1
|
Pan B, Zhou P, Lyu P, Xiao H, Yang X, Sun L. General Stacking Theory for Altermagnetism in Bilayer Systems. PHYSICAL REVIEW LETTERS 2024; 133:166701. [PMID: 39485963 DOI: 10.1103/physrevlett.133.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024]
Abstract
Two-dimensional (2D) altermagnetism was recently proposed to be attainable in twisted antiferromagnetic bilayers providing an experimentally feasible approach to realize it in 2D materials. Nevertheless, a comprehensive understanding of the mechanism governing the appearance of altermagnetism in bilayer systems is still absent. In the present Letter, we address this gap by introducing a general stacking theory (GST) as a key condition for the emergence of altermagnetism in bilayer systems. The GST provides straightforward criteria to predict whether a bilayer demonstrates altermagnetic spin splitting, solely based on the layer groups of the composing monolayers. According to the GST, only seven point groups of bilayers facilitate the emergence of altermagnetism. It is revealed that, beyond the previously proposed antiferromagnetic twisted Van der Waals stacking, altermagnetism can even emerge in bilayers formed through the symmetrically restricted direct stacking of two monolayers. By combining the GST and first-principles calculations, we present illustrative examples of bilayers demonstrating altermagnetism. Our work establishes a robust framework for designing diverse bilayer systems with altermagnetism, thereby opening up new avenues for both fundamental research and practical applications in this field.
Collapse
Affiliation(s)
- Baoru Pan
- Hunan Provincial Key laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Pan Zhou
- Hunan Provincial Key laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Pengbo Lyu
- Hunan Provincial Key laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China
| | | | | | - Lizhong Sun
- Hunan Provincial Key laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China
| |
Collapse
|
2
|
Liu Z, Ozeki M, Asai S, Itoh S, Masuda T. Chiral Split Magnon in Altermagnetic MnTe. PHYSICAL REVIEW LETTERS 2024; 133:156702. [PMID: 39454157 DOI: 10.1103/physrevlett.133.156702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 10/27/2024]
Abstract
Altermagnetism is a newly recognized magnetic class named after the alternating spin polarizations in both real and reciprocal spaces. Like the spin splitting of electronic bands, the magnon bands in altermagnets are predicted to exhibit alternating chiral splitting. In this work, by performing inelastic neutron scattering on α-MnTe, we directly observed the altermagnetic magnon splitting. The lifted degeneracy of magnons is well explained by a symmetric-exchange origin. Further calculation based on the obtained spin-wave model demonstrates the magnons are chiral split as well. In addition, the g-wave magnetism was experimentally identified in MnTe.
Collapse
|
3
|
Samanta K, Tsymbal EY. Symmetry-controlled SrRuO 3/SrTiO 3/SrRuO 3magnetic tunnel junctions: spin polarization and its relevance to tunneling magnetoresistance. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:495802. [PMID: 39258556 DOI: 10.1088/1361-648x/ad765f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Magnetic tunnel junctions (MTJs), that consist of two ferromagnetic electrodes separated by an insulating barrier layer, have non-trivial fundamental properties associated with spin-dependent tunneling. Especially interesting are fully crystalline MTJs where spin-dependent tunneling is controlled by the symmetry group of wave vector. In this work, using first-principles quantum-transport calculations, we explore spin-dependent tunneling in fully crystalline SrRuO3/SrTiO3/SrRuO3(001) MTJs and predict tunneling magnetoresistance (TMR) of nearly 3000%. We demonstrate that this giant TMR effect is driven by symmetry matching (mismatching) of the incoming and outcoming Bloch states in the SrRuO3(001) electrodes and evanescent states in the SrTiO3(001) barrier. We argue that under the conditions of symmetry-controlled transport, spin polarization, whatever definition is used, is not a relevant measure of spin-dependent tunneling. In the presence of diffuse scattering, however, e.g. due to localized states in the band gap of the tunnel barrier, symmetry matching is no longer valid and TMR in SrRuO3/SrTiO3/SrRuO3(001) MTJs is strongly reduced. Under these conditions, the spin polarization of the interface transmission function becomes a valid measure of TMR. These results provide an important insight into understanding and optimizing TMR in all-oxide MTJs.
Collapse
Affiliation(s)
- Kartik Samanta
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, United States of America
| |
Collapse
|
4
|
Nair S, Yang Z, Storr K, Jalan B. High-Mobility Carriers in Epitaxial IrO 2 Films Grown using Hybrid Molecular Beam Epitaxy. NANO LETTERS 2024; 24:10850-10857. [PMID: 39173119 DOI: 10.1021/acs.nanolett.4c02367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Binary rutile oxides of 5d metals such as IrO2 stand out in comparison to their 3d and 4d counterparts due to limited experimental studies, despite rich predicted quantum phenomena. Here, we investigate the electrical transport properties of IrO2 by engineering epitaxial thin films grown using hybrid molecular beam epitaxy. Our findings reveal phonon-limited carrier transport and thickness-dependent anisotropic in-plane resistance in IrO2 (110) films, the latter suggesting a complex relationship between strain relaxation and orbital hybridization. Magnetotransport measurements reveal a previously unobserved nonlinear Hall effect. A two-carrier analysis of this effect shows the presence of minority carriers with mobility exceeding 3000 cm2/(V s) at 1.8 K. These results point toward emergent properties in 5d metal oxides that can be controlled using dimensionality and epitaxial strain.
Collapse
Affiliation(s)
- Sreejith Nair
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Zhifei Yang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
- School of Physics and Astronomy, University of Minnesota, Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Kevin Storr
- Department of Physics, Prairie View A&M University, Prairie View, Texas 77446-0519, United States
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Wu Y, Deng L, Yin X, Tong J, Tian F, Zhang X. Valley-Related Multipiezo Effect and Noncollinear Spin Current in an Altermagnet Fe 2Se 2O Monolayer. NANO LETTERS 2024; 24:10534-10539. [PMID: 39145607 DOI: 10.1021/acs.nanolett.4c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
An altermagnet exhibits many novel physical phenomena because of its intrinsic antiferromagnetic coupling and natural band spin splitting, which are expected to give rise to new types of magnetic electronic components. In this study, an Fe2Se2O monolayer is proven to be an altermagnet with out-of-plane magnetic anisotropy, and its Néel temperature is determined to be 319 K. The spin splitting of the Fe2Se2O monolayer reaches 860 meV. Moreover, an Fe2Se2O monolayer presents a pair of energy valleys, which can be polarized and reversed by applying uniaxial strains along different directions, resulting in a piezovalley effect. Under the strain, the net magnetization can be induced in the Fe2Se2O monolayer by doping with holes, thereby realizing a piezomagnetic property. Interestingly, noncollinear spin current can be generated by applying an in-plane electric field on an unstrained Fe2Se2O monolayer doped with 0.2 hole/formula unit. These excellent physical properties make the Fe2Se2O monolayer a promising candidate for multifunctional spintronic and valleytronic devices.
Collapse
Affiliation(s)
- Yanzhao Wu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Li Deng
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xiang Yin
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Junwei Tong
- Department of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xianmin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
6
|
Zhang RW, Cui C, Li R, Duan J, Li L, Yu ZM, Yao Y. Predictable Gate-Field Control of Spin in Altermagnets with Spin-Layer Coupling. PHYSICAL REVIEW LETTERS 2024; 133:056401. [PMID: 39159119 DOI: 10.1103/physrevlett.133.056401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/22/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
Spintronics, a technology harnessing electron spin for information transmission, offers a promising avenue to surpass the limitations of conventional electronic devices. While the spin directly interacts with the magnetic field, its control through the electric field is generally more practical, and has become a focal point in the field. Here, we propose a mechanism to realize static and almost uniform effective magnetic field by gate-electric field. Our method employs two-dimensional altermagnets with valley-mediated spin-layer coupling (SLC), in which electronic states display valley-contrasted spin and layer polarization. For the low-energy valley electrons, a uniform gate field is approximately identical to a uniform magnetic field, leading to predictable control of spin. Through symmetry analysis and ab initio calculations, we predict altermagnetic monolayer Ca(CoN)_{2} and its family materials as potential candidates hosting SLC. We show that an almost uniform magnetic field (B_{z}) indeed is generated by gate field (E_{z}) in Ca(CoN)_{2} with B_{z}∝E_{z} in a wide range, and B_{z} reaches as high as about 10^{3} T when E_{z}=0.2 eV/Å. Furthermore, owing to the clean band structure and SLC, one can achieve perfect and switchable spin and valley currents and significant tunneling magnetoresistance in Ca(CoN)_{2} solely using the gate field. Our work provides new opportunities to generate predictable control of spin and design spintronic devices that can be controlled by purely electric means.
Collapse
Affiliation(s)
| | - Chaoxi Cui
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Runze Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jingyi Duan
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Lei Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | | | | |
Collapse
|
7
|
Wang ZQ, Li ZQ, Sun L, Zhang ZY, He K, Niu H, Cheng J, Yang M, Yang X, Chen G, Yuan Z, Ding HF, Miao BF. Inverse Spin Hall Effect Dominated Spin-Charge Conversion in (101) and (110)-Oriented RuO_{2} Films. PHYSICAL REVIEW LETTERS 2024; 133:046701. [PMID: 39121432 DOI: 10.1103/physrevlett.133.046701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/31/2024] [Indexed: 08/11/2024]
Abstract
Utilizing spin pumping, we present a comparative study of the spin-charge conversion in RuO_{2}(101) and RuO_{2}(110) films. RuO_{2}(101) shows a robust in-plane crystal-axis dependence, whereas RuO_{2}(110) exhibits an isotropic but stronger one. Symmetry-based analysis and first-principles calculations reveal that the spin-charge conversion in RuO_{2}(110) originates from the inverse spin Hall effect (ISHE) due to nodal lines splitting. In RuO_{2}(101), the ISHE also dominates although the inverse spin splitting effect (ISSE) may coexist. These findings, in sharp contrast to previously attributed ISSE, are further corroborated by the reciprocal relation between the spin pumping and the spin-torque ferromagnetic resonance measurements.
Collapse
Affiliation(s)
| | - Z Q Li
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Interdisciplinary Center for Theoretical Physics and Information Sciences (ICTPIS), Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | - Z Yuan
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Interdisciplinary Center for Theoretical Physics and Information Sciences (ICTPIS), Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
8
|
Gong J, Wang Y, Han Y, Cheng Z, Wang X, Yu ZM, Yao Y. Hidden Real Topology and Unusual Magnetoelectric Responses in Two-Dimensional Antiferromagnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402232. [PMID: 38684179 DOI: 10.1002/adma.202402232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Recently, the real topology has been attracting widespread interest in two dimensions (2D). Here, based on first-principles calculations and theoretical analysis, the monolayer Cr2Se2O (ML-CrSeO) is revealed as the first material example of a 2D antiferromagnetic (AFM) real Chern insulator (RCI) with topologically protected corner states. Unlike previous RCIs, it is found that the real topology of the ML-CrSeO is rooted in one certain mirror subsystem of the two spin channels, and cannot be directly obtained from all the valence bands in each spin channel as commonly believed. In particular, due to antiferromagnetism, the corner modes in ML-CrSeO exhibit strong corner-contrasted spin polarization, leading to spin-corner coupling (SCC). This SCC enables a direct connection between spin space and real space. Consequently, large and switchable net magnetization can be induced in the ML-CrSeO nanodisk by electrostatic means, such as potential step and in-plane electric field, and the corresponding magnetoelectric responses behave like a sign function, distinguished from that of the conventional multiferroic materials. This work considerably broadens the candidate range of RCI materials, and opens up a new direction for topo-spintronics and 2D AFM materials research.
Collapse
Affiliation(s)
- Jialin Gong
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
| | - Yang Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yilin Han
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, 2500, Australia
| | - Xiaotian Wang
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, 2500, Australia
| | - Zhi-Ming Yu
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yugui Yao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
9
|
Guo Y, Zhang J, Zhu Z, Jiang Y, Jiang L, Wu C, Dong J, Xu X, He W, He B, Huang Z, Du L, Zhang G, Wu K, Han X, Shao D, Yu G, Wu H. Direct and Inverse Spin Splitting Effects in Altermagnetic RuO 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400967. [PMID: 38626379 PMCID: PMC11220717 DOI: 10.1002/advs.202400967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Indexed: 04/18/2024]
Abstract
Recently, the altermagnetic materials with spin splitting effect (SSE), have drawn significant attention due to their potential to the flexible control of the spin polarization by the Néel vector. Here, the direct and inverse altermagnetic SSE (ASSE) in the (101)-oriented RuO2 film with the tilted Néel vector are reported. First, the spin torque along the x-, y-, and z-axis is detected from the spin torque-induced ferromagnetic resonance (ST-FMR), and the z-spin torque emerges when the electric current is along the [010] direction, showing the anisotropic spin splitting of RuO2. Further, the current-induced modulation of damping is used to quantify the damping-like torque efficiency (ξDL) in RuO2/Py, and an anisotropic ξDL is obtained and maximized for the current along the [010] direction, which increases with the reduction of the temperature, indicating the present of ASSE. Next, by way of spin pumping measurement, the inverse altermagnetic spin splitting effect (IASSE) is studied, which also shows a crystal direction-dependent anisotropic behavior and temperature-dependent behavior. This work gives a comprehensive study of the direct and inverse ASSE effects in the altermagnetic RuO2, inspiring future altermagnetic materials and devices with flexible control of spin polarization.
Collapse
Affiliation(s)
- Yaqin Guo
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Jing Zhang
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Zengtai Zhu
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Yuan‐yuan Jiang
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefei230031China
- University of Science and Technology of ChinaHefei230026China
| | - Longxing Jiang
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Chuangwen Wu
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Jing Dong
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Xing Xu
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Wenqing He
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Bin He
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Luojun Du
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Guangyu Zhang
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Kehui Wu
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Xiufeng Han
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Ding‐fu Shao
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefei230031China
- University of Science and Technology of ChinaHefei230026China
| | - Guoqiang Yu
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Hao Wu
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| |
Collapse
|
10
|
Das P, Leeb V, Knolle J, Knap M. Realizing Altermagnetism in Fermi-Hubbard Models with Ultracold Atoms. PHYSICAL REVIEW LETTERS 2024; 132:263402. [PMID: 38996311 DOI: 10.1103/physrevlett.132.263402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/17/2024] [Indexed: 07/14/2024]
Abstract
Altermagnetism represents a type of collinear magnetism, that is in some aspects distinct from ferromagnetism and from conventional antiferromagnetism. In contrast to the latter, sublattices of opposite spin are related by spatial rotations and not only by translations and inversions. As a result, altermagnets have spin-split bands leading to unique experimental signatures. Here, we show theoretically how a d-wave altermagnetic phase can be realized with ultracold fermionic atoms in optical lattices. We propose an altermagnetic Hubbard model with anisotropic next-nearest neighbor hopping and obtain the Hartree-Fock phase diagram. The altermagnetic phase separates in a metallic and an insulating phase and is robust over a large parameter regime. We show that one of the defining characteristics of altermagnetism, the anisotropic spin transport, can be probed with trap-expansion experiments.
Collapse
Affiliation(s)
| | | | - Johannes Knolle
- Technical University of Munich, TUM School of Natural Sciences, Physics Department, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
11
|
Reichlova H, Lopes Seeger R, González-Hernández R, Kounta I, Schlitz R, Kriegner D, Ritzinger P, Lammel M, Leiviskä M, Birk Hellenes A, Olejník K, Petřiček V, Doležal P, Horak L, Schmoranzerova E, Badura A, Bertaina S, Thomas A, Baltz V, Michez L, Sinova J, Goennenwein STB, Jungwirth T, Šmejkal L. Observation of a spontaneous anomalous Hall response in the Mn 5Si 3 d-wave altermagnet candidate. Nat Commun 2024; 15:4961. [PMID: 38862514 PMCID: PMC11167012 DOI: 10.1038/s41467-024-48493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
Phases with spontaneous time-reversal ( T ) symmetry breaking are sought after for their anomalous physical properties, low-dissipation electronic and spin responses, and information-technology applications. Recently predicted altermagnetic phase features an unconventional and attractive combination of a strong T -symmetry breaking in the electronic structure and a zero or only weak-relativistic magnetization. In this work, we experimentally observe the anomalous Hall effect, a prominent representative of the T -symmetry breaking responses, in the absence of an external magnetic field in epitaxial thin-film Mn5Si3 with a vanishingly small net magnetic moment. By symmetry analysis and first-principles calculations we demonstrate that the unconventional d-wave altermagnetic phase is consistent with the experimental structural and magnetic characterization of the Mn5Si3 epilayers, and that the theoretical anomalous Hall conductivity generated by the phase is sizable, in agreement with experiment. An analogy with unconventional d-wave superconductivity suggests that our identification of a candidate of unconventional d-wave altermagnetism points towards a new chapter of research and applications of magnetic phases.
Collapse
Affiliation(s)
- Helena Reichlova
- Institut für Festkörper- und Materialphysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062, Dresden, Germany.
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Praha 6, Czech Republic.
| | - Rafael Lopes Seeger
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, Spintec, F-38000, Grenoble, France
| | - Rafael González-Hernández
- Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla, Colombia
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128, Mainz, Germany
| | - Ismaila Kounta
- Aix Marseille Univ, CNRS, CINAM, AMUTECH, Marseille, France
| | - Richard Schlitz
- Institut für Festkörper- und Materialphysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062, Dresden, Germany
| | - Dominik Kriegner
- Institut für Festkörper- und Materialphysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062, Dresden, Germany
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Praha 6, Czech Republic
| | - Philipp Ritzinger
- Institut für Festkörper- und Materialphysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062, Dresden, Germany
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Praha 6, Czech Republic
| | - Michaela Lammel
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstr. 20, 01069, Dresden, Germany
- Universität Konstanz, Fachbereich Physik, 78457, Konstanz, Germany
| | - Miina Leiviskä
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, Spintec, F-38000, Grenoble, France
| | - Anna Birk Hellenes
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128, Mainz, Germany
| | - Kamil Olejník
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Praha 6, Czech Republic
| | - Vaclav Petřiček
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Praha 6, Czech Republic
| | - Petr Doležal
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
| | - Lukas Horak
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
| | - Eva Schmoranzerova
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
| | - Antonín Badura
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
| | | | - Andy Thomas
- Institut für Festkörper- und Materialphysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062, Dresden, Germany
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstr. 20, 01069, Dresden, Germany
| | - Vincent Baltz
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, Spintec, F-38000, Grenoble, France
| | - Lisa Michez
- Aix Marseille Univ, CNRS, CINAM, AMUTECH, Marseille, France
| | - Jairo Sinova
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128, Mainz, Germany
- Department of Physics, Texas A&M University, College Station, Texas, USA
| | - Sebastian T B Goennenwein
- Institut für Festkörper- und Materialphysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062, Dresden, Germany
- Universität Konstanz, Fachbereich Physik, 78457, Konstanz, Germany
| | - Tomáš Jungwirth
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Praha 6, Czech Republic
- School of Physics and Astronomy, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Libor Šmejkal
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Praha 6, Czech Republic.
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128, Mainz, Germany.
| |
Collapse
|
12
|
Shi J, Arpaci S, Lopez-Dominguez V, Sangwan VK, Mahfouzi F, Kim J, Athas JG, Hamdi M, Aygen C, Arava H, Phatak C, Carpentieri M, Jiang JS, Grayson MA, Kioussis N, Finocchio G, Hersam MC, Khalili Amiri P. Electrically Controlled All-Antiferromagnetic Tunnel Junctions on Silicon with Large Room-Temperature Magnetoresistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312008. [PMID: 38501999 DOI: 10.1002/adma.202312008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/11/2024] [Indexed: 03/20/2024]
Abstract
Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon-based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon-compatible deposition process, and controlling their AFM order required external magnetic fields. Here are shown three-terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3, sputter-deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room-temperature TMR effect. First-principles calculations explain the TMR in terms of the momentum-resolved spin-dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes.
Collapse
Affiliation(s)
- Jiacheng Shi
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sevdenur Arpaci
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Applied Physics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Victor Lopez-Dominguez
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Institute of Advanced Materials (INAM), Universitat Jaume I, Castellón, 12006, Spain
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Farzad Mahfouzi
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Jinwoong Kim
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Jordan G Athas
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mohammad Hamdi
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Can Aygen
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hanu Arava
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Charudatta Phatak
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Mario Carpentieri
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, 70125, Italy
| | - Jidong S Jiang
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Matthew A Grayson
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Applied Physics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Nicholas Kioussis
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Giovanni Finocchio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, 98166, Italy
| | - Mark C Hersam
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Applied Physics Program, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Pedram Khalili Amiri
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Applied Physics Program, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
13
|
Hariki A, Dal Din A, Amin OJ, Yamaguchi T, Badura A, Kriegner D, Edmonds KW, Campion RP, Wadley P, Backes D, Veiga LSI, Dhesi SS, Springholz G, Šmejkal L, Výborný K, Jungwirth T, Kuneš J. X-Ray Magnetic Circular Dichroism in Altermagnetic α-MnTe. PHYSICAL REVIEW LETTERS 2024; 132:176701. [PMID: 38728732 DOI: 10.1103/physrevlett.132.176701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 05/12/2024]
Abstract
Altermagnetism is a recently identified magnetic symmetry class combining characteristics of conventional collinear ferromagnets and antiferromagnets, that were regarded as mutually exclusive, and enabling phenomena and functionalities unparalleled in either of the two traditional elementary magnetic classes. In this work we use symmetry, ab initio theory, and experiments to explore x-ray magnetic circular dichroism (XMCD) in the altermagnetic class. As a representative material for our XMCD study we choose α-MnTe with compensated antiparallel magnetic order in which an anomalous Hall effect has been already demonstrated. We predict and experimentally confirm a characteristic XMCD line shape for compensated moments lying in a plane perpendicular to the light propagation vector. Our results highlight the distinct phenomenology in altermagnets of this time-reversal symmetry breaking response, and its potential utility for element-specific spectroscopy and microscopy.
Collapse
Affiliation(s)
- A Hariki
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - A Dal Din
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - O J Amin
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - T Yamaguchi
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - A Badura
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6 Czech Republic
| | - D Kriegner
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6 Czech Republic
| | - K W Edmonds
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - R P Campion
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - P Wadley
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - D Backes
- Diamond Light Source, Chilton OX11 0DE, United Kingdom
| | - L S I Veiga
- Diamond Light Source, Chilton OX11 0DE, United Kingdom
| | - S S Dhesi
- Diamond Light Source, Chilton OX11 0DE, United Kingdom
| | - G Springholz
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - L Šmejkal
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6 Czech Republic
- Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany
| | - K Výborný
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6 Czech Republic
| | - T Jungwirth
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6 Czech Republic
| | - J Kuneš
- Institute for Solid State Physics, TU Wien, 1040 Vienna, Austria
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| |
Collapse
|
14
|
McClarty PA, Rau JG. Landau Theory of Altermagnetism. PHYSICAL REVIEW LETTERS 2024; 132:176702. [PMID: 38728708 DOI: 10.1103/physrevlett.132.176702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/11/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024]
Abstract
We formulate a Landau theory for altermagnets, a class of collinear compensated magnets with spin-split bands. Starting from the nonrelativistic limit, this Landau theory goes beyond a conventional analysis by including spin-space symmetries, providing a simple framework for understanding the key features of this family of materials. We find a set of multipolar secondary order parameters connecting existing ideas about the spin symmetries of these systems, their order parameters, and the effect of nonzero spin-orbit coupling. We account for several features of canonical altermagnets such as RuO_{2}, MnTe, and CuF_{2} that go beyond symmetry alone, relating the order parameter to key observables such as magnetization, anomalous Hall conductivity, and magnetoelastic and magneto-optical probes. Finally, we comment on generalizations of our framework to a wider family of exotic magnetic systems derived from the zero spin-orbit coupled limit.
Collapse
Affiliation(s)
- Paul A McClarty
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Jeffrey G Rau
- Department of Physics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
15
|
Chen H, Liu L, Zhou X, Meng Z, Wang X, Duan Z, Zhao G, Yan H, Qin P, Liu Z. Emerging Antiferromagnets for Spintronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310379. [PMID: 38183310 DOI: 10.1002/adma.202310379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Antiferromagnets constitute promising contender materials for next-generation spintronic devices with superior stability, scalability, and dynamics. Nevertheless, the perception of well-established ferromagnetic spintronics underpinned by spontaneous magnetization seemed to indicate the inadequacy of antiferromagnets for spintronics-their compensated magnetization has been perceived to result in uncontrollable antiferromagnetic order and subtle magnetoelectronic responses. However, remarkable advancements have been achieved in antiferromagnetic spintronics in recent years, with consecutive unanticipated discoveries substantiating the feasibility of antiferromagnet-centered spintronic devices. It is emphasized that, distinct from ferromagnets, the richness in complex antiferromagnetic crystal structures is the unique and essential virtue of antiferromagnets that can open up their endless possibilities of novel phenomena and functionality for spintronics. In this Perspective, the recent progress in antiferromagnetic spintronics is reviewed, with a particular focus on that based on several kinds of antiferromagnets with special antiferromagnetic crystal structures. The latest developments in efficiently manipulating antiferromagnetic order, exploring novel antiferromagnetic physical responses, and demonstrating prototype antiferromagnetic spintronic devices are discussed. An outlook on future research directions is also provided. It is hoped that this Perspective can serve as guidance for readers who are interested in this field and encourage unprecedented studies on antiferromagnetic spintronic materials, phenomena, and devices.
Collapse
Affiliation(s)
- Hongyu Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Li Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiaorong Zhou
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ziang Meng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiaoning Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhiyuan Duan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Guojian Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Han Yan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Peixin Qin
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhiqi Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
16
|
Reimers S, Odenbreit L, Šmejkal L, Strocov VN, Constantinou P, Hellenes AB, Jaeschke Ubiergo R, Campos WH, Bharadwaj VK, Chakraborty A, Denneulin T, Shi W, Dunin-Borkowski RE, Das S, Kläui M, Sinova J, Jourdan M. Direct observation of altermagnetic band splitting in CrSb thin films. Nat Commun 2024; 15:2116. [PMID: 38459058 PMCID: PMC10923844 DOI: 10.1038/s41467-024-46476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spin-integrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations. In particular, we observe the distinctive splitting of an electronic band on a low-symmetry path in the Brilliouin zone that connects two points featuring symmetry-induced degeneracy. The measured large magnitude of the spin splitting of approximately 0.6 eV and the position of the band just below the Fermi energy underscores the significance of altermagnets for spintronics based on robust broken time reversal symmetry responses arising from exchange energy scales, akin to ferromagnets, while remaining insensitive to external magnetic fields and possessing THz dynamics, akin to antiferromagnets.
Collapse
Affiliation(s)
- Sonka Reimers
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Lukas Odenbreit
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Libor Šmejkal
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
- Inst. of Physics Academy of Sciences of the Czech Republic, Cukrovarnická 10, Praha 6, Czech Republic
| | | | | | - Anna B Hellenes
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | | | - Warlley H Campos
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Venkata K Bharadwaj
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Atasi Chakraborty
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Thibaud Denneulin
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Wen Shi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Suvadip Das
- Department of Physics and Astronomy, George Mason University, Fairfax, VA, 22030, USA
- Center for Quantum Science and Engineering, George Mason University, Fairfax, VA, 22030, USA
| | - Mathias Kläui
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
- Centre for Quantum Spintronics, Norwegian University of Science and Technology NTNU, 7491, Trondheim, Norway
| | - Jairo Sinova
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
- Department of Physics, Texas A&M University, College Station, TX, 77843-4242, USA
| | - Martin Jourdan
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany.
| |
Collapse
|
17
|
Zhang SB, Hu LH, Neupert T. Finite-momentum Cooper pairing in proximitized altermagnets. Nat Commun 2024; 15:1801. [PMID: 38413591 PMCID: PMC10899178 DOI: 10.1038/s41467-024-45951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Finite-momentum Cooper pairing is an unconventional form of superconductivity that is widely believed to require finite magnetization. Altermagnetism is an emerging magnetic phase with highly anisotropic spin-splitting of specific symmetries, but zero net magnetization. Here, we study Cooper pairing in metallic altermagnets connected to conventional s-wave superconductors. Remarkably, we find that the Cooper pairs induced in the altermagnets acquire a finite center-of-mass momentum, despite the zero net magnetization in the system. This anomalous Cooper-pair momentum strongly depends on the propagation direction and exhibits unusual symmetric patterns. Furthermore, it yields several unique features: (i) highly orientation-dependent oscillations in the order parameter, (ii) controllable 0-π transitions in the Josephson supercurrent, (iii) large-oblique-angle Cooper-pair transfer trajectories in junctions parallel with the direction where spin splitting vanishes, and (iv) distinct Fraunhofer patterns in junctions oriented along different directions. Finally, we discuss the implementation of our predictions in candidate materials such as RuO2 and KRu4O8.
Collapse
Affiliation(s)
- Song-Bo Zhang
- Hefei National Laboratory, Hefei, Anhui, 230088, China.
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Lun-Hui Hu
- Department of Applied Physics, Aalto University School of Science, FI-00076, Aalto, Finland.
- Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou, 310058, China.
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Titus Neupert
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
18
|
Feng X, Bai H, Fan X, Guo M, Zhang Z, Chai G, Wang T, Xue D, Song C, Fan X. Incommensurate Spin Density Wave in Antiferromagnetic RuO_{2} Evinced by Abnormal Spin Splitting Torque. PHYSICAL REVIEW LETTERS 2024; 132:086701. [PMID: 38457714 DOI: 10.1103/physrevlett.132.086701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/17/2023] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Since the discovery of antiferromagnetism, metallic oxide RuO_{2} has exhibited numerous intriguing spintronics properties such as the anomalous Hall effect and anisotropic spin splitting effect. However, the microscopic origin of its antiferromagnetism remains unclear. By investigating the spin splitting torque in RuO_{2}/Py, we found that metallic RuO_{2} exhibits a spatially periodic spin structure which interacts with the spin waves in Py through interfacial exchange coupling. The wavelength of such structure is evaluated within 14-20 nm depending on the temperature, which is evidence of an incommensurate spin density wave state in RuO_{2}. Our work not only provides a dynamics approach to characterize the antiferromagnetic ordering in RuO_{2}, but also offers fundamental insights into the spin current generation due to anisotropic spin splitting effect associated with spin density wave.
Collapse
Affiliation(s)
- Xiaoyu Feng
- Key Laboratory of Magnetism and Magnetic Materials (MOE), School of Physics Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Hua Bai
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xinxin Fan
- Key Laboratory of Magnetism and Magnetic Materials (MOE), School of Physics Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Muhan Guo
- Key Laboratory of Magnetism and Magnetic Materials (MOE), School of Physics Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhiqiang Zhang
- Key Laboratory of Magnetism and Magnetic Materials (MOE), School of Physics Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Guozhi Chai
- Key Laboratory of Magnetism and Magnetic Materials (MOE), School of Physics Science and Technology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Tao Wang
- Key Laboratory of Magnetism and Magnetic Materials (MOE), School of Physics Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Desheng Xue
- Key Laboratory of Magnetism and Magnetic Materials (MOE), School of Physics Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaolong Fan
- Key Laboratory of Magnetism and Magnetic Materials (MOE), School of Physics Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Zhou X, Feng W, Zhang RW, Šmejkal L, Sinova J, Mokrousov Y, Yao Y. Crystal Thermal Transport in Altermagnetic RuO_{2}. PHYSICAL REVIEW LETTERS 2024; 132:056701. [PMID: 38364129 DOI: 10.1103/physrevlett.132.056701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
We demonstrate the emergence of a pronounced thermal transport in the recently discovered class of magnetic materials-altermagnets. From symmetry arguments and first-principles calculations performed for the showcase altermagnet, RuO_{2}, we uncover that crystal Nernst and crystal thermal Hall effects in this material are very large and strongly anisotropic with respect to the Néel vector. We find the large crystal thermal transport to originate from three sources of Berry's curvature in momentum space: the Weyl fermions due to crossings between well-separated bands, the strong spin-flip pseudonodal surfaces, and the weak spin-flip ladder transitions, defined by transitions among very weakly spin-split states of similar dispersion crossing the Fermi surface. Moreover, we reveal that the anomalous thermal and electrical transport coefficients in RuO_{2} are linked by an extended Wiedemann-Franz law in a temperature range much wider than expected for conventional magnets. Our results suggest that altermagnets may assume a leading role in realizing concepts in spin caloritronics not achievable with ferromagnets or antiferromagnets.
Collapse
Affiliation(s)
- Xiaodong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Wanxiang Feng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Run-Wu Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Libor Šmejkal
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Jairo Sinova
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Yuriy Mokrousov
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
20
|
Zhu YP, Chen X, Liu XR, Liu Y, Liu P, Zha H, Qu G, Hong C, Li J, Jiang Z, Ma XM, Hao YJ, Zhu MY, Liu W, Zeng M, Jayaram S, Lenger M, Ding J, Mo S, Tanaka K, Arita M, Liu Z, Ye M, Shen D, Wrachtrup J, Huang Y, He RH, Qiao S, Liu Q, Liu C. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 2024; 626:523-528. [PMID: 38356068 DOI: 10.1038/s41586-024-07023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Spatial, momentum and energy separation of electronic spins in condensed-matter systems guides the development of new devices in which spin-polarized current is generated and manipulated1-3. Recent attention on a set of previously overlooked symmetry operations in magnetic materials4 leads to the emergence of a new type of spin splitting, enabling giant and momentum-dependent spin polarization of energy bands on selected antiferromagnets5-10. Despite the ever-growing theoretical predictions, the direct spectroscopic proof of such spin splitting is still lacking. Here we provide solid spectroscopic and computational evidence for the existence of such materials. In the noncoplanar antiferromagnet manganese ditelluride (MnTe2), the in-plane components of spin are found to be antisymmetric about the high-symmetry planes of the Brillouin zone, comprising a plaid-like spin texture in the antiferromagnetic (AFM) ground state. Such an unconventional spin pattern, further found to diminish at the high-temperature paramagnetic state, originates from the intrinsic AFM order instead of spin-orbit coupling (SOC). Our finding demonstrates a new type of quadratic spin texture induced by time-reversal breaking, placing AFM spintronics on a firm basis and paving the way for studying exotic quantum phenomena in related materials.
Collapse
Affiliation(s)
- Yu-Peng Zhu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xiaobing Chen
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xiang-Rui Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yuntian Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Pengfei Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Heming Zha
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Gexing Qu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Caiyun Hong
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, Westlake University, Hangzhou, China
| | - Jiayu Li
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Zhicheng Jiang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Ming Ma
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yu-Jie Hao
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Ming-Yuan Zhu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Wenjing Liu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zeng
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Sreehari Jayaram
- 3rd Institute of Physics, University of Stuttgart, Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Stuttgart, Germany
- Center for Applied Quantum Technology, University of Stuttgart, Stuttgart, Germany
| | - Malik Lenger
- 3rd Institute of Physics, University of Stuttgart, Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Stuttgart, Germany
- Center for Applied Quantum Technology, University of Stuttgart, Stuttgart, Germany
| | - Jianyang Ding
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shu Mo
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Kiyohisa Tanaka
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Masashi Arita
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Zhengtai Liu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mao Ye
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dawei Shen
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jörg Wrachtrup
- 3rd Institute of Physics, University of Stuttgart, Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Stuttgart, Germany
- Center for Applied Quantum Technology, University of Stuttgart, Stuttgart, Germany
| | - Yaobo Huang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Rui-Hua He
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, Westlake University, Hangzhou, China
| | - Shan Qiao
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Qihang Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Chang Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China.
| |
Collapse
|
21
|
Han L, Fu X, Peng R, Cheng X, Dai J, Liu L, Li Y, Zhang Y, Zhu W, Bai H, Zhou Y, Liang S, Chen C, Wang Q, Chen X, Yang L, Zhang Y, Song C, Liu J, Pan F. Electrical 180° switching of Néel vector in spin-splitting antiferromagnet. SCIENCE ADVANCES 2024; 10:eadn0479. [PMID: 38277463 PMCID: PMC10816707 DOI: 10.1126/sciadv.adn0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
Antiferromagnetic spintronics have attracted wide attention due to its great potential in constructing ultradense and ultrafast antiferromagnetic memory that suits modern high-performance information technology. The electrical 180° switching of Néel vector is a long-term goal for developing electrical-controllable antiferromagnetic memory with opposite Néel vectors as binary "0" and "1." However, the state-of-art antiferromagnetic switching mechanisms have long been limited for 90° or 120° switching of Néel vector, which unavoidably require multiple writing channels that contradict ultradense integration. Here, we propose a deterministic switching mechanism based on spin-orbit torque with asymmetric energy barrier and experimentally achieve electrical 180° switching of spin-splitting antiferromagnet Mn5Si3. Such a 180° switching is read out by the Néel vector-induced anomalous Hall effect. On the basis of our writing and readout methods, we fabricate an antiferromagnet device with electrical-controllable high- and low-resistance states that accomplishes robust write and read cycles. Besides fundamental advance, our work promotes practical spin-splitting antiferromagnetic devices based on spin-splitting antiferromagnet.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xizhi Fu
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Rui Peng
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Xingkai Cheng
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jiankun Dai
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Liangyang Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yidian Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yichi Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wenxuan Zhu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hua Bai
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjian Zhou
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shixuan Liang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xianzhe Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Luyi Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Yang Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junwei Liu
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Yang X, Dong S. Oxidation tuning of ferroic transitions in Gd2C monolayer. J Chem Phys 2024; 160:014705. [PMID: 38174798 DOI: 10.1063/5.0177722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Tuning of ferroic phases provides great opportunities for material functionalities, especially in two-dimensional materials. Here, a 4f rare-earth carbide Gd2C monolayer is predicted to be a ferromagnetic metal with large magnetization, inherited from its bulk property. Based on first-principles calculations, we propose a strategy that the surface passivation can effectively tune its ferroicity, namely, switching among ferromagnetic, antiferromagnetic, and ferroelectric phases. Metal-insulator transition also occurs accompanying these ferroic transitions. Our calculation also suggests that the magneto-optic Kerr effect and second harmonic generation are effective methods in monitoring these phase transitions.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Shuai Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
23
|
Šmejkal L, Marmodoro A, Ahn KH, González-Hernández R, Turek I, Mankovsky S, Ebert H, D'Souza SW, Šipr O, Sinova J, Jungwirth T. Chiral Magnons in Altermagnetic RuO_{2}. PHYSICAL REVIEW LETTERS 2023; 131:256703. [PMID: 38181333 DOI: 10.1103/physrevlett.131.256703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/19/2023] [Accepted: 09/27/2023] [Indexed: 01/07/2024]
Abstract
Magnons in ferromagnets have one chirality, and typically are in the GHz range and have a quadratic dispersion near the zero wave vector. In contrast, magnons in antiferromagnets are commonly considered to have bands with both chiralities that are degenerate across the entire Brillouin zone, and to be in the THz range and to have a linear dispersion near the center of the Brillouin zone. Here we theoretically demonstrate a new class of magnons on a prototypical d-wave altermagnet RuO_{2} with the compensated antiparallel magnetic order in the ground state. Based on density-functional-theory calculations we observe that the THz-range magnon bands in RuO_{2} have an alternating chirality splitting, similar to the alternating spin splitting of the electronic bands, and a linear magnon dispersion near the zero wave vector. We also show that, overall, the Landau damping of this metallic altermagnet is suppressed due to the spin-split electronic structure, as compared to an artificial antiferromagnetic phase of the same RuO_{2} crystal with spin-degenerate electronic bands and chirality-degenerate magnon bands.
Collapse
Affiliation(s)
- Libor Šmejkal
- Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Alberto Marmodoro
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Kyo-Hoon Ahn
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Rafael González-Hernández
- Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany
- Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla, Colombia
| | - Ilja Turek
- Institute of Physics of Materials, Czech Academy of Sciences, Zizkova 22, CZ-616 62 Brno, Czech Republic
| | - Sergiy Mankovsky
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstrasse 11, D-81377 Munich, Germany
| | - Hubert Ebert
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstrasse 11, D-81377 Munich, Germany
| | - Sunil W D'Souza
- New Technologies-Research Center, University of West Bohemia, Plzeň 3, CZ-30100 Czech Republic
| | - Ondřej Šipr
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Jairo Sinova
- Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Tomáš Jungwirth
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
24
|
Sattigeri RM, Cuono G, Autieri C. Altermagnetic surface states: towards the observation and utilization of altermagnetism in thin films, interfaces and topological materials. NANOSCALE 2023; 15:16998-17005. [PMID: 37831060 DOI: 10.1039/d3nr03681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The altermagnetism influences the electronic states allowing the presence of non-relativistic spin-splittings. Since altermagnetic spin-splitting is present along specific k-paths of the 3D Brillouin zone, we expect that the altermagnetic surface stateswill be present on specific surface orientations. We unveil the properties of the altermagnetic surface states considering three representative materials belonging to the orthorhombic, hexagonal and tetragonal space groups. We calculate the 2D projected Brillouin zone from the 3D Brillouin zone. We study the surfaces with their respective 2D Brillouin zones establishing where the spin-splittings with opposite sign merge annihilating the altermagnetic properties and on which surfaces the altermagnetism is preserved. Looking at the three principal surface orientations, we find that for several cases two surfaces are blind to the altermagnetism, while the altermagnetism survives for one surface orientation. Which surface preserves the altermagnetism depends also on themagnetic order. We qualitatively show that an electric field orthogonal to the blind surface can activate the altermagnetism. Our projection method was proven for strong altermagnetism, but it will be equivalently valid for recently discovered weak altermagnetism. Our results predict which surfaces to cleave in order to preserve altermagnetism in surfaces or interfaces and this paves the way to observe non-relativistic altermagnetic spin-splitting in thin films via spin-resolved ARPES and to interface the altermagnetism with other collective modes. We open future perspectives for the study of altermagnetic effects on the trivial and topological surface states.
Collapse
Affiliation(s)
- Raghottam M Sattigeri
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland.
| | - Giuseppe Cuono
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland.
| | - Carmine Autieri
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland.
| |
Collapse
|
25
|
Shao DF, Jiang YY, Ding J, Zhang SH, Wang ZA, Xiao RC, Gurung G, Lu WJ, Sun YP, Tsymbal EY. Néel Spin Currents in Antiferromagnets. PHYSICAL REVIEW LETTERS 2023; 130:216702. [PMID: 37295086 DOI: 10.1103/physrevlett.130.216702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023]
Abstract
Ferromagnets are known to support spin-polarized currents that control various spin-dependent transport phenomena useful for spintronics. On the contrary, fully compensated antiferromagnets are expected to support only globally spin-neutral currents. Here, we demonstrate that these globally spin-neutral currents can represent the Néel spin currents, i.e., staggered spin currents flowing through different magnetic sublattices. The Néel spin currents emerge in antiferromagnets with strong intrasublattice coupling (hopping) and drive the spin-dependent transport phenomena such as tunneling magnetoresistance (TMR) and spin-transfer torque (STT) in antiferromagnetic tunnel junctions (AFMTJs). Using RuO_{2} and Fe_{4}GeTe_{2} as representative antiferromagnets, we predict that the Néel spin currents with a strong staggered spin polarization produce a sizable fieldlike STT capable of the deterministic switching of the Néel vector in the associated AFMTJs. Our work uncovers the previously unexplored potential of fully compensated antiferromagnets and paves a new route to realize the efficient writing and reading of information for antiferromagnetic spintronics.
Collapse
Affiliation(s)
- Ding-Fu Shao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuan-Yuan Jiang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jun Ding
- College of Science, Henan University of Engineering, Zhengzhou 451191, People's Republic of China
| | - Shu-Hui Zhang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zi-An Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Rui-Chun Xiao
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gautam Gurung
- Trinity College, University of Oxford, Broad Street, Oxford, OX1 3BH, United Kingdom
| | - W J Lu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Y P Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Microstructures, Nanjing University, Nanjing 210093, China
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA
| |
Collapse
|
26
|
Bai H, Zhang YC, Zhou YJ, Chen P, Wan CH, Han L, Zhu WX, Liang SX, Su YC, Han XF, Pan F, Song C. Efficient Spin-to-Charge Conversion via Altermagnetic Spin Splitting Effect in Antiferromagnet RuO_{2}. PHYSICAL REVIEW LETTERS 2023; 130:216701. [PMID: 37295074 DOI: 10.1103/physrevlett.130.216701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/20/2023] [Indexed: 06/12/2023]
Abstract
The relativistic spin Hall effect and inverse spin Hall effect enable the efficient generation and detection of spin current. Recently, a nonrelativistic altermagnetic spin splitting effect (ASSE) has been theoretically and experimentally reported to generate time-reversal-odd spin current with controllable spin polarization in antiferromagnet RuO_{2}. The inverse effect, electrical detection of spin current via ASSE, still remains elusive. Here we show the spin-to-charge conversion stemming from ASSE in RuO_{2} by the spin Seebeck effect measurements. Unconventionally, the spin Seebeck voltage can be detected even when the injected spin current is polarized along the directions of either the voltage channel or the thermal gradient, indicating the successful conversion of x- and z-spin polarizations into the charge current. The crystal axes-dependent conversion efficiency further demonstrates that the nontrivial spin-to-charge conversion in RuO_{2} is ascribed to ASSE, which is distinct from the magnetic or antiferromagnetic inverse spin Hall effects. Our finding not only advances the emerging research landscape of altermagnetism, but also provides a promising pathway for the spin detection.
Collapse
Affiliation(s)
- H Bai
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Y C Zhang
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Y J Zhou
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - P Chen
- Beijing National fLaboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - C H Wan
- Beijing National fLaboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - L Han
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - W X Zhu
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - S X Liang
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Y C Su
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - X F Han
- Beijing National fLaboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - F Pan
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - C Song
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Cao T, Shao DF, Huang K, Gurung G, Tsymbal EY. Switchable Anomalous Hall Effects in Polar-Stacked 2D Antiferromagnet MnBi 2Te 4. NANO LETTERS 2023; 23:3781-3787. [PMID: 37115910 DOI: 10.1021/acs.nanolett.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
van der Waals (vdW) assembly of two-dimensional (2D) materials allows polar layer stacking to realize novel properties switchable by the induced electric polarization. Here, based on symmetry analyses and density-functional calculations, we explore the emergence of the anomalous Hall effect (AHE) in antiferromagnetic MnBi2Te4 films assembled by polar layer stacking. We demonstrate that breaking P̂T̂ symmetry in an MnBi2Te4 bilayer produces a magnetoelectric effect and a spontaneous AHE switchable by electric polarization. We find that reversible polarization at one of the interfaces in a three-layer MnBi2Te4 film drives a metal-insulator transition, as well as switching between the AHE and quantum AHE (QAHE). Finally, we predict that engineering interlayer polarization in a three-layer MnBi2Te4 film allows converting MnBi2Te4 from a trivial insulator to a Chern insulator. Overall, our work emphasizes the topological properties in 2D vdW antiferromagnets induced by polar layer stacking, which do not exist in a bulk material.
Collapse
Affiliation(s)
- Tengfei Cao
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States
| | - Ding-Fu Shao
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States
| | - Kai Huang
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States
| | - Gautam Gurung
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States
| |
Collapse
|
28
|
Zhang X, Gong P, Liu F, Zhu S. Spin-gapless van der Waals heterostructure for spin gating through magnetic injection devices. Phys Chem Chem Phys 2023; 25:14138-14146. [PMID: 37162310 DOI: 10.1039/d3cp00987d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Spin-gapless semiconductors (SGSs) are new magnetic zero-bandgap materials whose band structure is extremely sensitive to external influences (pressure or magnetic fields) and have great potential for high-speed and low-energy spintronics applications. The first-principles method was used to systematically study the heterostructures constructed of an asymmetric surface-functionalized Janus MXene material, Cr2NOF, and a two-dimensional hexagonal lattice (2DH) semiconductor material and to study the effects of the electronic structure, Curie temperature, magnetism, and the design of unusual band structures and magnetic injection in the bilayer to obtain an SGS structure. Through the design and construction of Cr2NOF/2DH van der Waals heterojunction spintronic devices, the spin-filtering effect of the devices can reach 100%, especially, realizing spin gating through magnetic injection. We report the transport mechanism of the heterojunction spintronic devices to achieve the goal of a controllable optimization of the device functions, which provides a theoretical basis for the design of MXene van der Waals heterojunctions for high-efficiency and low-power-consumption spintronic devices.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Pengwei Gong
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Fangqi Liu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Sicong Zhu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
29
|
Batool S, Idrees M, Han ST, Roy VAL, Zhou Y. Electrical Contacts With 2D Materials: Current Developments and Future Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206550. [PMID: 36587964 DOI: 10.1002/smll.202206550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Current electrical contact models are occasionally insufficient at the nanoscale owing to the wide variations in outcomes between 2D mono and multi-layered and bulk materials that result from their distinctive electrostatics and geometries. Contrarily, devices based on 2D semiconductors present a significant challenge due to the requirement for electrical contact with resistances close to the quantum limit. The next generation of low-power devices is already hindered by the lack of high-quality and low-contact-resistance contacts on 2D materials. The physics and materials science of electrical contact resistance in 2D materials-based nanoelectronics, interface configurations, charge injection mechanisms, and numerical modeling of electrical contacts, as well as the most pressing issues that need to be resolved in the field of research and development, will all be covered in this review.
Collapse
Affiliation(s)
- Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Idrees
- Additive Manufacturing Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- College of Electronics Science & Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
30
|
Ahmad T, Jindal K, Tomar M, Jha PK. Theoretical insight of origin of Rashba-Dresselhaus effect in tetragonal and rhombohedral phases of BiFeO 3. Phys Chem Chem Phys 2023; 25:5857-5868. [PMID: 36748298 DOI: 10.1039/d2cp04852c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The inclusion of the spin-orbit coupling effect in ferroelectric materials with non-centrosymmetry leads to intriguing properties for spintronic applications. In the present work, a comparative study of spin splitting in the bulk electronic energy bands of the tetragonal and rhombohedral phases of BiFeO3 (BFO) in terms of the Rashba and Dresselhaus effects is carried out through first-principles calculations. The obtained spin splittings, particularly at the conduction band minima, are further supplemented with an effective k·p model analysis. For the tetragonal BFO, a dominating pure bulk-type Rashba effect with helical in-plane spin components shown through diagrams is observed, whereas the rhombohedral BFO shows a significant contribution from the out-of-plane spin components and an interplay between the Rashba and Dresselhaus effects is discussed. In addition, tunability of the Rashba parameters with the application of uniaxial strain (±5%) is obtained in tetragonal BFO, in which the Rashba coefficient (αR) doubles with a compressive 5% strain, making tetragonal BFO a suitable candidate for spintronic applications. More importantly, full reversal of the in-plane spin texture is obtained for the opposite polarization states in tetragonal BFO with an activation energy barrier of 1.13 eV.
Collapse
Affiliation(s)
- Tahir Ahmad
- Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India
| | - Kajal Jindal
- Department of Physics, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Monika Tomar
- Department of Physics, Miranda House, University of Delhi, Delhi-110007, India
| | - Pradip K Jha
- Department of Physics, DDU College, University of Delhi, Delhi-110078, India.
| |
Collapse
|
31
|
Gonzalez Betancourt RD, Zubáč J, Gonzalez-Hernandez R, Geishendorf K, Šobáň Z, Springholz G, Olejník K, Šmejkal L, Sinova J, Jungwirth T, Goennenwein STB, Thomas A, Reichlová H, Železný J, Kriegner D. Spontaneous Anomalous Hall Effect Arising from an Unconventional Compensated Magnetic Phase in a Semiconductor. PHYSICAL REVIEW LETTERS 2023; 130:036702. [PMID: 36763381 DOI: 10.1103/physrevlett.130.036702] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
The anomalous Hall effect, commonly observed in metallic magnets, has been established to originate from the time-reversal symmetry breaking by an internal macroscopic magnetization in ferromagnets or by a noncollinear magnetic order. Here we observe a spontaneous anomalous Hall signal in the absence of an external magnetic field in an epitaxial film of MnTe, which is a semiconductor with a collinear antiparallel magnetic ordering of Mn moments and a vanishing net magnetization. The anomalous Hall effect arises from an unconventional phase with strong time-reversal symmetry breaking and alternating spin polarization in real-space crystal structure and momentum-space electronic structure. The anisotropic crystal environment of magnetic Mn atoms due to the nonmagnetic Te atoms is essential for establishing the unconventional phase and generating the anomalous Hall effect.
Collapse
Affiliation(s)
- R D Gonzalez Betancourt
- Institute of Solid State and Materials Physics, Technical University Dresden, 01062 Dresden, Germany
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
- Leibniz Institute of Solid State and Materials Research (IFW Dresden), Helmholtzstr. 20, 01069 Dresden, Germany
| | - J Zubáč
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - R Gonzalez-Hernandez
- Departamento de Fisica y Geociencias, Universidad del Norte, Barranquilla 080020, Colombia
| | - K Geishendorf
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Z Šobáň
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - G Springholz
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - K Olejník
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - L Šmejkal
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
| | - J Sinova
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
| | - T Jungwirth
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - S T B Goennenwein
- Institute of Solid State and Materials Physics, Technical University Dresden, 01062 Dresden, Germany
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - A Thomas
- Institute of Solid State and Materials Physics, Technical University Dresden, 01062 Dresden, Germany
- Leibniz Institute of Solid State and Materials Research (IFW Dresden), Helmholtzstr. 20, 01069 Dresden, Germany
| | - H Reichlová
- Institute of Solid State and Materials Physics, Technical University Dresden, 01062 Dresden, Germany
| | - J Železný
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - D Kriegner
- Institute of Solid State and Materials Physics, Technical University Dresden, 01062 Dresden, Germany
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| |
Collapse
|
32
|
Chen X, Higo T, Tanaka K, Nomoto T, Tsai H, Idzuchi H, Shiga M, Sakamoto S, Ando R, Kosaki H, Matsuo T, Nishio-Hamane D, Arita R, Miwa S, Nakatsuji S. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 2023; 613:490-495. [PMID: 36653566 PMCID: PMC9849134 DOI: 10.1038/s41586-022-05463-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/19/2022] [Indexed: 01/19/2023]
Abstract
The tunnelling electric current passing through a magnetic tunnel junction (MTJ) is strongly dependent on the relative orientation of magnetizations in ferromagnetic electrodes sandwiching an insulating barrier, rendering efficient readout of spintronics devices1-5. Thus, tunnelling magnetoresistance (TMR) is considered to be proportional to spin polarization at the interface1 and, to date, has been studied primarily in ferromagnets. Here we report observation of TMR in an all-antiferromagnetic tunnel junction consisting of Mn3Sn/MgO/Mn3Sn (ref. 6). We measured a TMR ratio of around 2% at room temperature, which arises between the parallel and antiparallel configurations of the cluster magnetic octupoles in the chiral antiferromagnetic state. Moreover, we carried out measurements using a Fe/MgO/Mn3Sn MTJ and show that the sign and direction of anisotropic longitudinal spin-polarized current in the antiferromagnet7 can be controlled by octupole direction. Strikingly, the TMR ratio (about 2%) of the all-antiferromagnetic MTJ is much larger than that estimated using the observed spin polarization. Theoretically, we found that the chiral antiferromagnetic MTJ may produce a substantially large TMR ratio as a result of the time-reversal, symmetry-breaking polarization characteristic of cluster magnetic octupoles. Our work lays the foundation for the development of ultrafast and efficient spintronic devices using antiferromagnets8-10.
Collapse
Affiliation(s)
- Xianzhe Chen
- Department of Physics, University of Tokyo, Tokyo, Japan.,Institute for Solid State Physics, University of Tokyo, Chiba, Japan
| | - Tomoya Higo
- Department of Physics, University of Tokyo, Tokyo, Japan.,Institute for Solid State Physics, University of Tokyo, Chiba, Japan.,CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Katsuhiro Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Takuya Nomoto
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Hanshen Tsai
- Department of Physics, University of Tokyo, Tokyo, Japan.,Institute for Solid State Physics, University of Tokyo, Chiba, Japan
| | - Hiroshi Idzuchi
- Department of Physics, University of Tokyo, Tokyo, Japan.,Institute for Solid State Physics, University of Tokyo, Chiba, Japan
| | - Masanobu Shiga
- Institute for Solid State Physics, University of Tokyo, Chiba, Japan
| | - Shoya Sakamoto
- Institute for Solid State Physics, University of Tokyo, Chiba, Japan
| | - Ryoya Ando
- Institute for Solid State Physics, University of Tokyo, Chiba, Japan
| | - Hidetoshi Kosaki
- Institute for Solid State Physics, University of Tokyo, Chiba, Japan
| | - Takumi Matsuo
- Department of Physics, University of Tokyo, Tokyo, Japan
| | | | - Ryotaro Arita
- CREST, Japan Science and Technology Agency, Saitama, Japan.,Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.,RIKEN, Center for Emergent Matter Science, Saitama, Japan
| | - Shinji Miwa
- Institute for Solid State Physics, University of Tokyo, Chiba, Japan.,CREST, Japan Science and Technology Agency, Saitama, Japan.,Trans-scale Quantum Science Institute, University of Tokyo, Tokyo, Japan
| | - Satoru Nakatsuji
- Department of Physics, University of Tokyo, Tokyo, Japan. .,Institute for Solid State Physics, University of Tokyo, Chiba, Japan. .,CREST, Japan Science and Technology Agency, Saitama, Japan. .,Trans-scale Quantum Science Institute, University of Tokyo, Tokyo, Japan. .,Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Xiao C, Liu H, Wu W, Wang H, Niu Q, Yang SA. Intrinsic Nonlinear Electric Spin Generation in Centrosymmetric Magnets. PHYSICAL REVIEW LETTERS 2022; 129:086602. [PMID: 36053706 DOI: 10.1103/physrevlett.129.086602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
We propose an intrinsic nonlinear electric spin generation effect, which can dominate in centrosymmetric magnets. We reveal the band geometric origin of this effect and clarify its symmetry characters. As an intrinsic effect, it is determined solely by the material's band structure and represents a material characteristic. Combining our theory with first-principle calculations, we predict sizable nonlinear spin generation in single-layer MnBi_{2}Te_{4}, which can be detected in experiment. Our theory opens a new route for all-electric controlled spintronics in centrosymmetric magnets which reside outside of the current paradigm based on linear spin response.
Collapse
Affiliation(s)
- Cong Xiao
- Department of Physics, The University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Huiying Liu
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Weikang Wu
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| | - Hui Wang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Qian Niu
- School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
34
|
Shang Z, Liu T, Yang Q, Cui S, Xu K, Zhang Y, Deng J, Zhai T, Wang X. Chiral-Molecule-Based Spintronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203015. [PMID: 35836101 DOI: 10.1002/smll.202203015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Spintronics and molecular chemistry have achieved remarkable achievements separately. Their combination can apply the superiority of molecular diversity to intervene or manipulate the spin-related properties. It inevitably brings in a new type of functional devices with a molecular interface, which has become an emerging field in information storage and processing. Normally, spin polarization has to be realized by magnetic materials as manipulated by magnetic fields. Recently, chiral-induced spin selectivity (CISS) was discovered surprisingly that non-magnetic chiral molecules can generate spin polarization through their structural chirality. Here, the recent progress of integrating the strengths of molecular chemistry and spintronics is reviewed by introducing the experimental results, theoretical models, and device performances of the CISS effect. Compared to normal ferromagnetic metals, CISS originating from a chiral structure has great advantages of high spin polarization, excellent interface, simple preparation process, and low cost. It has the potential to obtain high efficiency of spin injection into metals and semiconductors, getting rid of magnetic fields and ferromagnetic electrodes. The physical mechanisms, unique advantages, and device performances of CISS are sequentially clarified, revealing important issues to current scientific research and industrial applications. This mini-review points out a key technology of information storage for future spintronic devices without magnetic components.
Collapse
Affiliation(s)
- Zixuan Shang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tianhan Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Qianqian Yang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Shuainan Cui
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Kailin Xu
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yu Zhang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jinxiang Deng
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tianrui Zhai
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xiaolei Wang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
35
|
Dong J, Li X, Gurung G, Zhu M, Zhang P, Zheng F, Tsymbal EY, Zhang J. Tunneling Magnetoresistance in Noncollinear Antiferromagnetic Tunnel Junctions. PHYSICAL REVIEW LETTERS 2022; 128:197201. [PMID: 35622046 DOI: 10.1103/physrevlett.128.197201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Antiferromagnetic (AFM) spintronics has emerged as a subfield of spintronics driven by the advantages of antiferromagnets producing no stray fields and exhibiting ultrafast magnetization dynamics. The efficient method to detect an AFM order parameter, known as the Néel vector, by electric means is critical to realize concepts of AFM spintronics. Here, we demonstrate that noncollinear AFM metals, such as Mn_{3}Sn, exhibit a momentum dependent spin polarization which can be exploited in AFM tunnel junctions to detect the Néel vector. Using first-principles calculations, we predict a tunneling magnetoresistance (TMR) effect as high as 300% in AFM tunnel junctions with Mn_{3}Sn electrodes, where the junction resistance depends on the relative orientation of their Néel vectors and exhibits four nonvolatile resistance states. We argue that the spin-split band structure and the related TMR effect can also be realized in other noncollinear AFM metals like Mn_{3}Ge, Mn_{3}Ga, Mn_{3}Pt, and Mn_{3}GaN. Our work provides a robust method for detecting the Néel vector in noncollinear antiferromagnets via the TMR effect, which may be useful for their application in AFM spintronic devices.
Collapse
Affiliation(s)
- Jianting Dong
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Xinlu Li
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Gautam Gurung
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Meng Zhu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Peina Zhang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Fanxing Zheng
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Jia Zhang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074 Wuhan, China
| |
Collapse
|
36
|
Bai H, Han L, Feng XY, Zhou YJ, Su RX, Wang Q, Liao LY, Zhu WX, Chen XZ, Pan F, Fan XL, Song C. Observation of Spin Splitting Torque in a Collinear Antiferromagnet RuO_{2}. PHYSICAL REVIEW LETTERS 2022; 128:197202. [PMID: 35622053 DOI: 10.1103/physrevlett.128.197202] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/22/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Current-induced spin torques provide efficient data writing approaches for magnetic memories. Recently, the spin splitting torque (SST) was theoretically predicted, which combines advantages of conventional spin transfer torque (STT) and spin-orbit torque (SOT) as well as enables controllable spin polarization. Here we provide the experimental evidence of SST in collinear antiferromagnet RuO_{2} films. The spin current direction is found to be correlated to the crystal orientation of RuO_{2} and the spin polarization direction is dependent on (parallel to) the Néel vector. These features are quite characteristic for the predicted SST. Our finding not only presents a new member for the spin torques besides traditional STT and SOT, but also proposes a promising spin source RuO_{2} for spintronics.
Collapse
Affiliation(s)
- H Bai
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - L Han
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - X Y Feng
- The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Y J Zhou
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - R X Su
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Q Wang
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - L Y Liao
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - W X Zhu
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - X Z Chen
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - F Pan
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - X L Fan
- The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - C Song
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Ghosh S, Manchon A, Železný J. Unconventional Robust Spin-Transfer Torque in Noncollinear Antiferromagnetic Junctions. PHYSICAL REVIEW LETTERS 2022; 128:097702. [PMID: 35302787 DOI: 10.1103/physrevlett.128.097702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Ferromagnetic spin valves and tunneling junctions are crucial for spintronics applications and are one of the most fundamental spintronics devices. Motivated by the potential unique advantages of antiferromagnets for spintronics, we theoretically study here junctions built out of noncollinear antiferromagnets. We demonstrate a large and robust magnetoresistance and spin-transfer torque capable of ultrafast switching between parallel and antiparallel states of the junction. In addition, we show that a new type of self-generated torque appears in the noncollinear junctions.
Collapse
Affiliation(s)
- Srikrishna Ghosh
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | | | - Jakub Železný
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| |
Collapse
|