res Commun 2023; 661:56-63. [PMID: 37087799 DOI: 10.1016/j.bbrc.2023.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
T cell responses are regulated by co-stimulatory and inhibitory receptors along with T cell receptor- and cytokine-mediated signals. CD51 is a transmembrane glycoprotein of the integrin family that plays a role in cell adhesion, migration, tumorigenesis, and other cellular functions. In this study, we aimed to investigate the expression and function of CD51 on CD8 T cells. Upon in vitro T cell activation, CD51 expression was delayed but subsequently was upregulated in CD8 T cells upon cell division. Furthermore, CD51 was highly expressed in exhausted CD8 T cells in chronic LCMV infection, B16F10 melanoma, and CT26 colon carcinoma, and its expression level increased as cells became more differentiated. Using CRISPR-mediated knockdown, we found that the absence of CD51 led to a lower number of virus-specific CD8 T cells upon chronic lymphocytic choriomeningitis virus (LCMV) infection, although their granzyme B expression and cytokine production were maintained. Blocking CD51 also inhibited the in vitro proliferation of CD8 T cells. These results suggest that CD51 plays an important role in the early expansion of CD8 T cells and may have potential as an immunomodulatory target.
Collapse
Affiliation(s)
- Solhwi Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junhui Ma
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Se Jin Im
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
23
|
Chen L, Huang H, Huang Z, Chen J, Liu Y, Wu Y, Li A, Ge J, Fang Z, Xu B, Zheng X, Wu C. Prognostic values of tissue-resident CD8 +T cells in human hepatocellular carcinoma and intrahepatic cholangiocarcinoma. World J Surg Oncol 2023; 21:124. [PMID: 37024870 PMCID: PMC10077621 DOI: 10.1186/s12957-023-03009-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Tissue-resident CD8+T cells (CD103+CD8+T cells) are the essential effector cell population of anti-tumor immune response in tissue regional immunity. And we have reported that IL-33 can promote the proliferation and effector function of tissue-resident CD103+CD8+T cells. As of now, the immunolocalization and the prognostic values of tissue-resident CD8+T cells in human hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) still remain to be illustrated. METHODS In our present study, we used the tissue microarrays of HCC and ICC, the multicolor immunohistochemistry (mIHC), and imaging analysis to characterize the tissue-resident CD8+T cells in HCC and ICC tissues. The prognostic values and clinical associations were also analyzed. We also studied the biological functions and the cell-cell communication between tumor-infiltrating CD103+CD8+T cells and other cell types in HCC and ICC based on the published single-cell RNA sequencing (scRNA-seq) data. RESULTS Our work unveiled the expressions of CD8 and CD103 and immunolocalization of tissue-resident CD8+T cells in human HCC and ICC. Elevated CD8+T cells indicated a better overall survival (OS) rate, implying that tumor-infiltrating CD8+T cells in HCC and ICC could serve as an independent prognostic factor. Moreover, the number of CD103+CD8+T cells was increased in HCC and ICC tissues compared with adjacent normal tissues. HCC patients defined as CD8highCD103high had a better OS, and the CD8lowCD103low group tended to have a poorer prognosis in ICC. Evaluation of the CD103+CD8+T-cell ratio in CD8+T cells could also be a prognostic predictor for HCC and ICC patients. A higher ratio of CD103+CD8+T cells over total CD8+T cells in HCC tissues was negatively and significantly associated with the advanced pathological stage. The percentage of higher numbers of CD103+CD8+T cells in ICC tissues was negatively and significantly associated with the advanced pathological stage. In contrast, the higher ratio of CD103+CD8+T cells over total CD8+T cells in ICC tissues was negatively and significantly associated with the advanced pathological stage. In addition, single-cell transcriptomics revealed that CD103+CD8+T cells were enriched in genes associated with T-cell activation, proliferation, cytokine function, and T-cell exhaustion. CONCLUSION The CD103+ tumor-specific T cells signified an important prognostic marker with improved OS, and the evaluation of the tissue-resident CD103+CD8+T cells might be helpful in assessing the on-treatment response of liver cancer.
Collapse
Affiliation(s)
- Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Hao Huang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Ziyi Huang
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu, China
| | - Junjun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Yingting Liu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Yue Wu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - An Li
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Junwei Ge
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Bin Xu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| | - Changping Wu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
24
|
Hyun J, Kim SJ, Cho SD, Kim HW. Mechano-modulation of T cells for cancer immunotherapy. Biomaterials 2023; 297:122101. [PMID: 37023528 DOI: 10.1016/j.biomaterials.2023.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Immunotherapy, despite its promise for future anti-cancer approach, faces significant challenges, such as off-tumor side effects, innate or acquired resistance, and limited infiltration of immune cells into stiffened extracellular matrix (ECM). Recent studies have highlighted the importance of mechano-modulation/-activation of immune cells (mainly T cells) for effective caner immunotherapy. Immune cells are highly sensitive to the applied physical forces and matrix mechanics, and reciprocally shape the tumor microenvironment. Engineering T cells with tuned properties of materials (e.g., chemistry, topography, and stiffness) can improve their expansion and activation ex vivo, and their ability to mechano-sensing the tumor specific ECM in vivo where they perform cytotoxic effects. T cells can also be exploited to secrete enzymes that soften ECM, thus increasing tumor infiltration and cellular therapies. Furthermore, T cells, such as chimeric antigen receptor (CAR)-T cells, genomic engineered to be spatiotemporally controllable by physical stimuli (e.g., ultrasound, heat, or light), can mitigate adverse off-tumor effects. In this review, we communicate these recent cutting-edge endeavors devoted to mechano-modulating/-activating T cells for effective cancer immunotherapy, and discuss future prospects and challenges in this field.
Collapse
|
25
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
26
|
Uckun FM, Qazi S, Trieu V. High Intra-Tumor Transforming Growth Factor Beta 2 Level as a Predictor of Poor Treatment Outcomes in Pediatric Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2023; 15:cancers15061676. [PMID: 36980562 PMCID: PMC10046593 DOI: 10.3390/cancers15061676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we report that tumor samples from newly diagnosed pediatric diffuse intrinsic pontine glioma (DIPG) patients express significantly higher levels of transforming growth factor beta 2 (TGFB2) messenger ribonucleic acid (mRNA) than control pons samples, which correlated with augmented expression of transcription factors that upregulate TGFB2 gene expression. Our study also demonstrated that RNA sequencing (RNAseq)-based high TGFB2 mRNA level is an indicator of poor prognosis for DIPG patients, but not for pediatric glioblastoma (GBM) patients or pediatric diffuse midline glioma (DMG) patients with tumor locations outside of the pons/brainstem. Notably, DIPG patients with high levels of TGFB2 mRNA expression in their tumor samples had significantly worse overall survival (OS) and progression-free survival (PFS). By comparison, high levels of transforming growth factor beta 3 (TGFB3) mRNA expression in tumor samples was associated with significantly better survival outcomes of DIPG patients, whereas high levels of transforming growth factor beta 1 (TGFB1) expression was not prognostic. Our study fills a significant gap in our understanding of the clinical significance of high TGFB2 expression in pediatric high-grade gliomas.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Ares Pharmaceuticals, Immuno-Oncology Program, St. Paul, MN 55110, USA
- Oncotelic Therapeutics, 29397 Agoura Road, Suite 107, Agoura Hills, CA 91301, USA
- Correspondence:
| | - Sanjive Qazi
- Ares Pharmaceuticals, Immuno-Oncology Program, St. Paul, MN 55110, USA
- Oncotelic Therapeutics, 29397 Agoura Road, Suite 107, Agoura Hills, CA 91301, USA
| | - Vuong Trieu
- Oncotelic Therapeutics, 29397 Agoura Road, Suite 107, Agoura Hills, CA 91301, USA
| |
Collapse
|
27
|
Mortezaee K, Majidpoor J, Najafi S, Tasa D. Bypassing anti-PD-(L)1 therapy: Mechanisms and management strategies. Biomed Pharmacother 2023; 158:114150. [PMID: 36577330 DOI: 10.1016/j.biopha.2022.114150] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Resistance to immune checkpoint inhibitors (ICIs) is a major issue of the current era in cancer immunotherapy. Immune evasion is a multi-factorial event, which occurs generally at a base of cold immunity. Despite advances in the field, there are still unsolved challenges about how to combat checkpoint hijacked by tumor cells and what are complementary treatment strategies to render durable anti-tumor outcomes. A point is that anti-programed death-1 receptor (PD-1)/anti-programmed death-ligand 1 (PD-L1) is not the solo path of immune escape, and responses in many types of solid tumors to the PD-1/PD-L1 inhibitors are not satisfactory. Thus, seeking mechanisms inter-connecting tumor with its immune ecosystem nearby unravel more about resistance mechanisms so as to develop methods for sustained reinvigoration of immune activity against cancer. In this review, we aimed to discuss about common and specific paths taken by tumor cells to evade immune surveillance, describing novel detection strategies, as well as suggesting some approaches to recover tumor sensitivity to the anti-PD-(L)1 therapy based on the current knowledge.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Tasa
- Hepatopancreatobiliary Surgery Fellowship, Organ Transplantation Group, Massih Daneshvari Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Surgery, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
28
|
Mortezaee K, Majidpoor J. Transforming growth factor-β signalling in tumour resistance to the anti-PD-(L)1 therapy: Updated. J Cell Mol Med 2023; 27:311-321. [PMID: 36625080 PMCID: PMC9889687 DOI: 10.1111/jcmm.17666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/19/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Low frequency of durable responses in patients treated with immune checkpoint inhibitors (ICIs) demands for taking complementary strategies in order to boost immune responses against cancer. Transforming growth factor-β (TGF-β) is a multi-tasking cytokine that is frequently expressed in tumours and acts as a critical promoter of tumour hallmarks. TGF-β promotes an immunosuppressive tumour microenvironment (TME) and defines a bypass mechanism to the ICI therapy. A number of cells within the stroma of tumour are influenced from TGF-β activity. There is also evidence of a relation between TGF-β with programmed death-ligand 1 (PD-L1) expression within TME, and it influences the efficacy of anti-programmed death-1 receptor (PD-1) or anti-PD-L1 therapy. Combination of TGF-β inhibitors with anti-PD(L)1 has come to the promising outcomes, and clinical trials are under way in order to use agents with bifunctional capacity and fusion proteins for bonding TGF-β traps with anti-PD-L1 antibodies aiming at reinvigorating immune responses and promoting persistent responses against advanced stage cancers, especially tumours with immunologically cold ecosystem.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research CenterGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
29
|
Aguinaga-Barrilero A, Juarez I, Vaquero-Yuste C, Molina-Alejandre M, Gutiérrez-Calvo A, Lasa I, López A, Gómez R, Molanes-López EM, Martin-Villa JM. Higher prevalence of LAP+ (Latency TGFβ-Associated Peptide) T cells at the tissue level in patients with early gastric cancer. Cell Immunol 2022; 382:104635. [PMID: 36332356 DOI: 10.1016/j.cellimm.2022.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023]
Abstract
The presence of cells with regulatory functions in patients with cancer is one of the mechanisms whereby the immune system cannot confront tumor growth. We sought to determine the prevalence of immunoregulatory T-cell subpopulations, expressing the latency TGFβ-associated peptide (LAP), in patients with gastric adenocarcinoma. T cells were enriched from blood or gastric tissue (tumoral, TT or tumor-free, TF) samples from 22 patients, 6 with early (EGC) and 16 with advanced gastric cancer (AGC). CD4, CD8, LAP, FoxP3 and IFN-γ were measured by cytometry. CD8 + LAP + cells were increased at tumoral sites, especially in early stages of the disease, as compared to tumor-free explants (EGC 5.28 % [4.67-6.64]*; AGC 2.90 % [1.37-4.44]; TF 3.14 % [2.33-4.16]; *p < 0.05 vs TF). Likewise, the LAP+/CD8 + LAP- ratio is increased in gastric samples from patients with early disease (EGC 0.38 [0.30-0.45]*, AGC 0.12 [0.07-0.14]; TF 0.12 [0.09-0.31]; *p < 0.05 vs AGC).Disease progression is accompanied by decreased LAP membrane expression and, probably, increased LAP secretion, therefore limiting the response to the tumor.
Collapse
Affiliation(s)
- Ana Aguinaga-Barrilero
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Ignacio Juarez
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Christian Vaquero-Yuste
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Marta Molina-Alejandre
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Alberto Gutiérrez-Calvo
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - Inmaculada Lasa
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - Adela López
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - Remedios Gómez
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - Elisa M Molanes-López
- Departamento de Estadística e Investigación Operativa, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José M Martin-Villa
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
30
|
Mansur AAP, Carvalho SM, Oliveira LCA, Souza-Fagundes EM, Lobato ZIP, Leite MF, Mansur HS. Bioengineered Carboxymethylcellulose-Peptide Hybrid Nanozyme Cascade for Targeted Intracellular Biocatalytic-Magnetothermal Therapy of Brain Cancer Cells. Pharmaceutics 2022; 14:2223. [PMID: 36297660 PMCID: PMC9611945 DOI: 10.3390/pharmaceutics14102223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2023] Open
Abstract
Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy. These nanoassemblies were produced through a green aqueous process under mild conditions and chemically biofunctionalized with integrin-targeting peptide (iRDG), creating bioengineered nanocarriers. The results demonstrated that the oxidase-like nanozyme (AuNP) was produced with a crystalline face-centered cubic nanostructure, spherical morphology (diameter = 16 ± 3 nm), zeta potential (ZP) of -50 ± 5 mV, and hydrodynamic diameter (DH) of 15 ± 1 nm. The peroxide-like nanostructure (POD, Co-MION@CMC) contained an inorganic crystalline core of magnetite and had a uniform spherical shape (2R = 7 ± 1 nm) which, summed to the contribution of the CMC shell, rendered a hydrodynamic diameter of 45 ± 4 nm and a negative surface charge (ZP = -41 ± 5 mV). Upon coupling both nanozymes, water-dispersible colloidal supramolecular vesicle-like organic-inorganic nanostructures were produced (AuNP//Co-MION@CMC, ZP = -45 ± 4 mV and DH = 28 ± 3 nm). They confirmed dual-nanozyme cascade biocatalytic activity targeted by polymer-peptide conjugates (AuNP//Co-MION@CMC_iRGD, ZP = -29 ± 3 mV and DH = 60 ± 4 nm) to kill brain cancer cells (i.e., bioenergy "starvation" by glucose deprivation and oxidative stress through reactive oxygen species generation), which was boosted by the magneto-hyperthermotherapy effect when submitted to the alternating magnetic field (i.e., induced local thermal stress by "nanoheaters"). This groundwork offers a wide avenue of opportunities to develop innovative theranostic nanoplatforms with multiple integrated functionalities for fighting cancer and reducing the harsh side effects of conventional chemotherapy.
Collapse
Affiliation(s)
- Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Luiz Carlos A. Oliveira
- Departament of Chemistry, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Elaine Maria Souza-Fagundes
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Zelia I. P. Lobato
- Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Maria F. Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
31
|
Pan D, Wu W, Zuo G, Xie X, Li H, Ren X, Kong C, Zhou W, Zhang Z, Waterfall M, Chen S. Sphingosine 1-phosphate receptor 2 promotes erythrocyte clearance by vascular smooth muscle cells in intraplaque hemorrhage through MFG-E8 production. Cell Signal 2022; 98:110419. [PMID: 35905868 DOI: 10.1016/j.cellsig.2022.110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Intraplaque hemorrhage (IPH) accelerates atherosclerosis progression. To scavenge excessive red blood cells (RBCs), vascular smooth muscle cells (VSMCs) with great plasticity may function as phagocytes. Here, we investigated the erythrophagocytosis function of VSMCs and possible regulations involved. Based on transcriptional microarray analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that genes up-regulated in human carotid atheroma with IPH were enriched in functions of phagocytic activities, while those down-regulated were enriched in VSMCs contraction function. Transcriptional expression of Milk fat globule-epidermal growth factor 8 (MFG-E8) was also down-regulated in atheroma with IPH. In high-fat diet-fed apolipoprotein E-deficient mice, erythrocytes were present in cells expressing VSMC markers αSMA in the brachiocephalic artery, suggesting VSMCs play a role in erythrophagocytosis. Using immunofluorescence and flow cytometry, we also found that eryptotic RBCs were bound to and internalized by VSMCs in a phosphatidylserine/MFG-E8/integrin αVβ3 dependent manner in vitro. Inhibiting S1PR2 signaling with specific inhibitor JTE-013 or siRNA decreased Mfge8 expression and impaired the erythrophagocytosis of VSMCs in vitro. Partial ligation was performed in the left common carotid artery (LCA) followed by intra-intimal injection of isolated erythrocytes to observe their clearance in vivo. Interfering S1PR2 expression in VSMCs with Adeno-associated virus 9 inhibited MFG-E8 expression inside LCA plaques receiving RBCs injection and attenuated erythrocytes clearance. Erythrophagocytosis by VSMCs increased vascular endothelial growth factor-a secretion and promoted angiogenesis. The present study revealed that VSMCs act as phagocytes for RBC clearance through S1PR2 activation induced MFG-E8 release.
Collapse
Affiliation(s)
- Daorong Pan
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Wen Wu
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Guangfeng Zuo
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiangrong Xie
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Hui Li
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiaomin Ren
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Chaohua Kong
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Wenying Zhou
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Zihan Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Martin Waterfall
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
32
|
Li J, Peng L, Chen Q, Ye Z, Zhao T, Hou S, Gu J, Hang Q. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel) 2022; 14:cancers14143377. [PMID: 35884437 PMCID: PMC9318555 DOI: 10.3390/cancers14143377] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer (PC) is a highly aggressive malignant tumor with an extremely poor prognosis. Early diagnosis and treatment are key to improving the survival rate of PC patients. Emerging studies show that integrins might contribute to the pathogenesis of PC. This review presents the various signaling pathways that are mediated by integrins in PC and emphasizes the multiple functions of integrin β1 in malignant behaviors of PC. It also discusses the clinical significance of integrin β1 as well as integrin β1-based therapy in PC patients. Abstract Pancreatic cancer (PC) is characterized by rapid progression and a high mortality rate. The current treatment is still based on surgical treatment, supplemented by radiotherapy and chemotherapy, and new methods of combining immune and molecular biological treatments are being explored. Despite this, the survival rate of PC patients is still very disappointing. Therefore, clarifying the molecular mechanism of PC pathogenesis and developing precisely targeted drugs are key to improving PC prognosis. As the most common β subunit of the integrin family, integrin β1 has been proved to be closely related to the vascular invasion, distant metastasis, and survival of PC patients, and treatment targeting integrin β1 in PC has gained initial success in animal models. In this review, we summarize the various signaling pathways by which integrins are involved in PC, focusing on the roles of integrin β1 in the malignant behaviors of PC. Additionally, recent studies regarding the feasibility of integrin β1 as a diagnostic and prognostic biomarker in PC are also discussed. Finally, we present the progress of several integrin β1-based clinical trials to highlight the potential of integrin β1 as a target for personalized therapy in PC.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
| | - Liyao Peng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Ziping Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tiantian Zhao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| |
Collapse
|
33
|
Aghanejad A, Bonab SF, Sepehri M, Haghighi FS, Tarighatnia A, Kreiter C, Nader ND, Tohidkia MR. A review on targeting tumor microenvironment: The main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol 2022; 207:592-610. [PMID: 35296439 DOI: 10.1016/j.ijbiomac.2022.03.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Monoclonal antibodies (mAbs) as biological macromolecules have been remarked the large and growing pipline of the pharmaceutical market and also the most promising tool in modern medicine for cancer therapy. These therapeutic entities, which consist of whole mAbs, armed mAbs (i.e., antibody-toxin conjugates, antibody-drug conjugates, and antibody-radionuclide conjugates), and antibody fragments, mostly target tumor cells. However, due to intrinsic heterogeneity of cancer diseases, tumor cells targeting mAb have been encountered with difficulties in their unpredictable efficacy as well as variability in remission and durable clinical benefits among cancer patients. To address these pitfalls, the area has undergone two major evolutions with the intent of minimizing anti-drug responses and addressing limitations experienced with tumor cell-targeted therapies. As a novel hallmark of cancer, the tumor microenvironment (TME) is becoming the great importance of attention to develop innovative strategies based on therapeutic mAbs. Here, we underscore innovative strategies targeting TME by mAbs which destroy tumor cells indirectly through targeting vasculature system (e.g., anti-angiogenesis), immune system modulation (i.e., stimulation, suppression, and depletion), the targeting and blocking of stroma-based growth signals (e.g., cancer-associated fibroblasts), and targeting cancer stem cells, as well as, their effector mechanisms, clinical uses, and relevant mechanisms of resistance.
Collapse
Affiliation(s)
- Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Farashi Bonab
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sepehri
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadat Haghighi
- Yazd Diabetes Research Center, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | - Ali Tarighatnia
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Kreiter
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Blocking TGF-β Expression Attenuates Tumor Growth in Lung Cancers, Potentially Mediated by Skewing Development of Neutrophils. JOURNAL OF ONCOLOGY 2022; 2022:3447185. [PMID: 35498537 PMCID: PMC9050332 DOI: 10.1155/2022/3447185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
In the tumor microenvironment (TME), cells secrete a cytokine known as transforming growth factor-β (TGF-β), which polarizes tumor-associated neutrophils (TANs) towards a protumor phenotype. In this work, C57BL/6 mice with TGF-β1 gene knocked out selectively in myofibroblasts receive orthotopic implantation of Lewis lung carcinoma (LLC). Then, TANs' differentiation and tumor growth are studied both in vivo and in vitro, to examine the potential effects of TGF-β levels in TME on neutrophil polarization and cancer progression. Possible results are anticipated and discussed from various aspects. Though tumor suppression via inhibition of TGF-β signaling has been widely studied in this field, this study is the first to present a detailed experimental design for evaluating the potential antitumor effects of blocking TGF-β expression. This work provides a creative approach for cancer treatment targeting specific cytokines, and the experimental design presented here may apply to future research on other cytokines, promoting the development of novel cancer-treating strategies.
Collapse
|
35
|
Sanders C, Hamad ASM, Ng S, Hosni R, Ellinger J, Klümper N, Ritter M, Stephan C, Jung K, Hölzel M, Kristiansen G, Hauser S, Toma MI. CD103+ Tissue Resident T-Lymphocytes Accumulate in Lung Metastases and Are Correlated with Poor Prognosis in ccRCC. Cancers (Basel) 2022; 14:cancers14061541. [PMID: 35326691 PMCID: PMC8946052 DOI: 10.3390/cancers14061541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a highly immunogenic tumor with variable responses to immune checkpoint therapy. The significance of the immune cell infiltrate in distant metastases, their association with the immune infiltrate in the primary tumors and their impact on prognosis are poorly described. We hypothesized that specific subtypes of immune cells may be involved in the control of metastases and may have an impact on the prognosis of ccRCC. We analyzed the immune microenvironment in ccRCC primary tumors with distant metastases, paired distant metastases and non-metastasized ccRCC (n = 25 each group) by immunohistochemistry. Confirmatory analyses for CD8+ and CD103+ cells were performed in a large ccRCC cohort (n = 241) using a TCGA-KIRC data set (ITGAE/CD103). High immune cell infiltration in primary ccRCC tumors was significantly correlated with the development of distant tumor metastasis (p < 0.05). A high density of CD103+ cells in ccRCC was more frequent in poorly differentiated tumors (p < 0.001). ccRCCs showed high levels of ITGAE/CD103 compared with adjacent non-neoplastic tissue. A higher density of CD103+ cells and a higher ITGAE/CD103 expression were significantly correlated with poor overall survival in ccRCC (log rank p < 0.05). Our results show a major prognostic value of the immune pattern, in particular CD103+ cell infiltration in ccRCC, and highlight the importance of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Christine Sanders
- Institute of Pathology, University Hospital Bonn (UKB), 53127 Bonn, Germany; (C.S.); (A.S.M.H.); (R.H.); (G.K.)
| | - Almotasem Salah M. Hamad
- Institute of Pathology, University Hospital Bonn (UKB), 53127 Bonn, Germany; (C.S.); (A.S.M.H.); (R.H.); (G.K.)
| | - Susanna Ng
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany; (S.N.); (N.K.); (M.H.)
| | - Racha Hosni
- Institute of Pathology, University Hospital Bonn (UKB), 53127 Bonn, Germany; (C.S.); (A.S.M.H.); (R.H.); (G.K.)
| | - Jörg Ellinger
- Institute of Urology, University Hospital Bonn (UKB), 53127 Bonn, Germany; (J.E.); (M.R.); (S.H.)
| | - Niklas Klümper
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany; (S.N.); (N.K.); (M.H.)
- Institute of Urology, University Hospital Bonn (UKB), 53127 Bonn, Germany; (J.E.); (M.R.); (S.H.)
| | - Manuel Ritter
- Institute of Urology, University Hospital Bonn (UKB), 53127 Bonn, Germany; (J.E.); (M.R.); (S.H.)
| | - Carsten Stephan
- Department of Urology, Berlin Institute for Urologic Research, Charité-Universitätsmedizin Berlin, CCM, 10117 Berlin, Germany; (C.S.); (K.J.)
| | - Klaus Jung
- Department of Urology, Berlin Institute for Urologic Research, Charité-Universitätsmedizin Berlin, CCM, 10117 Berlin, Germany; (C.S.); (K.J.)
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany; (S.N.); (N.K.); (M.H.)
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn (UKB), 53127 Bonn, Germany; (C.S.); (A.S.M.H.); (R.H.); (G.K.)
| | - Stefan Hauser
- Institute of Urology, University Hospital Bonn (UKB), 53127 Bonn, Germany; (J.E.); (M.R.); (S.H.)
| | - Marieta I. Toma
- Institute of Pathology, University Hospital Bonn (UKB), 53127 Bonn, Germany; (C.S.); (A.S.M.H.); (R.H.); (G.K.)
- Correspondence:
| |
Collapse
|
36
|
Targeting Glioblastoma via Selective Alteration of Mitochondrial Redox State. Cancers (Basel) 2022; 14:cancers14030485. [PMID: 35158753 PMCID: PMC8833725 DOI: 10.3390/cancers14030485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma is characterized by a pronounced redox imbalance due to elevated glycolytic and mitochondrial oxidative metabolism. New therapeutic strategies have been developed to modulate glioblastoma redox signaling to effectively suppress growth and prolong survival. However, drug selectivity and therapeutic relapse prove to be the major challenges. We describe a pharmacological strategy for the selective targeting and treatment of glioblastoma using the redox active combination drug menadione/ascorbate, which is characterized by tolerance to normal cells and tissues. Menadione/ascorbate treatment of glioblastoma mice suppressed tumor growth and significantly increased survival without adverse side effects. This is accompanied by increased oxidative stress, decreased reducing capacity and decreased cellular density in the tumor alone, as well as increased brain perfusion and decreased regulation of several oncoproteins and oncometabolites, which implies modulation of the immune response and reduced drug resistance. We believe that this therapeutic strategy is feasible and promising and deserves the attention of clinicians. Abstract Glioblastoma is one of the most aggressive brain tumors, characterized by a pronounced redox imbalance, expressed in a high oxidative capacity of cancer cells due to their elevated glycolytic and mitochondrial oxidative metabolism. The assessment and modulation of the redox state of glioblastoma are crucial factors that can provide highly specific targeting and treatment. Our study describes a pharmacological strategy for targeting glioblastoma using a redox-active combination drug. The experiments were conducted in vivo on glioblastoma mice (intracranial model) and in vitro on cell lines (cancer and normal) treated with the redox cycling pair menadione/ascorbate (M/A). The following parameters were analyzed in vivo using MRI or ex vivo on tissue and blood specimens: tumor growth, survival, cerebral perfusion, cellular density, tissue redox state, expression of tumor-associated NADH oxidase (tNOX) and transforming growth factor-beta 1 (TGF-β1). Dose-dependent effects of M/A on cell viability, mitochondrial functionality, and redox homeostasis were evaluated in vitro. M/A treatment suppressed tumor growth and significantly increased survival without adverse side effects. This was accompanied by increased oxidative stress, decreased reducing capacity, and decreased cellular density in the tumor only, as well as increased cerebral perfusion and down-regulation of tNOX and TGF-β1. M/A induced selective cytotoxicity and overproduction of mitochondrial superoxide in isolated glioblastoma cells, but not in normal microglial cells. This was accompanied by a significant decrease in the over-reduced state of cancer cells and impairment of their “pro-oncogenic” functionality, assessed by dose-dependent decreases in: NADH, NAD+, succinate, glutathione, cellular reducing capacity, mitochondrial potential, steady-state ATP, and tNOX expression. The safety of M/A on normal cells was compromised by treatment with cerivastatin, a non-specific prenyltransferase inhibitor. In conclusion, M/A differentiates glioblastoma cells and tissues from normal cells and tissues by redox targeting, causing severe oxidative stress only in the tumor. The mechanism is complex and most likely involves prenylation of menadione in normal cells, but not in cancer cells, modulation of the immune response, a decrease in drug resistance, and a potential role in sensitizing glioblastoma to conventional chemotherapy.
Collapse
|
37
|
Abstract
Transforming growth factor-β (TGFβ) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGFβ exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGFβ to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies - including immune checkpoint blockade - to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are currently in clinical evaluation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|