1
|
Deng L, Feng L, Li J, Huang Y, Ou P, Shi L, Chen H, Zhang Y, Dai L, He Y, Wei C, Chen H, Wang J, Li L, Liu C. Effects of trace element dysregulation on brain structure and function in spinocerebellar Ataxia type 3. Neurobiol Dis 2025:106816. [PMID: 39921113 DOI: 10.1016/j.nbd.2025.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), a neurodegenerative disorder caused by excess CAG repeats in the ATXN3 gene, leads to progressive cerebellar ataxia and other symptoms. The results of previous studies suggest that trace element dysregulation contributes to neurodegenerative disorder onset. Here, we investigated the relationships of trace element dysregulation with CAG repeat length, clinical severity, and brain structural and functional connectivity in 45 patients with SCA3 and 44 healthy controls (HCs). Blood levels of lithium (Li), selenium (Se), and copper (Cu) were significantly lower in patients with SCA3 than in HCs; Li and Se levels were negatively correlated with CAG repeat length, especially in the manifest subgroup. Diffusion tensor imaging combined with resting-state functional magnetic resonance imaging revealed that Li levels were negatively correlated with fractional anisotropy in the white matter (WM) of bilateral frontal and parietal regions; tractography mapping showed disorder structural connectivity of Li-associated region nerve fiber pathways in patients with SCA3. Dynamic causal modeling analyses showed bidirectional causal connectivity from the inferior parietal lobule(IPL) to the cerebellum was significantly correlated with the blood level of Li in patients with SCA3. Time series correlation-based functional connectivity analysis revealed that the intrinsic connectivities of the bilateral dorsal premotor cortex(PMd) and IPL with local cerebellar regions were significantly weaker in patients with SCA3 than in HCs. Our results suggest that trace element dysregulation, especially Li deficiency, induces brain alterations and clinical manifestations in patients with SCA3; Li supplementation may be beneficial for WM or astrocytes in this patient population.
Collapse
Affiliation(s)
- LiHua Deng
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liu Feng
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China; Department of Clinical Laboratory Medicine , Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - JingWen Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - YongHua Huang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - PeiLing Ou
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - LinFeng Shi
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Chen
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - YuHan Zhang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - LiMeng Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan He
- Department of Clinical Laboratory Medicine , Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Wei
- MR Research Collaboration Teams, Siemens Healthineers Ltd., Guangzhou, China
| | - HuaFu Chen
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Wang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Leinian Li
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Chen Liu
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
2
|
Gu Y, Wong NML, Chan CCH, Wu J, Lee TMC. The negative relationship between brain-age gap and psychological resilience defines the age-related neurocognitive status in older people. GeroScience 2025:10.1007/s11357-025-01515-x. [PMID: 39873921 DOI: 10.1007/s11357-025-01515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Biological brain age is a brain-predicted age using machine learning to indicate brain health and its associated conditions. The presence of an older predicted brain age relative to the actual chronological age is indicative of accelerated aging processes. Consequently, the disparity between the brain's chronological age and its predicted age (brain-age gap) and the factors influencing this disparity provide critical insights into cerebral health dynamics during aging. In this study, we employed a Lasso regression model and analyzed multimodal imaging data from 124 participants aged 53 to 76 to formulate and predict brain age. Additionally, we conducted partial correlation analyses to explore the complex relationship between the brain-age gap and network metrics, cognitive assessments, and emotional evaluations, while controlling for chronological age, gender, and education. Our findings highlight psychological resilience as a significant mitigating factor against premature brain aging. It is established that psychological resilience significantly influences the modulation of the brain-age gap. Moreover, psychological resilience and the brain-age gap exhibit a high accuracy (above 0.72) in segregating Montreal Cognitive Assessment score-based cohorts. This observation underscores significant insight into the potential of utilizing the brain-age gap as a diagnostic tool for the early detection of accelerated aging. It advocates for the timely application of interventions, including the development of programs aimed at bolstering psychological resilience.
Collapse
Affiliation(s)
- Yue Gu
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Nichol M L Wong
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
- Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong, China
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China.
| | - Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Chang X, Jia X, Eickhoff SB, Dong D, Zeng W. Multi-center brain age prediction via dual-modality fusion convolutional network. Med Image Anal 2025; 101:103455. [PMID: 39826435 DOI: 10.1016/j.media.2025.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/29/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Accurate prediction of brain age is crucial for identifying deviations between typical individual brain development trajectories and neuropsychiatric disease progression. Although current research has made progress, the effective application of brain age prediction models to multi-center datasets, particularly those with small-sample sizes, remains a significant challenge that is yet to be addressed. To this end, we propose a multi-center data correction method, which employs a domain adaptation correction strategy with Wasserstein distance of optimal transport, along with maximum mean discrepancy to improve the generalizability of brain-age prediction models on small-sample datasets. Additionally, most of the existing brain age models based on neuroimage identify the task of predicting brain age as a regression or classification problem, which may affect the accuracy of the prediction. Therefore, we propose a brain dual-modality fused convolutional neural network model (BrainDCN) for brain age prediction, and optimize this model by introducing a joint loss function of mean absolute error and cross-entropy, which identifies the prediction of brain age as both a regression and classification task. Furthermore, to highlight age-related features, we construct weighting matrices and vectors from a single-center training set and apply them to multi-center datasets to weight important features. We validate the BrainDCN model on the CamCAN dataset and achieve the lowest average absolute error compared to state-of-the-art models, demonstrating its superiority. Notably, the joint loss function and weighted features can further improve the prediction accuracy. More importantly, our proposed multi-center correction method is tested on four neuroimaging datasets and achieves the lowest average absolute error compared to widely used correction methods, highlighting the superior performance of the method in cross-center data integration and analysis. Furthermore, the application to multi-center schizophrenia data shows a mean accelerated aging compared to normal controls. Thus, this research establishes a pivotal methodological foundation for multi-center brain age prediction studies, exhibiting considerable applicability in clinical contexts, which are predominantly characterized by small-sample datasets.
Collapse
Affiliation(s)
- Xuebin Chang
- Department of Information Science, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Jia
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Simon B Eickhoff
- The Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; The Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Debo Dong
- The Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Wei Zeng
- Department of Information Science, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Fleck L, Buss C, Bauer M, Stein M, Mekle R, Kock L, Klawitter H, Godara M, Ramler J, Entringer S, Endres M, Heim C. Early-Life Adversity Predicts Markers of Aging-Related Neuroinflammation, Neurodegeneration, and Cognitive Impairment in Women. Ann Neurol 2025. [PMID: 39786167 DOI: 10.1002/ana.27161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE Despite the overwhelming evidence for profound and longstanding effects of early-life stress (ELS) on inflammation, brain structure, and molecular aging, its impact on human brain aging and risk for neurodegenerative disease is poorly understood. We examined the impact of ELS severity in interaction with age on blood-based markers of neuroinflammation and neurodegeneration, brain volumes, and cognitive function in middle-aged women. METHODS We recruited 179 women (aged 30-60 years) with and without ELS exposure before the onset of puberty. Using Simoa technology, we assessed blood-based markers of neuroinflammation and neurodegeneration, including serum concentrations of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL). We further obtained T1-weighted and T2-weighted magnetic resonance images to assess brain volumes and we assessed cognitive performance sensitive to early impairments associated with the development of dementia, using the Cambridge Neuropsychological Automated Test Battery. We used generalized additive models to examine nonlinear interaction effects of ELS severity and age on these outcomes. RESULTS Analyses revealed significant nonlinear interaction effects of ELS severity and age on NfL and GFAP serum concentrations, total and subcortical gray matter volume loss, increased third ventricular volume, and cognitive impairment. INTERPRETATION These findings suggest that ELS profoundly exacerbates peripheral, neurostructural, and cognitive markers of brain aging. Our results are critical for the development of novel early prevention strategies that target the impact of developmental stress on the brain to mitigate aging-related neurological diseases. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Lara Fleck
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- Development, Health, and Disease Research Program, University of California, Irvine, Orange, CA
- German Center for Mental Health, Berlin, Germany
- German Center for Child and Adolescent Health, Berlin, Germany
| | - Martin Bauer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
| | - Maike Stein
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Kock
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Heiko Klawitter
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Malvika Godara
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Judith Ramler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Sonja Entringer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- Development, Health, and Disease Research Program, University of California, Irvine, Orange, CA
- German Center for Mental Health, Berlin, Germany
- German Center for Child and Adolescent Health, Berlin, Germany
| | - Matthias Endres
- German Center for Mental Health, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
- German Center for Neurodegenerative Diseases, Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
| | - Christine Heim
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- German Center for Mental Health, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
5
|
Wang C, Zhou L, Zhou F, Fu T. The application value of Rs-fMRI-based machine learning models for differentiating mild cognitive impairment from Alzheimer's disease: a systematic review and meta-analysis. Neurol Sci 2025; 46:45-62. [PMID: 39225837 PMCID: PMC11698789 DOI: 10.1007/s10072-024-07731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Various machine learning (ML) models based on resting-state functional MRI (Rs-fMRI) have been developed to facilitate differential diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the diagnostic accuracy of such models remains understudied. Therefore, we conducted this systematic review and meta-analysis to explore the diagnostic accuracy of Rs-fMRI-based radiomics in differentiating MCI from AD. METHODS PubMed, Embase, Cochrane, and Web of Science were searched from inception up to February 8, 2024, to identify relevant studies. Meta-analysis was conducted using a bivariate mixed-effects model, and sub-group analyses were carried out by the types of ML tasks (binary classification and multi-class classification tasks). FINDINGS In total, 23 studies, comprising 5,554 participants were enrolled in the study. In the binary classification tasks (twenty studies), the diagnostic accuracy of the ML model for AD was 0.99 (95%CI: 0.34 ~ 1.00), with a sensitivity of 0.94 (95%CI: 0.89 ~ 0.97) and a specificity of 0.98 (95%CI: 0.95 ~ 1.00). In the multi-class classification tasks (six studies), the diagnostic accuracy of the ML model was 0.98 (95%CI: 0.98 ~ 0.99) for NC, 0.96 (95%CI: 0.96 ~ 0.96) for early mild cognitive impairment (EMCI), 0.97 (95%CI: 0.96 ~ 0.97) for late mild cognitive impairment (LMCI), and 0.95 (95%CI: 0.95 ~ 0.95) for AD. CONCLUSIONS The Rs-fMRI-based ML model can be adapted to multi-class classification tasks. Therefore, multi-center studies with large samples are needed to develop intelligent application tools to promote the development of intelligent ML models for disease diagnosis.
Collapse
Affiliation(s)
- Chentong Wang
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China
| | - Li Zhou
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China.
- Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Yinzhou District, Ningbo, Zhejiang, China.
| | - Feng Zhou
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China
| | - Tingting Fu
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
6
|
Zhao G, Zhang H, Xu Y, Chu X. Research on magnetic resonance imaging in diagnosis of Alzheimer's disease. Eur J Med Res 2024; 29:632. [PMID: 39734227 DOI: 10.1186/s40001-024-02172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/23/2024] [Indexed: 12/31/2024] Open
Abstract
As a common disease in the elderly, the diagnosis of Alzheimer's disease (AD) is of great significance to the treatment and prognosis of the patients. Studies have found that magnetic resonance imaging plays an important role in the early diagnosis of Alzheimer's disease. This article tries to review the application of magnetic resonance imaging in the diagnosis and differential diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Guohua Zhao
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Haixia Zhang
- Department of Hyperbaric Oxygen, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China.
| | - Xiuli Chu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Zhao K, Chen P, Wang D, Zhou R, Ma G, Liu Y. A Multiform Heterogeneity Framework for Alzheimer's Disease Based on Multimodal Neuroimaging. Biol Psychiatry 2024:S0006-3223(24)01817-1. [PMID: 39725298 DOI: 10.1016/j.biopsych.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Understanding the heterogeneity of Alzheimer's disease (AD) is crucial for advancing precision medicine specifically tailored to this disorder. Recent research has deepened our understanding of AD heterogeneity, yet translating these insights from bench to bedside via neuroimaging heterogeneity frameworks presents significant challenges. In this review, we systematically revisit prior studies and summarize the existing methodology of data-driven neuroimaging studies for AD heterogeneity. We organized the present methodology into (i) a subtyping cluster strategy for AD patients, and we also subdivided it into subtyping analysis based on cross-sectional multimodal neuroimaging profiles, and the identification of long-term disease progression from short-term datasets; (ii) a stratified strategy that integrates neuroimaging measures with biomarkers; (iii) individual-specific abnormal patterns based on the Normative model. We then evaluated the characteristics of these studies along two dimensions: (i) the understanding of pathology and (ii) clinical application. We systematically address the limitations, challenges, and future directions of research into AD heterogeneity. Our goal is to enhance the neuroimaging heterogeneity framework for AD, facilitating its transition from bench to bedside.
Collapse
Affiliation(s)
- Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Pindong Chen
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Dong Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Rongshen Zhou
- The School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Tsai CH, Liou YL, Li SM, Liao HR, Chen JJ. Antioxidant, Anti-α-Glucosidase, Anti-Tyrosinase, and Anti-Acetylcholinesterase Components from Stem of Rhamnus formosana with Molecular Docking Study. Antioxidants (Basel) 2024; 14:8. [PMID: 39857342 PMCID: PMC11761247 DOI: 10.3390/antiox14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Rhamnus formosana is a creeping evergreen shrub endemic to Taiwan. In traditional medicine, Rhamnaceae plants are used as herbal remedies for conditions such as itching, difficulty urinating, and constipation. This study explores the inhibitory effects of various solvent extracts and bioactive components of R. formosana on α-glucosidase, tyrosinase, acetylcholinesterase (AChE), and antioxidant activity. The 100 °C water extract exhibited strong antioxidant activity in DPPH, ABTS, superoxide, and FRAP assays. The methanol extract demonstrated the highest α-glucosidase inhibitory effect, while the ethanol extract displayed potent AChE inhibition and the acetone extract showed the most potential tyrosinase inhibitory activity among the extracts. Five main biocomponents were isolated and evaluated for their bioactivities. Among them, kaempferol (1) and quercetin (2) exhibited notable antioxidant activity in DPPH and ABTS assays. Particularly, kaempferol (1) performed the best α-glucosidase inhibitory effect, physcion (5) showed the strongest AChE inhibition, and quercetin (2) demonstrated the most potential for tyrosinase inhibitory activity. Further molecular docking studies revealed that there may be stronger binding mechanisms between bioactive components and target enzymes (including α-glucosidase, acetylcholinesterase, and tyrosinase) than the positive control. These findings suggest that bioactive extracts and compounds from the stems of R. formosana may have potential as natural antioxidant, anti-α-glucosidase, anti-AChE, and anti-tyrosinase drug candidates or dietary supplements for the management of oxidative stress-related conditions, including hyperglycemia, pigmentation disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chia-Hsuan Tsai
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204201, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Ya-Lun Liou
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, China; (Y.-L.L.); (S.-M.L.)
| | - Sin-Min Li
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, China; (Y.-L.L.); (S.-M.L.)
| | - Hsiang-Ruei Liao
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan, China
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan, China
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333323, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, China; (Y.-L.L.); (S.-M.L.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
9
|
Fu Y, Xue L, Niu M, Gao Y, Huang Y, Zhang H, Tian M, Zhuo C. Sex-dependent nonlinear Granger connectivity patterns of brain aging in healthy population. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111088. [PMID: 39033955 DOI: 10.1016/j.pnpbp.2024.111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Brain aging is a complex process that involves functional alterations in multiple subnetworks and brain regions. However, most previous studies investigating aging-related functional connectivity (FC) changes using resting-state functional magnetic resonance images (rs-fMRIs) have primarily focused on the linear correlation between brain subnetworks, ignoring the nonlinear casual properties of fMRI signals. METHODS We introduced the neural Granger causality technique to investigate the sex-dependent nonlinear Granger connectivity (NGC) during aging on a publicly available dataset of 227 healthy participants acquired cross-sectionally in Leipzig, Germany. RESULTS Our findings indicate that brain aging may cause widespread declines in NGC at both regional and subnetwork scales. These findings exhibit high reproducibility across different network sparsities, demonstrating the efficacy of static and dynamic analysis strategies. Females exhibit greater heterogeneity and reduced stability in NGC compared to males during aging, especially the NGC between the visual network and other subnetworks. Besides, NGC strengths can well reflect the individual cognitive function, which may therefore work as a sensitive metric in cognition-related experiments for individual-scale or group-scale mechanism understanding. CONCLUSION These findings indicate that NGC analysis is a potent tool for identifying sex-dependent brain aging patterns. Our results offer valuable perspectives that could substantially enhance the understanding of sex differences in neurological diseases in the future, especially in degenerative disorders.
Collapse
Affiliation(s)
- Yu Fu
- Lanzhou University, Lanzhou, China; Zhejiang University, Hangzhou, China
| | - Le Xue
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Meng Niu
- Lanzhou University, Lanzhou, China; Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
| | | | | | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Mei Tian
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China.
| | | |
Collapse
|
10
|
Fu Y, Dong S, Huang Y, Niu M, Ni C, Yu L, Shi K, Yao Z, Zhuo C. MPGAN: Multi Pareto Generative Adversarial Network for the denoising and quantitative analysis of low-dose PET images of human brain. Med Image Anal 2024; 98:103306. [PMID: 39163786 DOI: 10.1016/j.media.2024.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Positron emission tomography (PET) imaging is widely used in medical imaging for analyzing neurological disorders and related brain diseases. Usually, full-dose imaging for PET ensures image quality but raises concerns about potential health risks of radiation exposure. The contradiction between reducing radiation exposure and maintaining diagnostic performance can be effectively addressed by reconstructing low-dose PET (L-PET) images to the same high-quality as full-dose (F-PET). This paper introduces the Multi Pareto Generative Adversarial Network (MPGAN) to achieve 3D end-to-end denoising for the L-PET images of human brain. MPGAN consists of two key modules: the diffused multi-round cascade generator (GDmc) and the dynamic Pareto-efficient discriminator (DPed), both of which play a zero-sum game for n(n∈1,2,3) rounds to ensure the quality of synthesized F-PET images. The Pareto-efficient dynamic discrimination process is introduced in DPed to adaptively adjust the weights of sub-discriminators for improved discrimination output. We validated the performance of MPGAN using three datasets, including two independent datasets and one mixed dataset, and compared it with 12 recent competing models. Experimental results indicate that the proposed MPGAN provides an effective solution for 3D end-to-end denoising of L-PET images of the human brain, which meets clinical standards and achieves state-of-the-art performance on commonly used metrics.
Collapse
Affiliation(s)
- Yu Fu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China; College of Integrated Circuits, Zhejiang University, Hangzhou, China
| | - Shunjie Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Huang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
| | - Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chao Ni
- Department of Breast Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Lequan Yu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, University Hospital Bern, Bern, Switzerland
| | - Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Cheng Zhuo
- College of Integrated Circuits, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Oh S, Kim S, Lee JE, Park BY, Hye Won J, Park H. Multimodal analysis of disease onset in Alzheimer's disease using Connectome, Molecular, and genetics data. Neuroimage Clin 2024; 43:103660. [PMID: 39197213 PMCID: PMC11393605 DOI: 10.1016/j.nicl.2024.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Alzheimer's disease (AD) and its related age at onset (AAO) are highly heterogeneous, due to the inherent complexity of the disease. They are affected by multiple factors, such as neuroimaging and genetic predisposition. Multimodal integration of various data types is necessary; however, it has been nontrivial due to the high dimensionality of each modality. We aimed to identify multimodal biomarkers of AAO in AD using an extended version of sparse canonical correlation analysis, in which we integrated two imaging modalities, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), and genetic data in the form of single-nucleotide polymorphisms (SNPs) obtained from the Alzheimer's disease neuroimaging initiative database. These three modalities cover low-to-high-level complementary information and offer multiscale insights into the AAO. We identified multivariate markers of AAO in AD using fMRI, PET, and SNP. Furthermore, the markers identified were largely consistent with those reported in the existing literature. In particular, our serial mediation analysis suggests that genetic variants influence the AAO in AD by indirectly affecting brain connectivity by mediation of amyloid-beta protein accumulation, supporting a plausible path in existing research. Our approach provides comprehensive biomarkers related to AAO in AD and offers novel multimodal insights into AD.
Collapse
Affiliation(s)
- Sewook Oh
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sunghun Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Jong-Eun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Ji Hye Won
- Department of Computer Engineering, Pukyong National University, Busan, Republic of Korea
| | - Hyunjin Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
| |
Collapse
|
12
|
Wittens MMJ, Denissen S, Sima DM, Fransen E, Niemantsverdriet E, Bastin C, Benoit F, Bergmans B, Bier JC, de Deyn PP, Deryck O, Hanseeuw B, Ivanoiu A, Picard G, Ribbens A, Salmon E, Segers K, Sieben A, Struyfs H, Thiery E, Tournoy J, van Binst AM, Versijpt J, Smeets D, Bjerke M, Nagels G, Engelborghs S. Brain age as a biomarker for pathological versus healthy ageing - a REMEMBER study. Alzheimers Res Ther 2024; 16:128. [PMID: 38877568 PMCID: PMC11179390 DOI: 10.1186/s13195-024-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVES This study aimed to evaluate the potential clinical value of a new brain age prediction model as a single interpretable variable representing the condition of our brain. Among many clinical use cases, brain age could be a novel outcome measure to assess the preventive effect of life-style interventions. METHODS The REMEMBER study population (N = 742) consisted of cognitively healthy (HC,N = 91), subjective cognitive decline (SCD,N = 65), mild cognitive impairment (MCI,N = 319) and AD dementia (ADD,N = 267) subjects. Automated brain volumetry of global, cortical, and subcortical brain structures computed by the CE-labeled and FDA-cleared software icobrain dm (dementia) was retrospectively extracted from T1-weighted MRI sequences that were acquired during clinical routine at participating memory clinics from the Belgian Dementia Council. The volumetric features, along with sex, were combined into a weighted sum using a linear model, and were used to predict 'brain age' and 'brain predicted age difference' (BPAD = brain age-chronological age) for every subject. RESULTS MCI and ADD patients showed an increased brain age compared to their chronological age. Overall, brain age outperformed BPAD and chronological age in terms of classification accuracy across the AD spectrum. There was a weak-to-moderate correlation between total MMSE score and both brain age (r = -0.38,p < .001) and BPAD (r = -0.26,p < .001). Noticeable trends, but no significant correlations, were found between BPAD and incidence of conversion from MCI to ADD, nor between BPAD and conversion time from MCI to ADD. BPAD was increased in heavy alcohol drinkers compared to non-/sporadic (p = .014) and moderate (p = .040) drinkers. CONCLUSIONS Brain age and associated BPAD have the potential to serve as indicators for, and to evaluate the impact of lifestyle modifications or interventions on, brain health.
Collapse
Affiliation(s)
- Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
| | - Stijn Denissen
- icometrix, Leuven, Belgium
- AIMS lab, Center for Neurosciences (C4N), Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Diana M Sima
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
- icometrix, Leuven, Belgium
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp, and Antwerp University Hospital - UZA, Edegem, Belgium
| | | | - Christine Bastin
- GIGA-CRC-IVI, Liège University, Allée du Six Août, 8, Liège, 4000, Belgium
| | - Florence Benoit
- Geriatrics Department, Brugmann University Hospital, Universite Libre de Bruxelles, Brussels, Belgium
| | - Bruno Bergmans
- Neurology Department, AZ St-Jan Brugge, Brugge, Belgium
- Ghent University Hospital, Ghent, Belgium
| | - Jean-Christophe Bier
- Neurological department H. U. B. - Erasme Hospital - Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Peter Paul de Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Antwerp, 2610, Belgium
- Memory Clinic, Ziekenhuisnetwerk, Antwerp, Belgium
| | - Olivier Deryck
- Neurology Department, AZ St-Jan Brugge, Brugge, Belgium
- Ghent University Hospital, Ghent, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, 1200, Belgium
- Department of Neurology, Clinique Universitaires Saint-Luc, Brussels, 1200, Belgium
- WELBIO Department, WEL Research Institute, Wavre, 1300, Belgium
| | - Adrian Ivanoiu
- Department of Neurology, Cliniques Universitaires St Luc, and Institute of Neuroscience, Université Catholique de Louvain, Woluwe-Saint-Lambert (Brussels), Belgium
| | - Gaëtane Picard
- Department of Neurology, Clinique Saint-Pierre, Ottignies, Belgium
| | | | - Eric Salmon
- GIGA-CRC-IVI, Liège University, Allée du Six Août, 8, Liège, 4000, Belgium
- Department of Neurology, Memory Clinic, Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Kurt Segers
- Memory Clinic - Neurology and Geriatrics Department, CHU Brugmann, Van Gehuchtenplein 4, Brussels, 1020, Belgium
| | - Anne Sieben
- Neuropathology Lab, IBB-NeuroBiobank BB190113, Born Bunge Institute, Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital - UZA, Antwerp, Belgium
- Laboratory of Neurology, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hanne Struyfs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Johnson and Johnson Innovative Medicine, Beerse, Belgium
| | - Evert Thiery
- Department of Neurology, University Hospital Ghent, Ghent University, Ghent, Belgium
| | - Jos Tournoy
- Department of Chronic Diseases, Metabolism and Ageing, Geriatric Medicine and Memory Clinic, University Hospitals Leuven and KU Leuven, Louvain, Belgium
| | - Anne-Marie van Binst
- Radiology Department, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jan Versijpt
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
| | - Dirk Smeets
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
- icometrix, Leuven, Belgium
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
- Department of Clinical Chemistry, Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Guy Nagels
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- St. Edmund Hall, University of Oxford, Oxford, UK
- AIMS lab, Center for Neurosciences (C4N), Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
13
|
Pu F, Chen W, Li C, Fu J, Gao W, Ma C, Cao X, Zhang L, Hao M, Zhou J, Huang R, Ma Y, Hu K, Liu Z. Heterogeneous associations of multiplexed environmental factors and multidimensional aging metrics. Nat Commun 2024; 15:4921. [PMID: 38858361 PMCID: PMC11164970 DOI: 10.1038/s41467-024-49283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
Complicated associations between multiplexed environmental factors and aging are poorly understood. We manipulated aging using multidimensional metrics such as phenotypic age, brain age, and brain volumes in the UK Biobank. Weighted quantile sum regression was used to examine the relative individual contributions of multiplexed environmental factors to aging, and self-organizing maps (SOMs) were used to examine joint effects. Air pollution presented a relatively large contribution in most cases. We also found fair heterogeneities in which the same environmental factor contributed inconsistently to different aging metrics. Particulate matter contributed the most to variance in aging, while noise and green space showed considerable contribution to brain volumes. SOM identified five subpopulations with distinct environmental exposure patterns and the air pollution subpopulation had the worst aging status. This study reveals the heterogeneous associations of multiplexed environmental factors with multidimensional aging metrics and serves as a proof of concept when analyzing multifactors and multiple outcomes.
Collapse
Affiliation(s)
- Fan Pu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Weiran Chen
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Chenxi Li
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jingqiao Fu
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Weijing Gao
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Chao Ma
- School of Economics and Management, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Xingqi Cao
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Lingzhi Zhang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jin Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University; Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Rong Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University; Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yanan Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University; Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Kejia Hu
- Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
14
|
Villa C, Combi R. Epigenetics in Alzheimer's Disease: A Critical Overview. Int J Mol Sci 2024; 25:5970. [PMID: 38892155 PMCID: PMC11173284 DOI: 10.3390/ijms25115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Epigenetic modifications have been implicated in a number of complex diseases as well as being a hallmark of organismal aging. Several reports have indicated an involvement of these changes in Alzheimer's disease (AD) risk and progression, most likely contributing to the dysregulation of AD-related gene expression measured by DNA methylation studies. Given that DNA methylation is tissue-specific and that AD is a brain disorder, the limitation of these studies is the ability to identify clinically useful biomarkers in a proxy tissue, reflective of the tissue of interest, that would be less invasive, more cost-effective, and easily obtainable. The age-related DNA methylation changes have also been used to develop different generations of epigenetic clocks devoted to measuring the aging in different tissues that sometimes suggests an age acceleration in AD patients. This review critically discusses epigenetic changes and aging measures as potential biomarkers for AD detection, prognosis, and progression. Given that epigenetic alterations are chemically reversible, treatments aiming at reversing these modifications will be also discussed as promising therapeutic strategies for AD.
Collapse
Affiliation(s)
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
15
|
Ogg M, Coon WG. Self-Supervised Transformer Model Training for a Sleep-EEG Foundation Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576245. [PMID: 38293234 PMCID: PMC10827180 DOI: 10.1101/2024.01.18.576245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The American Academy of Sleep Medicine (AASM) recognizes five sleep/wake states (Wake, N1, N2, N3, REM), yet this classification schema provides only a high-level summary of sleep and likely overlooks important neurological or health information. New, data-driven approaches are needed to more deeply probe the information content of sleep signals. Here we present a self-supervised approach that learns the structure embedded in large quantities of neurophysiological sleep data. This masked transformer training procedure is inspired by high performing self-supervised methods developed for speech transcription. We show that self-supervised pre-training matches or outperforms supervised sleep stage classification, especially when labeled data or compute-power is limited. Perhaps more importantly, we also show that our pretrained model is flexible and can be fine-tuned to perform well on new tasks including distinguishing individuals and quantifying "brain age" (a potential health biomarker). This suggests that modern methods can automatically learn information that is potentially overlooked by the 5-class sleep staging schema, laying the groundwork for new schemas and further data-driven exploration of sleep.
Collapse
|
16
|
Xie B, Yang S, Hao Y, Sun Y, Li L, Guo C, Yang Y. Impaired olfactory identification in dementia-free individuals is associated with the functional abnormality of the precuneus. Neurobiol Dis 2024; 194:106483. [PMID: 38527709 DOI: 10.1016/j.nbd.2024.106483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE Olfactory dysfunction indicates a higher risk of developing dementia. However, the potential structural and functional changes are still largely unknown. METHODS A total of 236 participants were enrolled, including 45 Alzheimer's disease (AD) individuals and 191dementia-free individuals. Detailed study methods, comprising neuropsychological assessment and olfactory identification test (University of Pennsylvania smell identification test, UPSIT), as well as structural and functional magnetic resonance imaging (MRI) were applied in this research. The dementia-free individuals were divided into two sub-groups based on olfactory score: dementia-free with olfactory dysfunction (DF-OD) sub-group and dementia-free without olfactory dysfunction (DF-NOD) sub-group. The results were analyzed for subsequent intergroup comparisons and correlations. The cognitive assessment was conducted again three years later. RESULTS (i) At dementia-free stage, there was a positive correlation between olfactory score and cognitive function. (ii) In dementia-free group, the volume of crucial brain structures involved in olfactory recognition and processing (such as amygdala, entorhinal cortex and basal forebrain volumes) are positively associated with olfactory score. (iii) Compared to the DF-NOD group, the DF-OD group showed a significant reduction in olfactory network (ON) function. (iv) Compared to DF-NOD group, there were significant functional connectivity (FC) decline between PCun_L(R)_4_1 in the precuneus of posterior default mode network (pDMN) and the salience network (SN) in DF-OD group, and the FC values decreased with falling olfactory scores. Moreover, in DF-OD group, the noteworthy reduction in FC were observed between PCun_L(R)_4_1 and amygdala, which was a crucial component of ON. (v) The AD conversion rate of DF-OD was 29.41%, while the DF-NOD group was 12.50%. The structural and functional changes in the precuneus were also observed in AD and were more severe. CONCLUSIONS In addition to the olfactory circuit, the precuneus is a critical structure in the odor identification process, whose abnormal function underlies the olfactory identification impairment of dementia-free individuals.
Collapse
Affiliation(s)
- Bo Xie
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Simin Yang
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yitong Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yining Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ludi Li
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunjie Guo
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
17
|
Kumar M, Sharma R. Editorial: Role of acquired brain injury in brain-aging: new insight and evidence. Front Neurosci 2024; 18:1408921. [PMID: 38694897 PMCID: PMC11061505 DOI: 10.3389/fnins.2024.1408921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Affiliation(s)
- Manish Kumar
- Department of Pediatrics-Pulmonary, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
18
|
Chang JR, Yao ZF, Hsieh S, Nordling TEM. Age Prediction Using Resting-State Functional MRI. Neuroinformatics 2024; 22:119-134. [PMID: 38341830 DOI: 10.1007/s12021-024-09653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/13/2024]
Abstract
The increasing lifespan and large individual differences in cognitive capability highlight the importance of comprehending the aging process of the brain. Contrary to visible signs of bodily ageing, like greying of hair and loss of muscle mass, the internal changes that occur within our brains remain less apparent until they impair function. Brain age, distinct from chronological age, reflects our brain's health status and may deviate from our actual chronological age. Notably, brain age has been associated with mortality and depression. The brain is plastic and can compensate even for severe structural damage by rewiring. Functional characterization offers insights that structural cannot provide. Contrary to the multitude of studies relying on structural magnetic resonance imaging (MRI), we utilize resting-state functional MRI (rsfMRI). We also address the issue of inclusion of subjects with abnormal brain ageing through outlier removal. In this study, we employ the Least Absolute Shrinkage and Selection Operator (LASSO) to identify the 39 most predictive correlations derived from the rsfMRI data. The data is from a cohort of 176 healthy right-handed volunteers, aged 18-78 years (95/81 male/female, mean age 48, SD 17) collected at the Mind Research Imaging Center at the National Cheng Kung University. We establish a normal reference model by excluding 68 outliers, which achieves a leave-one-out mean absolute error of 2.48 years. By asking which additional features that are needed to predict the chronological age of the outliers with a smaller error, we identify correlations predictive of abnormal aging. These are associated with the Default Mode Network (DMN). Our normal reference model has the lowest prediction error among published models evaluated on adult subjects of almost all ages and is thus a candidate for screening for abnormal brain aging that has not yet manifested in cognitive decline. This study advances our ability to predict brain aging and provides insights into potential biomarkers for assessing brain age, suggesting that the role of DMN in brain aging should be studied further.
Collapse
Affiliation(s)
- Jose Ramon Chang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Zai-Fu Yao
- College of Education, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Kinesiology, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Basic Psychology Group, Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shulan Hsieh
- Department of Psychology, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Institute of Allied Health Sciences, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan.
| |
Collapse
|
19
|
Ziontz J, Harrison TM, Chen X, Giorgio J, Adams JN, Wang Z, Jagust W. Behaviorally meaningful functional networks mediate the effect of Alzheimer's pathology on cognition. Cereb Cortex 2024; 34:bhae134. [PMID: 38602736 PMCID: PMC11008686 DOI: 10.1093/cercor/bhae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Tau pathology is associated with cognitive impairment in both aging and Alzheimer's disease, but the functional and structural bases of this relationship remain unclear. We hypothesized that the integrity of behaviorally meaningful functional networks would help explain the relationship between tau and cognitive performance. Using resting state fMRI, we identified unique networks related to episodic memory and executive function cognitive domains. The episodic memory network was particularly related to tau pathology measured with positron emission tomography in the entorhinal and temporal cortices. Further, episodic memory network strength mediated the relationship between tau pathology and cognitive performance above and beyond neurodegeneration. We replicated the association between these networks and tau pathology in a separate cohort of older adults, including both cognitively unimpaired and mildly impaired individuals. Together, these results suggest that behaviorally meaningful functional brain networks represent a functional mechanism linking tau pathology and cognition.
Collapse
Affiliation(s)
- Jacob Ziontz
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Xi Chen
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Joseph Giorgio
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, University Dr, Callaghan, Newcastle, NSW 2305, Australia
| | - Jenna N Adams
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, 1400 Biological Sciences III, University of California, Irvine, Irvine, CA 92697, United States
| | - Zehao Wang
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - William Jagust
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | | |
Collapse
|
20
|
Petrican R, Fornito A, Boyland E. Lifestyle Factors Counteract the Neurodevelopmental Impact of Genetic Risk for Accelerated Brain Aging in Adolescence. Biol Psychiatry 2024; 95:453-464. [PMID: 37393046 DOI: 10.1016/j.biopsych.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND The transition from childhood to adolescence is characterized by enhanced neural plasticity and a consequent susceptibility to both beneficial and adverse aspects of one's milieu. METHODS To understand the implications of the interplay between protective and risk-enhancing factors, we analyzed longitudinal data from the Adolescent Brain Cognitive Development (ABCD) Study (n = 834; 394 female). We probed the maturational correlates of positive lifestyle variables (friendships, parental warmth, school engagement, physical exercise, healthy nutrition) and genetic vulnerability to neuropsychiatric disorders (major depressive disorder, Alzheimer's disease, anxiety disorders, bipolar disorder, schizophrenia) and sought to further elucidate their implications for psychological well-being. RESULTS Genetic risk factors and lifestyle buffers showed divergent relationships with later attentional and interpersonal problems. These effects were mediated by distinguishable functional neurodevelopmental deviations spanning the limbic, default mode, visual, and control systems. More specifically, greater genetic vulnerability was associated with alterations in the normative maturation of areas rich in dopamine (D2), glutamate, and serotonin receptors and of areas with stronger expression of astrocytic and microglial genes, a molecular signature implicated in the brain disorders discussed here. Greater availability of lifestyle buffers predicted deviations in the normative functional development of higher density GABAergic (gamma-aminobutyric acidergic) receptor regions. The two profiles of neurodevelopmental alterations showed complementary roles in protection against psychopathology, which varied with environmental stress levels. CONCLUSIONS Our results underscore the importance of educational involvement and healthy nutrition in attenuating the neurodevelopmental sequelae of genetic risk factors. They also underscore the importance of characterizing early-life biomarkers associated with adult-onset pathologies.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Liverpool, United Kingdom.
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Emma Boyland
- Institute of Population Health, Department of Psychology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Wei W, Zhang K, Chang J, Zhang S, Ma L, Wang H, Zhang M, Zu Z, Yang L, Chen F, Fan C, Li X. Analyzing 20 years of Resting-State fMRI Research: Trends and collaborative networks revealed. Brain Res 2024; 1822:148634. [PMID: 37848120 DOI: 10.1016/j.brainres.2023.148634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/19/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI), initially proposed by Biswal et al. in 1995, has emerged as a pivotal facet of neuroimaging research. Its ability to examine brain activity during the resting state without the need for explicit tasks or stimuli has made it an integral component of brain imaging studies. In recent years, rs-fMRI has witnessed substantial growth and found widespread application in the investigation of functional connectivity within the brain. To delineate the developmental trajectory of rs-fMRI over the past two decades, we conducted a comprehensive analysis using bibliometric tool Citespace. Our analysis encompassed publication trends, authorship networks, institutional affiliations, international collaborations, as well as emergent themes in references and keywords. Our study reveals a remarkable increase in the volume of rs-fMRI publications over the past two decades, underscoring the burgeoning interest and potential within this field. Harvard University stands out as the institution with the highest number of research papers published in the realm of RS-fMRI, while the United States holds the highest overall influence in this domain. The recent emergence of keywords such as "machine learning" and "default mode," coupled with citation surges in reference to rs-fMRI, have paved new avenues for research within this field. Our study underscores the critical importance of integrating machine learning techniques into rs-fMRI investigations, offering valuable insights into brain function and disease diagnosis. These findings hold profound significance for the field of neuroscience and may furnish insights for future research employing rs-fMRI as a diagnostic tool for a wide array of neurological disorders, thus emphasizing its pivotal role and potential as a tool for investigating brain functionality.
Collapse
Affiliation(s)
- Wenzhuo Wei
- Research Centre for Translational Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Kaiyuan Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Chang
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Shuyu Zhang
- School of Psychology, the Australian National University, Australian
| | - Lijun Ma
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Huixue Wang
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Mi Zhang
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Zhenyue Zu
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Linxi Yang
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Fenglan Chen
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Chuan Fan
- Department of Psychiatry, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Xiaoming Li
- Research Centre for Translational Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
22
|
Dai Y, Hsu YC, Fernandes BS, Zhang K, Li X, Enduru N, Liu A, Manuel AM, Jiang X, Zhao Z. Disentangling Accelerated Cognitive Decline from the Normal Aging Process and Unraveling Its Genetic Components: A Neuroimaging-Based Deep Learning Approach. J Alzheimers Dis 2024; 97:1807-1827. [PMID: 38306043 PMCID: PMC11649026 DOI: 10.3233/jad-231020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background The progressive cognitive decline, an integral component of Alzheimer's disease (AD), unfolds in tandem with the natural aging process. Neuroimaging features have demonstrated the capacity to distinguish cognitive decline changes stemming from typical brain aging and AD between different chronological points. Objective To disentangle the normal aging effect from the AD-related accelerated cognitive decline and unravel its genetic components using a neuroimaging-based deep learning approach. Methods We developed a deep-learning framework based on a dual-loss Siamese ResNet network to extract fine-grained information from the longitudinal structural magnetic resonance imaging (MRI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We then conducted genome-wide association studies (GWAS) and post-GWAS analyses to reveal the genetic basis of AD-related accelerated cognitive decline. Results We used our model to process data from 1,313 individuals, training it on 414 cognitively normal people and predicting cognitive assessment for all participants. In our analysis of accelerated cognitive decline GWAS, we identified two genome-wide significant loci: APOE locus (chromosome 19 p13.32) and rs144614292 (chromosome 11 p15.1). Variant rs144614292 (G > T) has not been reported in previous AD GWA studies. It is within the intronic region of NELL1, which is expressed in neurons and plays a role in controlling cell growth and differentiation. The cell-type-specific enrichment analysis and functional enrichment of GWAS signals highlighted the microglia and immune-response pathways. Conclusions Our deep learning model effectively extracted relevant neuroimaging features and predicted individual cognitive decline. We reported a novel variant (rs144614292) within the NELL1 gene.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
| | - Yu-Chun Hsu
- Center for Secure Artificial Intelligence for Healthcare,
School of Biomedical Informatics, The University of Texas Health Science Center at
Houston, Houston, TX, USA
| | - Brisa S. Fernandes
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
| | - Kai Zhang
- Center for Secure Artificial Intelligence for Healthcare,
School of Biomedical Informatics, The University of Texas Health Science Center at
Houston, Houston, TX, USA
| | - Xiaoyang Li
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
- Department of Biostatistics and Data Science, School of
Public Health, The University of Texas Health Science Center at Houston, Houston,
TX, USA
| | - Nitesh Enduru
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
- Department of Epidemiology, Human Genetics and
Environmental Sciences, School of Public Health, The University of Texas Health
Science Center at Houston, Houston, TX, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
- Department of Epidemiology, Human Genetics and
Environmental Sciences, School of Public Health, The University of Texas Health
Science Center at Houston, Houston, TX, USA
| | - Astrid M. Manuel
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare,
School of Biomedical Informatics, The University of Texas Health Science Center at
Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
- Department of Epidemiology, Human Genetics and
Environmental Sciences, School of Public Health, The University of Texas Health
Science Center at Houston, Houston, TX, USA
- Department of Biomedical Informatics, Vanderbilt University
Medical enter, Nashville, TN, USA
| |
Collapse
|
23
|
Veitch DP, Weiner MW, Miller M, Aisen PS, Ashford MA, Beckett LA, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Nho KT, Nosheny R, Okonkwo O, Perrin RJ, Petersen RC, Rivera Mindt M, Saykin A, Shaw LM, Toga AW, Tosun D. The Alzheimer's Disease Neuroimaging Initiative in the era of Alzheimer's disease treatment: A review of ADNI studies from 2021 to 2022. Alzheimers Dement 2024; 20:652-694. [PMID: 37698424 PMCID: PMC10841343 DOI: 10.1002/alz.13449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI) aims to improve Alzheimer's disease (AD) clinical trials. Since 2006, ADNI has shared clinical, neuroimaging, and cognitive data, and biofluid samples. We used conventional search methods to identify 1459 publications from 2021 to 2022 using ADNI data/samples and reviewed 291 impactful studies. This review details how ADNI studies improved disease progression understanding and clinical trial efficiency. Advances in subject selection, detection of treatment effects, harmonization, and modeling improved clinical trials and plasma biomarkers like phosphorylated tau showed promise for clinical use. Biomarkers of amyloid beta, tau, neurodegeneration, inflammation, and others were prognostic with individualized prediction algorithms available online. Studies supported the amyloid cascade, emphasized the importance of neuroinflammation, and detailed widespread heterogeneity in disease, linked to genetic and vascular risk, co-pathologies, sex, and resilience. Biological subtypes were consistently observed. Generalizability of ADNI results is limited by lack of cohort diversity, an issue ADNI-4 aims to address by enrolling a diverse cohort.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Melanie Miller
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Miriam A. Ashford
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Laurel A. Beckett
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Robert C. Green
- Division of GeneticsDepartment of MedicineBrigham and Women's HospitalBroad Institute Ariadne Labs and Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Kwangsik T. Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rachel Nosheny
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Monica Rivera Mindt
- Department of PsychologyLatin American and Latino Studies InstituteAfrican and African American StudiesFordham UniversityNew YorkNew YorkUSA
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine and the PENN Alzheimer's Disease Research CenterCenter for Neurodegenerative ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuro ImagingInstitute of Neuroimaging and InformaticsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | |
Collapse
|
24
|
Millar PR, Gordon BA, Wisch JK, Schultz SA, Benzinger TL, Cruchaga C, Hassenstab JJ, Ibanez L, Karch C, Llibre-Guerra JJ, Morris JC, Perrin RJ, Supnet-Bell C, Xiong C, Allegri RF, Berman SB, Chhatwal JP, Chrem Mendez PA, Day GS, Hofmann A, Ikeuchi T, Jucker M, Lee JH, Levin J, Lopera F, Niimi Y, Sánchez-González VJ, Schofield PR, Sosa-Ortiz AL, Vöglein J, Bateman RJ, Ances BM, McDade EM. Advanced structural brain aging in preclinical autosomal dominant Alzheimer disease. Mol Neurodegener 2023; 18:98. [PMID: 38111006 PMCID: PMC10729487 DOI: 10.1186/s13024-023-00688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND "Brain-predicted age" estimates biological age from complex, nonlinear features in neuroimaging scans. The brain age gap (BAG) between predicted and chronological age is elevated in sporadic Alzheimer disease (AD), but is underexplored in autosomal dominant AD (ADAD), in which AD progression is highly predictable with minimal confounding age-related co-pathology. METHODS We modeled BAG in 257 deeply-phenotyped ADAD mutation-carriers and 179 non-carriers from the Dominantly Inherited Alzheimer Network using minimally-processed structural MRI scans. We then tested whether BAG differed as a function of mutation and cognitive status, or estimated years until symptom onset, and whether it was associated with established markers of amyloid (PiB PET, CSF amyloid-β-42/40), phosphorylated tau (CSF and plasma pTau-181), neurodegeneration (CSF and plasma neurofilament-light-chain [NfL]), and cognition (global neuropsychological composite and CDR-sum of boxes). We compared BAG to other MRI measures, and examined heterogeneity in BAG as a function of ADAD mutation variants, APOE ε4 carrier status, sex, and education. RESULTS Advanced brain aging was observed in mutation-carriers approximately 7 years before expected symptom onset, in line with other established structural indicators of atrophy. BAG was moderately associated with amyloid PET and strongly associated with pTau-181, NfL, and cognition in mutation-carriers. Mutation variants, sex, and years of education contributed to variability in BAG. CONCLUSIONS We extend prior work using BAG from sporadic AD to ADAD, noting consistent results. BAG associates well with markers of pTau, neurodegeneration, and cognition, but to a lesser extent, amyloid, in ADAD. BAG may capture similar signal to established MRI measures. However, BAG offers unique benefits in simplicity of data processing and interpretation. Thus, results in this unique ADAD cohort with few age-related confounds suggest that brain aging attributable to AD neuropathology can be accurately quantified from minimally-processed MRI.
Collapse
Affiliation(s)
- Peter R Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Julie K Wisch
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Stephanie A Schultz
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Tammie Ls Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason J Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- NeuroGenomics & Informatics Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | | | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Chengjie Xiong
- Department of Biostatistics, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Anna Hofmann
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Yoshiki Niimi
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Bunkyo-Ku, Tokyo, Japan
| | - Victor J Sánchez-González
- Departamento de Clínicas, CUALTOS, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ana Luisa Sosa-Ortiz
- Instituto Nacional de Neurologia y Neurocirugía MVS, CDMX, Ciudad de México, Mexico
| | - Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric M McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
25
|
Brown JA, Lee AJ, Fernhoff K, Pistone T, Pasquini L, Wise AB, Staffaroni AM, Luisa Mandelli M, Lee SE, Boxer AL, Rankin KP, Rabinovici GD, Luisa Gorno Tempini M, Rosen HJ, Kramer JH, Miller BL, Seeley WW. Functional network collapse in neurodegenerative disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569654. [PMID: 38106054 PMCID: PMC10723363 DOI: 10.1101/2023.12.01.569654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cognitive and behavioral deficits in Alzheimer's disease (AD) and frontotemporal dementia (FTD) result from brain atrophy and altered functional connectivity. However, it is unclear how atrophy relates to functional connectivity disruptions across dementia subtypes and stages. We addressed this question using structural and functional MRI from 221 patients with AD (n=82), behavioral variant FTD (n=41), corticobasal syndrome (n=27), nonfluent (n=34) and semantic (n=37) variant primary progressive aphasia, and 100 cognitively normal individuals. Using partial least squares regression, we identified three principal structure-function components. The first component showed overall atrophy correlating with primary cortical hypo-connectivity and subcortical/association cortical hyper-connectivity. Components two and three linked focal syndrome-specific atrophy to peri-lesional hypo-connectivity and distal hyper-connectivity. Structural and functional component scores predicted global and domain-specific cognitive deficits. Anatomically, functional connectivity changes reflected alterations in specific brain activity gradients. Eigenmode analysis identified temporal phase and amplitude collapse as an explanation for atrophy-driven functional connectivity changes.
Collapse
Affiliation(s)
- Jesse A. Brown
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Alex J. Lee
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Kristen Fernhoff
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Taylor Pistone
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Lorenzo Pasquini
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Amy B. Wise
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Adam M. Staffaroni
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Maria Luisa Mandelli
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Suzee E. Lee
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Adam L. Boxer
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Katherine P. Rankin
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Gil D. Rabinovici
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Maria Luisa Gorno Tempini
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Howard J. Rosen
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Joel H. Kramer
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Bruce L. Miller
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - William W. Seeley
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | | |
Collapse
|
26
|
Gao Y, Tian S, Tang Y, Yang X, Dou W, Wang T, Shen Y, Tang Y, Zhang L, Ding H, Zhu Q, Li J, Qi M, Zhu Y. Investigating the spontaneous brain activities of patients with subjective cognitive decline and mild cognitive impairment: an amplitude of low-frequency fluctuation functional magnetic resonance imaging study. Quant Imaging Med Surg 2023; 13:8557-8570. [PMID: 38106284 PMCID: PMC10722053 DOI: 10.21037/qims-23-808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023]
Abstract
Background Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are neurodegenerative processing stages of Alzheimer's disease (AD). Cognitive decline is thought to manifest in intrinsic brain activity changes, but research results yielded conflicting and few studies have explored the roles of brain regions in cognitive decline, and sensitivity of the cognitive field to changes in the altered intrinsic brain activity. Methods In this cross-sectional study, 158 elderly participants were recruited from the memory clinic of the First Affiliated Hospital of Nanjing Medical University from July 2019 to May 2021, and grouped into SCD (n=73), MCI (n=46), and normal controls (NC) (n=39). The amplitude of low-frequency fluctuation (ALFF) was calculated and evaluated among the groups. Then canonical correlation analysis (CCA) was conducted to investigate the associations between imaging outcomes and cognitive behaviors. Results Neuropsychological tests in different cognitive dimensions and ALFF values of the prefrontal, parietal, and temporal gyrus, were significantly different (P<0.05) among the three groups, with no appreciable decline in daily activity. The changes in intrinsic activities were closely related to the decline in cognitive function (R=0.73, P=0.002). ALFF values in the left middle occipital gyrus, right middle frontal gyrus, left superior frontal gyrus, left angular gyrus, and superior temporal gyrus played significant roles in the analysis, while the Montreal Cognitive Assessment (MoCA) and Auditory-Verbal Learning Test scores were found to be more sensitive to changes in ALFF values. Conclusions Spontaneous brain activity is a stable imaging biomarker of cognitive impairment. ALFF changes of the prefrontal, occipital, left angular, and temporal gyrus were sensitive to identifying cognitive decline, and the scores of the Auditory-Verbal Learning Test and MoCA could predict the abnormal intrinsic activities.
Collapse
Affiliation(s)
- Yaxin Gao
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Rehabilitation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Shui Tian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Tang
- Rehabilitation Medicine Department, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Weiqiang Dou
- GE Healthcare, MR Research China, Beijing, China
| | - Tong Wang
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yin Tang
- Department of Medical imaging, Jingjiang People’s Hospital, Jingjiang, China
| | - Ling Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyuan Ding
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinqin Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahuan Li
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Ming Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Wang L, Liang X, Wang J, Zhang Y, Fan Z, Sun T, Yu X, Wu D, Wang H. Cerebral dominance representation of directed connectivity within and between left-right hemispheres and frontal-posterior lobes in mild cognitive impairment. Cereb Cortex 2023; 33:11279-11286. [PMID: 37804252 DOI: 10.1093/cercor/bhad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023] Open
Abstract
Electroencephalography can assess connectivity between brain hemispheres, potentially influencing cognitive functions. Much of the existing electroencephalography research primarily focuses on undirected connectivity, leaving uncertainties about directed connectivity alterations between left-right brain hemispheres or frontal-posterior lobes in mild cognitive impairment. We analyzed resting-state electroencephalography data from 34 mild cognitive impairment individuals and 23 normal controls using directed transfer function and graph theory for directed network analysis. Concerning the dominance within left-right hemispheres or frontal-posterior lobes, the mild cognitive impairment group exhibited decreased connectivity within the frontal compared with posterior brain regions in the delta and theta bands. Regarding the dominance between the brain hemispheres or lobes, the mild cognitive impairment group showed reduced connectivity from the posterior to the frontal regions versus the reverse direction in the same bands. Among all participants, the intra-lobe frontal-posterior dominance correlated positively with executive function in the delta and alpha bands. Inter-lobe dominance between frontal and posterior regions also positively correlated with executive function, attention, and language in the delta band. Additionally, interhemispheric dominance between the left and right hemispheres positively correlated with attention in delta and theta bands. These findings suggest altered cerebral dominance in mild cognitive impairment, potentially serving as electrophysiological markers for neurocognitive disorders.
Collapse
Affiliation(s)
- Luchun Wang
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
| | - Xixi Liang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Jing Wang
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
| | - Ying Zhang
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
| | - Zili Fan
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
- Beijing Anding Hospital, Capital Medical University, Beijing 100044, China
| | - Tingting Sun
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xin Yu
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
| | - Dan Wu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Huali Wang
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
| |
Collapse
|
28
|
St-Onge F, Javanray M, Pichet Binette A, Strikwerda-Brown C, Remz J, Spreng RN, Shafiei G, Misic B, Vachon-Presseau É, Villeneuve S. Functional connectome fingerprinting across the lifespan. Netw Neurosci 2023; 7:1206-1227. [PMID: 37781144 PMCID: PMC10473304 DOI: 10.1162/netn_a_00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 10/03/2023] Open
Abstract
Systematic changes have been observed in the functional architecture of the human brain with advancing age. However, functional connectivity (FC) is also a powerful feature to detect unique "connectome fingerprints," allowing identification of individuals among their peers. Although fingerprinting has been robustly observed in samples of young adults, the reliability of this approach has not been demonstrated across the lifespan. We applied the fingerprinting framework to the Cambridge Centre for Ageing and Neuroscience cohort (n = 483 aged 18 to 89 years). We found that individuals are "fingerprintable" (i.e., identifiable) across independent functional MRI scans throughout the lifespan. We observed a U-shape distribution in the strength of "self-identifiability" (within-individual correlation across modalities), and "others-identifiability" (between-individual correlation across modalities), with a decrease from early adulthood into middle age, before improving in older age. FC edges contributing to self-identifiability were not restricted to specific brain networks and were different between individuals across the lifespan sample. Self-identifiability was additionally associated with regional brain volume. These findings indicate that individual participant-level identification is preserved across the lifespan despite the fact that its components are changing nonlinearly.
Collapse
Affiliation(s)
- Frédéric St-Onge
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Mohammadali Javanray
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Jordana Remz
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - R. Nathan Spreng
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Golia Shafiei
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Étienne Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, Canada
| | - Sylvia Villeneuve
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
29
|
Dai Y, Yu-Chun H, Fernandes BS, Zhang K, Xiaoyang L, Enduru N, Liu A, Manuel AM, Jiang X, Zhao Z. Disentangling accelerated cognitive decline from the normal aging process and unraveling its genetic components: A neuroimaging-based deep learning approach. RESEARCH SQUARE 2023:rs.3.rs-3328861. [PMID: 37720047 PMCID: PMC10503860 DOI: 10.21203/rs.3.rs-3328861/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Background The progressive cognitive decline that is an integral component of AD unfolds in tandem with the natural aging process. Neuroimaging features have demonstrated the capacity to distinguish cognitive decline changes stemming from typical brain aging and Alzheimer's disease between different chronological points. Methods We developed a deep-learning framework based on dual-loss Siamese ResNet network to extract fine-grained information from the longitudinal structural magnetic resonance imaging (MRI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We then conducted genome-wide association studies (GWAS) and post-GWAS analyses to reveal the genetic basis of AD-related accelerated cognitive decline. Results We used our model to process data from 1,313 individuals, training it on 414 cognitively normal people and predicting cognitive assessment for all participants. In our analysis of accelerated cognitive decline GWAS, we identified two genome-wide significant loci: APOE locus (chromosome 19 p13.32) and rs144614292 (chromosome 11 p15.1). Variant rs144614292 (G>T) has not been reported in previous AD GWA studies. It is within the intronic region of NELL1, which is expressed in neuron and plays a role in controlling cell growth and differentiation. In addition, MUC7 and PROL1/OPRPNon chromosome 4 were significant at the gene level. The cell-type-specific enrichment analysis and functional enrichment of GWAS signals highlighted the microglia and immune-response pathways. Furthermore, we found that the cognitive decline slope GWAS was positively correlated with previous AD GWAS. Conclusion Our deep learning model was demonstrated effective on extracting relevant neuroimaging features and predicting individual cognitive decline. We reported a novel variant (rs144614292) within the NELL1 gene. Our approach has the potential to disentangle accelerated cognitive decline from the normal aging process and to determine its related genetic factors, leveraging opportunities for early intervention.
Collapse
Affiliation(s)
- Yulin Dai
- The University of Texas Health Science Center at Houston
| | - Hsu Yu-Chun
- The University of Texas Health Science Center at Houston
| | | | - Kai Zhang
- The University of Texas Health Science Center at Houston
| | - Li Xiaoyang
- The University of Texas Health Science Center at Houston
| | - Nitesh Enduru
- The University of Texas Health Science Center at Houston
| | - Andi Liu
- The University of Texas Health Science Center at Houston
| | | | - Xiaoqian Jiang
- The University of Texas Health Science Center at Houston
| | - Zhongming Zhao
- The University of Texas Health Science Center at Houston
| |
Collapse
|
30
|
Bjerkan J, Lancaster G, Meglič B, Kobal J, Crawford TJ, McClintock PVE, Stefanovska A. Aging affects the phase coherence between spontaneous oscillations in brain oxygenation and neural activity. Brain Res Bull 2023; 201:110704. [PMID: 37451471 DOI: 10.1016/j.brainresbull.2023.110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The risk of neurodegenerative disorders increases with age, due to reduced vascular nutrition and impaired neural function. However, the interactions between cardiovascular dynamics and neural activity, and how these interactions evolve in healthy aging, are not well understood. Here, the interactions are studied by assessment of the phase coherence between spontaneous oscillations in cerebral oxygenation measured by fNIRS, the electrical activity of the brain measured by EEG, and cardiovascular functions extracted from ECG and respiration effort, all simultaneously recorded. Signals measured at rest in 21 younger participants (31.1 ± 6.9 years) and 24 older participants (64.9 ± 6.9 years) were analysed by wavelet transform, wavelet phase coherence and ridge extraction for frequencies between 0.007 and 4 Hz. Coherence between the neural and oxygenation oscillations at ∼ 0.1 Hz is significantly reduced in the older adults in 46/176 fNIRS-EEG probe combinations. This reduction in coherence cannot be accounted for in terms of reduced power, thus indicating that neurovascular interactions change with age. The approach presented promises a noninvasive means of evaluating the efficiency of the neurovascular unit in aging and disease.
Collapse
Affiliation(s)
- Juliane Bjerkan
- Lancaster University, Department of Physics, LA1 4YB, Lancaster, United Kingdom
| | - Gemma Lancaster
- Lancaster University, Department of Physics, LA1 4YB, Lancaster, United Kingdom
| | - Bernard Meglič
- University of Ljubljana Medical Centre, Department of Neurology, 1525, Ljubljana, Slovenia
| | - Jan Kobal
- University of Ljubljana Medical Centre, Department of Neurology, 1525, Ljubljana, Slovenia
| | - Trevor J Crawford
- Lancaster University, Department of Psychology, LA1 4YF, Lancaster, United Kingdom
| | | | - Aneta Stefanovska
- Lancaster University, Department of Physics, LA1 4YB, Lancaster, United Kingdom.
| |
Collapse
|
31
|
Cheng Y, Zhang XD, Chen C, He LF, Li FF, Lu ZN, Man WQ, Zhao YJ, Chang ZX, Wu Y, Shen W, Fan LZ, Xu JH. Dynamic evolution of brain structural patterns in liver transplantation recipients: a longitudinal study based on 3D convolutional neuronal network model. Eur Radiol 2023; 33:6134-6144. [PMID: 37014408 DOI: 10.1007/s00330-023-09604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVES To evaluate the dynamic evolution process of overall brain health in liver transplantation (LT) recipients, we employed a deep learning-based neuroanatomic biomarker to measure longitudinal changes of brain structural patterns before and 1, 3, and 6 months after surgery. METHODS Because of the ability to capture patterns across all voxels from a brain scan, the brain age prediction method was adopted. We constructed a 3D-CNN model through T1-weighted MRI of 3609 healthy individuals from 8 public datasets and further applied it to a local dataset of 60 LT recipients and 134 controls. The predicted age difference (PAD) was calculated to estimate brain changes before and after LT, and the network occlusion sensitivity analysis was used to determine the importance of each network in age prediction. RESULTS The PAD of patients with cirrhosis increased markedly at baseline (+ 5.74 years) and continued to increase within one month after LT (+ 9.18 years). After that, the brain age began to decrease gradually, but it was still higher than the chronological age. The PAD values of the OHE subgroup were higher than those of the no-OHE, and the discrepancy was more obvious at 1-month post-LT. High-level cognition-related networks were more important in predicting the brain age of patients with cirrhosis at baseline, while the importance of primary sensory networks increased temporarily within 6-month post-LT. CONCLUSIONS The brain structural patterns of LT recipients showed inverted U-shaped dynamic change in the early stage after transplantation, and the change in primary sensory networks may be the main contributor. KEY POINTS • The recipients' brain structural pattern showed an inverted U-shaped dynamic change after LT. • The patients' brain aging aggravated within 1 month after surgery, and the subset of patients with a history of OHE was particularly affected. • The change of primary sensory networks is the main contributor to the change in brain structural patterns.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Xiao-Dong Zhang
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Cheng Chen
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ling-Fei He
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Fang-Fei Li
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Zi-Ning Lu
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Wei-Qi Man
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Yu-Jiao Zhao
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | | | - Ying Wu
- School of Statistics and Data Science, Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Ling-Zhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jun-Hai Xu
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China.
| |
Collapse
|
32
|
Gao J, Liu J, Xu Y, Peng D, Wang Z. Brain age prediction using the graph neural network based on resting-state functional MRI in Alzheimer's disease. Front Neurosci 2023; 17:1222751. [PMID: 37457008 PMCID: PMC10347411 DOI: 10.3389/fnins.2023.1222751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disease that significantly impacts the quality of life of patients and their families. Neuroimaging-driven brain age prediction has been proposed as a potential biomarker to detect mental disorders, such as AD, aiding in studying its effects on functional brain networks. Previous studies have shown that individuals with AD display impaired resting-state functional connections. However, most studies on brain age prediction have used structural magnetic resonance imaging (MRI), with limited studies based on resting-state functional MRI (rs-fMRI). Methods In this study, we applied a graph neural network (GNN) model on controls to predict brain ages using rs-fMRI in patients with AD. We compared the performance of the GNN model with traditional machine learning models. Finally, the post hoc model was also used to identify the critical brain regions in AD. Results The experimental results demonstrate that our GNN model can predict brain ages of normal controls using rs-fMRI data from the ADNI database. Moreover the differences between brain ages and chronological ages were more significant in AD patients than in normal controls. Our results also suggest that AD is associated with accelerated brain aging and that the GNN model based on resting-state functional connectivity is an effective tool for predicting brain age. Discussion Our study provides evidence that rs-fMRI is a promising modality for brain age prediction in AD research, and the GNN model proves to be effective in predicting brain age. Furthermore, the effects of the hippocampus, parahippocampal gyrus, and amygdala on brain age prediction are verified.
Collapse
Affiliation(s)
| | | | | | | | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
33
|
Jiang R, Calhoun VD, Noble S, Sui J, Liang Q, Qi S, Scheinost D. A functional connectome signature of blood pressure in >30 000 participants from the UK biobank. Cardiovasc Res 2023; 119:1427-1440. [PMID: 35875865 PMCID: PMC10262183 DOI: 10.1093/cvr/cvac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Elevated blood pressure (BP) is a prevalent modifiable risk factor for cardiovascular diseases and contributes to cognitive decline in late life. Despite the fact that functional changes may precede irreversible structural damage and emerge in an ongoing manner, studies have been predominantly informed by brain structure and group-level inferences. Here, we aim to delineate neurobiological correlates of BP at an individual level using machine learning and functional connectivity. METHODS AND RESULTS Based on whole-brain functional connectivity from the UK Biobank, we built a machine learning model to identify neural representations for individuals' past (∼8.9 years before scanning, N = 35 882), current (N = 31 367), and future (∼2.4 years follow-up, N = 3 138) BP levels within a repeated cross-validation framework. We examined the impact of multiple potential covariates, as well as assessed these models' generalizability across various contexts.The predictive models achieved significant correlations between predicted and actual systolic/diastolic BP and pulse pressure while controlling for multiple confounders. Predictions for participants not on antihypertensive medication were more accurate than for currently medicated patients. Moreover, the models demonstrated robust generalizability across contexts in terms of ethnicities, imaging centres, medication status, participant visits, gender, age, and body mass index. The identified connectivity patterns primarily involved the cerebellum, prefrontal, anterior insula, anterior cingulate cortex, supramarginal gyrus, and precuneus, which are key regions of the central autonomic network, and involved in cognition processing and susceptible to neurodegeneration in Alzheimer's disease. Results also showed more involvement of default mode and frontoparietal networks in predicting future BP levels and in medicated participants. CONCLUSION This study, based on the largest neuroimaging sample currently available and using machine learning, identifies brain signatures underlying BP, providing evidence for meaningful BP-associated neural representations in connectivity profiles.
Collapse
Affiliation(s)
- Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Emory University and Georgia State University, Atlanta, GA 30303, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jing Sui
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Emory University and Georgia State University, Atlanta, GA 30303, USA
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Shile Qi
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Emory University and Georgia State University, Atlanta, GA 30303, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
34
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
35
|
Levakov G, Kaplan A, Yaskolka Meir A, Rinott E, Tsaban G, Zelicha H, Blüher M, Ceglarek U, Stumvoll M, Shelef I, Avidan G, Shai I. The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity. eLife 2023; 12:e83604. [PMID: 37022140 PMCID: PMC10174688 DOI: 10.7554/elife.83604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Background Obesity negatively impacts multiple bodily systems, including the central nervous system. Retrospective studies that estimated chronological age from neuroimaging have found accelerated brain aging in obesity, but it is unclear how this estimation would be affected by weight loss following a lifestyle intervention. Methods In a sub-study of 102 participants of the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT-PLUS) trial, we tested the effect of weight loss following 18 months of lifestyle intervention on predicted brain age based on magnetic resonance imaging (MRI)-assessed resting-state functional connectivity (RSFC). We further examined how dynamics in multiple health factors, including anthropometric measurements, blood biomarkers, and fat deposition, can account for changes in brain age. Results To establish our method, we first demonstrated that our model could successfully predict chronological age from RSFC in three cohorts (n=291;358;102). We then found that among the DIRECT-PLUS participants, 1% of body weight loss resulted in an 8.9 months' attenuation of brain age. Attenuation of brain age was significantly associated with improved liver biomarkers, decreased liver fat, and visceral and deep subcutaneous adipose tissues after 18 months of intervention. Finally, we showed that lower consumption of processed food, sweets and beverages were associated with attenuated brain age. Conclusions Successful weight loss following lifestyle intervention might have a beneficial effect on the trajectory of brain aging. Funding The German Research Foundation (DFG), German Research Foundation - project number 209933838 - SFB 1052; B11, Israel Ministry of Health grant 87472511 (to I Shai); Israel Ministry of Science and Technology grant 3-13604 (to I Shai); and the California Walnuts Commission 09933838 SFB 105 (to I Shai).
Collapse
Affiliation(s)
- Gidon Levakov
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Alon Kaplan
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- Department of Internal Medicine D, Chaim Sheba Medical CenterRamat-GanIsrael
| | - Anat Yaskolka Meir
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Ehud Rinott
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Gal Tsaban
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Hila Zelicha
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | | | - Uta Ceglarek
- Department of Medicine, University of LeipzigLeipzigGermany
| | | | - Ilan Shelef
- Department of Diagnostic Imaging, Soroka Medical CenterBeer ShevaIsrael
| | - Galia Avidan
- Department of Psychology, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Iris Shai
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- Department of Medicine, University of LeipzigLeipzigGermany
- Department of Nutrition, Harvard T.H. Chan School of Public HealthBostonUnited States
| |
Collapse
|
36
|
Petrican R, Fornito A. Adolescent neurodevelopment and psychopathology: The interplay between adversity exposure and genetic risk for accelerated brain ageing. Dev Cogn Neurosci 2023; 60:101229. [PMID: 36947895 PMCID: PMC10041470 DOI: 10.1016/j.dcn.2023.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
In adulthood, stress exposure and genetic risk heighten psychological vulnerability by accelerating neurobiological senescence. To investigate whether molecular and brain network maturation processes play a similar role in adolescence, we analysed genetic, as well as longitudinal task neuroimaging (inhibitory control, incentive processing) and early life adversity (i.e., material deprivation, violence) data from the Adolescent Brain and Cognitive Development study (N = 980, age range: 9-13 years). Genetic risk was estimated separately for Major Depressive Disorder (MDD) and Alzheimer's Disease (AD), two pathologies linked to stress exposure and allegedly sharing a causal connection (MDD-to-AD). Adversity and genetic risk for MDD/AD jointly predicted functional network segregation patterns suggestive of accelerated (GABA-linked) visual/attentional, but delayed (dopamine [D2]/glutamate [GLU5R]-linked) somatomotor/association system development. A positive relationship between brain maturation and psychopathology emerged only among the less vulnerable adolescents, thereby implying that normatively maladaptive neurodevelopmental alterations could foster adjustment among the more exposed and genetically more stress susceptible youths. Transcriptomic analyses suggested that sensitivity to stress may underpin the joint neurodevelopmental effect of adversity and genetic risk for MDD/AD, in line with the proposed role of negative emotionality as a precursor to AD, likely to account for the alleged causal impact of MDD on dementia onset.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Bedford Street South, Liverpool L69 7ZA, United Kingdom.
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Investigating brain aging trajectory deviations in different brain regions of individuals with schizophrenia using multimodal magnetic resonance imaging and brain-age prediction: a multicenter study. Transl Psychiatry 2023; 13:82. [PMID: 36882419 PMCID: PMC9992684 DOI: 10.1038/s41398-023-02379-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Although many studies on brain-age prediction in patients with schizophrenia have been reported recently, none has predicted brain age based on different neuroimaging modalities and different brain regions in these patients. Here, we constructed brain-age prediction models with multimodal MRI and examined the deviations of aging trajectories in different brain regions of participants with schizophrenia recruited from multiple centers. The data of 230 healthy controls (HCs) were used for model training. Next, we investigated the differences in brain age gaps between participants with schizophrenia and HCs from two independent cohorts. A Gaussian process regression algorithm with fivefold cross-validation was used to train 90, 90, and 48 models for gray matter (GM), functional connectivity (FC), and fractional anisotropy (FA) maps in the training dataset, respectively. The brain age gaps in different brain regions for all participants were calculated, and the differences in brain age gaps between the two groups were examined. Our results showed that most GM regions in participants with schizophrenia in both cohorts exhibited accelerated aging, particularly in the frontal lobe, temporal lobe, and insula. The parts of the white matter tracts, including the cerebrum and cerebellum, indicated deviations in aging trajectories in participants with schizophrenia. However, no accelerated brain aging was noted in the FC maps. The accelerated aging in 22 GM regions and 10 white matter tracts in schizophrenia potentially exacerbates with disease progression. In individuals with schizophrenia, different brain regions demonstrate dynamic deviations of brain aging trajectories. Our findings provided more insights into schizophrenia neuropathology.
Collapse
|
38
|
Millar PR, Gordon BA, Luckett PH, Benzinger TLS, Cruchaga C, Fagan AM, Hassenstab JJ, Perrin RJ, Schindler SE, Allegri RF, Day GS, Farlow MR, Mori H, Nübling G, Bateman RJ, Morris JC, Ances BM. Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study. eLife 2023; 12:e81869. [PMID: 36607335 PMCID: PMC9988262 DOI: 10.7554/elife.81869] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Background Estimates of 'brain-predicted age' quantify apparent brain age compared to normative trajectories of neuroimaging features. The brain age gap (BAG) between predicted and chronological age is elevated in symptomatic Alzheimer disease (AD) but has not been well explored in presymptomatic AD. Prior studies have typically modeled BAG with structural MRI, but more recently other modalities, including functional connectivity (FC) and multimodal MRI, have been explored. Methods We trained three models to predict age from FC, structural (S), or multimodal MRI (S+FC) in 390 amyloid-negative cognitively normal (CN/A-) participants (18-89 years old). In independent samples of 144 CN/A-, 154 CN/A+, and 154 cognitively impaired (CI; CDR > 0) participants, we tested relationships between BAG and AD biomarkers of amyloid and tau, as well as a global cognitive composite. Results All models predicted age in the control training set, with the multimodal model outperforming the unimodal models. All three BAG estimates were significantly elevated in CI compared to controls. FC-BAG was significantly reduced in CN/A+ participants compared to CN/A-. In CI participants only, elevated S-BAG and S+FC BAG were associated with more advanced AD pathology and lower cognitive performance. Conclusions Both FC-BAG and S-BAG are elevated in CI participants. However, FC and structural MRI also capture complementary signals. Specifically, FC-BAG may capture a unique biphasic response to presymptomatic AD pathology, while S-BAG may capture pathological progression and cognitive decline in the symptomatic stage. A multimodal age-prediction model improves sensitivity to healthy age differences. Funding This work was supported by the National Institutes of Health (P01-AG026276, P01- AG03991, P30-AG066444, 5-R01-AG052550, 5-R01-AG057680, 1-R01-AG067505, 1S10RR022984-01A1, and U19-AG032438), the BrightFocus Foundation (A2022014F), and the Alzheimer's Association (SG-20-690363-DIAN).
Collapse
Affiliation(s)
- Peter R Millar
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Brian A Gordon
- Department of Radiology, Washington University in St. LouisSt LouisUnited States
| | - Patrick H Luckett
- Department of Neurosurgery, Washington University in St. LouisSt LouisUnited States
| | - Tammie LS Benzinger
- Department of Radiology, Washington University in St. LouisSt LouisUnited States
- Department of Neurosurgery, Washington University in St. LouisSt LouisUnited States
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. LouisSt LouisUnited States
| | - Anne M Fagan
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Jason J Hassenstab
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Richard J Perrin
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
- Department of Pathology and Immunology, Washington University in St. LouisSt LouisUnited States
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Gregory S Day
- Department of Neurology, Mayo Clinic FloridaJacksonvilleUnited States
| | - Martin R Farlow
- Department of Neurology, Indiana University School of MedicineIndianapolisUnited States
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka Metropolitan University Medical School, Nagaoka Sutoku UniversityOsakaJapan
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians UniversityMunichGermany
- German Center for Neurodegenerative DiseasesMunichGermany
| | - Randall J Bateman
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - John C Morris
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Beau M Ances
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
- Department of Radiology, Washington University in St. LouisSt LouisUnited States
| |
Collapse
|
39
|
Zhu JD, Tsai SJ, Lin CP, Lee YJ, Yang AC. Predicting aging trajectories of decline in brain volume, cortical thickness and fractional anisotropy in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:1. [PMID: 36596800 PMCID: PMC9810255 DOI: 10.1038/s41537-022-00325-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Brain-age prediction is a novel approach to assessing deviated brain aging trajectories in different diseases. However, most studies have used an average brain age gap (BAG) of individuals with schizophrenia of different illness durations for comparison with healthy participants. Therefore, this study investigated whether declined brain structures as reflected by BAGs may be present in schizophrenia in terms of brain volume, cortical thickness, and fractional anisotropy across different illness durations. We used brain volume, cortical thickness, and fractional anisotropy as features to train three models from the training dataset. Three models were applied to predict brain ages in the hold-out test and schizophrenia datasets and calculate BAGs. We divided the schizophrenia dataset into multiple groups based on the illness duration using a sliding time window approach for ANCOVA analysis. The brain volume and cortical thickness models revealed that, in comparison with healthy controls, individuals with schizophrenia had larger BAGs across different illness durations, whereas the BAG in terms of fractional anisotropy did not differ from that of healthy controls after disease onset. Moreover, the BAG at the initial stage of schizophrenia was the largest in the cortical thickness model. In contrast, the BAG from approximately two decades after disease onset was the largest in the brain volume model. Our findings suggest that schizophrenia differentially affects the decline of different brain structures during the disease course. Moreover, different trends of decline in thickness and volume-based measures suggest a differential decline in dimensions of brain structure throughout the course of schizophrenia.
Collapse
Grants
- This work was supported by grants from the National Science and Technology Council, Taiwan (grant number 110-2321-B-A49A-502 and 110-2628-B-A49A-509, and 110-2634-F-075-001 to Albert C. Yang). Dr. Albert C. Yang was also supported by the Mt. Jade Young Scholarship Award from the Ministry of Education, Taiwan, as well as Brain Research Center, National Yang Ming Chiao Tung University, and the Ministry of Education (Aim for the Top University Plan), Taipei, Taiwan.
- Mr. J. D. Zhu was supported by the scholarship (108-2926-I-010-001-MY4) from the National Science and Technology Council, Taiwan.
- This work was supported by grants from the National Science and Technology Council, Taiwan (grant number 110-2321-B-A49A-502 and 110-2628-B-A49A-509, and 110-2634-F-075-001 to S. J. Tsai).
Collapse
Affiliation(s)
- Jun-Ding Zhu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Lee
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
40
|
Liang WS, Goetz LH, Schork NJ. Assessing brain and biological aging trajectories associated with Alzheimer's disease. Front Neurosci 2022; 16:1036102. [PMID: 36389222 PMCID: PMC9650396 DOI: 10.3389/fnins.2022.1036102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
The development of effective treatments to prevent and slow Alzheimer's disease (AD) pathogenesis is needed in order to tackle the steady increase in the global prevalence of AD. This challenge is complicated by the need to identify key health shifts that precede the onset of AD and cognitive decline as these represent windows of opportunity for intervening and preventing disease. Such shifts may be captured through the measurement of biomarkers that reflect the health of the individual, in particular those that reflect brain age and biological age. Brain age biomarkers provide a composite view of the health of the brain based on neuroanatomical analyses, while biological age biomarkers, which encompass the epigenetic clock, provide a measurement of the overall health state of an individual based on DNA methylation analysis. Acceleration of brain and biological ages is associated with changes in cognitive function, as well as neuropathological markers of AD. In this mini-review, we discuss brain age and biological age research in the context of cognitive decline and AD. While more research is needed, studies show that brain and biological aging trajectories are variable across individuals and that such trajectories are non-linear at older ages. Longitudinal monitoring of these biomarkers may be valuable for enabling earlier identification of divergent pathological trajectories toward AD and providing insight into points for intervention.
Collapse
Affiliation(s)
- Winnie S. Liang
- NetBio, Inc., Los Angeles, CA, United States
- Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Laura H. Goetz
- NetBio, Inc., Los Angeles, CA, United States
- Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Nicholas J. Schork
- NetBio, Inc., Los Angeles, CA, United States
- Translational Genomics Research Institute, Phoenix, AZ, United States
| |
Collapse
|
41
|
Han J, Kim SY, Lee J, Lee WH. Brain Age Prediction: A Comparison between Machine Learning Models Using Brain Morphometric Data. SENSORS (BASEL, SWITZERLAND) 2022; 22:8077. [PMID: 36298428 PMCID: PMC9608785 DOI: 10.3390/s22208077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Brain structural morphology varies over the aging trajectory, and the prediction of a person's age using brain morphological features can help the detection of an abnormal aging process. Neuroimaging-based brain age is widely used to quantify an individual's brain health as deviation from a normative brain aging trajectory. Machine learning approaches are expanding the potential for accurate brain age prediction but are challenging due to the great variety of machine learning algorithms. Here, we aimed to compare the performance of the machine learning models used to estimate brain age using brain morphological measures derived from structural magnetic resonance imaging scans. We evaluated 27 machine learning models, applied to three independent datasets from the Human Connectome Project (HCP, n = 1113, age range 22-37), the Cambridge Centre for Ageing and Neuroscience (Cam-CAN, n = 601, age range 18-88), and the Information eXtraction from Images (IXI, n = 567, age range 19-86). Performance was assessed within each sample using cross-validation and an unseen test set. The models achieved mean absolute errors of 2.75-3.12, 7.08-10.50, and 8.04-9.86 years, as well as Pearson's correlation coefficients of 0.11-0.42, 0.64-0.85, and 0.63-0.79 between predicted brain age and chronological age for the HCP, Cam-CAN, and IXI samples, respectively. We found a substantial difference in performance between models trained on the same data type, indicating that the choice of model yields considerable variation in brain-predicted age. Furthermore, in three datasets, regularized linear regression algorithms achieved similar performance to nonlinear and ensemble algorithms. Our results suggest that regularized linear algorithms are as effective as nonlinear and ensemble algorithms for brain age prediction, while significantly reducing computational costs. Our findings can serve as a starting point and quantitative reference for future efforts at improving brain age prediction using machine learning models applied to brain morphometric data.
Collapse
Affiliation(s)
| | | | | | - Won Hee Lee
- Department of Software Convergence, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
42
|
Accelerated functional brain aging in major depressive disorder: evidence from a large scale fMRI analysis of Chinese participants. Transl Psychiatry 2022; 12:397. [PMID: 36130921 PMCID: PMC9492670 DOI: 10.1038/s41398-022-02162-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common mental health conditions that has been intensively investigated for its association with brain atrophy and mortality. Recent studies suggest that the deviation between the predicted and the chronological age can be a marker of accelerated brain aging to characterize MDD. However, current conclusions are usually drawn based on structural MRI information collected from Caucasian participants. The universality of this biomarker needs to be further validated by subjects with different ethnic/racial backgrounds and by different types of data. Here we make use of the REST-meta-MDD, a large scale resting-state fMRI dataset collected from multiple cohort participants in China. We develop a stacking machine learning model based on 1101 healthy controls, which estimates a subject's chronological age from fMRI with promising accuracy. The trained model is then applied to 1276 MDD patients from 24 sites. We observe that MDD patients exhibit a +4.43 years (p < 0.0001, Cohen's d = 0.31, 95% CI: 2.23-3.88) higher brain-predicted age difference (brain-PAD) compared to controls. In the MDD subgroup, we observe a statistically significant +2.09 years (p < 0.05, Cohen's d = 0.134525) brain-PAD in antidepressant users compared to medication-free patients. The statistical relationship observed is further checked by three different machine learning algorithms. The positive brain-PAD observed in participants in China confirms the presence of accelerated brain aging in MDD patients. The utilization of functional brain connectivity for age estimation verifies existing findings from a new dimension.
Collapse
|
43
|
Jiang R, Scheinost D, Zuo N, Wu J, Qi S, Liang Q, Zhi D, Luo N, Chung Y, Liu S, Xu Y, Sui J, Calhoun V. A Neuroimaging Signature of Cognitive Aging from Whole-Brain Functional Connectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201621. [PMID: 35811304 PMCID: PMC9403648 DOI: 10.1002/advs.202201621] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/02/2022] [Indexed: 05/14/2023]
Abstract
Cognitive decline is amongst one of the most commonly reported complaints during normal aging. Despite evidence that age and cognition are linked with similar neural correlates, no previous studies have directly ascertained how these two constructs overlap in the brain in terms of neuroimaging-based prediction. Based on a long lifespan healthy cohort (CamCAN, aged 19-89 years, n = 567), it is shown that both cognitive function (domains spanning executive function, emotion processing, motor function, and memory) and human age can be reliably predicted from unique patterns of functional connectivity, with models generalizable in two external datasets (n = 533 and n = 453). Results show that cognitive decline and normal aging both manifest decrease within-network connections (especially default mode and ventral attention networks) and increase between-network connections (somatomotor network). Whereas dorsal attention network is an exception, which is highly predictive on cognitive ability but is weakly correlated with aging. Further, the positively weighted connections in predicting fluid intelligence significantly mediate its association with age. Together, these findings offer insights into why normal aging is often associated with cognitive decline in terms of brain network organization, indicating a process of neural dedifferentiation and compensational theory.
Collapse
Affiliation(s)
- Rongtao Jiang
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenCT06520USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenCT06520USA
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenCT06520USA
- Department of Statistics and Data ScienceYale UniversityNew HavenCT06520USA
- Child Study CenterYale School of MedicineNew HavenCT06510USA
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190P. R. China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jing Wu
- Department of Medical OncologyBeijing You‐An HospitalCapital Medical UniversityBeijing100069P. R. China
| | - Shile Qi
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Qinghao Liang
- Department of Biomedical EngineeringYale UniversityNew HavenCT06520USA
| | - Dongmei Zhi
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100088P. R. China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190P. R. China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Young‐Chul Chung
- Department of PsychiatryJeonbuk National University Medical SchoolJeonju54907Republic of Korea
- Department of PsychiatryChonbuk National University HospitalJeonju54907Republic of Korea
| | - Sha Liu
- Department of Psychiatry and MDT Center for Cognitive Impairment and Sleep DisordersFirst HospitalFirst Clinical Medical College of Shanxi Medical UniversityTaiyuan030001P. R. China
| | - Yong Xu
- Department of Psychiatry and MDT Center for Cognitive Impairment and Sleep DisordersFirst HospitalFirst Clinical Medical College of Shanxi Medical UniversityTaiyuan030001P. R. China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100088P. R. China
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia Institute of TechnologyEmory University and Georgia State UniversityAtlantaGA30303USA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia Institute of TechnologyEmory University and Georgia State UniversityAtlantaGA30303USA
| |
Collapse
|
44
|
Engemann DA, Mellot A, Höchenberger R, Banville H, Sabbagh D, Gemein L, Ball T, Gramfort A. A reusable benchmark of brain-age prediction from M/EEG resting-state signals. Neuroimage 2022; 262:119521. [PMID: 35905809 DOI: 10.1016/j.neuroimage.2022.119521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 01/02/2023] Open
Abstract
Population-level modeling can define quantitative measures of individual aging by applying machine learning to large volumes of brain images. These measures of brain age, obtained from the general population, helped characterize disease severity in neurological populations, improving estimates of diagnosis or prognosis. Magnetoencephalography (MEG) and Electroencephalography (EEG) have the potential to further generalize this approach towards prevention and public health by enabling assessments of brain health at large scales in socioeconomically diverse environments. However, more research is needed to define methods that can handle the complexity and diversity of M/EEG signals across diverse real-world contexts. To catalyse this effort, here we propose reusable benchmarks of competing machine learning approaches for brain age modeling. We benchmarked popular classical machine learning pipelines and deep learning architectures previously used for pathology decoding or brain age estimation in 4 international M/EEG cohorts from diverse countries and cultural contexts, including recordings from more than 2500 participants. Our benchmarks were built on top of the M/EEG adaptations of the BIDS standard, providing tools that can be applied with minimal modification on any M/EEG dataset provided in the BIDS format. Our results suggest that, regardless of whether classical machine learning or deep learning was used, the highest performance was reached by pipelines and architectures involving spatially aware representations of the M/EEG signals, leading to R^2 scores between 0.60-0.71. Hand-crafted features paired with random forest regression provided robust benchmarks even in situations in which other approaches failed. Taken together, this set of benchmarks, accompanied by open-source software and high-level Python scripts, can serve as a starting point and quantitative reference for future efforts at developing M/EEG-based measures of brain aging. The generality of the approach renders this benchmark reusable for other related objectives such as modeling specific cognitive variables or clinical endpoints.
Collapse
Affiliation(s)
- Denis A Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; Université Paris-Saclay, Inria, CEA, Palaiseau, France; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, D-04103, Leipzig, Germany.
| | | | | | - Hubert Banville
- Université Paris-Saclay, Inria, CEA, Palaiseau, France; Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - David Sabbagh
- Université Paris-Saclay, Inria, CEA, Palaiseau, France; Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Engelbergerstr. 21, 79106, Freiburg, Germany
| | - Lukas Gemein
- Neurorobotics Lab, Computer Science Department - University of Freiburg, Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Tonio Ball
- Neurorobotics Lab, Computer Science Department - University of Freiburg, Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany; InteraXon Inc., Toronto, Canada
| | | |
Collapse
|
45
|
Multimodality Alzheimer's Disease Analysis in Deep Riemannian Manifold. Inf Process Manag 2022. [DOI: 10.1016/j.ipm.2022.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Sirkis DW, Bonham LW, Johnson TP, La Joie R, Yokoyama JS. Dissecting the clinical heterogeneity of early-onset Alzheimer's disease. Mol Psychiatry 2022; 27:2674-2688. [PMID: 35393555 PMCID: PMC9156414 DOI: 10.1038/s41380-022-01531-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare but particularly devastating form of AD. Though notable for its high degree of clinical heterogeneity, EOAD is defined by the same neuropathological hallmarks underlying the more common, late-onset form of AD. In this review, we describe the various clinical syndromes associated with EOAD, including the typical amnestic phenotype as well as atypical variants affecting visuospatial, language, executive, behavioral, and motor functions. We go on to highlight advances in fluid biomarker research and describe how molecular, structural, and functional neuroimaging can be used not only to improve EOAD diagnostic acumen but also enhance our understanding of fundamental pathobiological changes occurring years (and even decades) before the onset of symptoms. In addition, we discuss genetic variation underlying EOAD, including pathogenic variants responsible for the well-known mendelian forms of EOAD as well as variants that may increase risk for the much more common forms of EOAD that are either considered to be sporadic or lack a clear autosomal-dominant inheritance pattern. Intriguingly, specific pathogenic variants in PRNP and MAPT-genes which are more commonly associated with other neurodegenerative diseases-may provide unexpectedly important insights into the formation of AD tau pathology. Genetic analysis of the atypical clinical syndromes associated with EOAD will continue to be challenging given their rarity, but integration of fluid biomarker data, multimodal imaging, and various 'omics techniques and their application to the study of large, multicenter cohorts will enable future discoveries of fundamental mechanisms underlying the development of EOAD and its varied clinical presentations.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
47
|
Hwang G, Abdulkadir A, Erus G, Habes M, Pomponio R, Shou H, Doshi J, Mamourian E, Rashid T, Bilgel M, Fan Y, Sotiras A, Srinivasan D, Morris JC, Albert MS, Bryan NR, Resnick SM, Nasrallah IM, Davatzikos C, Wolk DA. Disentangling Alzheimer's disease neurodegeneration from typical brain ageing using machine learning. Brain Commun 2022; 4:fcac117. [PMID: 35611306 PMCID: PMC9123890 DOI: 10.1093/braincomms/fcac117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/17/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroimaging biomarkers that distinguish between changes due to typical brain ageing and Alzheimer's disease are valuable for determining how much each contributes to cognitive decline. Supervised machine learning models can derive multivariate patterns of brain change related to the two processes, including the Spatial Patterns of Atrophy for Recognition of Alzheimer's Disease (SPARE-AD) and of Brain Aging (SPARE-BA) scores investigated herein. However, the substantial overlap between brain regions affected in the two processes confounds measuring them independently. We present a methodology, and associated results, towards disentangling the two. T1-weighted MRI scans of 4054 participants (48-95 years) with Alzheimer's disease, mild cognitive impairment (MCI), or cognitively normal (CN) diagnoses from the Imaging-based coordinate SysTem for AGIng and NeurodeGenerative diseases (iSTAGING) consortium were analysed. Multiple sets of SPARE scores were investigated, in order to probe imaging signatures of certain clinically or molecularly defined sub-cohorts. First, a subset of clinical Alzheimer's disease patients (n = 718) and age- and sex-matched CN adults (n = 718) were selected based purely on clinical diagnoses to train SPARE-BA1 (regression of age using CN individuals) and SPARE-AD1 (classification of CN versus Alzheimer's disease) models. Second, analogous groups were selected based on clinical and molecular markers to train SPARE-BA2 and SPARE-AD2 models: amyloid-positive Alzheimer's disease continuum group (n = 718; consisting of amyloid-positive Alzheimer's disease, amyloid-positive MCI, amyloid- and tau-positive CN individuals) and amyloid-negative CN group (n = 718). Finally, the combined group of the Alzheimer's disease continuum and amyloid-negative CN individuals was used to train SPARE-BA3 model, with the intention to estimate brain age regardless of Alzheimer's disease-related brain changes. The disentangled SPARE models, SPARE-AD2 and SPARE-BA3, derived brain patterns that were more specific to the two types of brain changes. The correlation between the SPARE-BA Gap (SPARE-BA minus chronological age) and SPARE-AD was significantly reduced after the decoupling (r = 0.56-0.06). The correlation of disentangled SPARE-AD was non-inferior to amyloid- and tau-related measurements and to the number of APOE ε4 alleles but was lower to Alzheimer's disease-related psychometric test scores, suggesting the contribution of advanced brain ageing to the latter. The disentangled SPARE-BA was consistently less correlated with Alzheimer's disease-related clinical, molecular and genetic variables. By employing conservative molecular diagnoses and introducing Alzheimer's disease continuum cases to the SPARE-BA model training, we achieved more dissociable neuroanatomical biomarkers of typical brain ageing and Alzheimer's disease.
Collapse
Affiliation(s)
- Gyujoon Hwang
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdulkadir
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Raymond Pomponio
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanweer Rashid
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aristeidis Sotiras
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Dhivya Srinivasan
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - John C. Morris
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nick R. Bryan
- Department of Diagnostic Medicine, University of Texas, Austin, TX, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Ilya M. Nasrallah
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David A. Wolk
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology and Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
48
|
Young Adults with a Parent with Dementia Show Early Abnormalities in Brain Activity and Brain Volume in the Hippocampus: A Matched Case-Control Study. Brain Sci 2022; 12:brainsci12040496. [PMID: 35448026 PMCID: PMC9028426 DOI: 10.3390/brainsci12040496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Having a parent with Alzheimer’s disease (AD) and related dementias confers a risk for developing these types of neurocognitive disorders in old age, but the mechanisms underlying this risk are understudied. Although the hippocampus is often one of the earliest brain regions to undergo change in the AD process, we do not know how early in the lifespan such changes might occur or whether they differ early in the lifespan as a function of family history of AD. Using a rare sample, young adults with a parent with late-onset dementia, we investigated whether brain abnormalities could already be detected compared with a matched sample. Moreover, we employed simple yet novel techniques to characterize resting brain activity (mean and standard deviation) and brain volume in the hippocampus. Young adults with a parent with dementia showed greater resting mean activity and smaller volumes in the left hippocampus compared to young adults without a parent with dementia. Having a parent with AD or a related dementia was associated with early aberrations in brain function and structure. This early hippocampal dysfunction may be due to aberrant neural firing, which may increase the risk for a diagnosis of dementia in old age.
Collapse
|
49
|
Petrican R, Fornito A, Jones N. Psychological Resilience and Neurodegenerative Risk: A Connectomics-Transcriptomics Investigation in Healthy Adolescent and Middle-Aged Females. Neuroimage 2022; 255:119209. [PMID: 35429627 DOI: 10.1016/j.neuroimage.2022.119209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adverse life events can inflict substantial long-term damage, which, paradoxically, has been posited to stem from initially adaptative responses to the challenges encountered in one's environment. Thus, identification of the mechanisms linking resilience against recent stressors to longer-term psychological vulnerability is key to understanding optimal functioning across multiple timescales. To address this issue, our study tested the relevance of neuro-reproductive maturation and senescence, respectively, to both resilience and longer-term risk for pathologies characterised by accelerated brain aging, specifically, Alzheimer's Disease (AD). Graph theoretical and partial least squares analyses were conducted on multimodal imaging, reported biological aging and recent adverse experience data from the Lifespan Human Connectome Project (HCP). Availability of reproductive maturation/senescence measures restricted our investigation to adolescent (N =178) and middle-aged (N=146) females. Psychological resilience was linked to age-specific brain senescence patterns suggestive of precocious functional development of somatomotor and control-relevant networks (adolescence) and earlier aging of default mode and salience/ventral attention systems (middle adulthood). Biological aging showed complementary associations with the neural patterns relevant to resilience in adolescence (positive relationship) versus middle-age (negative relationship). Transcriptomic and expression quantitative trait locus data analyses linked the neural aging patterns correlated with psychological resilience in middle adulthood to gene expression patterns suggestive of increased AD risk. Our results imply a partially antagonistic relationship between resilience against proximal stressors and longer-term psychological adjustment in later life. They thus underscore the importance of fine-tuning extant views on successful coping by considering the multiple timescales across which age-specific processes may unfold.
Collapse
Affiliation(s)
- Raluca Petrican
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Natalie Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
50
|
Leparulo A, Bisio M, Redolfi N, Pozzan T, Vassanelli S, Fasolato C. Accelerated Aging Characterizes the Early Stage of Alzheimer's Disease. Cells 2022; 11:238. [PMID: 35053352 PMCID: PMC8774248 DOI: 10.3390/cells11020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
For Alzheimer's disease (AD), aging is the main risk factor, but whether cognitive impairments due to aging resemble early AD deficits is not yet defined. When working with mouse models of AD, the situation is just as complicated, because only a few studies track the progression of the disease at different ages, and most ignore how the aging process affects control mice. In this work, we addressed this problem by comparing the aging process of PS2APP (AD) and wild-type (WT) mice at the level of spontaneous brain electrical activity under anesthesia. Using local field potential recordings, obtained with a linear probe that traverses the posterior parietal cortex and the entire hippocampus, we analyzed how multiple electrical parameters are modified by aging in AD and WT mice. With this approach, we highlighted AD specific features that appear in young AD mice prior to plaque deposition or that are delayed at 12 and 16 months of age. Furthermore, we identified aging characteristics present in WT mice but also occurring prematurely in young AD mice. In short, we found that reduction in the relative power of slow oscillations (SO) and Low/High power imbalance are linked to an AD phenotype at its onset. The loss of SO connectivity and cortico-hippocampal coupling between SO and higher frequencies as well as the increase in UP-state and burst durations are found in young AD and old WT mice. We show evidence that the aging process is accelerated by the mutant PS2 itself and discuss such changes in relation to amyloidosis and gliosis.
Collapse
Affiliation(s)
- Alessandro Leparulo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| | - Marta Bisio
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
- Neuroscience Institute-Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2B, 35129 Padua, Italy
| | - Stefano Vassanelli
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
- Padua Neuroscience Center (PNC), University of Padua, Via G. Orus 2B, 35129 Padua, Italy
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| |
Collapse
|