1
|
Lopez ET, Corsi MC, Danieli A, Antoniazzi L, Angiolelli M, Bonanni P, Sorrentino P, Duma GM. Dynamic reconfiguration of aperiodic brain activity supports cognitive functioning in epilepsy: A neural fingerprint identification. iScience 2025; 28:111497. [PMID: 39758818 PMCID: PMC11699349 DOI: 10.1016/j.isci.2024.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/18/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Temporal lobe epilepsy (TLE) is characterized by alterations of brain dynamic on a large-scale associated with altered cognitive functioning. Here, we aimed at analyzing dynamic reconfiguration of brain activity, using the neural fingerprint approach, to delineate subject-specific characteristics and their cognitive correlates in TLE. We collected 10 min of resting-state scalp-electroencephalography (EEG, 128 channels), free from epileptiform activity, from 68 TLE patients and 34 controls. The functional network was defined by the spatiotemporal spreading, across cortical regions, of aperiodic bursts of signals' amplitude (neuronal avalanches), encapsulated into the avalanche transition matrix (ATM). The fingerprint analysis of the ATMs revealed more stereotyped patterns in patients with respect to controls, with the greatest stereotypy in bilateral TLE. Finally, indices extracted from individual patterns of brain dynamics correlated with the memory impairment in unilateral TLE. This study helped understand how dynamic brain activity in TLE is shaped and provided patient-specific indices useful for personalized medicine.
Collapse
Affiliation(s)
- Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
| | - Marie-Constance Corsi
- Sorbonne Université, Institut Du Cerveau – Paris Brain Institute -ICM, CNRS, Inria, Inserm, AP-HP, Hopital de La Pitié Salpêtrière, 75013 Paris, France
| | - Alberto Danieli
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy
| | - Lisa Antoniazzi
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy
| | - Marianna Angiolelli
- Unit of Nonlinear Physics and Mathematical Models, Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, 13005 Marseille, France
| | - Paolo Bonanni
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, 13005 Marseille, France
- University of Sassari, Department of Biomedical Sciences, Viale San Pietro, 07100 Sassari, Italy
| | - Gian Marco Duma
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy
| |
Collapse
|
2
|
da Silva Castanheira J, Wiesman AI, Taylor MJ, Baillet S. The Lifespan Evolution of Individualized Neurophysiological Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.624077. [PMID: 39651142 PMCID: PMC11623610 DOI: 10.1101/2024.11.27.624077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
How do neurophysiological traits that characterize individuals evolve across the lifespan? To address this question, we analyzed brief, task-free magnetoencephalographic recordings from over 1,000 individuals aged 4-89. We found that neurophysiological activity is significantly more similar between individuals in childhood than in adulthood, though periodic patterns of brain activity remain reliable markers of individuality across all ages. The cortical regions most critical for determining individuality shift across neurodevelopment and aging, with sensorimotor cortices becoming increasingly prominent in adulthood. These developmental changes in neurophysiology align closely with the expression of cortical genetic systems related to ion transport and neurotransmission, suggesting a growing influence of genetic factors on neurophysiological traits across the lifespan. Notably, this alignment peaks in late adolescence, a critical period when genetic factors significantly shape brain individuality. Overall, our findings highlight the role of sensorimotor regions in defining individual brain traits and reveal how genetic influences on these traits intensify with age. This study advances our understanding of the evolving biological foundations of inter-individual differences. Lay summary This study examines how brain activity reflects the development of individuality across a person's life. Using magnetoencephalography to capture brief recordings of spontaneous brain activity, the researchers distinguished between over 1,000 individuals, spanning ages 4 to 89. They found that the brain regions most associated with individuality change with age: sensory and motor regions become increasingly distinctive in early adulthood, highlighting their role in shaping a person's unique characteristics of brain activity. The study also revealed that changes in brain activity across different ages correspond to specific patterns of gene expression, shedding light on how genetics influence brain individuality. These findings deepen our understanding of the biological foundations of inter-individual differences and how it evolves over the lifespan.
Collapse
|
3
|
Kampel N, Abdellatif F, Shah NJ, Neuner I, Dammers J. Contrastive learning for neural fingerprinting from limited neuroimaging data. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1332747. [PMID: 39605927 PMCID: PMC11598699 DOI: 10.3389/fnume.2024.1332747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Introduction Neural fingerprinting is a technique used to identify individuals based on their unique brain activity patterns. While deep learning techniques have been demonstrated to outperform traditional correlation-based methods, they often require retraining to accommodate new subjects. Furthermore, the limited availability of samples in neuroscience research can impede the quick adoption of deep learning methods, presenting a challenge for their broader application in neural fingerprinting. Methods This study addresses these challenges by using contrastive learning to eliminate the need for retraining with new subjects and developing a data augmentation methodology to enhance model robustness in limited sample size conditions. We utilized the LEMON dataset, comprising 3 Tesla MRI and resting-state fMRI scans from 138 subjects, to compute functional connectivity as a baseline for fingerprinting performance based on correlation metrics. We adapted a recent deep learning model by incorporating data augmentation with short random temporal segments for training and reformulated the fingerprinting task as a contrastive problem, comparing the efficacy of contrastive triplet loss against conventional cross-entropy loss. Results The results of this study confirm that deep learning methods can significantly improve fingerprinting performance over correlation-based methods, achieving an accuracy of about 98% in identifying a single subject out of 138 subjects utilizing 39 different functional connectivity profiles. Discussion The contrastive method showed added value in the "leave subject out" scenario, demonstrating flexibility comparable to correlation-based methods and robustness across different data sizes. These findings suggest that contrastive learning and data augmentation offer a scalable solution for neural fingerprinting, even with limited sample sizes.
Collapse
Affiliation(s)
- Nikolas Kampel
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) – CSD – Center for Simulation and Data Science, Aachen, Germany
| | - Farah Abdellatif
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Aachen Research Alliance (JARA) – BRAIN – Translational Medicine, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-11), Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Aachen Research Alliance (JARA) – CSD – Center for Simulation and Data Science, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) – BRAIN – Translational Medicine, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Jürgen Dammers
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) – CSD – Center for Simulation and Data Science, Aachen, Germany
| |
Collapse
|
4
|
Bennis K, Eustache F, Collette F, Vandewalle G, Hinault T. Daily Dynamics of Resting-State Electroencephalographic Theta and Gamma Fluctuations Are Associated With Cognitive Performance in Healthy Aging. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae152. [PMID: 39243136 DOI: 10.1093/geronb/gbae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVES Healthy age-related cognitive changes are highly heterogeneous across individuals. This variability is increasingly explained through the lens of spontaneous fluctuations of brain activity, now considered a powerful index of age-related changes. However, brain activity is a biological process modulated by circadian rhythms, and how these fluctuations evolve throughout the day is under investigation. METHODS We analyzed data from 101 healthy late middle-aged participants from the Cognitive Fitness in Aging study (68 women and 33 men; aged 50-69 years). Participants completed 5 electroencephalographic (EEG) recordings of spontaneous resting-state activity on the same day. We used weighted phase-lag index (wPLI) analyses as an index of the functional synchrony between brain regions couplings, and we computed daily global PLI fluctuation rates of the 5 recordings to assess the association with cognitive performance and β-amyloid and tau/neuroinflammation pathological markers. RESULTS We found that theta and gamma daily fluctuations in the salience-control executive internetwork (SN-CEN) are associated with distinct mechanisms underlying cognitive heterogeneity in aging. Higher levels of SN-CEN theta daily fluctuations appear to be deleterious for memory performance and were associated with higher tau/neuroinflammation rates. In contrast, higher levels of gamma daily fluctuations are positively associated with executive performance and were associated with lower rate of β-amyloid deposition. DISCUSSION Thus, accounting for daily EEG fluctuations of brain activity contributes to a better understanding of subtle brain changes underlying individuals' cognitive performance in healthy aging. Results also provide arguments for considering the time of day when assessing cognition for old adults in a clinical context.
Collapse
Affiliation(s)
- Kenza Bennis
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| | - Francis Eustache
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| | - Fabienne Collette
- GIGA-CRC-In Vivo Imaging, Université de Liège and Belgian National Fund for Scientific Research, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-CRC-In Vivo Imaging, Université de Liège and Belgian National Fund for Scientific Research, Liège, Belgium
| | - Thomas Hinault
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| |
Collapse
|
5
|
Ramduny J, Kelly C. Connectome-based fingerprinting: reproducibility, precision, and behavioral prediction. Neuropsychopharmacology 2024; 50:114-123. [PMID: 39147868 PMCID: PMC11525788 DOI: 10.1038/s41386-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Functional magnetic resonance imaging-based functional connectivity enables the non-invasive mapping of individual differences in brain functional organization to individual differences in a vast array of behavioral phenotypes. This flexibility has renewed the search for neuroimaging-based biomarkers that exhibit reproducibility, prediction, and precision. Functional connectivity-based measures that share these three characteristics are key to achieving this goal. Here, we review the functional connectome fingerprinting approach and discuss its value, not only as a simple and intuitive conceptualization of the "functional connectome" that provides new insights into how the connectome is altered in association with psychiatric symptoms, but also as a straightforward and interpretable method for indexing the reproducibility of functional connectivity-based measures. We discuss how these advantages provide new avenues for strengthening reproducibility, precision, and behavioral prediction for functional connectomics and we consider new directions toward discovering better biomarkers for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jivesh Ramduny
- Department of Psychology, Yale University, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| | - Clare Kelly
- School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Pourmotabbed H, Clarke DF, Chang C, Babajani-Feremi A. Genetic fingerprinting with heritable phenotypes of the resting-state brain network topology. Commun Biol 2024; 7:1221. [PMID: 39349968 PMCID: PMC11443053 DOI: 10.1038/s42003-024-06807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Cognitive, behavioral, and disease traits are influenced by both genetic and environmental factors. Individual differences in these traits have been associated with graph theoretical properties of resting-state networks, indicating that variations in connectome topology may be driven by genetics. In this study, we establish the heritability of global and local graph properties of resting-state networks derived from functional MRI (fMRI) and magnetoencephalography (MEG) using a large sample of twins and non-twin siblings from the Human Connectome Project. We examine the heritability of MEG in the source space, providing a more accurate estimate of genetic influences on electrophysiological networks. Our findings show that most graph measures are more heritable for MEG compared to fMRI and the heritability for MEG is greater for amplitude compared to phase synchrony in the delta, high beta, and gamma frequency bands. This suggests that the fast neuronal dynamics in MEG offer unique insights into the genetic basis of brain network organization. Furthermore, we demonstrate that brain network features can serve as genetic fingerprints to accurately identify pairs of identical twins within a cohort. These results highlight novel opportunities to relate individual connectome signatures to genetic mechanisms underlying brain function.
Collapse
Affiliation(s)
- Haatef Pourmotabbed
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Dave F Clarke
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Abbas Babajani-Feremi
- Magnetoencephalography (MEG) Lab, The Norman Fixel Institute of Neurological Diseases, Gainesville, FL, USA.
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Stampacchia S, Asadi S, Tomczyk S, Ribaldi F, Scheffler M, Lövblad KO, Pievani M, Fall AB, Preti MG, Unschuld PG, Van De Ville D, Blanke O, Frisoni GB, Garibotto V, Amico E. Fingerprints of brain disease: connectome identifiability in Alzheimer's disease. Commun Biol 2024; 7:1169. [PMID: 39294332 PMCID: PMC11411139 DOI: 10.1038/s42003-024-06829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
Functional connectivity patterns in the human brain, like the friction ridges of a fingerprint, can uniquely identify individuals. Does this "brain fingerprint" remain distinct even during Alzheimer's disease (AD)? Using fMRI data from healthy and pathologically ageing subjects, we find that individual functional connectivity profiles remain unique and highly heterogeneous during mild cognitive impairment and AD. However, the patterns that make individuals identifiable change with disease progression, revealing a reconfiguration of the brain fingerprint. Notably, connectivity shifts towards functional system connections in AD and lower-order cognitive functions in early disease stages. These findings emphasize the importance of focusing on individual variability rather than group differences in AD studies. Individual functional connectomes could be instrumental in creating personalized models of AD progression, predicting disease course, and optimizing treatments, paving the way for personalized medicine in AD management.
Collapse
Affiliation(s)
- Sara Stampacchia
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
| | - Saina Asadi
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Olof Lövblad
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- Neurodiagnostic and Neurointerventional Division, Geneva University Hospitals, Geneva, Switzerland
| | - Michela Pievani
- Lab of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Aïda B Fall
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Paul G Unschuld
- Division of Geriatric Psychiatry, University Hospitals of Geneva (HUG), 1226, Thônex, Switzerland
- Department of Psychiatry, University of Geneva (UniGE), 1205, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Olaf Blanke
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Enrico Amico
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- School of Mathematics, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
8
|
Dimitriadis SI. ℛSCZ: A Riemannian schizophrenia diagnosis framework based on the multiplexity of EEG-based dynamic functional connectivity patterns. Comput Biol Med 2024; 180:108862. [PMID: 39068901 DOI: 10.1016/j.compbiomed.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Abnormal electrophysiological (EEG) activity has been largely reported in schizophrenia (SCZ). In the last decade, research has focused to the automatic diagnosis of SCZ via the investigation of an EEG aberrant activity and connectivity linked to this mental disorder. These studies followed various preprocessing steps of EEG activity focusing on frequency-dependent functional connectivity brain network (FCBN) construction disregarding the topological dependency among edges. FCBN belongs to a family of symmetric positive definite (SPD) matrices forming the Riemannian manifold. Due to its unique geometric properties, the whole analysis of FCBN can be performed on the Riemannian geometry of the SPD space. The advantage of the analysis of FCBN on the SPD space is that it takes into account all the pairwise interdependencies as a whole. However, only a few studies have adopted a FCBN analysis on the SPD manifold, while no study exists on the analysis of dynamic FCBN (dFCBN) tailored to SCZ. In the present study, I analyzed two open EEG-SCZ datasets under a Riemannian geometry of SPD matrices for the dFCBN analysis proposing also a multiplexity index that quantifies the associations of multi-frequency brainwave patterns. I adopted a machine learning procedure employing a leave-one-subject-out cross-validation (LOSO-CV) using snapshots of dFCBN from (N-1) subjects to train a battery of classifiers. Each classifier operated in the inter-subject dFCBN distances of sample covariance matrices (SCMs) following a rhythm-dependent decision and a multiplex-dependent one. The proposed ℛSCZ decoder supported both the Riemannian geometry of SPD and the multiplexity index DC reaching an absolute accuracy (100 %) in both datasets in the virtual default mode network (DMN) source space.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall D'Hebron 171, 08035, Barcelona, Spain; Institut de Neurociencies, University of Barcelona, Municipality of Horta-Guinardó, 08035, Barcelona, Spain; Integrative Neuroimaging Lab, Thessaloniki, 55133, Makedonia, Greece; Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| |
Collapse
|
9
|
Wilson LE, Castanheira JDS, Kinder BL, Baillet S. Model selection for spectral parameterization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606216. [PMID: 39149403 PMCID: PMC11326208 DOI: 10.1101/2024.08.01.606216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Neurophysiological brain activity comprises rhythmic (periodic) and arrhythmic (aperiodic) signal elements, which are increasingly studied in relation to behavioral traits and clinical symptoms. Current methods for spectral parameterization of neural recordings rely on user-dependent parameter selection, which challenges the replicability and robustness of findings. Here, we introduce a principled approach to model selection, relying on Bayesian information criterion, for static and time-resolved spectral parameterization of neurophysiological data. We present extensive tests of the approach with ground-truth and empirical magnetoencephalography recordings. Data-driven model selection enhances both the specificity and sensitivity of spectral and spectrogram decompositions, even in non-stationary contexts. Overall, the proposed spectral decomposition with data-driven model selection minimizes the reliance on user expertise and subjective choices, enabling more robust, reproducible, and interpretable research findings.
Collapse
Affiliation(s)
| | | | | | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| |
Collapse
|
10
|
Jin X, Yang X, Kong W, Zhu L, Tang J, Peng Y, Ding Y, Zhao Q. TSFAN: tensorized spatial-frequency attention network with domain adaptation for cross-session EEG-based biometric recognition. J Neural Eng 2024; 21:046005. [PMID: 38866001 DOI: 10.1088/1741-2552/ad5761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Objective.Electroencephalogram (EEG) signals are promising biometrics owning to their invisibility, adapting to the application scenarios with high-security requirements. However, It is challenging to explore EEG identity features without the interference of device and state differences of the subject across sessions. Existing methods treat training sessions as a single domain, affected by the different data distribution among sessions. Although most multi-source unsupervised domain adaptation (MUDA) methods bridge the domain gap between multiple source and target domains individually, relationships among the domain-invariant features of each distribution alignment are neglected.Approach.In this paper, we propose a MUDA method, Tensorized Spatial-Frequency Attention Network (TSFAN), to assist the performance of the target domain for EEG-based biometric recognition. Specifically, significant relationships of domain-invariant features are modeled via a tensorized attention mechanism. It jointly incorporates appropriate common spatial-frequency representations of pairwise source and target but also cross-source domains, without the effect of distribution discrepancy among source domains. Additionally, considering the curse of dimensionality, our TSFAN is approximately represented in Tucker format. Benefiting the low-rank Tucker Network, the TSFAN can scale linearly in the number of domains, providing us the great flexibility to extend TSFAN to the case associated with an arbitrary number of sessions.Main results.Extensive experiments on the representative benchmarks demonstrate the effectiveness of TSFAN in EEG-based biometric recognition, outperforming state-of-the-art approaches, as verified by cross-session validation.Significance.The proposed TSFAN aims to investigate the presence of consistent EEG identity features across sessions. It is achieved by utilizing a novel tensorized attention mechanism that collaborates intra-source transferable information with inter-source interactions, while remaining unaffected by domain shifts in multiple source domains. Furthermore, the electrode selection shows that EEG-based identity features across sessions are distributed across brain regions, and 20 electrodes based on 10-20 standard system are able to extract stable identity information.
Collapse
Affiliation(s)
- Xuanyu Jin
- School of Computer Science, Hangzhou Dianzi University, Hangzhou, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xinyu Yang
- School of Computer Science, Hangzhou Dianzi University, Hangzhou, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, People's Republic of China
| | - Wanzeng Kong
- School of Computer Science, Hangzhou Dianzi University, Hangzhou, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, People's Republic of China
| | - Li Zhu
- School of Computer Science, Hangzhou Dianzi University, Hangzhou, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jiajia Tang
- School of Computer Science, Hangzhou Dianzi University, Hangzhou, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yong Peng
- School of Computer Science, Hangzhou Dianzi University, Hangzhou, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yu Ding
- Netease Fuxi AI Lab, NetEase, Hangzhou, People's Republic of China
| | - Qibin Zhao
- Tensor Learning Unit, Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| |
Collapse
|
11
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. EBioMedicine 2024; 105:105201. [PMID: 38908100 PMCID: PMC11253223 DOI: 10.1016/j.ebiom.2024.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Research in healthy young adults shows that characteristic patterns of brain activity define individual "brain-fingerprints" that are unique to each person. However, variability in these brain-fingerprints increases in individuals with neurological conditions, challenging the clinical relevance and potential impact of the approach. Our study shows that brain-fingerprints derived from neurophysiological brain activity are associated with pathophysiological and clinical traits of individual patients with Parkinson's disease (PD). METHODS We created brain-fingerprints from task-free brain activity recorded through magnetoencephalography in 79 PD patients and compared them with those from two independent samples of age-matched healthy controls (N = 424 total). We decomposed brain activity into arrhythmic and rhythmic components, defining distinct brain-fingerprints for each type from recording durations of up to 4 min and as short as 30 s. FINDINGS The arrhythmic spectral components of cortical activity in patients with Parkinson's disease are more variable over short periods, challenging the definition of a reliable brain-fingerprint. However, by isolating the rhythmic components of cortical activity, we derived brain-fingerprints that distinguished between patients and healthy controls with about 90% accuracy. The most prominent cortical features of the resulting Parkinson's brain-fingerprint are mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also demonstrate that Parkinson's symptom laterality can be decoded directly from cortical neurophysiological activity. Furthermore, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. INTERPRETATION The increased moment-to-moment variability of arrhythmic brain-fingerprints challenges patient differentiation and explains previously published results. We outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and symptom laterality of Parkinson's disease. Thus, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification. Symmetrically, we discuss how rhythmic brain-fingerprints may contribute to the improved identification and testing of therapeutic neurostimulation targets. FUNDING Data collection and sharing for this project was provided by the Quebec Parkinson Network (QPN), the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD; release 6.0) program, the Cambridge Centre for Aging Neuroscience (Cam-CAN), and the Open MEG Archives (OMEGA). The QPN is funded by a grant from Fonds de Recherche du Québec - Santé (FRQS). PREVENT-AD was launched in 2011 as a $13.5 million, 7-year public-private partnership using funds provided by McGill University, the FRQS, an unrestricted research grant from Pfizer Canada, the Levesque Foundation, the Douglas Hospital Research Centre and Foundation, the Government of Canada, and the Canada Fund for Innovation. The Brainstorm project is supported by funding to SB from the NIH (R01-EB026299-05). Further funding to SB for this study included a Discovery grant from the Natural Sciences and Engineering Research Council of Canada of Canada (436355-13), and the CIHR Canada research Chair in Neural Dynamics of Brain Systems (CRC-2017-00311).
Collapse
Affiliation(s)
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Lin Y, Huang S, Mao J, Li M, Haihambo N, Wang F, Liang Y, Chen W, Han C. The neural oscillatory mechanism underlying human brain fingerprint recognition using a portable EEG acquisition device. Neuroimage 2024; 294:120637. [PMID: 38714216 DOI: 10.1016/j.neuroimage.2024.120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024] Open
Abstract
In recent years, brainprint recognition has emerged as a novel method of personal identity verification. Although studies have demonstrated the feasibility of this technology, some limitations hinder its further development into the society, such as insufficient efficiency (extended wear time for multi-channel EEG cap), complex experimental paradigms (more time in learning and completing experiments), and unclear neurobiological characteristics (lack of intuitive biomarkers and an inability to eliminate the impact of noise on individual differences). Overall, these limitations are due to the incomplete understanding of the underlying neural mechanisms. Therefore, this study aims to investigate the neural mechanisms behind brainwave recognition and simplify the operation process. We recorded prefrontal resting-state EEG data from 40 participants, which is followed up over nine months using a single-channel portable brainwave device. We found that portable devices can effectively and stably capture the characteristics of different subjects in the alpha band (8-13Hz) over long periods, as well as capturing their individual differences (no alpha peak, 1 alpha peak, or 2 alpha peaks). Through correlation analysis, alpha-band activity can reveal the uniqueness of the subjects compared to others within one minute. We further used a descriptive model to dissect the oscillatory and non-oscillatory components in the alpha band, demonstrating the different contributions of fine oscillatory features to individual differences (especially amplitude and bandwidth). Our study validated the feasibility of portable brainwave devices in brainwave recognition and the underlying neural oscillation mechanisms. The fine characteristics of various alpha oscillations will contribute to the accuracy of brainwave recognition, providing new insights for the development of future brainwave recognition technology.
Collapse
Affiliation(s)
- Yuchen Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shaojia Huang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Jidong Mao
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fang Wang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Yuping Liang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Wufang Chen
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Nagy P, Tóth B, Winkler I, Boncz Á. The effects of spatial leakage correction on the reliability of EEG-based functional connectivity networks. Hum Brain Mapp 2024; 45:e26747. [PMID: 38825981 PMCID: PMC11144954 DOI: 10.1002/hbm.26747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Electroencephalography (EEG) functional connectivity (FC) estimates are confounded by the volume conduction problem. This effect can be greatly reduced by applying FC measures insensitive to instantaneous, zero-lag dependencies (corrected measures). However, numerous studies showed that FC measures sensitive to volume conduction (uncorrected measures) exhibit higher reliability and higher subject-level identifiability. We tested how source reconstruction contributed to the reliability difference of EEG FC measures on a large (n = 201) resting-state data set testing eight FC measures (including corrected and uncorrected measures). We showed that the high reliability of uncorrected FC measures in resting state partly stems from source reconstruction: idiosyncratic noise patterns define a baseline resting-state functional network that explains a significant portion of the reliability of uncorrected FC measures. This effect remained valid for template head model-based, as well as individual head model-based source reconstruction. Based on our findings we made suggestions how to best use spatial leakage corrected and uncorrected FC measures depending on the main goals of the study.
Collapse
Affiliation(s)
- Péter Nagy
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Faculty of Electrical Engineering and Informatics, Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
| | - Brigitta Tóth
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - István Winkler
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Ádám Boncz
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
14
|
Haakana J, Merz S, Kaski S, Renvall H, Salmelin R. Bayesian reduced rank regression models generalizable neural fingerprints that differentiate between individuals in magnetoencephalography data. Eur J Neurosci 2024; 59:2320-2335. [PMID: 38483260 DOI: 10.1111/ejn.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 02/08/2024] [Indexed: 05/08/2024]
Abstract
Recent magnetoencephalography (MEG) studies have reported that functional connectivity (FC) and power spectra can be used as neural fingerprints in differentiating individuals. Such studies have mainly used correlations between measurement sessions to distinguish individuals from each other. However, it has remained unclear whether such correlations might reflect a more generalizable principle of individually distinctive brain patterns. Here, we evaluated a machine-learning based approach, termed latent-noise Bayesian reduced rank regression (BRRR) as a means of modelling individual differences in the resting-state MEG data of the Human Connectome Project (HCP), using FC and power spectra as neural features. First, we verified that BRRR could model and reproduce the differences between metrics that correlation-based fingerprinting yields. We trained BRRR models to distinguish individuals based on data from one measurement and used the models to identify subsequent measurement sessions of those same individuals. The best performing BRRR models, using only 20 spatiospectral components, were able to identify subjects across measurement sessions with over 90% accuracy, approaching the highest correlation-based accuracies. Using cross-validation, we then determined whether that BRRR model could generalize to unseen subjects, successfully classifying the measurement sessions of novel individuals with over 80% accuracy. The results demonstrate that individual neurofunctional differences can be reliably extracted from MEG data with a low-dimensional predictive model and that the model is able to classify novel subjects.
Collapse
Affiliation(s)
- Joonas Haakana
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Susanne Merz
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Samuel Kaski
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Hanna Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
15
|
Ambrosanio M, Troisi Lopez E, Polverino A, Minino R, Cipriano L, Vettoliere A, Granata C, Mandolesi L, Curcio G, Sorrentino G, Sorrentino P. The Effect of Sleep Deprivation on Brain Fingerprint Stability: A Magnetoencephalography Validation Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2301. [PMID: 38610512 PMCID: PMC11014248 DOI: 10.3390/s24072301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
This study examined the stability of the functional connectome (FC) over time using fingerprint analysis in healthy subjects. Additionally, it investigated how a specific stressor, namely sleep deprivation, affects individuals' differentiation. To this aim, 23 healthy young adults underwent magnetoencephalography (MEG) recording at three equally spaced time points within 24 h: 9 a.m., 9 p.m., and 9 a.m. of the following day after a night of sleep deprivation. The findings indicate that the differentiation was stable from morning to evening in all frequency bands, except in the delta band. However, after a night of sleep deprivation, the stability of the FCs was reduced. Consistent with this observation, the reduced differentiation following sleep deprivation was found to be negatively correlated with the effort perceived by participants in completing the cognitive task during sleep deprivation. This correlation suggests that individuals with less stable connectomes following sleep deprivation experienced greater difficulty in performing cognitive tasks, reflecting increased effort.
Collapse
Affiliation(s)
- Michele Ambrosanio
- Department of Economics, Law, Cybersecurity and Sports Sciences (DiSEGIM), University of Naples “Parthenope”, 80035 Nola, Italy
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
| | - Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, 80145 Naples, Italy
| | - Roberta Minino
- Department of Medical, Movement and Wellness Sciences (DiSMMEB), University of Naples “Parthenope”, 80133 Naples, Italy
| | - Lorenzo Cipriano
- Department of Medical, Movement and Wellness Sciences (DiSMMEB), University of Naples “Parthenope”, 80133 Naples, Italy
| | - Antonio Vettoliere
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
| | - Laura Mandolesi
- Department of Humanities, University of Naples Federico II, 80133 Naples, Italy
| | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giuseppe Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
- Institute of Diagnosis and Treatment Hermitage Capodimonte, 80145 Naples, Italy
- Department of Medical, Movement and Wellness Sciences (DiSMMEB), University of Naples “Parthenope”, 80133 Naples, Italy
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, 13005 Marseille, France
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
16
|
Amoruso L, García AM, Pusil S, Timofeeva P, Quiñones I, Carreiras M. Decoding bilingualism from resting-state oscillatory network organization. Ann N Y Acad Sci 2024; 1534:106-117. [PMID: 38419368 DOI: 10.1111/nyas.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Can lifelong bilingualism be robustly decoded from intrinsic brain connectivity? Can we determine, using a spectrally resolved approach, the oscillatory networks that better predict dual-language experience? We recorded resting-state magnetoencephalographic activity in highly proficient Spanish-Basque bilinguals and Spanish monolinguals, calculated functional connectivity at canonical frequency bands, and derived topological network properties using graph analysis. These features were fed into a machine learning classifier to establish how robustly they discriminated between the groups. The model showed excellent classification (AUC: 0.91 ± 0.12) between individuals in each group. The key drivers of classification were network strength in beta (15-30 Hz) and delta (2-4 Hz) rhythms. Further characterization of these networks revealed the involvement of temporal, cingulate, and fronto-parietal hubs likely underpinning the language and default-mode networks (DMNs). Complementary evidence from a correlation analysis showed that the top-ranked features that better discriminated individuals during rest also explained interindividual variability in second language (L2) proficiency within bilinguals, further supporting the robustness of the machine learning model in capturing trait-like markers of bilingualism. Overall, our results show that long-term experience with an L2 can be "brain-read" at a fine-grained level from resting-state oscillatory network organization, highlighting its pervasive impact, particularly within language and DMN networks.
Collapse
Affiliation(s)
- Lucia Amoruso
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, USA
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Sandra Pusil
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Polina Timofeeva
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Ileana Quiñones
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Manuel Carreiras
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| |
Collapse
|
17
|
Mallaroni P, Mason NL, Kloft L, Reckweg JT, van Oorsouw K, Toennes SW, Tolle HM, Amico E, Ramaekers JG. Shared functional connectome fingerprints following ritualistic ayahuasca intake. Neuroimage 2024; 285:120480. [PMID: 38061689 DOI: 10.1016/j.neuroimage.2023.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
The knowledge that brain functional connectomes are unique and reliable has enabled behaviourally relevant inferences at a subject level. However, whether such "fingerprints" persist under altered states of consciousness is unknown. Ayahuasca is a potent serotonergic psychedelic which produces a widespread dysregulation of functional connectivity. Used communally in religious ceremonies, its shared use may highlight relevant novel interactions between mental state and functional connectome (FC) idiosyncrasy. Using 7T fMRI, we assessed resting-state static and dynamic FCs for 21 Santo Daime members after collective ayahuasca intake in an acute, within-subject study. Here, connectome fingerprinting revealed FCs showed reduced idiosyncrasy, accompanied by a spatiotemporal reallocation of keypoint edges. Importantly, we show that interindividual differences in higher-order FC motifs are relevant to experiential phenotypes, given that they can predict perceptual drug effects. Collectively, our findings offer an example of how individualised connectivity markers can be used to trace a subject's FC across altered states of consciousness.
Collapse
Affiliation(s)
- Pablo Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Lilian Kloft
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Kim van Oorsouw
- Department of Forensic Psychology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Stefan W Toennes
- Institute of Legal Medicine, University Hospital, Goethe University, Frankfurt/Main, Germany
| | | | | | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
18
|
Dimitriadis SI, Routley B, Linden DEJ, Singh KD. Multiplexity of human brain oscillations as a personal brain signature. Hum Brain Mapp 2023; 44:5624-5640. [PMID: 37668332 PMCID: PMC10619372 DOI: 10.1002/hbm.26466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023] Open
Abstract
Human individuality is likely underpinned by the constitution of functional brain networks that ensure consistency of each person's cognitive and behavioral profile. These functional networks should, in principle, be detectable by noninvasive neurophysiology. We use a method that enables the detection of dominant frequencies of the interaction between every pair of brain areas at every temporal segment of the recording period, the dominant coupling modes (DoCM). We apply this method to brain oscillations, measured with magnetoencephalography (MEG) at rest in two independent datasets, and show that the spatiotemporal evolution of DoCMs constitutes an individualized brain fingerprint. Based on this successful fingerprinting we suggest that DoCMs are important targets for the investigation of neural correlates of individual psychological parameters and can provide mechanistic insight into the underlying neurophysiological processes, as well as their disturbance in brain diseases.
Collapse
Affiliation(s)
- Stavros I. Dimitriadis
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of MedicineCardiff UniversityCardiffWalesUK
- Department of Clinical Psychology and PsychobiologyUniversity of BarcelonaBarcelonaSpain
| | - B. Routley
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
| | - David E. J. Linden
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of MedicineCardiff UniversityCardiffWalesUK
- School for Mental Health and Neuroscience, Faculty of Health Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Krish D. Singh
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
| |
Collapse
|
19
|
Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023; 24:747-760. [PMID: 37848663 DOI: 10.1038/s41583-023-00752-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes - such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics - can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.
Collapse
Affiliation(s)
- Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
20
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.03.23285441. [PMID: 36798232 PMCID: PMC9934726 DOI: 10.1101/2023.02.03.23285441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In this study, we investigate the clinical potential of brain-fingerprints derived from electrophysiological brain activity for diagnostics and progression monitoring of Parkinson's disease (PD). We obtained brain-fingerprints from PD patients and age-matched healthy controls using short, task-free magnetoencephalographic recordings. The rhythmic components of the individual brain-fingerprint distinguished between patients and healthy participants with approximately 90% accuracy. The most prominent cortical features of the Parkinson's brain-fingerprint mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also show that Parkinson's disease stages can be decoded directly from cortical neurophysiological activity. Additionally, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. We further demonstrate that the arrhythmic components of cortical activity are more variable over short periods of time in patients with Parkinson's disease than in healthy controls, making individual differentiation between patients based on these features more challenging and explaining previous negative published results. Overall, we outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and clinical staging of Parkinson's disease. For this reason, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification and to the improved identification and testing of therapeutic neurostimulation targets.
Collapse
Affiliation(s)
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Justine Y. Hansen
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | | | | |
Collapse
|
21
|
Guan Y, Ma H, Liu J, Xu L, Zhang Y, Tian L. The abilities of movie-watching functional connectivity in individual identifications and individualized predictions. Brain Imaging Behav 2023; 17:628-638. [PMID: 37553449 DOI: 10.1007/s11682-023-00785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 08/10/2023]
Abstract
Quite a few studies have been performed based on movie-watching functional connectivity (FC). As compared to its resting-state counterpart, however, there is still much to know about its abilities in individual identifications and individualized predictions. To pave the way for appropriate usage of movie-watching FC, we systemically evaluated the minimum number of time points, as well as the exact functional networks, supporting individual identifications and individualized predictions of apparent traits based on it. We performed the study based on the 7T movie-watching fMRI data included in the HCP S1200 Release, and took IQ as the test case for the prediction analyses. The results indicate that movie-watching FC based on only 15 time points can support successful individual identifications (99.47%), and the connectivity contributed more to identifications were much associated with higher-order cognitive processes (the secondary visual network, the frontoparietal network and the posterior multimodal network). For individualized predictions of IQ, it was found that successful predictions necessitated 60 time points (predicted vs. actual IQ correlation significant at P < 0.05, based on 5,000 permutations), and the prediction accuracy increased logarithmically with the number of time points used for connectivity calculation. Furthermore, the connectivity that contributed more to individual identifications exhibited the strongest prediction ability. Collectively, our findings demonstrate that movie-watching FC can capture rich information about human brain function, and its ability in individualized predictions depends heavily on the length of fMRI scans.
Collapse
Affiliation(s)
- Yun Guan
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
- Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044, China
| | - Hao Ma
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiangcong Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Le Xu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yang Zhang
- Department of Orthopedics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Lixia Tian
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
22
|
Baracchini G, Zhou Y, da Silva Castanheira J, Hansen JY, Rieck J, Turner GR, Grady CL, Misic B, Nomi J, Uddin LQ, Spreng RN. The biological role of local and global fMRI BOLD signal variability in human brain organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563476. [PMID: 37961684 PMCID: PMC10634715 DOI: 10.1101/2023.10.22.563476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Variability drives the organization and behavior of complex systems, including the human brain. Understanding the variability of brain signals is thus necessary to broaden our window into brain function and behavior. Few empirical investigations of macroscale brain signal variability have yet been undertaken, given the difficulty in separating biological sources of variance from artefactual noise. Here, we characterize the temporal variability of the most predominant macroscale brain signal, the fMRI BOLD signal, and systematically investigate its statistical, topographical and neurobiological properties. We contrast fMRI acquisition protocols, and integrate across histology, microstructure, transcriptomics, neurotransmitter receptor and metabolic data, fMRI static connectivity, and empirical and simulated magnetoencephalography data. We show that BOLD signal variability represents a spatially heterogeneous, central property of multi-scale multi-modal brain organization, distinct from noise. Our work establishes the biological relevance of BOLD signal variability and provides a lens on brain stochasticity across spatial and temporal scales.
Collapse
Affiliation(s)
- Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Yigu Zhou
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jason da Silva Castanheira
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Justine Y. Hansen
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Gary R. Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - Cheryl L. Grady
- Rotman Research Institute at Baycrest, and Department of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jason Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
St-Onge F, Javanray M, Pichet Binette A, Strikwerda-Brown C, Remz J, Spreng RN, Shafiei G, Misic B, Vachon-Presseau É, Villeneuve S. Functional connectome fingerprinting across the lifespan. Netw Neurosci 2023; 7:1206-1227. [PMID: 37781144 PMCID: PMC10473304 DOI: 10.1162/netn_a_00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 10/03/2023] Open
Abstract
Systematic changes have been observed in the functional architecture of the human brain with advancing age. However, functional connectivity (FC) is also a powerful feature to detect unique "connectome fingerprints," allowing identification of individuals among their peers. Although fingerprinting has been robustly observed in samples of young adults, the reliability of this approach has not been demonstrated across the lifespan. We applied the fingerprinting framework to the Cambridge Centre for Ageing and Neuroscience cohort (n = 483 aged 18 to 89 years). We found that individuals are "fingerprintable" (i.e., identifiable) across independent functional MRI scans throughout the lifespan. We observed a U-shape distribution in the strength of "self-identifiability" (within-individual correlation across modalities), and "others-identifiability" (between-individual correlation across modalities), with a decrease from early adulthood into middle age, before improving in older age. FC edges contributing to self-identifiability were not restricted to specific brain networks and were different between individuals across the lifespan sample. Self-identifiability was additionally associated with regional brain volume. These findings indicate that individual participant-level identification is preserved across the lifespan despite the fact that its components are changing nonlinearly.
Collapse
Affiliation(s)
- Frédéric St-Onge
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Mohammadali Javanray
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Jordana Remz
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - R. Nathan Spreng
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Golia Shafiei
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Étienne Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, Canada
| | - Sylvia Villeneuve
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
24
|
Shafiei G, Fulcher BD, Voytek B, Satterthwaite TD, Baillet S, Misic B. Neurophysiological signatures of cortical micro-architecture. Nat Commun 2023; 14:6000. [PMID: 37752115 PMCID: PMC10522715 DOI: 10.1038/s41467-023-41689-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6800 time-series features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is co-localized with multiple micro-architectural features, including gene expression gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ben D Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
25
|
Kampel N, Kiefer CM, Shah NJ, Neuner I, Dammers J. Neural fingerprinting on MEG time series using MiniRocket. Front Neurosci 2023; 17:1229371. [PMID: 37799343 PMCID: PMC10547883 DOI: 10.3389/fnins.2023.1229371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Neural fingerprinting is the identification of individuals in a cohort based on neuroimaging recordings of brain activity. In magneto- and electroencephalography (M/EEG), it is common practice to use second-order statistical measures, such as correlation or connectivity matrices, when neural fingerprinting is performed. These measures or features typically require coupling between signal channels and often ignore the individual temporal dynamics. In this study, we show that, following recent advances in multivariate time series classification, such as the development of the RandOm Convolutional KErnel Transformation (ROCKET) classifier, it is possible to perform classification directly on short time segments from MEG resting-state recordings with remarkably high classification accuracies. In a cohort of 124 subjects, it was possible to assign windows of time series of 1 s in duration to the correct subject with above 99% accuracy. The achieved accuracies are vastly superior to those of previous methods while simultaneously requiring considerably shorter time segments.
Collapse
Affiliation(s)
- Nikolas Kampel
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) – CSD – Center for Simulation and Data Science, Aachen, Germany
| | - Christian M. Kiefer
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Aachen Research Alliance (JARA) – BRAIN – Translational Medicine, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-11), Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Aachen Research Alliance (JARA) – CSD – Center for Simulation and Data Science, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) – BRAIN – Translational Medicine, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Jürgen Dammers
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) – CSD – Center for Simulation and Data Science, Aachen, Germany
| |
Collapse
|
26
|
Sorrentino P, Lopez ET, Romano A, Granata C, Corsi MC, Sorrentino G, Jirsa V. Brain fingerprint is based on the aperiodic, scale-free, neuronal activity. Neuroimage 2023:120260. [PMID: 37392807 DOI: 10.1016/j.neuroimage.2023.120260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Subject differentiation bears the possibility to individualize brain analyses. However, the nature of the processes generating subject-specific features remains unknown. Most of the current literature uses techniques that assume stationarity (e.g., Pearson's correlation), which might fail to capture the non-linear nature of brain activity. We hypothesize that non-linear perturbations (defined as neuronal avalanches in the context of critical dynamics) spread across the brain and carry subject-specific information, contributing the most to differentiability. To test this hypothesis, we compute the avalanche transition matrix (ATM) from source-reconstructed magnetoencephalographic data, as to characterize subject-specific fast dynamics. We perform differentiability analysis based on the ATMs, and compare the performance to that obtained using Pearson's correlation (which assumes stationarity). We demonstrate that selecting the moments and places where neuronal avalanches spread improves differentiation (P < 0.0001, permutation testing), despite the fact that most of the data (i.e., the linear part) are discarded. Our results show that the non-linear part of the brain signals carries most of the subject-specific information, thereby clarifying the nature of the processes that underlie individual differentiation. Borrowing from statistical mechanics, we provide a principled way to link emergent large-scale personalized activations to non-observable, microscopic processes.
Collapse
Affiliation(s)
- Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Universitè, Marseille, France; Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy.
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Antonella Romano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy
| | - Marie Constance Corsi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
| | - Giuseppe Sorrentino
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy; Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille Universitè, Marseille, France
| |
Collapse
|
27
|
Rhodes N, Rea M, Boto E, Rier L, Shah V, Hill RM, Osborne J, Doyle C, Holmes N, Coleman SC, Mullinger K, Bowtell R, Brookes MJ. Measurement of Frontal Midline Theta Oscillations using OPM-MEG. Neuroimage 2023; 271:120024. [PMID: 36918138 PMCID: PMC10465234 DOI: 10.1016/j.neuroimage.2023.120024] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Optically pumped magnetometers (OPMs) are an emerging lightweight and compact sensor that can measure magnetic fields generated by the human brain. OPMs enable construction of wearable magnetoencephalography (MEG) systems, which offer advantages over conventional instrumentation. However, when trying to measure signals at low frequency, higher levels of inherent sensor noise, magnetic interference and movement artefact introduce a significant challenge. Accurate characterisation of low frequency brain signals is important for neuroscientific, clinical, and paediatric MEG applications and consequently, demonstrating the viability of OPMs in this area is critical. Here, we undertake measurement of theta band (4-8 Hz) neural oscillations and contrast a newly developed 174 channel triaxial wearable OPM-MEG system with conventional (cryogenic-MEG) instrumentation. Our results show that visual steady state responses at 4 Hz, 6 Hz and 8 Hz can be recorded using OPM-MEG with a signal-to-noise ratio (SNR) that is not significantly different to conventional MEG. Moreover, we measure frontal midline theta oscillations during a 2-back working memory task, again demonstrating comparable SNR for both systems. We show that individual differences in both the amplitude and spatial signature of induced frontal-midline theta responses are maintained across systems. Finally, we show that our OPM-MEG results could not have been achieved without a triaxial sensor array, or the use of postprocessing techniques. Our results demonstrate the viability of OPMs for characterising theta oscillations and add weight to the argument that OPMs can replace cryogenic sensors as the fundamental building block of MEG systems.
Collapse
Affiliation(s)
- Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Karen Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD.
| |
Collapse
|
28
|
Kida T, Tanaka E, Kakigi R, Inui K. Brain-wide network analysis of resting-state neuromagnetic data. Hum Brain Mapp 2023; 44:3519-3540. [PMID: 36988453 DOI: 10.1002/hbm.26295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The present study performed a brain-wide network analysis of resting-state magnetoencephalograms recorded from 53 healthy participants to visualize elaborate brain maps of phase- and amplitude-derived graph-theory metrics at different frequencies. To achieve this, we conducted a vertex-wise computation of threshold-independent graph metrics by combining proportional thresholding and a conjunction analysis and applied them to a correlation analysis of age and brain networks. Source power showed a frequency-dependent cortical distribution. Threshold-independent graph metrics derived from phase- and amplitude-based connectivity showed similar or different distributions depending on frequency. Vertex-wise age-brain correlation maps revealed that source power at the beta band and the amplitude-based degree at the alpha band changed with age in local regions. The present results indicate that a brain-wide analysis of neuromagnetic data has the potential to reveal neurophysiological network features in the human brain in a resting state.
Collapse
Affiliation(s)
- Tetsuo Kida
- Higher Brain Function Unit, Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Emi Tanaka
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
29
|
Bruffaerts R, Pongos A, Shain C, Lipkin B, Siegelman M, Wens V, Sjøgård M, Pantazis D, Blank I, Goldman S, De Tiège X, Fedorenko E. Functional identification of language-responsive channels in individual participants in MEG investigations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533424. [PMID: 36993378 PMCID: PMC10055362 DOI: 10.1101/2023.03.23.533424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Making meaningful inferences about the functional architecture of the language system requires the ability to refer to the same neural units across individuals and studies. Traditional brain imaging approaches align and average brains together in a common space. However, lateral frontal and temporal cortex, where the language system resides, is characterized by high structural and functional inter-individual variability. This variability reduces the sensitivity and functional resolution of group-averaging analyses. This problem is compounded by the fact that language areas often lay in close proximity to regions of other large-scale networks with different functional profiles. A solution inspired by other fields of cognitive neuroscience (e.g., vision) is to identify language areas functionally in each individual brain using a 'localizer' task (e.g., a language comprehension task). This approach has proven productive in fMRI, yielding a number of discoveries about the language system, and has been successfully extended to intracranial recording investigations. Here, we apply this approach to MEG. Across two experiments (one in Dutch speakers, n=19; one in English speakers, n=23), we examined neural responses to the processing of sentences and a control condition (nonword sequences). We demonstrated that the neural response to language is spatially consistent at the individual level. The language-responsive sensors of interest were, as expected, less responsive to the nonwords condition. Clear inter-individual differences were present in the topography of the neural response to language, leading to greater sensitivity when the data were analyzed at the individual level compared to the group level. Thus, as in fMRI, functional localization yields benefits in MEG and thus opens the door to probing fine-grained distinctions in space and time in future MEG investigations of language processing.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Computational Neurology, Experimental Neurobiology Unit (ENU), Department of Biomedical Sciences, University of Antwerp, Belgium; Department of Neurosciences, KU Leuven, Belgium
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alvince Pongos
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Bioengineering, UC Berkeley-UCSF, San Francisco, CA, USA
| | - Cory Shain
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin Lipkin
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew Siegelman
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Psychology, Columbia University, New York, NY, USA
| | - Vincent Wens
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Martin Sjøgård
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Idan Blank
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Psychology, University of California Los Angeles, CA, USA
| | - Serge Goldman
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Xavier De Tiège
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
30
|
Colenbier N, Sareen E, Del-Aguila Puntas T, Griffa A, Pellegrino G, Mantini D, Marinazzo D, Arcara G, Amico E. Task matters: Individual MEG signatures from naturalistic and neurophysiological brain states. Neuroimage 2023; 271:120021. [PMID: 36918139 DOI: 10.1016/j.neuroimage.2023.120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The discovery that human brain connectivity data can be used as a "fingerprint" to identify a given individual from a population, has become a burgeoning research area in the neuroscience field. Recent studies have identified the possibility to extract these brain signatures from the temporal rich dynamics of resting-state magneto encephalography (MEG) recordings. Nevertheless, it is still uncertain to what extent MEG signatures can serve as an indicator of human identifiability during task-related conduct. Here, using MEG data from naturalistic and neurophysiological tasks, we show that identification improves in tasks relative to resting-state, providing compelling evidence for a task dependent axis of MEG signatures. Notably, improvements in identifiability were more prominent in strictly controlled tasks. Lastly, the brain regions contributing most towards individual identification were also modified when engaged in task activities. We hope that this investigation advances our understanding of the driving factors behind brain identification from MEG signals.
Collapse
Affiliation(s)
| | - Ekansh Sareen
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Tamara Del-Aguila Puntas
- Laboratorio de Psicobiologia, Departmento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Spain
| | - Alessandra Griffa
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Switzerland; Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | | | - Enrico Amico
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Switzerland.
| |
Collapse
|
31
|
Rea M, Boto E, Holmes N, Hill R, Osborne J, Rhodes N, Leggett J, Rier L, Bowtell R, Shah V, Brookes MJ. A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers. Ann N Y Acad Sci 2022; 1517:107-124. [PMID: 36065147 PMCID: PMC9826099 DOI: 10.1111/nyas.14890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Magnetoencephalography (MEG) measures the small magnetic fields generated by current flow in neural networks, providing a noninvasive metric of brain function. MEG is well established as a powerful neuroscientific and clinical tool. However, current instrumentation is hampered by cumbersome cryogenic field-sensing technologies. In contrast, MEG using optically pumped magnetometers (OPM-MEG) employs small, lightweight, noncryogenic sensors that provide data with higher sensitivity and spatial resolution, a natural scanning environment (including participant movement), and adaptability to any age. However, OPM-MEG is new and the optimum way to design a system is unknown. Here, we construct a novel, 90-channel triaxial OPM-MEG system and use it to map motor function during a naturalistic handwriting task. Results show that high-precision magnetic field control reduced background fields to ∼200 pT, enabling free participant movement. Our triaxial array offered twice the total measured signal and better interference rejection compared to a conventional (single-axis) design. We mapped neural oscillatory activity to the sensorimotor network, demonstrating significant differences in motor network activity and connectivity for left-handed versus right-handed handwriting. Repeatability across scans showed that we can map electrophysiological activity with an accuracy ∼4 mm. Overall, our study introduces a novel triaxial OPM-MEG design and confirms its potential for high-performance functional neuroimaging.
Collapse
Affiliation(s)
- Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Ryan Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | | | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | | | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| |
Collapse
|
32
|
Karahan E, Tait L, Si R, Özkan A, Szul MJ, Graham KS, Lawrence AD, Zhang J. The interindividual variability of multimodal brain connectivity maintains spatial heterogeneity and relates to tissue microstructure. Commun Biol 2022; 5:1007. [PMID: 36151363 PMCID: PMC9508245 DOI: 10.1038/s42003-022-03974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Humans differ from each other in a wide range of biometrics, but to what extent brain connectivity varies between individuals remains largely unknown. By combining diffusion-weighted imaging (DWI) and magnetoencephalography (MEG), this study characterizes the inter-subject variability (ISV) of multimodal brain connectivity. Structural connectivity is characterized by higher ISV in association cortices including the core multiple-demand network and lower ISV in the sensorimotor cortex. MEG ISV exhibits frequency-dependent signatures, and the extent of MEG ISV is consistent with that of structural connectivity ISV in selective macroscopic cortical clusters. Across the cortex, the ISVs of structural connectivity and beta-band MEG functional connectivity are negatively associated with cortical myelin content indexed by the quantitative T1 relaxation rate measured by high-resolution 7 T MRI. Furthermore, MEG ISV from alpha to gamma bands relates to the hindrance and restriction of the white-matter tissue estimated by DWI microstructural models. Our findings depict the inter-relationship between the ISV of brain connectivity from multiple modalities, and highlight the role of tissue microstructure underpinning the ISV.
Collapse
Affiliation(s)
- Esin Karahan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Ruoguang Si
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Ayşegül Özkan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Maciek J Szul
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France.,Université Claude Bernard Lyon I, Lyon, France
| | - Kim S Graham
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom. .,Department of Computer Science, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
33
|
Wilson LE, da Silva Castanheira J, Baillet S. Time-resolved parameterization of aperiodic and periodic brain activity. eLife 2022; 11:e77348. [PMID: 36094163 PMCID: PMC9467511 DOI: 10.7554/elife.77348] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Macroscopic neural dynamics comprise both aperiodic and periodic signal components. Recent advances in parameterizing neural power spectra offer practical tools for evaluating these features separately. Although neural signals vary dynamically and express non-stationarity in relation to ongoing behaviour and perception, current methods yield static spectral decompositions. Here, we introduce Spectral Parameterization Resolved in Time (SPRiNT) as a novel method for decomposing complex neural dynamics into periodic and aperiodic spectral elements in a time-resolved manner. First, we demonstrate, with naturalistic synthetic data, SPRiNT's capacity to reliably recover time-varying spectral features. We emphasize SPRiNT's specific strengths compared to other time-frequency parameterization approaches based on wavelets. Second, we use SPRiNT to illustrate how aperiodic spectral features fluctuate across time in empirical resting-state EEG data (n=178) and relate the observed changes in aperiodic parameters over time to participants' demographics and behaviour. Lastly, we use SPRiNT to demonstrate how aperiodic dynamics relate to movement behaviour in intracranial recordings in rodents. We foresee SPRiNT responding to growing neuroscientific interests in the parameterization of time-varying neural power spectra and advancing the quantitation of complex neural dynamics at the natural time scales of behaviour.
Collapse
Affiliation(s)
- Luc Edward Wilson
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
| | | | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
| |
Collapse
|
34
|
Yang Y, Truong ND, Eshraghian JK, Nikpour A, Kavehei O. Weak self-supervised learning for seizure forecasting: a feasibility study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220374. [PMID: 35950196 PMCID: PMC9346358 DOI: 10.1098/rsos.220374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 05/27/2023]
Abstract
This paper proposes an artificial intelligence system that continuously improves over time at event prediction using initially unlabelled data by using self-supervised learning. Time-series data are inherently autocorrelated. By using a detection model to generate weak labels on the fly, which are concurrently used as targets to train a prediction model on a time-shifted input data stream, this autocorrelation can effectively be harnessed to reduce the burden of manual labelling. This is critical in medical patient monitoring, as it enables the development of personalized forecasting models without demanding the annotation of long sequences of physiological signal recordings. We perform a feasibility study on seizure prediction, which is identified as an ideal test case, as pre-ictal brainwaves are patient-specific, and tailoring models to individual patients is known to improve forecasting performance significantly. Our self-supervised approach is used to train individualized forecasting models for 10 patients, showing an average relative improvement in sensitivity by 14.30% and a reduction in false alarms by 19.61% in early seizure forecasting. This proof-of-concept on the feasibility of using a continuous stream of time-series neurophysiological data paves the way towards a low-power neuromorphic neuromodulation system.
Collapse
Affiliation(s)
- Yikai Yang
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| | - Nhan Duy Truong
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| | - Jason K. Eshraghian
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Armin Nikpour
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales 2006, Australia
- Comprehensive Epilepsy Service and Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Omid Kavehei
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| |
Collapse
|
35
|
Mean curve length: An efficient feature for brainwave biometrics. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Sadaghiani S, Brookes MJ, Baillet S. Connectomics of human electrophysiology. Neuroimage 2022; 247:118788. [PMID: 34906715 PMCID: PMC8943906 DOI: 10.1016/j.neuroimage.2021.118788] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
We present both a scientific overview and conceptual positions concerning the challenges and assets of electrophysiological measurements in the search for the nature and functions of the human connectome. We discuss how the field has been inspired by findings and approaches from functional magnetic resonance imaging (fMRI) and informed by a small number of significant multimodal empirical studies, which show that the canonical networks that are commonplace in fMRI are in fact rooted in electrophysiological processes. This review is also an opportunity to produce a brief, up-to-date critical survey of current data modalities and analytical methods available for deriving both static and dynamic connectomes from electrophysiology. We review hurdles that challenge the significance and impact of current electrophysiology connectome research. We then encourage the field to take a leap of faith and embrace the wealth of electrophysiological signals, despite their apparent, disconcerting complexity. Our position is that electrophysiology connectomics is poised to inform testable mechanistic models of information integration in hierarchical brain networks, constructed from observable oscillatory and aperiodic signal components and their polyrhythmic interactions.
Collapse
Affiliation(s)
- Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, United States
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Magnetoencephalography resting-state correlates of executive and language components of verbal fluency. Sci Rep 2022; 12:476. [PMID: 35013361 PMCID: PMC8748602 DOI: 10.1038/s41598-021-03829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
Verbal fluency (VF) is a heterogeneous cognitive function that requires executive as well as language abilities. The purpose of this study was to elucidate the specificity of the resting state MEG correlates of the executive and language components. To this end, we administered a VF test, another verbal test (Vocabulary), and another executive test (Trail Making Test), and we recorded 5-min eyes-open resting-state MEG data in 28 healthy participants. We used source-reconstructed spectral power estimates to compute correlation/anticorrelation MEG clusters with the performance at each test, as well as with the advantage in performance between tests, across individuals using cluster-level statistics in the standard frequency bands. By obtaining conjunction clusters between verbal fluency scores and factor loading obtained for verbal fluency and each of the two other tests, we showed a core of slow clusters (delta to beta) localized in the right hemisphere, in adjacent parts of the premotor, pre-central and post-central cortex in the mid-lateral regions related to executive monitoring. We also found slow parietal clusters bilaterally and a cluster in the gamma 2 and 3 bands in the left inferior frontal gyrus likely associated with phonological processing involved in verbal fluency.
Collapse
|
38
|
Cannard C, Wahbeh H, Delorme A. Electroencephalography Correlates of Well-Being Using a Low-Cost Wearable System. Front Hum Neurosci 2021; 15:745135. [PMID: 35002651 PMCID: PMC8740323 DOI: 10.3389/fnhum.2021.745135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Electroencephalography (EEG) alpha asymmetry is thought to reflect crucial brain processes underlying executive control, motivation, and affect. It has been widely used in psychopathology and, more recently, in novel neuromodulation studies. However, inconsistencies remain in the field due to the lack of consensus in methodological approaches employed and the recurrent use of small samples. Wearable technologies ease the collection of large and diversified EEG datasets that better reflect the general population, allow longitudinal monitoring of individuals, and facilitate real-world experience sampling. We tested the feasibility of using a low-cost wearable headset to collect a relatively large EEG database (N = 230, 22-80 years old, 64.3% female), and an open-source automatic method to preprocess it. We then examined associations between well-being levels and the alpha center of gravity (CoG) as well as trait EEG asymmetries, in the frontal and temporoparietal (TP) areas. Robust linear regression models did not reveal an association between well-being and alpha (8-13 Hz) asymmetry in the frontal regions, nor with the CoG. However, well-being was associated with alpha asymmetry in the TP areas (i.e., corresponding to relatively less left than right TP cortical activity as well-being levels increased). This effect was driven by oscillatory activity in lower alpha frequencies (8-10.5 Hz), reinforcing the importance of dissociating sub-components of the alpha band when investigating alpha asymmetries. Age was correlated with both well-being and alpha asymmetry scores, but gender was not. Finally, EEG asymmetries in the other frequency bands were not associated with well-being, supporting the specific role of alpha asymmetries with the brain mechanisms underlying well-being levels. Interpretations, limitations, and recommendations for future studies are discussed. This paper presents novel methodological, experimental, and theoretical findings that help advance human neurophysiological monitoring techniques using wearable neurotechnologies and increase the feasibility of their implementation into real-world applications.
Collapse
Affiliation(s)
- Cédric Cannard
- Centre de Recherche Cerveau et Cognition (CerCo), Centre National de la Recherche Scientifique (CNRS), Paul Sabatier University, Toulouse, France
- Institute of Noetic Sciences (IONS), Petaluma, CA, United States
| | - Helané Wahbeh
- Institute of Noetic Sciences (IONS), Petaluma, CA, United States
| | - Arnaud Delorme
- Centre de Recherche Cerveau et Cognition (CerCo), Centre National de la Recherche Scientifique (CNRS), Paul Sabatier University, Toulouse, France
- Institute of Noetic Sciences (IONS), Petaluma, CA, United States
- Swartz Center for Computational Neuroscience (SCCN), Institute of Neural Computation (INC), University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
39
|
Wiesman AI, da Silva Castanheira J, Baillet S. Stability of spectral estimates in resting-state magnetoencephalography: Recommendations for minimal data duration with neuroanatomical specificity. Neuroimage 2021; 247:118823. [PMID: 34923132 PMCID: PMC8852336 DOI: 10.1016/j.neuroimage.2021.118823] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
The principle of resting-state paradigms is appealing and practical for collecting data from impaired patients and special populations, especially if data collection times can be minimized. To achieve this goal, researchers need to ensure estimated signal features of interest are robust. In electro- and magnetoencephalography (EEG, MEG) we are not aware of any studies of the minimal length of data required to yield a robust one-session snapshot of the frequency-spectrum derivatives that are typically used to characterize the complex dynamics of the brain’s resting-state. We aimed to fill this knowledge gap by studying the stability of common spectra measures of resting-state MEG source time series obtained from large samples of single-session recordings from shared data repositories featuring different recording conditions and instrument technologies (OMEGA: N = 107; Cam-CAN: N = 50). We discovered that the rhythmic and arrhythmic spectral properties of intrinsic brain activity can be robustly estimated in most cortical regions when derived from relatively short segments of 30-s to 120-s of resting-state data, regardless of instrument technology and resting-state paradigm. Using an adapted leave-one-out approach and Bayesian analysis, we also provide evidence that the stability of spectral features over time is unaffected by age, sex, handedness, and general cognitive function. In summary, short MEG sessions are sufficient to yield robust estimates of frequency-defined brain activity during resting-state. This study may help guide future empirical designs in the field, particularly when recording times need to be minimized, such as with patient or special populations.
Collapse
Affiliation(s)
- Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal QC, Canada.
| | | | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal QC, Canada
| |
Collapse
|