1
|
Zhang JX, Hu YX, Liu Y, Chen ZZ, Zheng JT, Qu XT, Zhang Y, Tang WY, Huang SC, Liu CS. Xianglian pill alleviates ulcerative colitis by inhibiting M1 macrophage polarization via modulation of energy metabolite itaconate. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156179. [PMID: 39467429 DOI: 10.1016/j.phymed.2024.156179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Xianglian pill (XLP) is a traditional Chinese medicine (TCM) that is widely used to treat ulcerative colitis (UC). However, its mechanism of action in UC is unclear. PURPOSE This study aimed to investigate the mechanism of action of XLP in treating UC and role of M1 macrophage polarization in this process. STUDY DESIGN In vivo experiments were performed using UC mice while in vitro experiments were conducted using RAW264.7 cells. METHODS Mice were administered 3 % dextran sulfate to induce UC model and then treated with XLP. Changes in histopathology and pro-inflammatory cytokines were evaluated. The levels of M1 macrophages in mesenteric lymph nodes were detected by flow cytometry. Colon metabolite levels were analyzed using an energy metabolomic assay. To assess itaconate's impact, both in vivo (mice) and in vitro (RAW264.7 cells) models were employed. Immunofluorescence staining was used to measure the expression levels of TNF-α, IL-6, and iNOS, while qRT-PCR was utilized to quantify the mRNA levels of TET2, STAT1, and Nfkbiz. RESULTS XLP alleviated ulcerative damage and reduced TNF-α and IL-6 levels in colon, and also downregulated the levels of M1 macrophages and modulated the state of energy metabolism. Specifically, XLP significantly increased ITA level in colonic tissue and this increase was significantly associated with decreased levels of M1 macrophages and alleviation of UC following XLP treatment. Moreover, ITA directly suppressed the polarization of macrophage from M0 to M1 phenotype, accompanied by the decrease of TNF-α, IL-6, and iNOS levels. Further, ITA decreased inflammatory responses in M1 macrophage by inhibiting the TET2/STAT1 and TET2/NF-κB signaling pathways. CONCLUSION XLP can treat UC by suppressing M1 macrophage polarization via increasing the level of energy metabolite ITA.
Collapse
Affiliation(s)
- Jia-Xuan Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Yin-Xia Hu
- Department of Gastroenterology, PLA General Hospital of Southern Theater Command, Guangzhou 510010, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Zi-Zhao Chen
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jin-Ting Zheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xuan-Tong Qu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Yin Tang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Si-Cong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Chang-Shun Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China.
| |
Collapse
|
2
|
Pan X, Jiang S, Zhang X, Wang Z, Wang X, Cao L, Xiao W. Recent strategies in target identification of natural products: Exploring applications in chronic inflammation and beyond. Br J Pharmacol 2024. [PMID: 39428703 DOI: 10.1111/bph.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 10/22/2024] Open
Abstract
Natural products are a treasure trove for drug discovery, especially in the areas of infection, inflammation and cancer, due to their diverse bioactivities and complex, and varied structures. Chronic inflammation is closely related to many diseases, including complex diseases such as cancer and neurodegeneration. Improving target identification for natural products contributes to elucidating their mechanism of action and clinical progress. It also facilitates the discovery of novel druggable targets and the elimination of undesirable ones, thereby significantly enhancing the productivity of drug discovery and development. Moreover, the rise of polypharmacological strategies, considered promising for the treatment of complex diseases, will further increase the demand for target deconvolution. This review underscores strategies for identifying natural product targets (NPs) in the context of chronic inflammation over the past 5 years. These strategies encompass computational methodologies for early target discovery and the anticipation of compound binding sites, proteomics-driven approaches for target delineation and experimental biology techniques for target validation and comprehensive mechanistic exploration.
Collapse
Affiliation(s)
- Xian Pan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Shan Jiang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Xinzhuang Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Zhenzhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| |
Collapse
|
3
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
4
|
He Q, Zhao MM, Li MJ, Li XY, Jin JM, Feng YM, Zhang L, Huang WJ, Yang F, Yang JK. Hyperglycemia induced cathepsin L maturation linked to diabetic comorbidities and COVID-19 mortality. eLife 2024; 13:RP92826. [PMID: 39150053 PMCID: PMC11329274 DOI: 10.7554/elife.92826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.
Collapse
Affiliation(s)
- Qiong He
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Miao-Miao Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ming-Jia Li
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ya Li
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian-Min Jin
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying-Mei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China, Beijing, China
| | - Wei Jin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China, Beijing, China
| | - Fangyuan Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Yuan YC, Wang H, Jiang ZJ, Liu C, Li Q, Zhou SR, Yang JK. Potassium voltage-gated channel subfamily H member 2 (KCNH2) is a promising target for incretin secretagogue therapies. Signal Transduct Target Ther 2024; 9:207. [PMID: 39128897 PMCID: PMC11317495 DOI: 10.1038/s41392-024-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/16/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024] Open
Abstract
Derived from enteroendocrine cells (EECs), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are pivotal incretin hormones crucial for blood glucose regulation. Medications of GLP-1 analogs and GLP-1 receptor activators are extensively used in the treatment of type 2 diabetes (T2D) and obesity. However, there are currently no agents to stimulate endogenous incretin secretion. Here, we find the pivotal role of KCNH2 potassium channels in the regulation of incretin secretion. Co-localization of KCNH2 with incretin-secreting EECs in the intestinal epithelium of rodents highlights its significance. Gut epithelial cell-specific KCNH2 knockout in mice improves glucose tolerance and increases oral glucose-triggered GLP-1 and GIP secretion, particularly GIP. Furthermore, KCNH2-deficient primary intestinal epithelial cells exhibit heightened incretin, especially GIP secretion upon nutrient stimulation. Mechanistically, KCNH2 knockdown in EECs leads to reduced K+ currents, prolonged action potential duration, and elevated intracellular calcium levels. Finally, we found that dofetilide, a KCNH2-specific inhibitor, could promote incretin secretion in enteroendocrine STC-1 cells in vitro and in hyperglycemic mice in vivo. These findings elucidate, for the first time, the mechanism and application of KCNH2 in regulating incretin secretion by EECs. Given the therapeutic promise of GLP-1 and GIP in diabetes and obesity management, this study advances our understanding of incretin regulation, paving the way for potential incretin secretagogue therapies in the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Ying-Chao Yuan
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Hao Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| | - Ze-Ju Jiang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Chang Liu
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Si-Rui Zhou
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
- Subcenter of State Key Laboratory of Kidney Disease, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
6
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
7
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
8
|
Rao J, Gao Q, Li N, Wang Y, Wang T, Wang K, Qiu F. Unraveling the enigma: Molecular mechanisms of berberrubine-induced nephrotoxicity reversed by its parent form berberine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155648. [PMID: 38669970 DOI: 10.1016/j.phymed.2024.155648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Berberine is an isoquinoline alkaloid that is extensively applied in the clinic due to its potential therapeutic effects on dysentery and infectious diarrhoea. Its main metabolite, berberrubine, a promising candidate for ameliorating hyperlipidaemia, has garnered more attention than berberine. However, our study revealed that berberrubine induces severe kidney damage, while berberine was proven to be safe. PURPOSE Herein, we explored the opposite biological effects of these two compounds on the kidney and elucidated their underlying mechanisms. METHODS First, integrated metabolomic and proteomic analyses were conducted to identify relevant signalling pathways. Second, a click chemistry method combined with a cellular thermal shiftassay, a drug affinity responsive target stability assay, and microscale thermophoresis were used to identify the direct target proteins. Moreover, a mutation experiment was performed to study the specific binding sites. RESULTS Animal studies showed that berberrubine, but not berberine, induced severe chronic, subchronic, and acute nephrotoxicity. More importantly, berberine reversed the berberrubine-reduced nephrotoxicity. The results indicated that the cPLA2 signalling pathway was highly involved in the nephrotoxicity induced by berberrubine. We further confirmed that the direct target of berberrubine is the BASP1 protein (an upstream factor of cPLA2 signalling). Moreover, berberine alleviated nephrotoxicity by binding cPLA2 and inhibiting cPLA2 activation. CONCLUSION This study is the first to revel the opposite biological effects of berberine and its metabolite berberrubine in inducing kidney injury. Berberrubine, but not berberine, shows strong nephrotoxicity. The cPLA2 signalling pathway can be activated by berberrubine through targeting of BASP1, while berberine inhibits this pathway by directly binding with cPLA2. Our study paves the way for studies on the exact molecular targets of herbal ingredients. We also demonstrated that natural small molecules and their active metabolites can have opposite regulatory roles in vivo through the same signalling pathway.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
9
|
Sun A, Yang H, Li T, Luo J, Zhou L, Chen R, Han L, Lin Y. Molecular mechanisms, targets and clinical potential of berberine in regulating metabolism: a review focussing on databases and molecular docking studies. Front Pharmacol 2024; 15:1368950. [PMID: 38957396 PMCID: PMC11217548 DOI: 10.3389/fphar.2024.1368950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.
Collapse
Affiliation(s)
- Aru Sun
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Luo
- China Traditional Chinese Medicine Holdings Co. Limited, Guangdong e-fong Pharmaceutical Co., Ltd., Foshan, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Chen
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqun Lin
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Wang Y, He X, Cheng N, Huang K. Unveiling the Nutritional Veil of Sulforaphane: With a Major Focus on Glucose Homeostasis Modulation. Nutrients 2024; 16:1877. [PMID: 38931232 PMCID: PMC11206418 DOI: 10.3390/nu16121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Abnormal glucose homeostasis is associated with metabolic syndromes including cardiovascular diseases, hypertension, type 2 diabetes mellitus, and obesity, highlighting the significance of maintaining a balanced glucose level for optimal biological function. This highlights the importance of maintaining normal glucose levels for proper biological functioning. Sulforaphane (SFN), the primary bioactive compound in broccoli from the Cruciferae or Brassicaceae family, has been shown to enhance glucose homeostasis effectively while exhibiting low cytotoxicity. This paper assesses the impact of SFN on glucose homeostasis in vitro, in vivo, and human trials, as well as the molecular mechanisms that drive its regulatory effects. New strategies have been proposed to enhance the bioavailability and targeted delivery of SFN in order to overcome inherent instability. The manuscript also covers the safety evaluations of SFN that have been documented for its production and utilization. Hence, a deeper understanding of the favorable influence and mechanism of SFN on glucose homeostasis, coupled with the fact that SFN is abundant in the human daily diet, may ultimately offer theoretical evidence to support its potential use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Nan Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
11
|
Zhang S, Zhang Y, Wen Z, Chen Y, Bu T, Yang Y, Ni Q. Enhancing β-cell function and identity in type 2 diabetes: The protective role of Coptis deltoidea C. Y. Cheng et Hsiao via glucose metabolism modulation and AMPK signaling activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155396. [PMID: 38547617 DOI: 10.1016/j.phymed.2024.155396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Abnormalities in glucose metabolism may be the underlying cause of β-cell dysfunction and identity impairment resulting from high glucose exposure. In China, Coptis deltoidea C. Y. Cheng et Hsiao (YL) has demonstrated remarkable hypoglycemic effects. HYPOTHESIS/PURPOSE To investigate the hypoglycemic effect of YL and determine the mechanism of YL in treating diabetes. METHODS A type 2 diabetes mouse model was used to investigate the pharmacodynamics of YL. YL was administrated once daily for 8 weeks. The hypoglycemic effect of YL was assessed by fasting blood glucose, an oral glucose tolerance test, insulin levels, and other indexes. The underlying mechanism of YL was examined by targeting glucose metabolomics, western blotting, and qRT-PCR. Subsequently, the binding capacity between predicted AMP-activated protein kinase (AMPK) and important components of YL (Cop, Ber, and Epi) were validated by molecular docking and surface plasmon resonance. Then, in AMPK knockdown MIN6 cells, the mechanisms of Cop, Ber, and Epi were inversely confirmed through evaluations encompassing glucose-stimulated insulin secretion, markers indicative of β-cell identity, and the examination of glycolytic genes and products. RESULTS YL (0.9 g/kg) treatment exerted notable hypoglycemic effects and protected the structural integrity and identity of pancreatic β-cells. Metabolomic analysis revealed that YL inhibited the hyperactivated glycolysis pathway in diabetic mice, thereby regulating the products of the tricarboxylic acid cycle. KEGG enrichment revealed the intimate relationship of this process with the AMPK signaling pathway. Cop, Ber, and Epi in YL displayed high binding affinities for AMPK protein. These compounds played a pivotal role in preserving the identity of pancreatic β-cells and amplifying insulin secretion. The mechanism underlying this process involved inhibition of glucose uptake, lowering intracellular lactate levels, and elevating acetyl coenzyme A and ATP levels through AMPK signaling. The use of a glycolytic inhibitor corroborated that attenuation of glycolysis restored β-cell identity and function. CONCLUSION YL demonstrates significant hypoglycemic efficacy. We elucidated the potential mechanisms underlying the protective effects of YL and its active constituents on β-cell function and identity by observing glucose metabolism processes in pancreatic tissue and cells. In this intricate process, AMPK plays a pivotal regulatory role.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yueying Zhang
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhige Wen
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yupeng Chen
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tianjie Bu
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanan Yang
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qing Ni
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
12
|
Ma L, Li J, Zhang X, Zhang W, Jiang C, Yang B, Yang H. Chinese botanical drugs targeting mitophagy to alleviate diabetic kidney disease, a comprehensive review. Front Pharmacol 2024; 15:1360179. [PMID: 38803440 PMCID: PMC11128677 DOI: 10.3389/fphar.2024.1360179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the chronic microvascular complications caused by diabetes, which is characterized by persistent albuminuria and/or progressive decline of estimated glomerular filtration rate (eGFR), and has been the major cause of dialysis around the world. At present, although the treatments for DKD including lifestyle modification, glycemic control and even using of Sodium-glucose cotransporter 2 (SGLT2) inhibitors can relieve kidney damage caused to a certain extent, there is still a lack of effective treatment schemes that can prevent DKD progressing to ESRD. It is urgent to find new complementary and effective therapeutic agents. Growing animal researches have shown that mitophagy makes a great difference to the pathogenesis of DKD, therefore, exploration of new drugs that target the restoration of mitophagy maybe a potential perspective treatment for DKD. The use of Chinese botanical drugs (CBD) has been identified to be an effective treatment option for DKD. There is growing concern on the molecular mechanism of CBD for treatment of DKD by regulating mitophagy. In this review, we highlight the current findings regarding the function of mitophagy in the pathological damages and progression of DKD and summarize the contributions of CBD that ameliorate renal injuries in DKD by interfering with mitophagy, which will help us further explain the mechanism of CBD in treatment for DKD and explore potential therapeutic strategies for DKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
13
|
Ding X, Ma X, Meng P, Yue J, Li L, Xu L. Potential Effects of Traditional Chinese Medicine in Anti-Aging and Aging-Related Diseases: Current Evidence and Perspectives. Clin Interv Aging 2024; 19:681-693. [PMID: 38706635 PMCID: PMC11070163 DOI: 10.2147/cia.s447514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Aging and aging-related diseases present a global public health problem. Therefore, the development of efficient anti-aging drugs has become an important area of research. Traditional Chinese medicine is an important complementary and alternative branch of aging-related diseases therapy. Recently, a growing number of studies have revealed that traditional Chinese medicine has a certain delaying effect on the progression of aging and aging-related diseases. Here, we review the progress in research into using traditional Chinese medicine for aging and aging-related diseases (including neurodegenerative diseases, cardiovascular diseases, diabetes, and cancer). Furthermore, we summarize the potential mechanisms of action of traditional Chinese medicine and provide references for further studies on aging and aging-related diseases.
Collapse
Affiliation(s)
- Xue Ding
- Department of Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xiuxia Ma
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Pengfei Meng
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jingyu Yue
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Liangping Li
- Department of Graduate, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Liran Xu
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
14
|
Zhang N, Song GY, Yu QH, Fan XM, Zhang WS, Hu YJ, Chao TZ, Wu YY, Duan SY, Wang F, Du RP, Xu P. Evaluation of the lncRNA-miRNA-mRNA ceRNA network in lungs of miR-147 -/- mice. Front Pharmacol 2024; 15:1335374. [PMID: 38510653 PMCID: PMC10953689 DOI: 10.3389/fphar.2024.1335374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Previous studies have documented important roles for microRNA-147 (miR-147) in inflammation, radiation-induced injury, cancer, and a range of other diseases. Murine lungs exhibit high levels of miRNA, mRNA, and lncRNA expression. However, very little research to date has focused on the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks associated with miR-147, and the regulation of lncRNAs and miRNAs in this setting remains poorly understood. Methods: After establishing a miR-147-/- model mouse, samples of lung tissue were harvested for RNA-sequencing, and differentially expressed lncRNAs, miRNAs, and mRNAs were identified. The miRNA targets of these lncRNAs and the identified miRNAs were first overlapped to facilitate the prediction of target mRNAs, with analyses then examining the overlap between these targets and mRNAs that were differentially expressed. Then, these target mRNAs were subjected to pathway enrichment analyses. These results were ultimately used to establish a miR-147-related ceRNA network. Results: Relative to wild-type mice, the lungs of miR-147-/- mice exhibited 91, 43, and 71 significantly upregulated lncRNAs, miRNAs, and mRNAs, respectively, together with 114, 31, and 156 that were significantly downregulated. The lncRNA-miRNA-mRNA network established based on these results led to the identification of Kcnh6 as a differentially expressed hub gene candidate and enabled the identification of a range of regulatory relationships. KEGG pathway enrichment showed that the mRNA targets of differentially expressed lncRNAs and miRNAs in the mice were associated with tumor-related signaling, endometrial cancer, bladder cancer, and ErbB signaling. Conclusion: These results suggest that the identified ceRNA network in miR-147-/- mice shapes tumor-associated signaling activity, with miR-147 potentially regulating various lncRNAs and miRNAs through Kcnh6, ultimately influencing tumorigenesis. Future studies of the lncRNA, miRNA, and mRNA regulatory targets shown to be associated with miR-147 in the present study may ultimately lead to the identification of novel clinically relevant targets through which miR-147 shapes the pathogenesis of cancer and other diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Laboratory of Radiation-Induced Diseases and Molecule-Targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Gui-Yuan Song
- Laboratory of Radiation-Induced Diseases and Molecule-Targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- Laboratory of Radiation-Induced Diseases and Molecule-Targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Xin-Ming Fan
- Department of Radiotherapy, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, China
| | - Wen-Shuo Zhang
- Department of Radiotherapy, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, China
| | - Yong-Jian Hu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Zhu Chao
- Laboratory of Radiation-Induced Diseases and Molecule-Targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Yao-Yao Wu
- Laboratory of Radiation-Induced Diseases and Molecule-Targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Shu-Yan Duan
- Laboratory of Radiation-Induced Diseases and Molecule-Targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- Laboratory of Radiation-Induced Diseases and Molecule-Targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Rui-Peng Du
- Laboratory of Radiation-Induced Diseases and Molecule-Targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- Laboratory of Radiation-Induced Diseases and Molecule-Targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| |
Collapse
|
15
|
Xiong FR, Lu J, Zhu JJ, Zhao RX, Zhang YC, Yang JK. KCNH6 is essential for insulin secretion by regulating intracellular ER Ca 2+ store. FASEB J 2024; 38:e23490. [PMID: 38363581 DOI: 10.1096/fj.202302194rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Appropriate Ca2+ concentration in the endoplasmic reticulum (ER), modulating cytosolic Ca2+ signal, serves significant roles in physiological function of pancreatic β cells. To maintaining ER homeostasis, Ca2+ movement across the ER membrane is always accompanied by a simultaneous K+ flux in the opposite direction. KCNH6 was proven to modulate insulin secretion by controlling plasma membrane action potential duration and intracellular Ca2+ influx. Meanwhile, the specific function of KCNH6 in pancreatic β-cells remains unclear. In this study, we found that KCNH6 exhibited mainly ER localization and Kcnh6 β-cell-specific knockout (βKO) mice suffered from abnormal glucose tolerance and impaired insulin secretion in adulthood. ER Ca2+ store was overloaded in islets of βKO mice, which contributed to ER stress and ER stress-induced apoptosis in β cells. Next, we verified that ethanol treatment induced increases in ER Ca2+ store and apoptosis in pancreatic β cells, whereas adenovirus-mediated KCNH6 overexpression in islets attenuated ethanol-induced ER stress and apoptosis. In addition, tail-vein injections of KCNH6 lentivirus rescued KCNH6 expression in βKO mice, restored ER Ca2+ overload and attenuated ER stress in β cells, which further confirms that KCNH6 protects islets from ER stress and apoptosis. These data suggest that KCNH6 on the ER membrane may help to stabilize intracellular ER Ca2+ stores and protect β cells from ER stress and apoptosis. In conclusion, our study reveals the protective potential of KCNH6-targeting drugs in ER stress-induced diabetes.
Collapse
Affiliation(s)
- Feng-Ran Xiong
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jing Lu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Juan-Juan Zhu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ru-Xuan Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ying-Chao Zhang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Wang H, Li Q, Yuan YC, Han XC, Cao YT, Yang JK. KCNH6 channel promotes insulin exocytosis via interaction with Munc18-1 independent of electrophysiological processes. Cell Mol Life Sci 2024; 81:86. [PMID: 38349432 PMCID: PMC10864572 DOI: 10.1007/s00018-024-05134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Glucose-stimulated insulin secretion (GSIS) in pancreatic islet β-cells primarily relies on electrophysiological processes. Previous research highlighted the regulatory role of KCNH6, a member of the Kv channel family, in governing GSIS through its influence on β-cell electrophysiology. In this study, we unveil a novel facet of KCNH6's function concerning insulin granule exocytosis, independent of its conventional electrical role. Young mice with β-cell-specific KCNH6 knockout (βKO) exhibited impaired glucose tolerance and reduced insulin secretion, a phenomenon not explained by electrophysiological processes alone. Consistently, islets from KCNH6-βKO mice exhibited reduced insulin secretion, conversely, the overexpression of KCNH6 in murine pancreatic islets significantly enhanced insulin release. Moreover, insulin granules lacking KCNH6 demonstrated compromised docking capabilities and a reduced fusion response upon glucose stimulation. Crucially, our investigation unveiled a significant interaction between KCNH6 and the SNARE protein regulator, Munc18-1, a key mediator of insulin granule exocytosis. These findings underscore the critical role of KCNH6 in the regulation of insulin secretion through its interaction with Munc18-1, providing a promising and novel avenue for enhancing our understanding of the Kv channel in diabetes mechanisms.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Ying-Chao Yuan
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xue-Chun Han
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yong-Ting Cao
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Endocrinology, Beijing Mentougou District Hospital, Beijing, 102399, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
17
|
Lu J, Zhao RX, Xiong FR, Zhu JJ, Shi TT, Zhang YC, Peng GX, Yang JK. All-potassium channel CRISPR screening reveals a lysine-specific pathway of insulin secretion. Mol Metab 2024; 80:101885. [PMID: 38246588 PMCID: PMC10847698 DOI: 10.1016/j.molmet.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE Genome-scale CRISPR-Cas9 knockout coupled with single-cell RNA sequencing (scRNA-seq) has been used to identify function-related genes. However, this method may knock out too many genes, leading to low efficiency in finding genes of interest. Insulin secretion is controlled by several electrophysiological events, including fluxes of KATP depolarization and K+ repolarization. It is well known that glucose stimulates insulin secretion from pancreatic β-cells, mainly via the KATP depolarization channel, but whether other nutrients directly regulate the repolarization K+ channel to promote insulin secretion is unknown. METHODS We used a system involving CRISPR-Cas9-mediated knockout of all 83 K+ channels and scRNA-seq in a pancreatic β cell line to identify genes associated with insulin secretion. RESULTS The expression levels of insulin genes were significantly increased after all-K+ channel knockout. Furthermore, Kcnb1 and Kcnh6 were the two most important repolarization K+ channels for the increase in high-glucose-dependent insulin secretion that occurred upon application of specific inhibitors of the channels. Kcnh6 currents, but not Kcnb1 currents, were reduced by one of the amino acids, lysine, in both transfected cells, primary cells and mice with β-cell-specific deletion of Kcnh6. CONCLUSIONS Our function-related CRISPR screen with scRNA-seq identifies Kcnh6 as a lysine-specific channel.
Collapse
Affiliation(s)
- Jing Lu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ru-Xuan Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Feng-Ran Xiong
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Juan-Juan Zhu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ying-Chao Zhang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Gong-Xin Peng
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100740, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China.
| |
Collapse
|
18
|
Yang L, Yuan S, Wang R, Guo X, Xie Y, Wei W, Tang L. Exploring the molecular mechanism of berberine for treating diabetic nephropathy based on network pharmacology. Int Immunopharmacol 2024; 126:111237. [PMID: 37977063 DOI: 10.1016/j.intimp.2023.111237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus characterized by hyperglycemia, hyperlipidemia, albuminuria and edema. Increasing evidence indicated that berberine (BBR) could alleviate the occurrence and development of DN. However, the molecular mechanism underlying the beneficial effects of BBR in the treatment of DN remains unclear. METHODS The online public databases were chosen to screen the relevant targets of BBR and DN and the screened overlapped targets were analyzed by GO enrichment analysis, KEGG enrichment analysis and protein-protein interaction network analysis. The interaction between BBR and the key proteinwas verified by molecular docking and cellularthermalshiftassay. Additionally, the expression of key proteins and related indicators of DN were verified by immunofluorescence and western blot in vitro and in vivo. RESULTS We successfully identified 92 overlapped targets of BBR and DN based on network pharmacology. Notably, VEGFR2 was identified to be the main target of BBR. Meanwhile, we found that BBR exhibited a high binding affinity to VEGFR2 protein, as confirmed by molecular docking and CETSA. This binding led to interfering with the PI3K/AKT/mTOR signaling pathway. In addition, we found that BBR could inhibit the abnormal proliferation of mesangial cells and reduce the expression of downstream pathway protein in vitro and in vivo. Finally, BBR was found to effectively lower the level of blood glucose and improve kidney function in mice, highlighting its potential as a therapeutic agent for the treatment of DN. CONCLUSION Berberine interfered the PI3K/AKT/mTOR signaling pathway via targeting VEGFR2 protein, further led to the inhibition of abnormal proliferation of mesangial cells and ultimately resulted in improved renal function.
Collapse
Affiliation(s)
- Lin Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Siming Yuan
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Rongrong Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoyu Guo
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yongsheng Xie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Liqin Tang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
19
|
Kikuchi Y, Ando T, Ashizawa T, Iizuka A, Kanematsu A, Maeda C, Hozumi C, Miyata H, Yamashita K, Ikeya T, Yamaguchi K, Akiyama Y. Identification of membrane proteins targeted by small-molecule compounds using nanomagnetic beads. Biomed Res 2024; 45:179-186. [PMID: 39370296 DOI: 10.2220/biomedres.45.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In drug discovery research, it is important to identify target proteins of bioactive small-molecule compounds and analyse their functions. In this study, we examined whether target membrane proteins could be captured by compounds that bind to membrane proteins on the cell surface. For this purpose, we performed affinity purification using the compound-immobilized nanomagnetic beads. Affinity purification with nanomagnetic beads is known to be effective for determining the protein binding partners of small molecules. However, most previous studies have targeted proteins in the cytoplasm. As a model compound, we chose BMS-1166 (a representative small-molecule compound from Bristol Myers Squibb), a PD-1/PD-L1 immune checkpoint inhibitor that binds to PD- L1 and promotes PD-L1 dimerization. BMS-1166-immobilized beads were manufactured and incubated with extracts of cells with high PD-L1 protein expression. The bound protein was confirmed by western blotting and proteomic analysis to be PD-L1. BMS-1166-immobilized nano-magnetic beads were able to specifically bind and capture the membrane protein PD-L1. In addition, high-purity protein could be obtained from cell extracts in a single step. This is the first report of the purification of a membrane protein to high purity with nanobeads. Nanomagnetic beads with immobilized compounds are an effective tool for identifying the protein binding partners of small molecules, especially when the targets are membrane proteins.
Collapse
Affiliation(s)
- Yasufumi Kikuchi
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takayuki Ando
- Department of Drug and Food Science, Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan
| | - Tadashi Ashizawa
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akira Iizuka
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akari Kanematsu
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Chie Maeda
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Chikako Hozumi
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Haruo Miyata
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kazue Yamashita
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tomoatsu Ikeya
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Ken Yamaguchi
- Office of the Honored President, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
20
|
Wu L, Meng XJ, Xu TB, Zhang XC, Zhou Y, Tong ZF, Jiang JH. Berberine attenuates cognitive dysfunction and hippocampal apoptosis in rats with prediabetes. Chem Biol Drug Des 2024; 103:e14420. [PMID: 38230770 DOI: 10.1111/cbdd.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
The cognitive dysfunction caused by prediabetes causes great difficulties in human life, and the terrible thing is that the means to prevent the occurrence of this disease are very limited at present, Berberine has shown the potential to treat diabetes and cognitive dysfunction, but it still needs to be further explored to clarify the mechanism of its therapeutic effect. Therefore, the aim of this study was to investigate the effects and mechanisms of Berberine on prediabetes-induced cognitive dysfunction. Prediabetes rat model was induced by a high-fat diet and a normal diet was used as a control. They were fed for 20 weeks. At week 13, the model rats were given 100 mg/kg Berberine by gavage for 7 weeks. The cognitive function of rats was observed. At the same time, OGTT, fasting blood glucose, blood lipids, insulin and other metabolic parameters, oxidative stress, and apoptosis levels were measured. The results showed that the model rats showed obvious glucose intolerance, elevated blood lipids, and insulin resistance, and the levels of oxidative stress and apoptosis were significantly increased. However, after the administration of Berberine, the blood glucose and lipid metabolism of prediabetic rats were significantly improved, and the oxidative stress level and apoptosis level of hippocampal tissue were significantly reduced. In conclusion, Berberine can alleviate the further development of diabetes in prediabetic rats, reduce oxidative stress and apoptosis in hippocampal tissue, and improve cognitive impairment in prediabetic rats.
Collapse
Affiliation(s)
- Lan Wu
- Health Management Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiang-Jian Meng
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Tian-Bao Xu
- Mathematics Teaching and Research Group, The High School Affiliated to Anhui Normal University, Wuhu, Anhui Province, China
| | - Xian-Cui Zhang
- Health Management Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Yong Zhou
- Health Management Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhu-Feng Tong
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jing-Han Jiang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
21
|
Coppinger C, Pomales B, Movahed MR, Marefat M, Hashemzadeh M. Berberine: A Multi-Target Natural PCSK9 Inhibitor with the Potential to Treat Diabetes, Alzheimer's, Cancer and Cardiovascular Disease. Curr Rev Clin Exp Pharmacol 2024; 19:312-326. [PMID: 38361373 DOI: 10.2174/0127724328250471231222094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024]
Abstract
Berberine is a natural product with a wide range of pharmacological effects. It has antimicrobial, anti-cancer, anti-inflammatory, anti-hyperlipidemic, neuroprotective, and cholesterollowering properties, among others. It has been used in traditional Chinese and Ayurvedic medicine for 3000 years and is generally well-tolerated with few side effects. Its main drawback is low oral bioavailability, which has hindered widespread clinical use. However, recent interest has surged with the emergence of evidence that berberine is effective in treating cancer, diabetes, Alzheimer's disease, and cardiovascular disease via multiple mechanisms. It enhances insulin sensitivity and secretion by pancreatic β-cells in Type 2 Diabetes Mellitus in addition to reducing pro-inflammatory cytokines such as IL-6, IL-1β, TLR4 and TNF-α. These cytokines are elevated in Alzheimer's disease, cardiovascular disease, and diabetes. Reductions in pro-inflammatory cytokine levels are associated with positive outcomes such as improved cognition, reduced cardiovascular events, and improved glucose metabolism and insulin sensitivity. Berberine is a natural PCSK9 inhibitor, which contributes to its hypolipidemic effects. It also increases low-density lipoprotein receptor expression, reduces intestinal cholesterol absorption, and promotes cholesterol excretion from the liver to the bile. This translates into a notable decrease in LDL cholesterol levels. High LDL cholesterol levels are associated with increased cardiovascular disease risk. Novel synthetic berberine derivatives are currently being developed that optimize LDL reduction, bioavailability, and other pharmacokinetic properties.
Collapse
Affiliation(s)
- Caroline Coppinger
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Briana Pomales
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mohammad Reza Movahed
- Department of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| | | | - Mehrnoosh Hashemzadeh
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| |
Collapse
|
22
|
Wang A, Guan B, Zhang H, Xu H. Danger-associated metabolites trigger metaflammation: A crowbar in cardiometabolic diseases. Pharmacol Res 2023; 198:106983. [PMID: 37931790 DOI: 10.1016/j.phrs.2023.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Cardiometabolic diseases (CMDs) are characterized by a series of metabolic disorders and chronic low-grade inflammation. CMDs contribute to a high burden of mortality and morbidity worldwide. Host-microbial metabolic regulation that triggers metaflammation is an emerging field of study that promotes a new perspective for perceiving cardiovascular risks. The term metaflammation denotes the entire cascade of immune responses activated by a new class of metabolites known as "danger-associated metabolites" (DAMs). It is being proposed by the present review for the first time. We summarize current studies covering bench to bedside aspects of DAMs to better understand CMDs in the context of DAMs. We have focused on the involvement of DAMs in the pathophysiological development of CMDs, including the disruption of immune homeostasis and chronic inflammation-triggered damage leading to CMD-related adverse events, as well as emerging therapeutic approaches for targeting DAM metabolism in CMDs.
Collapse
Affiliation(s)
- Anlu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China.
| |
Collapse
|
23
|
Chen Y, Li Q, Zhao S, Sun L, Yin Z, Wang X, Li X, Iwakiri Y, Han J, Duan Y. Berberine protects mice against type 2 diabetes by promoting PPARγ-FGF21-GLUT2-regulated insulin sensitivity and glucose/lipid homeostasis. Biochem Pharmacol 2023; 218:115928. [PMID: 37979703 DOI: 10.1016/j.bcp.2023.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Type 2 diabetes (T2D) is a chronic, burdensome disease that is characterized by disordered insulin sensitivity and disturbed glucose/lipid homeostasis. Berberine (BBR) has multiple therapeutic actions on T2D, including regulation of glucose and lipid metabolism, improvement of insulin sensitivity and energy expenditure. Recently, the function of BBR on fibroblast growth factor 21 (FGF21) has been identified. However, if BBR ameliorates T2D through FGF21, the underlying mechanisms remain unknown. Herein, we used T2D wild type (WT) and FGF21 global knockout (FKO) mice [mouse T2D model: established by high-fat diet (HFD) feeding plus streptozotocin (STZ) injection], and hepatocyte-specific peroxisome proliferator activated receptor γ (PPARγ) deficient (PPARγHepKO) mice, and cultured human liver carcinoma cells line, HepG2 cells, to characterize the role of BBR in glucose/lipid metabolism and insulin sensitivity. We found that BBR activated FGF21 expression by up-regulating PPARγ expression at the cellular level. Meanwhile, BBR ameliorated glucosamine hydrochloride (Glcn)-induced insulin resistance and increased glucose transporter 2 (GLUT2) expression in a PPARγ/FGF21-dependent manner. In T2D mice, BBR up-regulated the expression of PPARγ, FGF21 and GLUT2 in the liver, and GLUT2 in the pancreas. BBR also reversed T2D-induced insulin resistance, liver lipid accumulation, and damage in liver and pancreas. However, FGF21 deficiency diminished these effects of BBR on diabetic mice. Altogether, our study demonstrates that the therapeutic effects of BBR on T2D were partly accomplished by activating PPARγ-FGF21-GLUT2 signaling pathway. The discovery of this new pathway provides a deeper understanding of the mechanism of BBR for T2D treatment.
Collapse
Affiliation(s)
- Yi Chen
- Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qi Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Shiwei Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Lei Sun
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Zequn Yin
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaolin Wang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoju Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
24
|
Wu W, Zheng J, Wang R, Wang Y. Ion channels regulate energy homeostasis and the progression of metabolic disorders: Novel mechanisms and pharmacology of their modulators. Biochem Pharmacol 2023; 218:115863. [PMID: 37863328 DOI: 10.1016/j.bcp.2023.115863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The progression of metabolic diseases, featured by dysregulated metabolic signaling pathways, is orchestrated by numerous signaling networks. Among the regulators, ion channels transport ions across the membranes and trigger downstream signaling transduction. They critically regulate energy homeostasis and pathogenesis of metabolic diseases and are potential therapeutic targets for treating metabolic disorders. Ion channel blockers have been used to treat diabetes for decades by stimulating insulin secretion, yet with hypoglycemia and other adverse effects. It calls for deeper understanding of the largely elusive regulatory mechanisms, which facilitates the identification of new therapeutic targets and safe drugs against ion channels. In the article, we critically assess the two principal regulatory mechanisms, protein-channel interaction and post-translational modification on the activities of ion channels to modulate energy homeostasis and metabolic disorders through multiple novel mechanisms. Moreover, we discuss the multidisciplinary methods that provide the tools for elucidation of the regulatory mechanisms mediating metabolic disorders by ion channels. In terms of translational perspective, the mechanistic analysis of recently validated ion channels that regulate insulin resistance, body weight control, and adverse effects of current ion channel antagonists are discussed in details. Their small molecule modulators serve as promising new drug candidates to combat metabolic disorders.
Collapse
Affiliation(s)
- Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
25
|
Rohani, Febrina E, Wahyuni IS, Levita J. Pharmacological and Clinical Studies of Medicinal Plants That Inhibit Dipeptidyl Peptidase-IV. Drug Des Devel Ther 2023; 17:3473-3491. [PMID: 38024536 PMCID: PMC10680473 DOI: 10.2147/dddt.s426870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) is an enzyme responsible for the degradation of the incretin hormone glucagon-like peptide-1 (GLP-1). DPP-IV plays a significant role in regulating blood glucose levels by modulating the activity of GLP-1. In the context of diabetes, DPP-IV inhibitors effectively block the activity of DPP-IV, hence mitigating the degradation of GLP-1. This, in turn, leads to an extension of GLP-1's duration of action, prolongs gastric emptying, enhances insulin sensitivity, and ultimately results in the reduction of blood glucose levels. Nonetheless, reported adverse events of DPP-IV inhibitors on T2DM patients make it essential to understand the activity and mechanism of these drugs, particularly viewed from the perspective of finding the effective and safe add-on medicinal plants, to be implemented in clinical practice. This review is intended to bring forth a thorough overview of plants that work by reducing DPP-IV activity, from computational technique, enzymatic study, animal experiments, and studies in humans. The articles were searched on PubMed using "Plants", "DPP-IV", "DPP-IV inhibitor", "GLP-1", "Type 2 diabetes", "diabetes", "in silico", "in vitro", "in vivo", "studies in human", "clinical study" as the query words, and filtered for ten years of publication period. Eighteen plants showed inhibition against DPP-IV as proven by in silico, in vitro, and in vivo studies; however, only ten plants were reported for efficacy in clinical studies. Several plant-based DPP-IV inhibitors, eg, Allium sativum, Morus Alba, Curcuma longa, Pterocarpus marsupium, and Taraxacum officinale, have established their functional role in inhibiting DPP-IV and have proven their effectiveness through studies in humans earning them a prominent place in therapeutic discovery.
Collapse
Affiliation(s)
- Rohani
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Ellin Febrina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Indah Suasani Wahyuni
- Department of Oral Medicine, Faculty of Dentistry, Padjadjaran University, Sumedang, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| |
Collapse
|
26
|
Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon 2023; 9:e21233. [PMID: 38027723 PMCID: PMC10663750 DOI: 10.1016/j.heliyon.2023.e21233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes has emerged as one the leading detrimental factors for human life expectancy worldwide. The disease is mainly considered as outcome of dysregulation in glucose metabolism, resulting in consistent high glucose concentration in blood. At initial stages, the diabetes particularly type 2 diabetes, is manageable by lifestyle interventions such as regular physical activity and diet with less carbohydrates. However, in advance stage, regular intake of external insulin dose and medicines like metformin are recommended. The long-term consumption of metformin is associated with several side effects such as nausea, vomiting, diarrhoea, lectic acidosis etc., In this scenario, several plant-based medicines have shown promising potential for the prevention and treatment of diabetes. Berberine is the bioactive compound present in the different plant parts of berberis family. Biochemical studies have shown that berberine improve insulin sensitivity and insulin secretion. Additionally, berberine induces glucose metabolism by activating AMPK signaling and inhibition of inflammation. A series of studies have demonstrated the antidiabetic potential of berberine at in vitro, pre-clinical and clinical trials. This review provides comprehensive details of preventive and therapeutic potential of berberine against diabetes.
Collapse
Affiliation(s)
- Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Anamika Sharma
- National Institute of Pharmaceutical and Education and Research 500037, Hyderabad, India
| | - Nishant Saxena
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Rashmi Bhamra
- Global Research Institute of Pharmacy, Radour-135133, Haryana, India
| | - Sandeep Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| |
Collapse
|
27
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
28
|
Xu J, Zhang LW, Feng H, Tang Y, Fu SQ, Liu XM, Zhu XY. The Chinese herbal medicine Dai-Zong-Fang promotes browning of white adipocytes in vivo and in vitro by activating PKA pathway to ameliorate obesity. Front Pharmacol 2023; 14:1176443. [PMID: 37251344 PMCID: PMC10211343 DOI: 10.3389/fphar.2023.1176443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: The global prevalence of obesity is rising rapidly. Conversion of white adipose tissue (WAT) into beige adipose tissue with heat-consuming characteristics, i.e., WAT browning, effectively inhibits obesity. Dai-Zong-Fang (DZF), a traditional Chinese medicine formula, has long been used to treat metabolic syndrome and obesity. This study aimed to explore the pharmacological mechanism of DZF against obesity. Methods: In vivo, C57BL/6J mice were fed high-fat diets to establish the diet-induced obese (DIO) model. DZF (0.40 g/kg and 0.20 g/kg) and metformin (0.15 g/kg, positive control drug) were used as intervention drugs for six weeks, respectively. The effects of DZF on body size, blood glucose and lipid level, structure and morphology of adipocytes and browning of inguinal WAT (iWAT) in DIO mice were observed. In vitro, mature 3T3-L1 adipocytes were used as the model. Concentrations of DZF (0.8 mg/mL and 0.4 mg/mL) were selected according to the Cell Counting Kit-8 (CCK8). After 2d intervention, lipid droplet morphology was observed by BODIPY493/503 staining, and mitochondria number was observed by mito-tracker Green staining. H-89 dihydrochloride, a PKA inhibitor, was used to observe the change in browning markers' expression. The expression levels of browning markers UCP1 and PGC-1α and key molecules of PKA pathway were detected in vivo and in vitro. Results: In vivo, compared with vehicle control group, 0.40 g/kg DZF significantly reduced obesity in DIO mice from body weight, abdomen circumference, Lee's index, and WAT/body weight (p < 0.01 or p < 0.001). 0.40 g/kg DZF also significantly reduced fasting blood glucose (FBG), serum triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) (p < 0.01 or p < 0.001). The iWAT's morphology and mitochondria were browning after DZF intervention. In HE-staining, the lipid droplets became smaller, and the number of mitochondria increased. The mitochondrial structure was remodeled under the electron microscope. The expression of UCP1, PGC-1α and PKA was elevated in iWAT detected by RT-qPCR (p < 0.05 or p < 0.001). In vitro, compared with the control group, 0.8 mg/mL DZF intervention significantly increased the number of mitochondria and expression of UCP1, PGC-1α, PKA, and pCREB (p < 0.05 or p < 0.01). In contrast, UCP1 and PGC-1α expression were significantly reversed after adding PKA inhibitor H-89 dihydrochloride. Conclusion: DZF can promote UCP1 expression by activating the PKA pathway, thereby promoting browning of WAT, attenuating obesity, and reducing obesity-related glucose and lipid metabolism abnormalities, indicating that DZF has the potential to be selected as an anti-obesity drug to benefit obese patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Wei Zhang
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Feng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Tang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shou-Qiang Fu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xi-Ming Liu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Yun Zhu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Lodato M, Plaisance V, Pawlowski V, Kwapich M, Barras A, Buissart E, Dalle S, Szunerits S, Vicogne J, Boukherroub R, Abderrahmani A. Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023; 12:cells12060940. [PMID: 36980281 PMCID: PMC10047094 DOI: 10.3390/cells12060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and β-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting β-cells, which would tackle the progression of the disease.
Collapse
Affiliation(s)
- Michele Lodato
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Maxime Kwapich
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Service de Diabétologie et d’Endocrinologie, CH Dunkerque, 59385 Dunkirk, France
| | - Alexandre Barras
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Emeline Buissart
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sabine Szunerits
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Jérôme Vicogne
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Correspondence: ; Tel.: +33-362531704
| |
Collapse
|
30
|
Wang Y. Multidisciplinary Advances Address the Challenges in Developing Drugs against Transient Receptor Potential Channels to Treat Metabolic Disorders. ChemMedChem 2023; 18:e202200562. [PMID: 36530131 DOI: 10.1002/cmdc.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels that regulate key physiological and pathological processes in response to a broad range of stimuli. Moreover, they systemically regulate the release of hormones, metabolic homeostasis, and complications of diabetes, which positions them as promising therapeutic targets to combat metabolic disorders. Nevertheless, there are significant challenges in the design of TRP ligands with high potency and durability. Herein we summarize the four challenges as hydrophobicity, selectivity, mono-target therapy, and interspecies discrepancy. We present 1134 TRP ligands with diversified modes of TRP-ligand interaction and provide a detailed discussion of the latest strategies, especially cryogenic electron microscopy (cryo-EM) and computational methods. We propose solutions to address the challenges with a critical analysis of advances in membrane partitioning, polypharmacology, biased agonism, and biochemical screening of transcriptional modulators. They are fueled by the breakthrough from cryo-EM, chemoinformatics and bioinformatics. The discussion is aimed to shed new light on designing next-generation drugs to treat obesity, diabetes and its complications, with optimal hydrophobicity, higher mode selectivity, multi-targeting and consistent activities between human and rodents.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, P. R. China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, 200438, P. R. China
| |
Collapse
|
31
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
32
|
Zhu L, Xu JJ, Li HD, Li JJ, Cheng M, Niu XN, Jia PC, Liu JY, Huang C, Lv XW, Li J. Berberine Ameliorates Abnormal Lipid Metabolism via the Adenosine Monophosphate-Activated Protein Kinase/Sirtuin 1 Pathway in Alcohol-Related Liver Disease. J Transl Med 2023; 103:100041. [PMID: 36870291 DOI: 10.1016/j.labinv.2022.100041] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Alcoholic fatty liver disease (AFLD) is an early stage of alcohol-related liver disease characterized by abnormal lipid metabolism in hepatocytes. To date, to our knowledge, there have been no effective strategies for preventing or treating alcohol-related liver disease besides alcohol abstinence. Berberine (BBR) is the main bioactive ingredient extracted from traditional Chinese medicines, such as Coptis and Scutellaria, which protect liver function and relieve liver steatosis. However, the potential role of BBR in AFLD remains unclear. Therefore, this study investigated the protective effects of BBR against Gao-binge model-induced AFLD in 6- to 8-week-old C57BL/6J male mice in vivo and ethyl alcohol (EtOH)-induced alpha mouse liver 12 (AML-12) cells in vitro. The results showed that BBR (200 mg/kg) attenuated alcoholic liver injury and suppressed lipid accumulation and metabolism disorders in vivo. Consistently, BBR effectively inhibited the expression of sterol regulatory element-binding transcription factor 1C, sterol regulatory element-binding transcription factor 2, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-CoenzymeA reductase in EtOH-stimulated AML-12 cells in vitro and promoted the expression of sirtuin 1 (SIRT1) in EtOH-fed mice and EtOH-treated AML-12 cells. Furthermore, SIRT1 silencing attenuated the hepatic steatosis alleviation potential of BBR treatment. Mechanistically, molecular docking revealed the binding effect of BBR and adenosine monophosphate-activated protein kinase (AMPK). The results of further studies showed that a decrease in AMPK activity was accompanied by a significant inhibition of SIRT1 expression. SIRT1 silencing attenuated the protective effect of BBR, whereas the inhibition of its expression had no apparent effect on AMPK phosphorylation, suggesting that SIRT1 acts downstream of AMPK in AFLD. Collectively, BBR ameliorated abnormal lipid metabolism and alleviated EtOH-induced liver injury via the AMPK/SIRT1 pathway in AFLD mice.
Collapse
Affiliation(s)
- Lin Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jie-Jie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Miao Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xue-Ni Niu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Peng-Cheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jing-Yu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
33
|
Xie W, Su F, Wang G, Peng Z, Xu Y, Zhang Y, Xu N, Hou K, Hu Z, Chen Y, Chen R. Glucose-lowering effect of berberine on type 2 diabetes: A systematic review and meta-analysis. Front Pharmacol 2022; 13:1015045. [PMID: 36467075 PMCID: PMC9709280 DOI: 10.3389/fphar.2022.1015045] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 09/11/2023] Open
Abstract
Background: Insulin secretory agents are commonly used to treat type 2 diabetes. However, traditional insulin secretory agents such as sulfonylureas and glinides have side effects of hypoglycemia. In recent years, researchers have discovered that berberine can inhibit the voltage-gated k+ channels of pancreatic β cell membrane and promote insulin secretion without causing hypoglycemia, because the glucose-lowering effects of berberine are only under hyperglycemic conditions or in a high-glucose-dependent manner. In order to shed light on the glucose-lowing effects of berberine in type 2 diabetes with different baseline fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c), we conducted a meta-analysis of randomized controlled trials. Methods: We searched eight databases, which included PubMed, EMBASE, Web of Science, the Cochrane Library, and the Chinese databases such as Sino-Med, China National Knowledge Infrastructure (CNKI), Wanfang Database, and VIP Database for Chinese Technical Periodicals, for randomized controlled trials, with berberine as the intervention and patients with type 2 diabetes mellitus as subjects, published up until November 2021. We analyzed the glucose-lowing effects of berberine, including its effects on FPG, HbA1c and 2-h plasma blood glucose (2hPBG), by calculating weighted mean differences (WMD) and 95% confidence interval (CI). To assess the safety of berberine, we analyzed the incidence of total adverse events and hypoglycemia by calculating relative risk (RR) and 95% CI. Results: Thirty-seven studies involving 3,048 patients were included in the meta-analysis. The results showed that berberine could reduce FPG (WMD = -0.82 mmol/L, 95% CI (-0.95, -0.70)), HbA1c (WMD = -0.63%, 95% CI (-0.72, -0.53)), and 2hPBG (WMD = -1.16 mmol/L, 95% CI (-1.36, -0.96)), with all results being statistically significant. Subgroup analyses revealed that the glucose-lowering effect of berberine was associated with baseline mean FPG and HbA1c in type 2 diabetes. In addition, berberine alone or in combination with oral hypoglycemic agents (OHAs) in the treatment of T2DM did not significantly increase the incidence of total adverse events (RR = 0.73, 95% CI (0.55, 0.97), p = 0.03) and the risk of hypoglycemia (RR = 0.48, 95% CI (0.21, 1.08), p = 0.08). Conclusion: Berberine has a glucose-lowering effect, which is related to the baseline FPG and HbA1c levels of patients. Treatment with berberine may be safe since it does not increase the incidence of total adverse events and the risk of hypoglycemia. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=292975, identifier CRD42021292975.
Collapse
Affiliation(s)
- Wenting Xie
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fugui Su
- Department of Endocrinology, Suixi Country People’s Hospital, Guangdong Medical University, Guangzhou, Guangdong, China
| | - Guizhong Wang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zichong Peng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaomin Xu
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ningning Xu
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affifiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, China
| | - Zhuping Hu
- Department of Endocrinology, Wengyuan Country People’s Hospital, Shaoguan, China
| | - Yan Chen
- Department of Reproductive Medicine, Center of Maternal and Child Health Hospital of Shaoguan City, Shaoguan, Guangdong, China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Ma Y, Ma R, ZhiGui, Sa Q, Zhao N, Wurigumala, Burentegusi, Guo Z, Tumenwuliji. Chemicolome and Metabolome Profiling of Xieriga-4 Decoction, A Traditional Mongolian Medicine, Using the UPLC-QTOF/MS Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8197364. [PMID: 36437832 PMCID: PMC9683986 DOI: 10.1155/2022/8197364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024]
Abstract
Background Xieriga-4 decoction (XRG-4) is a classic prescription Mongolian medicine that has potent diuretic and anti-inflammatory activities. However, its functional components remain unknown. Purpose This study aimed to identify the chemical components in XRG-4 and its metabolome in vivo. Methods An ultra-performance liquid chromatography coupled with a quadrupole time-of-flight tandem mass spectrometry based approach was proposed to systematically profile the chemicolome and metabolome of XRG-4. Result A total of 106 constituents were identified in XRG-4. Eighty-nine components were identified in biological samples, including 78 in urine (24 prototypes and 54 metabolites), 26 in feces (19 prototypes and 7 metabolites), and 9 in plasma (5 prototypes and 4 metabolites). In other tissues, only a few compounds, including alkaloids and iridoids, were detected. Conclusion This comprehensive investigation of the chemical and metabolic profiles of XRG-4 provides a scientific foundation for its quality control and administration of clinically-safe medication.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - Ruiting Ma
- Life Sciences Department, Nanjing Normal University, Nanjing 210026, China
- Clinical Lab Department, Inner Mongolia Autonomous Region Mental Health Center, Hohhot 010010, China
| | - ZhiGui
- Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - QiLa Sa
- Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - Na Zhao
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - Wurigumala
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - Burentegusi
- Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - Zhigang Guo
- Life Sciences Department, Nanjing Normal University, Nanjing 210026, China
| | - Tumenwuliji
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| |
Collapse
|
35
|
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12:4011-4039. [PMID: 36386472 PMCID: PMC9643300 DOI: 10.1016/j.apsb.2022.08.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.
Collapse
Affiliation(s)
- Yuyu Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Jiaojiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
36
|
Zamani M, Zarei M, Nikbaf-Shandiz M, Hosseini S, Shiraseb F, Asbaghi O. The effects of berberine supplementation on cardiovascular risk factors in adults: A systematic review and dose-response meta-analysis. Front Nutr 2022; 9:1013055. [PMID: 36313096 PMCID: PMC9614282 DOI: 10.3389/fnut.2022.1013055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiovascular disease (CVD) is a major concern today. Herbal medicine is one helping way to control CVD risks. One conclusive of herbal medicine is Berberine (BBR) and converse about it still exists, to clarify this issue, this meta-analysis was performed. PubMed/Medline, Scopus, and Web of Science were searched for RCTs in adults on the effect of BBR supplementation on CVD risk factors up to July 2022. The pooled results showed BBR significantly reduced triglyceride (WMD = -23.70 mg/dl; 95%CI -30.16, -17.25; P < 0.001), total cholesterol (WMD = -20.64 mg/dl; 95%CI -23.65, -17.63; P < 0.001), low-density lipoprotein WMD = -9.63 mg/dl; 95%CI, -13.87, -5.39; P < 0.001), fasting blood glucose (FBG) (WMD = -7.74 mg/dl; 95%CI -10.79, -4.70; P < 0.001), insulin (WMD = -3.27 mg/dl; 95%CI -4.46,-2.07; P < 0.001), HbA1c (WMD = -0.45%; 95%CI -0.68, -0.23; P < 0.001), HOMA-IR (WMD = -1.04; 95%CI -1.55, -0.52; P < 0.001), systolic blood pressure (WMD = -5.46 mmHg; 95%CI -8.17, -2.76; P < 0.001), weight (WMD = -0.84; 95%CI -1.34,-0.34; P < 0.001), body mass index (WMD = -0.25 kg/m2; 95%CI -0.46, -0.04; P = 0.020), while increased high-density lipoprotein (HDL) (WMD = 1.37 mg/dl; 95%CI 0.41,2.23; P = 0.005). The optimal dose of BBR was 1 g/day for TG, TC, and weight, 1.8 g/day for insulin and HOMA-IR, and 5 g/day for HDL. FBG's most efficient time frame was 40 weeks from the beginning of supplementation, whereas DBP and waist circumference was 50 weeks. In conclusion, the lipid profile, FBG balance, obesity parameters, and SBP were improved with BBR supplementation. Systematic review registration CRD42022347004.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Shabnam Hosseini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Urasaki Y, Le TT. A Composition of Phytonutrients for Glycemic and Weight Management. Nutrients 2022; 14:nu14183784. [PMID: 36145160 PMCID: PMC9501537 DOI: 10.3390/nu14183784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 02/06/2023] Open
Abstract
Maintaining healthy body weight is an important component of any effective diabetes management plan. However, glycemic management using insulin generally leads to weight gain. In addition, weight loss medications prescribed for diabetes management are often associated with adverse side effects, which limit their long-term usage. Alternatively, nutrition intervention provides a safe, readily accessible, and inexpensive option for diabetes management. This study describes a composition of phytonutrients comprising berberine, cinnamaldehyde, and curcumin for glycemic and weight management. Functional complementarity between berberine, cinnamaldehyde, and curcumin provides an effective means to improve insulin sensitivity without increasing adiposity. In primary human omental preadipocytes, cinnamaldehyde and curcumin additively enhance insulin-stimulated activation of Akt2 and glucose uptake, whereas berberine inhibits de novo fatty acid biosynthesis and fat cell differentiation. In a diet-induced obesity murine model, a dietary supplement with berberine, cinnamaldehyde, and curcumin prevents weight gain, improves glucose tolerance, and reduces HbA1c, blood lipids, visceral adiposity, and liver steatosis. Collectively, the composition of phytonutrients comprising berberine, cinnamaldehyde, and curcumin protects against obesity and pre-diabetic conditions in a diet-induced obesity murine model. Safety and efficacy assessment of nutrition intervention using combined berberine, cinnamaldehyde, and curcumin for glycemic and weight management in future clinical trials are warranted.
Collapse
|
38
|
Yang Y, Cao S, Xu W, Zang C, Zhang F, Xie Y, Wu C. Dual modulation of gut bacteria and fungi manifests the gut-based anti-hyperlipidemic effect of Coptidis Rhizoma. Biomed Pharmacother 2022; 153:113542. [DOI: 10.1016/j.biopha.2022.113542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022] Open
|
39
|
Xing J, Chen C. Hyperinsulinemia: beneficial or harmful or both on glucose homeostasis. Am J Physiol Endocrinol Metab 2022; 323:E2-E7. [PMID: 35635329 DOI: 10.1152/ajpendo.00441.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin, a principal anabolic hormone produced by pancreatic β-cells, has a primary function of storage of nutrients following excessive energy intake. Pre- or early type 2 diabetes stages present hyperinsulinemia (β-cell dysfunction) and insulin resistance. Initiation of hyperinsulinemia is triggered by a loss of first-phase glucose-stimulated insulin secretion with altered membrane ion channel distribution. More factors, including insulin resistance and excessive proliferation of β-cells, deteriorate the hyperinsulinemia, whereas the hyperinsulinemia contributes to further development of insulin resistance and type 2 diabetes; to develop eventually late-stage diabetes with absolute insulin deficiency. In this mini-review, the major focus was put on the causes and pathophysiology of hyperinsulinemia, and the metabolic consequences and current treatment of hyperinsulinemia were discussed. The data used in this narrative review were collected mainly from relevant discoveries in the past 3 years.
Collapse
Affiliation(s)
- JingJing Xing
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
40
|
Hao Y, Li J, Yue S, Wang S, Hu S, Li B. Neuroprotective Effect and Possible Mechanisms of Berberine in Diabetes-Related Cognitive Impairment: A Systematic Review and Meta-Analysis of Animal Studies. Front Pharmacol 2022; 13:917375. [PMID: 35734409 PMCID: PMC9208278 DOI: 10.3389/fphar.2022.917375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 12/09/2022] Open
Abstract
Berberine, the main bioactive component of Coptis chinensis Franch., is widely used in the treatment of diabetes. Previous studies have reported that berberine supplementation may play a multitarget therapeutic role in diabetes-related cognitive impairment (DCI). This systematic review and meta-analysis evaluated the effect and possible mechanisms of berberine in animal models of DCI. Relevant studies were searched through PubMed, Web of Science, Embase, and three Chinese databases (CNKI, Wanfang, and VIP) until March 2022. Twenty studies involving 442 animals were included, and SYRCLE’s risk of bias tool was used to assess methodological quality. The statistical analysis was performed using STATA 15.0 to calculate the weighted standard mean difference (SMD) with a 95% confidence interval (CI). The fasting blood glucose (FBG) and Morris water maze test (MWM) were the main outcomes to be analyzed. The overall results showed that berberine could significantly improve FBG, escape latency, the times of crossing the platform, the time spent in the target quadrant, serum insulin, 2hBG of oral glucose tolerance test (OGTT), amyloid β (Aβ), acetylcholinesterase (AChE), oxidative stress, and inflammation levels. The present meta-analysis demonstrated that berberine could not only lower blood glucose levels but also improve learning and memory in DCI animal models, which might involve regulating glucose and lipid metabolism, improving insulin resistance, anti-oxidation, anti-neuroinflammation, inhibiting endoplasmic reticulum (ER) stress; and improving the cholinergic system. However, additional attention should be paid to these outcomes due to the significant heterogeneity.
Collapse
Affiliation(s)
- Yanwei Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengnan Yue
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaofeng Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyuan Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Bin Li,
| |
Collapse
|
41
|
Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cell Discov 2022; 8:53. [PMID: 35668062 PMCID: PMC9167920 DOI: 10.1038/s41421-022-00419-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 12/13/2022] Open
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important target for vaccine and drug development. However, the rapid emergence of variant strains with mutated S proteins has rendered many treatments ineffective. Cleavage of the S protein by host proteases is essential for viral infection. Here, we discovered that the S protein contains two previously unidentified Cathepsin L (CTSL) cleavage sites (CS-1 and CS-2). Both sites are highly conserved among all known SARS-CoV-2 variants. Our structural studies revealed that CTSL cleavage promoted S to adopt receptor-binding domain (RBD) “up” activated conformations, facilitating receptor-binding and membrane fusion. We confirmed that CTSL cleavage is essential during infection of all emerged SARS-CoV-2 variants (including the recently emerged Omicron variant) by pseudovirus (PsV) infection experiment. Furthermore, we found CTSL-specific inhibitors not only blocked infection of PsV/live virus in cells but also reduced live virus infection of ex vivo lung tissues of both human donors and human ACE2-transgenic mice. Finally, we showed that two CTSL-specific inhibitors exhibited excellent In vivo effects to prevent live virus infection in human ACE2-transgenic mice. Our work demonstrated that inhibition of CTSL cleavage of SARS-CoV-2 S protein is a promising approach for the development of future mutation-resistant therapy.
Collapse
|
42
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
43
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Berberine, a Herbal Metabolite in the Metabolic Syndrome: The Risk Factors, Course, and Consequences of the Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041351. [PMID: 35209140 PMCID: PMC8874997 DOI: 10.3390/molecules27041351] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
In recent years, the health of patients exposed to the consequences of the metabolic syndrome still requires the search for new solutions, and plant nutraceuticals are currently being intensively investigated. Berberine is a plant alkaloid possessing scientifically determined mechanisms of the prevention of the development of atherosclerosis, type 2 diabetes, and obesity, as well as cardiovascular complications and cancer. It positively contributes to elevated levels of fasting, postprandial blood glucose, and glycosylated hemoglobin, while decreasing insulin resistance. It stimulates glycolysis, improving insulin secretion, and inhibits gluconeogenesis and adipogenesis in the liver; by reducing insulin resistance, berberine also improves ovulation. The anti-obesity action of berberine has been also well-documented. Berberine acts as an anti-sclerotic, lowering the LDL and testosterone levels. The alkaloid exhibits an anti-inflammatory property by stalling the expression of cyclooxygenase 2 (COX-2) and prostaglandin E2. Berberine is neuroprotective and acts as an antidepressive. However, the outcomes in psychiatric patients are nonspecific, as it has been shown that berberine improves metabolic parameters in schizophrenic patients, acting as an adjuvant during antipsychotic treatment. Berberine acts as an anticancer option by inducing apoptosis, the cell cycle arrest, influencing MAPK (mitogen-activated protein kinase), and influencing transcription regulation. The inhibition of carcinogenesis is also combined with lipid metabolism.
Collapse
|
45
|
Zhu Y, Xie N, Chai Y, Nie Y, Liu K, Liu Y, Yang Y, Su J, Zhang C. Apoptosis Induction, a Sharp Edge of Berberine to Exert Anti-Cancer Effects, Focus on Breast, Lung, and Liver Cancer. Front Pharmacol 2022; 13:803717. [PMID: 35153781 PMCID: PMC8830521 DOI: 10.3389/fphar.2022.803717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the leading cause of death and one of the greatest barriers to increased life expectancy worldwide. Currently, chemotherapy with synthetic drugs remains one of the predominant ways for cancer treatment, which may lead to drug resistance and normal organ damage. Increasing researches have suggested that apoptosis, a type of programmed cell death, is a promising way for cancer therapy. Furthermore, natural products are important sources for finding new drugs with high availability, low cost and low toxicity. As a well-known isoquinoline alkaloid, accumulating evidence has revealed that berberine (BBR) exerts potential pro-apoptotic effects on multiple cancers, including breast, lung, liver, gastric, colorectal, pancreatic, and ovarian cancers. The related potential signal pathways are AMP-activated protein kinase, mitogen-activated protein kinase, and protein kinase B pathways. In this review, we provide a timely and comprehensive summary of the detailed molecular mechanisms of BBR in treating three types of cancer (breast, lung and liver cancer) by inducing apoptosis. Furthermore, we also discuss the existing challenges and strategies to improve BBR’s bioavailability. Hopefully, this review provides valuable information for the comprehension of BBR in treating three types of cancer and highlight the pro-apoptotic effects of BBR, which would be beneficial for the further development of this natural compound as an effective clinical drug for treating cancers.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yisen Nie
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinsong Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
46
|
Lu J, Shi TT, Yuan SS, Xie RR, Zhao RX, Zhu JJ, Yang JK. Cisapride induced hypoglycemia via the KCNH6 potassium channel. Front Endocrinol (Lausanne) 2022; 13:1011238. [PMID: 36325440 PMCID: PMC9618959 DOI: 10.3389/fendo.2022.1011238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in KCNH6 has been proved to cause hypoinsulinemia and diabetes in human and mice. Cisapride is a stomach-intestinal motility drug used to treat gastrointestinal dysfunction. Cisapride has been reported to be a potential inhibitor of the KCNH family, but it remained unclear whether cisapride inhibited KCNH6. Here, we discovered the role of cisapride on glucose metabolism, focusing on the KCNH6 potassium channel protein. Cisapride reduced blood glucose level and increased serum insulin secretion in wild-type (WT) mice fed standard normal chow/a high-fat diet or in db/db mice, especially when combined with tolbutamide. This effect was much stronger after 4 weeks of intraperitoneal injection. Whole-cell patch-clamp showed that cisapride inhibited KCNH6 currents in transfected HEK293 cells in a concentration-dependent manner. Cisapride induced an increased insulin secretion through the disruption of intracellular calcium homeostasis in a rat pancreatic β-cell line, INS-1E. Further experiments revealed that cisapride did not decrease blood glucose or increase serum insulin in KCNH6 β-cell knockout (Kcnh6-β-KO) mice when compared with WT mice. Cisapride also ameliorated glucose-stimulated insulin secretion (GSIS) in response to high glucose in WT but not Kcnh6-β-KO mice. Thus, our data reveal a novel way for the effect of KCNH6 in cisapride-induced hypoglycemia.
Collapse
Affiliation(s)
- Jing Lu
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ting-Ting Shi
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Sha-Sha Yuan
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Rong-Rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru-Xuan Zhao
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Juan-Juan Zhu
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jin-Kui Yang,
| |
Collapse
|