1
|
Ruiz F, Foreman WB, Lilly M, Baharani VA, Depierreux DM, Chohan V, Taylor AL, Guenthoer J, Ralph D, Matsen Iv FA, Chu HY, Bieniasz PD, Côté M, Starr TN, Overbaugh J. Delineating the functional activity of antibodies with cross-reactivity to SARS-CoV-2, SARS-CoV-1 and related sarbecoviruses. PLoS Pathog 2024; 20:e1012650. [PMID: 39466880 DOI: 10.1371/journal.ppat.1012650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The recurring spillover of pathogenic coronaviruses and demonstrated capacity of sarbecoviruses, such SARS-CoV-2, to rapidly evolve in humans underscores the need to better understand immune responses to this virus family. For this purpose, we characterized the functional breadth and potency of antibodies targeting the receptor binding domain (RBD) of the spike glycoprotein that exhibited cross-reactivity against SARS-CoV-2 variants, SARS-CoV-1 and sarbecoviruses from diverse clades and animal origins with spillover potential. One neutralizing antibody, C68.61, showed remarkable neutralization breadth against both SARS-CoV-2 variants and viruses from different sarbecovirus clades. C68.61, which targets a conserved RBD class 5 epitope, did not select for escape variants of SARS-CoV-2 or SARS-CoV-1 in culture nor have predicted escape variants among circulating SARS-CoV-2 strains, suggesting this epitope is functionally constrained. We identified 11 additional SARS-CoV-2/SARS-CoV-1 cross-reactive antibodies that target the more sequence conserved class 4 and class 5 epitopes within RBD that show activity against a subset of diverse sarbecoviruses with one antibody binding every single sarbecovirus RBD tested. A subset of these antibodies exhibited Fc-mediated effector functions as potent as antibodies that impact infection outcome in animal models. Thus, our study identified antibodies targeting conserved regions across SARS-CoV-2 variants and sarbecoviruses that may serve as therapeutics for pandemic preparedness as well as blueprints for the design of immunogens capable of eliciting cross-neutralizing responses.
Collapse
Affiliation(s)
- Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - William B Foreman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Viren A Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Delphine M Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Frederick A Matsen Iv
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
3
|
Holmes EC. The Emergence and Evolution of SARS-CoV-2. Annu Rev Virol 2024; 11:21-42. [PMID: 38631919 DOI: 10.1146/annurev-virology-093022-013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The origin of SARS-CoV-2 has evoked heated debate and strong accusations, yet seemingly little resolution. I review the scientific evidence on the origin of SARS-CoV-2 and its subsequent spread through the human population. The available data clearly point to a natural zoonotic emergence within, or closely linked to, the Huanan Seafood Wholesale Market in Wuhan. There is no direct evidence linking the emergence of SARS-CoV-2 to laboratory work conducted at the Wuhan Institute of Virology. The subsequent global spread of SARS-CoV-2 was characterized by a gradual adaptation to humans, with dual increases in transmissibility and virulence until the emergence of the Omicron variant. Of note has been the frequent transmission of SARS-CoV-2 from humans to other animals, marking it as a strongly host generalist virus. Unless lessons from the origin of SARS-CoV-2 are learned, it is inevitable that more zoonotic events leading to more epidemics and pandemics will plague human populations.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
4
|
Catanzaro NJ, Wu Z, Fan C, Schäfer A, Yount BL, Bjorkman PJ, Baric R, Letko M. ACE2 from Pipistrellus abramus bats is a receptor for HKU5 coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584892. [PMID: 38559009 PMCID: PMC10980018 DOI: 10.1101/2024.03.13.584892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The merbecovirus subgenus of coronaviruses includes Middle East Respiratory Syndrome Coronavirus (MERS-CoV), a zoonotic pathogen transmitted from dromedary camels to humans that causes severe respiratory disease. Viral discovery efforts have uncovered hundreds of merbecoviruses in different species across multiple continents, but few have been studied under laboratory conditions, leaving basic questions regarding their human threat potential unresolved. Viral entry into host cells is a critical step for transmission between hosts. Here, a scalable approach that assesses novel merbecovirus cell entry was developed and used to evaluate receptor use across the entire merbecovirus subgenus. Merbecoviruses are sorted into clades based on the receptor-binding domain of the spike glycoprotein. Receptor tropism is clade-specific, with the clade including MERS-CoV using DPP4 and multiple clades using ACE2, including HKU5 bat coronaviruses. Mutational analysis identified possible structural limitations to HKU5 adaptability and a cryo-EM structure of the HKU5-20s spike trimer revealed only 'down' RBDs.
Collapse
Affiliation(s)
- Nicholas J. Catanzaro
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Ziyan Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Boyd L. Yount
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Ralph Baric
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, 99163
| |
Collapse
|
5
|
Dutta M, Acharya P. Cryo-electron microscopy in the study of virus entry and infection. Front Mol Biosci 2024; 11:1429180. [PMID: 39114367 PMCID: PMC11303226 DOI: 10.3389/fmolb.2024.1429180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses have been responsible for many epidemics and pandemics that have impacted human life globally. The COVID-19 pandemic highlighted both our vulnerability to viral outbreaks, as well as the mobilization of the scientific community to come together to combat the unprecedented threat to humanity. Cryo-electron microscopy (cryo-EM) played a central role in our understanding of SARS-CoV-2 during the pandemic and continues to inform about this evolving pathogen. Cryo-EM with its two popular imaging modalities, single particle analysis (SPA) and cryo-electron tomography (cryo-ET), has contributed immensely to understanding the structure of viruses and interactions that define their life cycles and pathogenicity. Here, we review how cryo-EM has informed our understanding of three distinct viruses, of which two - HIV-1 and SARS-CoV-2 infect humans, and the third, bacteriophages, infect bacteria. For HIV-1 and SARS-CoV-2 our focus is on the surface glycoproteins that are responsible for mediating host receptor binding, and host and cell membrane fusion, while for bacteriophages, we review their structure, capsid maturation, attachment to the bacterial cell surface and infection initiation mechanism.
Collapse
Affiliation(s)
- Moumita Dutta
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Surgery, Durham, NC, United States
- Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
6
|
Wang R, Lu S, Deng F, Wu L, Yang G, Chong S, Liu Y. Enhancing the understanding of SARS-CoV-2 protein with structure and detection methods: An integrative review. Int J Biol Macromol 2024; 270:132237. [PMID: 38734351 DOI: 10.1016/j.ijbiomac.2024.132237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
As the rapid and accurate screening of infectious diseases can provide meaningful information for outbreak prevention and control, as well as owing to the existing limitations of the polymerase chain reaction (PCR), it is imperative to have new and validated detection techniques for SARS-CoV-2. Therefore, the rationale for outlining the techniques used to detect SARS-CoV-2 proteins and performing a comprehensive comparison to serve as a practical benchmark for future identification of similar viral proteins is clear. This review highlights the urgent need to strengthen pandemic preparedness by emphasizing the importance of integrated measures. These include improved tools for pathogen characterization, optimized societal precautions, the establishment of early warning systems, and the deployment of highly sensitive diagnostics for effective surveillance, triage, and resource management. Additionally, with an improved understanding of the virus' protein structure, considerable advances in targeted detection, treatment, and prevention strategies are expected to greatly improve our ability to respond to future outbreaks.
Collapse
Affiliation(s)
- Ruiqi Wang
- Shenyang University of Chemical Technology, Shenyang 110142, China; National Institute of Metrology, Beijing 100029, China
| | - Song Lu
- National Institute of Metrology, Beijing 100029, China
| | - Fanyu Deng
- National Institute of Metrology, Beijing 100029, China; North University of China, Taiyuan 030051, China
| | - Liqing Wu
- National Institute of Metrology, Beijing 100029, China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, China
| | - Siying Chong
- Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yahui Liu
- National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
7
|
Balasco N, Damaggio G, Esposito L, Colonna V, Vitagliano L. A comprehensive analysis of SARS-CoV-2 missense mutations indicates that all possible amino acid replacements in the viral proteins occurred within the first two-and-a-half years of the pandemic. Int J Biol Macromol 2024; 266:131054. [PMID: 38522702 DOI: 10.1016/j.ijbiomac.2024.131054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
The surveillance of COVID-19 pandemic has led to the determination of millions of genome sequences of the SARS-CoV-2 virus, with the accumulation of a wealth of information never collected before for an infectious disease. Exploring the information retrieved from the GISAID database reporting at that time >13 million genome sequences, we classified the 141,639 unique missense mutations detected in the first two-and-a-half years (up to October 2022) of the pandemic. Notably, our analysis indicates that 98.2 % of all possible conservative amino acid replacements occurred. Even non-conservative mutations were highly represented (73.9 %). For a significant number of residues (3 %), all possible replacements with the other nineteen amino acids have been observed. These observations strongly indicate that, in this time interval, the virus explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain and that those that are not observed severely affect SARS-CoV-2 integrity. The implications of the present findings go well beyond the structural biology of SARS-CoV-2 as the huge amount of information here collected and classified may be valuable for the elucidation of the sequence-structure-function relationships in proteins.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Dep. Chemistry, Sapienza University of Rome, Rome, Italy.
| | - Gianluca Damaggio
- Institute of Genetics and Biophysics, CNR, Naples, Italy; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, Milan, Italy; University of Naples Federico II, Naples, Italy
| | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, CNR, Naples, Italy; Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | | |
Collapse
|
8
|
Yao Z, Zhang L, Duan Y, Tang X, Lu J. Molecular insights into the adaptive evolution of SARS-CoV-2 spike protein. J Infect 2024; 88:106121. [PMID: 38367704 DOI: 10.1016/j.jinf.2024.106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has substantially damaged the global economy and human health. The spike (S) protein of coronaviruses plays a pivotal role in viral entry by binding to host cell receptors. Additionally, it acts as the primary target for neutralizing antibodies in those infected and is the central focus for currently utilized or researched vaccines. During the virus's adaptation to the human host, the S protein of SARS-CoV-2 has undergone significant evolution. As the COVID-19 pandemic has unfolded, new mutations have arisen and vanished, giving rise to distinctive amino acid profiles within variant of concern strains of SARS-CoV-2. Notably, many of these changes in the S protein have been positively selected, leading to substantial alterations in viral characteristics, such as heightened transmissibility and immune evasion capabilities. This review aims to provide an overview of our current understanding of the structural implications associated with key amino acid changes in the S protein of SARS-CoV-2. These research findings shed light on the intricate and dynamic nature of viral evolution, underscoring the importance of continuous monitoring and analysis of viral genomes. Through these molecular-level investigations, we can attain deeper insights into the virus's adaptive evolution, offering valuable guidance for designing vaccines and developing antiviral drugs to combat the ever-evolving viral threats.
Collapse
Affiliation(s)
- Zhuocheng Yao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lin Zhang
- College of Fishery, Ocean University of China, Qingdao 266003, China
| | - Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, Peng KW, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024; 15:e0292823. [PMID: 38193729 PMCID: PMC10865805 DOI: 10.1128/mbio.02928-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Kim TH, Bae S, Goo S, Myoung J. Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant. J Microbiol Biotechnol 2023; 33:1587-1295. [PMID: 37915256 PMCID: PMC10772562 DOI: 10.4014/jmb.2308.08020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Since its first report in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a grave threat to public health. Virus-specific countermeasures, such as vaccines and therapeutics, have been developed and have contributed to the control of the viral pandemic, which has become endemic. Nonetheless, new variants continue to emerge and could cause a new pandemic. Consequently, it is important to comprehensively understand viral evolution and the roles of mutations in viral infectivity and transmission. SARS-CoV-2 beta variant encode mutations (D614G, N501Y, E484K, and K417N) in the spike which are frequently found in other variants as well. While their individual role in viral infectivity has been elucidated against various therapeutic antibodies, it still remains unclear whether those mutations may act additively or synergistically when combined. Here, we report that N501Y mutation shows differential effect on two therapeutic antibodies tested. Interestingly, the relative importance of E484K and K417N mutations in antibody evasion varies depending on the antibody type. Collectively, these findings suggest that continuous efforts to develop effective antibody therapeutics and combinatorial treatment with multiple antibodies are more rational and effective forms of treatment.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Sojung Bae
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Sunggeun Goo
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| |
Collapse
|
11
|
Lorenzo-Redondo R, de Sant’Anna Carvalho AM, Hultquist JF, Ozer EA. SARS-CoV-2 genomics and impact on clinical care for COVID-19. J Antimicrob Chemother 2023; 78:ii25-ii36. [PMID: 37995357 PMCID: PMC10667012 DOI: 10.1093/jac/dkad309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/02/2023] [Indexed: 11/25/2023] Open
Abstract
The emergence and worldwide spread of SARS-CoV-2 during the COVID-19 pandemic necessitated the adaptation and rapid deployment of viral WGS and analysis techniques that had been previously applied on a more limited basis to other viral pathogens, such as HIV and influenza viruses. The need for WGS was driven in part by the low mutation rate of SARS-CoV-2, which necessitated measuring variation along the entire genome sequence to effectively differentiate lineages and characterize viral evolution. Several WGS approaches designed to maximize throughput and accuracy were quickly adopted by surveillance labs around the world. These broad-based SARS-CoV-2 genomic sequencing efforts revealed ongoing evolution of the virus, highlighted by the successive emergence of new viral variants throughout the course of the pandemic. These genomic insights were instrumental in characterizing the effects of viral mutations on transmissibility, immune escape and viral tropism, which in turn helped guide public health policy, the use of monoclonal antibody therapeutics and vaccine development strategies. As the use of direct-acting antivirals for the treatment of COVID-19 became more widespread, the potential for emergence of antiviral resistance has driven ongoing efforts to delineate resistance mutations and to monitor global sequence databases for their emergence. Given the critical role of viral genomics in the international effort to combat the COVID-19 pandemic, coordinated efforts should be made to expand global genomic surveillance capacity and infrastructure towards the anticipation and prevention of future pandemics.
Collapse
Affiliation(s)
- Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Alexandre Machado de Sant’Anna Carvalho
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Yang L, Guo S, Hou C, Jiang S, Shi L, Ma X, Zheng B, Fang Y, Ye L, He X. Low-Entropy Hydration Shells at the Spike RBD's Binding Site May Reveal the Contagiousness of SARS-CoV-2 Variants. Biomolecules 2023; 13:1628. [PMID: 38002310 PMCID: PMC10669249 DOI: 10.3390/biom13111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
The infectivity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is primarily determined by the binding affinity between the receptor-binding domain (RBD) of the spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor. Here, through screening off pseudo hydrophilic groups on protein surfaces, the distribution of low-entropy regions on hydration shells of the ACE2 receptor and the RBDs of multiple SARS-CoV-2 variants was demonstrated. Shape matching between the low-entropy hydration shells of multiple SARS-CoV-2 variants and the ACE2 receptor has been identified as a mechanism that drives hydrophobic attraction between the RBDs and the ACE2 receptor, which estimates the binding affinity. Low-entropy regions of the hydration shells, which play important roles in determining the binding of other viruses and their receptors, are demonstrated. The RBD-ACE2 binding is thus found to be guided by hydrophobic collapse between the shape-matched low-entropy regions of the hydration shells of the proteins. A measure of the low-entropy status of the hydration shells can be estimated by calculating genuine hydrophilic groups within the binding sites. An important indicator of the contagiousness of SARS-CoV-2 variants is the low-entropy level of its hydration shells at the spike protein binding site.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Chengyu Hou
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China;
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150001, China;
| | - Yi Fang
- Department of Mathematics, Nanchang University, Nanchang 330031, China;
| | - Lin Ye
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
- Shenzhen STRONG Advanced Materials Research Institute Co., Ltd., Shenzhen 518035, China
| |
Collapse
|
13
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
14
|
Li QZ, Zuo ZW, Liu Y. Recent status of sesaminol and its glucosides: Synthesis, metabolism, and biological activities. Crit Rev Food Sci Nutr 2023; 63:12043-12056. [PMID: 35821660 DOI: 10.1080/10408398.2022.2098248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sesamum indicum is a major and important oilseed crop that is believed to promote human health in many countries, especially in China. Sesame seeds contain two types of lignans: lipid-soluble lignans and water-soluble glucosylated lignans. The major glucosylated lignans are sesaminol glucosides (SGs). So far, four sesaminol isomers and four SGs are identified. During the naturally occurring process of SGs production, sesaminol is generated first from two molecules of E-coniferyl alcohol, and then the sugar is added to the sesaminol one by one, leading to production of SGs. Sesaminol can be prepared from SGs, from sesamolin, and through artificial synthesis. SGs are metabolized in the liver and intestine and are then transported to other tissues. They exhibit several biological activities, most of which are based on their antioxidant and anti-inflammatory activities. In this paper, we present an overview of the current status of research on sesaminol and SGs. We have also discussed their synthesis, preparation, metabolism, and biological activities. It has been suggested that sesaminol and SGs are important biological substances with strong antioxidant properties in vitro and in vivo and are widely used in the food industry, medicine, and cosmetic products. The recovery and utilization of SGs from sesame seed cake after oil processing will generate massive economic benefits.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
15
|
Xing M, Wang Y, Wang X, Liu J, Dai W, Hu G, He F, Zhao Q, Li Y, Sun L, Wang Y, Du S, Dong Z, Pang C, Hu Z, Zhang X, Xu J, Cai Q, Zhou D. Broad-spectrum vaccine via combined immunization routes triggers potent immunity to SARS-CoV-2 and its variants. J Virol 2023; 97:e0072423. [PMID: 37706688 PMCID: PMC10617383 DOI: 10.1128/jvi.00724-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE The development of broad-spectrum SARS-CoV-2 vaccines will reduce the global economic and public health stress from the COVID-19 pandemic. The use of conserved T-cell epitopes in combination with spike antigen that induce humoral and cellular immune responses simultaneously may be a promising strategy to further enhance the broad spectrum of COVID-19 vaccine candidates. Moreover, this research suggests that the combined vaccination strategies have the ability to induce both effective systemic and mucosal immunity, which may represent promising strategies for maximizing the protective efficacy of respiratory virus vaccines.
Collapse
Affiliation(s)
- Man Xing
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaowei Hu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Zhao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingjin Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuyan Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Dong
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongjie Pang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhidong Hu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Mykytyn AZ, Fouchier RA, Haagmans BL. Antigenic evolution of SARS coronavirus 2. Curr Opin Virol 2023; 62:101349. [PMID: 37647851 DOI: 10.1016/j.coviro.2023.101349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron Am Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
17
|
Onigbinde S, Reyes CDG, Fowowe M, Daramola O, Atashi M, Bennett AI, Mechref Y. Variations in O-Glycosylation Patterns Influence Viral Pathogenicity, Infectivity, and Transmissibility in SARS-CoV-2 Variants. Biomolecules 2023; 13:1467. [PMID: 37892149 PMCID: PMC10604390 DOI: 10.3390/biom13101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The highly glycosylated S protein plays a vital role in host cell invasion, making it the principal target for vaccine development. Differences in mutations observed on the spike (S) protein of SARS-CoV-2 variants may result in distinct glycosylation patterns, thus influencing immunological evasion, infectivity, and transmissibility. The glycans can mask key epitopes on the S1 protein and alter its structural conformation, allowing the virus to escape the immune system. Therefore, we comprehensively characterize O-glycosylation in eleven variants of SARS-CoV-2 S1 subunits to understand the differences observed in the biology of the variants. In-depth characterization was performed with a double digestion strategy and an efficient LC-MS/MS approach. We observed that O-glycosylation is highly conserved across all variants in the region between the NTD and RBD, whereas other domains and regions exhibit variation in O-glycosylation. Notably, omicron has the highest number of O-glycosylation sites on the S1 subunit. Also, omicron has the highest level of sialylation in the RBD and RBM functional motifs. Our findings may shed light on how differences in O-glycosylation impact viral pathogenicity in variants of SARS-CoV-2 and facilitate the development of a robust vaccine with high protective efficacy against the variants of concern.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (S.O.); (C.D.G.R.); (M.F.); (O.D.); (M.A.); (A.I.B.)
| |
Collapse
|
18
|
Baggen J, Jacquemyn M, Persoons L, Vanstreels E, Pye VE, Wrobel AG, Calvaresi V, Martin SR, Roustan C, Cronin NB, Reading E, Thibaut HJ, Vercruysse T, Maes P, De Smet F, Yee A, Nivitchanyong T, Roell M, Franco-Hernandez N, Rhinn H, Mamchak AA, Ah Young-Chapon M, Brown E, Cherepanov P, Daelemans D. TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell 2023; 186:3427-3442.e22. [PMID: 37421949 PMCID: PMC10409496 DOI: 10.1016/j.cell.2023.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/24/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
SARS-CoV-2 is associated with broad tissue tropism, a characteristic often determined by the availability of entry receptors on host cells. Here, we show that TMEM106B, a lysosomal transmembrane protein, can serve as an alternative receptor for SARS-CoV-2 entry into angiotensin-converting enzyme 2 (ACE2)-negative cells. Spike substitution E484D increased TMEM106B binding, thereby enhancing TMEM106B-mediated entry. TMEM106B-specific monoclonal antibodies blocked SARS-CoV-2 infection, demonstrating a role of TMEM106B in viral entry. Using X-ray crystallography, cryogenic electron microscopy (cryo-EM), and hydrogen-deuterium exchange mass spectrometry (HDX-MS), we show that the luminal domain (LD) of TMEM106B engages the receptor-binding motif of SARS-CoV-2 spike. Finally, we show that TMEM106B promotes spike-mediated syncytium formation, suggesting a role of TMEM106B in viral fusion. Together, our findings identify an ACE2-independent SARS-CoV-2 infection mechanism that involves cooperative interactions with the receptors heparan sulfate and TMEM106B.
Collapse
Affiliation(s)
- Jim Baggen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven 3000, Belgium.
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven 3000, Belgium
| | - Leentje Persoons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven 3000, Belgium
| | - Els Vanstreels
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven 3000, Belgium
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Valeria Calvaresi
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London SE1 1DB, UK
| | - Stephen R Martin
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Chloë Roustan
- Structural Biology Science Technology Platform, Francis Crick Institute, London NW1 1AT, UK
| | - Nora B Cronin
- LonCEM Facility, Francis Crick Institute, London NW1 1AT, UK
| | - Eamonn Reading
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London SE1 1DB, UK
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Rega Institute, Leuven 3000, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Rega Institute, Leuven 3000, Belgium
| | - Piet Maes
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, Leuven 3000, Belgium
| | - Frederik De Smet
- KU Leuven Department of Imaging and Pathology, Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Leuven 3000, Belgium
| | - Angie Yee
- Alector LLC, 131 Oyster Point Blvd. Suite 600, South San Francisco, CA 94080, USA
| | - Toey Nivitchanyong
- Alector LLC, 131 Oyster Point Blvd. Suite 600, South San Francisco, CA 94080, USA
| | - Marina Roell
- Alector LLC, 131 Oyster Point Blvd. Suite 600, South San Francisco, CA 94080, USA
| | | | - Herve Rhinn
- Alector LLC, 131 Oyster Point Blvd. Suite 600, South San Francisco, CA 94080, USA
| | - Alusha Andre Mamchak
- Alector LLC, 131 Oyster Point Blvd. Suite 600, South San Francisco, CA 94080, USA
| | | | - Eric Brown
- Alector LLC, 131 Oyster Point Blvd. Suite 600, South San Francisco, CA 94080, USA
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London NW1 1AT, UK; Department of Infectious Disease, Section of Virology, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven 3000, Belgium.
| |
Collapse
|
19
|
Kugathasan R, Sukhova K, Moshe M, Kellam P, Barclay W. Deep mutagenesis scanning using whole trimeric SARS-CoV-2 spike highlights the importance of NTD-RBD interactions in determining spike phenotype. PLoS Pathog 2023; 19:e1011545. [PMID: 37535672 PMCID: PMC10426949 DOI: 10.1371/journal.ppat.1011545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/15/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
New variants of SARS-CoV-2 are continually emerging with mutations in spike associated with increased transmissibility and immune escape. Phenotypic maps can inform the prediction of concerning mutations from genomic surveillance, however most of these maps currently derive from studies using monomeric RBD, while spike is trimeric, and contains additional domains. These maps may fail to reflect interdomain interactions in the prediction of phenotypes. To try to improve on this, we developed a platform for deep mutational scanning using whole trimeric spike. We confirmed a previously reported epistatic effect within the RBD affecting ACE2 binding, that highlights the importance of updating the base spike sequence for future mutational scanning studies. Using post vaccine sera, we found that the immune response of vaccinated individuals was highly focused on one or two epitopes in the RBD and that single point mutations at these positions can account for most of the immune escape mediated by the Omicron BA.1 RBD. However, unexpectedly we found that the BA.1 RBD alone does not account for the high level of antigenic escape by BA.1 spike. We show that the BA.1 NTD amplifies the immune evasion of its associated RBD. BA.1 NTD reduces neutralistion by RBD directed monoclonal antibodies, and impacts ACE2 interaction. NTD variation is thus an important mechanism of immune evasion by SARS-CoV-2. Such effects are not seen when pre-stabilized spike proteins are used, suggesting the interdomain effects require protein mobility to express their phenotype.
Collapse
Affiliation(s)
- Ruthiran Kugathasan
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Ksenia Sukhova
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Maya Moshe
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Paul Kellam
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- RQ Biotechnology Ltd, London, United Kingdom
| | - Wendy Barclay
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Wrobel AG. Mechanism and evolution of human ACE2 binding by SARS-CoV-2 spike. Curr Opin Struct Biol 2023; 81:102619. [PMID: 37285618 PMCID: PMC10183628 DOI: 10.1016/j.sbi.2023.102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
Spike glycoprotein of SARS-CoV-2 mediates viral entry into host cells by facilitating virus attachment and membrane fusion. ACE2 is the main receptor of SARS-CoV-2 and its interaction with spike has shaped the virus' emergence from an animal reservoir and subsequent evolution in the human host. Many structural studies on the spike:ACE2 interaction have provided insights into mechanisms driving viral evolution during the on-going pandemic. This review describes the molecular basis of spike binding to ACE2, outlines mechanisms that have optimised this interaction during viral evolution, and suggests directions for future research.
Collapse
Affiliation(s)
- Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
21
|
Ou X, Xu G, Li P, Liu Y, Zan F, Liu P, Hu J, Lu X, Dong S, Zhou Y, Mu Z, Wu Z, Wang J, Jin Q, Liu P, Lu J, Wang X, Qian Z. Host susceptibility and structural and immunological insight of S proteins of two SARS-CoV-2 closely related bat coronaviruses. Cell Discov 2023; 9:78. [PMID: 37507385 PMCID: PMC10382498 DOI: 10.1038/s41421-023-00581-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The bat coronaviruses (CoV) BANAL-20-52 and BANAL-20-236 are two newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) closely related coronaviruses (SC2r-CoV) and the genome of BANAL-20-52 shares the highest homology with SARS-CoV-2. However, the risk of their potential zoonotic transmission has not been fully evaluated. Here, we determined their potential host susceptibility among 13 different bat species and 26 different animal species, and found that both might have extensive host ranges, indicating high zoonotic transmission potential. We also determined the cryo-EM structures of BANAL-20-52 and BANAL-20-236 S proteins at pH 5.5 and the complex of BANAL-20-236 S1 and Rhinolophus affinis ACE2, and found that both trimeric S proteins adopt all three receptor binding domains (RBDs) in "closed" conformation and are more compact than SARS-CoV-2. Strikingly, the unique sugar moiety at N370 of bat SC2r-CoVs acts like a "bolt" and crosses over two neighboring subunits, facilitating the S proteins in the locked conformation and underpinning the architecture stability. Removal of the glycosylation at N370 by a T372A substitution substantially enhances virus infectivity but becomes highly sensitive to trypsin digestion at pH 5.5, a condition roughly mimicking the insectivorous bat's stomach digestion. In contrast, WT S proteins of SC2r-CoVs showed considerable resistance to trypsin digestion at pH 5.5, indicating that the highly conserved T372 in bat CoVs might result from the selective advantages in stability during the fecal-oral transmission over A372. Moreover, the results of cross-immunogenicity among S proteins of SARS-CoV-2, BANAL-20-52, and BANAL-20-236 showed that A372 pseudoviruses are more sensitive to anti-S sera than T372, indicating that immune evasion might also play a role in the natural selection of T372 over A372 during evolution. Finally, residues 493 and 498 of the S protein affect host susceptibility, and residue 498 also influences the immunogenicity of the S protein. Together, our findings aid a better understanding of the molecular basis of CoV entry, selective evolution, and immunogenicity and highlight the importance of surveillance of susceptible hosts of these viruses to prevent potential outbreaks.
Collapse
Affiliation(s)
- Xiuyuan Ou
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ge Xu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pei Li
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Liu
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fuwen Zan
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Hu
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xing Lu
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siwen Dong
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yao Zhou
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhixia Mu
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiqiang Wu
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pinghuang Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Lu
- College of Life Sciences, Peking University, Beijing, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Zhaohui Qian
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
22
|
Puenpa J, Sawaswong V, Nimsamer P, Payungporn S, Rattanakomol P, Saengdao N, Chansaenroj J, Yorsaeng R, Suwannakarn K, Poovorawan Y. Investigation of the Molecular Epidemiology and Evolution of Circulating Severe Acute Respiratory Syndrome Coronavirus 2 in Thailand from 2020 to 2022 via Next-Generation Sequencing. Viruses 2023; 15:1394. [PMID: 37376693 PMCID: PMC10303178 DOI: 10.3390/v15061394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious condition caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which surfaced in Thailand in early 2020. The current study investigated the SARS-CoV-2 lineages circulating in Thailand and their evolutionary history. Complete genome sequencing of 210 SARS-CoV-2 samples collected from collaborating hospitals and the Institute of Urban Disease Control and Prevention over two years, from December 2020 to July 2022, was performed using next-generation sequencing technology. Multiple lineage introductions were observed before the emergence of the B.1.1.529 omicron variant, including B.1.36.16, B.1.351, B.1.1, B.1.1.7, B.1.524, AY.30, and B.1.617.2. The B.1.1.529 omicron variant was subsequently detected between January 2022 and June 2022. The evolutionary rate for the spike gene of SARS-CoV-2 was estimated to be between 0.87 and 1.71 × 10-3 substitutions per site per year. There was a substantial prevalence of the predominant mutations C25672T (L94F), C25961T (T190I), and G26167T (V259L) in the ORF3a gene during the Thailand outbreaks. Complete genome sequencing can enhance the prediction of future variant changes in viral genomes, which is crucial to ensuring that vaccine strains are protective against worldwide outbreaks.
Collapse
Affiliation(s)
- Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.P.); (P.R.); (J.C.); (R.Y.)
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (V.S.); (P.N.); (S.P.)
| | - Pattaraporn Nimsamer
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (V.S.); (P.N.); (S.P.)
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (V.S.); (P.N.); (S.P.)
| | - Patthaya Rattanakomol
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.P.); (P.R.); (J.C.); (R.Y.)
| | - Nutsada Saengdao
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (K.S.)
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.P.); (P.R.); (J.C.); (R.Y.)
| | - Ritthideach Yorsaeng
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.P.); (P.R.); (J.C.); (R.Y.)
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (K.S.)
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.P.); (P.R.); (J.C.); (R.Y.)
- FRS(T), The Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
23
|
Fu Y, Xue H, Wang T, Ding Y, Cui Y, Nie H. Fibrinolytic system and COVID-19: From an innovative view of epithelial ion transport. Biomed Pharmacother 2023; 163:114863. [PMID: 37172333 PMCID: PMC10169260 DOI: 10.1016/j.biopha.2023.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/14/2023] Open
Abstract
Lifeways of worldwide people have changed dramatically amid the coronavirus disease 2019 (COVID-19) pandemic, and public health is at stake currently. In the early stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, fibrinolytic system is mostly inhibited, which is responsible for the development of hypofibrinolysis, promoting disseminated intravascular coagulation, hyaline membrane formation, and pulmonary edema. Whereas the common feature and risk factor at advanced stage is a large amount of fibrin degradation products, including D-dimer, the characteristic of hyperfibrinolysis. Plasmin can cleave both SARS-CoV-2 spike protein and γ subunit of epithelial sodium channel (ENaC), a critical element to edematous fluid clearance. In this review, we aim to sort out the role of fibrinolytic system in the pathogenesis of COVID-19, as well as provide the possible guidance in current treating methods. In addition, the abnormal regulation of ENaC in the occurrence of SARS-CoV-2 mediated hypofibrinolysis and hyperfibrinolysis are summarized, with the view of proposing an innovative view of epithelial ion transport in preventing the dysfunction of fibrinolytic system during the progress of COVID-19.
Collapse
Affiliation(s)
- Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hao Xue
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yong Cui
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
24
|
Jaki L, Weigang S, Kern L, Kramme S, Wrobel AG, Grawitz AB, Nawrath P, Martin SR, Dähne T, Beer J, Disch M, Kolb P, Gutbrod L, Reuter S, Warnatz K, Schwemmle M, Gamblin SJ, Neumann-Haefelin E, Schnepf D, Welte T, Kochs G, Huzly D, Panning M, Fuchs J. Total escape of SARS-CoV-2 from dual monoclonal antibody therapy in an immunocompromised patient. Nat Commun 2023; 14:1999. [PMID: 37037847 PMCID: PMC10085998 DOI: 10.1038/s41467-023-37591-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) directed against the spike of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective therapeutic options to combat infections in high-risk patients. Here, we report the adaptation of SARS-CoV-2 to the mAb cocktail REGN-COV in a kidney transplant patient with hypogammaglobulinemia. Following mAb treatment, the patient did not clear the infection. During viral persistence, SARS-CoV-2 acquired three novel spike mutations. Neutralization and mouse protection analyses demonstrate a complete viral escape from REGN-COV at the expense of ACE-2 binding. Final clearance of the virus occurred upon reduction of the immunosuppressive regimen and total IgG substitution. Serology suggests that the development of highly neutralizing IgM rather than IgG substitution aids clearance. Our findings emphasise that selection pressure by mAbs on SARS-CoV-2 can lead to development of escape variants in immunocompromised patients. Thus, modification of immunosuppressive therapy, if possible, might be preferable to control and clearance of the viral infection.
Collapse
Affiliation(s)
- Lena Jaki
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Weigang
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Kern
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Kramme
- Institute for Infection Prevention and Hospital Epidemiology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Antoni G Wrobel
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Andrea B Grawitz
- Institute for Clinical Chemistry and Laboratory Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Nawrath
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Stephen R Martin
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Theo Dähne
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julius Beer
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Disch
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Kolb
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Gutbrod
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven J Gamblin
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Welte
- Renal Division, Department of Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kochs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Jonas Fuchs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
25
|
Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, Katzourakis A. The evolution of SARS-CoV-2. Nat Rev Microbiol 2023; 21:361-379. [PMID: 37020110 DOI: 10.1038/s41579-023-00878-2] [Citation(s) in RCA: 365] [Impact Index Per Article: 365.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths and substantial morbidity worldwide. Intense scientific effort to understand the biology of SARS-CoV-2 has resulted in daunting numbers of genomic sequences. We witnessed evolutionary events that could mostly be inferred indirectly before, such as the emergence of variants with distinct phenotypes, for example transmissibility, severity and immune evasion. This Review explores the mechanisms that generate genetic variation in SARS-CoV-2, underlying the within-host and population-level processes that underpin these events. We examine the selective forces that likely drove the evolution of higher transmissibility and, in some cases, higher severity during the first year of the pandemic and the role of antigenic evolution during the second and third years, together with the implications of immune escape and reinfections, and the increasing evidence for and potential relevance of recombination. In order to understand how major lineages, such as variants of concern (VOCs), are generated, we contrast the evidence for the chronic infection model underlying the emergence of VOCs with the possibility of an animal reservoir playing a role in SARS-CoV-2 evolution, and conclude that the former is more likely. We evaluate uncertainties and outline scenarios for the possible future evolutionary trajectories of SARS-CoV-2.
Collapse
Affiliation(s)
- Peter V Markov
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
- London School of Hygiene & Tropical Medicine, University of London, London, UK.
| | - Mahan Ghafari
- Big Data Institute, University of Oxford, Oxford, UK
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | | | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nikolaos I Stilianakis
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Department of Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
26
|
Gonzalez-Rodriguez E, Zol-Hanlon M, Bineva-Todd G, Marchesi A, Skehel M, Mahoney KE, Roustan C, Borg A, Di Vagno L, Kjær S, Wrobel AG, Benton DJ, Nawrath P, Flitsch SL, Joshi D, González-Ramírez A, Wilkinson KA, Wilkinson RJ, Wall EC, Hurtado-Guerrero R, Malaker SA, Schumann B. O-Linked Sialoglycans Modulate the Proteolysis of SARS-CoV-2 Spike and Likely Contribute to the Mutational Trajectory in Variants of Concern. ACS CENTRAL SCIENCE 2023; 9:393-404. [PMID: 36968546 PMCID: PMC10037455 DOI: 10.1021/acscentsci.2c01349] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 06/18/2023]
Abstract
The emergence of a polybasic cleavage motif for the protease furin in SARS-CoV-2 spike has been established as a major factor for human viral transmission. The region N-terminal to that motif is extensively mutated in variants of concern (VOCs). Besides furin, spikes from these variants appear to rely on other proteases for maturation, including TMPRSS2. Glycans near the cleavage site have raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, we identify that sialic acid-containing O-linked glycans on Thr678 of SARS-CoV-2 spike influence furin and TMPRSS2 cleavage and posit O-linked glycosylation as a likely driving force for the emergence of VOC mutations. We provide direct evidence that the glycosyltransferase GalNAc-T1 primes glycosylation at Thr678 in the living cell, an event that is suppressed by mutations in the VOCs Alpha, Delta, and Omicron. We found that the sole incorporation of N-acetylgalactosamine did not impact furin activity in synthetic O-glycopeptides, but the presence of sialic acid reduced the furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a negative impact on TMPRSS2 cleavage. With a chemistry-centered approach, we substantiate O-glycosylation as a major determinant of spike maturation and propose disruption of O-glycosylation as a substantial driving force for VOC evolution.
Collapse
Affiliation(s)
- Edgar Gonzalez-Rodriguez
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Mia Zol-Hanlon
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Signalling
and Structural Biology Lab, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Ganka Bineva-Todd
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
| | - Andrea Marchesi
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Mark Skehel
- Proteomics
Science Technology Platform, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Keira E. Mahoney
- Department
of Chemistry, Yale University, 275 Prospect Street, 06511 New Haven, Connecticut, United States
| | - Chloë Roustan
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Annabel Borg
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Lucia Di Vagno
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Proteomics
Science Technology Platform, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Svend Kjær
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Antoni G. Wrobel
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Donald J. Benton
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Philipp Nawrath
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Sabine L. Flitsch
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Dhira Joshi
- Chemical
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | | | - Katalin A. Wilkinson
- Tuberculosis
Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Wellcome
Centre for Infectious Diseases Research in Africa, University of Cape Town, 7925 Observatory, Cape Town, South Africa
| | - Robert J. Wilkinson
- Tuberculosis
Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Wellcome
Centre for Infectious Diseases Research in Africa, University of Cape Town, 7925 Observatory, Cape Town, South Africa
- Department
of Infectious Diseases, Imperial College
London, W12 0NN London, United Kingdom
- Institute
of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, 7925 Observatory, Cape Town, South Africa
| | - Emma C. Wall
- The Francis
Crick Institute, NW1 1AT London, United Kingdom
- University
College London Hospitals (UCLH) Biomedical Research Centre, W1T 7DN London, United Kingdom
| | - Ramón Hurtado-Guerrero
- Institute
of Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Fundación
ARAID, 50018 Zaragoza, Spain
| | - Stacy A. Malaker
- Department
of Chemistry, Yale University, 275 Prospect Street, 06511 New Haven, Connecticut, United States
| | - Benjamin Schumann
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| |
Collapse
|
27
|
Calvaresi V, Wrobel AG, Toporowska J, Hammerschmid D, Doores KJ, Bradshaw RT, Parsons RB, Benton DJ, Roustan C, Reading E, Malim MH, Gamblin SJ, Politis A. Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein. Nat Commun 2023; 14:1421. [PMID: 36918534 PMCID: PMC10013288 DOI: 10.1038/s41467-023-36745-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
SARS-CoV-2 spike glycoprotein mediates receptor binding and subsequent membrane fusion. It exists in a range of conformations, including a closed state unable to bind the ACE2 receptor, and an open state that does so but displays more exposed antigenic surface. Spikes of variants of concern (VOCs) acquired amino acid changes linked to increased virulence and immune evasion. Here, using HDX-MS, we identified changes in spike dynamics that we associate with the transition from closed to open conformations, to ACE2 binding, and to specific mutations in VOCs. We show that the RBD-associated subdomain plays a role in spike opening, whereas the NTD acts as a hotspot of conformational divergence of VOC spikes driving immune evasion. Alpha, beta and delta spikes assume predominantly open conformations and ACE2 binding increases the dynamics of their core helices, priming spikes for fusion. Conversely, substitutions in omicron spike lead to predominantly closed conformations, presumably enabling it to escape antibodies. At the same time, its core helices show characteristics of being pre-primed for fusion even in the absence of ACE2. These data inform on SARS-CoV-2 evolution and omicron variant emergence.
Collapse
Affiliation(s)
- Valeria Calvaresi
- Department of Chemistry, King's College London, SE1 1DB, London, UK.
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.
| | | | | | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, SE1 9RT, London, UK
| | | | | | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Chloë Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT, London, UK
| | - Eamonn Reading
- Department of Chemistry, King's College London, SE1 1DB, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, SE1 9RT, London, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Argyris Politis
- Department of Chemistry, King's College London, SE1 1DB, London, UK.
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, M13 9PT, Manchester, UK.
- Manchester Institute of Biotechnology, The University of Manchester, M1 7DN, Manchester, UK.
| |
Collapse
|
28
|
Systematic Guidelines for Effective Utilization of COVID-19 Databases in Genomic, Epidemiologic, and Clinical Research. Viruses 2023; 15:v15030692. [PMID: 36992400 PMCID: PMC10059256 DOI: 10.3390/v15030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
The pandemic has led to the production and accumulation of various types of data related to coronavirus disease 2019 (COVID-19). To understand the features and characteristics of COVID-19 data, we summarized representative databases and determined the data types, purpose, and utilization details of each database. In addition, we categorized COVID-19 associated databases into epidemiological data, genome and protein data, and drug and target data. We found that the data present in each of these databases have nine separate purposes (clade/variant/lineage, genome browser, protein structure, epidemiological data, visualization, data analysis tool, treatment, literature, and immunity) according to the types of data. Utilizing the databases we investigated, we created four queries as integrative analysis methods that aimed to answer important scientific questions related to COVID-19. Our queries can make effective use of multiple databases to produce valuable results that can reveal novel findings through comprehensive analysis. This allows clinical researchers, epidemiologists, and clinicians to have easy access to COVID-19 data without requiring expert knowledge in computing or data science. We expect that users will be able to reference our examples to construct their own integrative analysis methods, which will act as a basis for further scientific inquiry and data searching.
Collapse
|
29
|
Wang W, Qu Y, Wang X, Xiao MZX, Fu J, Chen L, Zheng Y, Liang Q. Genetic variety of ORF3a shapes SARS-CoV-2 fitness through modulation of lipid droplet. J Med Virol 2023; 95:e28630. [PMID: 36861654 DOI: 10.1002/jmv.28630] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection leads to the accumulation of lipid droplets (LD), the central hubs of the lipid metabolism, in vitro or in type II pneumocytes and monocytes from coronavirus disease 19 (COVID-19) patients and blockage of LD formation by specific inhibitors impedes SARS-CoV-2 replication. Here, we showed that ORF3a is necessary and sufficient to trigger LD accumulation during SARS-CoV-2 infection, leading to efficient virus replication. Although highly mutated during evolution, ORF3a-mediated LD modulation is conserved in most SARS-CoV-2 variants except the Beta strain and is a major difference between SARS-CoV and SARS-CoV-2 that depends on the genetic variations on the amino acid position 171, 193, and 219 of ORF3a. Importantly, T223I substitution in recent Omicron strains (BA.2-BF.8) impairs ORF3a-Vps39 association and LD accumulation, leading to less efficient replication and potentially contributing to lower pathogenesis of the Omicron strains. Our work characterized how SARS-CoV-2 modulates cellular lipid homeostasis to benefit its replication during virus evolution, making ORF3a-LD axis a promising drug target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Weili Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Qu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Joyce Fu
- Department of Statistics, University of California, Riverside, Riverside, California, USA
| | - Lei Chen
- Shanghai Institute of Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai University of Traditional Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Medicine, Shanghai, China
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Toelzer C, Gupta K, Berger I, Schaffitzel C. Cryo-EM reveals binding of linoleic acid to SARS-CoV-2 spike glycoprotein, suggesting an antiviral treatment strategy. Acta Crystallogr D Struct Biol 2023; 79:111-121. [PMID: 36762857 PMCID: PMC9912919 DOI: 10.1107/s2059798323000049] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
The COVID-19 pandemic and concomitant lockdowns presented a global health challenge and triggered unprecedented research efforts to elucidate the molecular mechanisms and pathogenicity of SARS-CoV-2. The spike glycoprotein decorating the surface of SARS-CoV-2 virions is a prime target for vaccine development, antibody therapy and serology as it binds the host cell receptor and is central for viral cell entry. The electron cryo-microscopy structure of the spike protein revealed a hydrophobic pocket in the receptor-binding domain that is occupied by an essential fatty acid, linoleic acid (LA). The LA-bound spike protein adopts a non-infectious locked conformation which is more stable than the infectious form and shields important immunogenic epitopes. Here, the impact of LA binding on viral infectivity and replication, and the evolutionary conservation of the pocket in other highly pathogenic coronaviruses, including SARS-CoV-2 variants of concern (VOCs), are reviewed. The importance of LA metabolic products, the eicosanoids, in regulating the human immune response and inflammation is highlighted. Lipid and fatty-acid binding to a hydrophobic pocket in proteins on the virion surface appears to be a broader strategy employed by viruses, including picornaviruses and Zika virus. Ligand binding stabilizes their protein structure and assembly, and downregulates infectivity. In the case of rhinoviruses, this has been exploited to develop small-molecule antiviral drugs that bind to the hydrophobic pocket. The results suggest a COVID-19 antiviral treatment based on the LA-binding pocket.
Collapse
Affiliation(s)
- Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, United Kingdom
- Bristol Synthetic Biology Centre: BrisSynBio, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Kapil Gupta
- Imophoron Ltd, St Philips Central, Albert Road, Bristol BS2 0XJ, United Kingdom
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, United Kingdom
- Bristol Synthetic Biology Centre: BrisSynBio, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, United Kingdom
- Bristol Synthetic Biology Centre: BrisSynBio, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
31
|
Eilts F, Bauer S, Fraser K, Dordick JS, Wolff MW, Linhardt RJ, Zhang F. The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics. Carbohydr Polym 2023; 299:120167. [PMID: 36876764 PMCID: PMC9516881 DOI: 10.1016/j.carbpol.2022.120167] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
In December 2019, the global coronavirus disease 2019 (COVID-19) pandemic began in Wuhan, China. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which infects host cells primarily through the angiotensin-converting enzyme 2 (ACE2) receptor. In addition to ACE2, several studies have shown the importance of heparan sulfate (HS) on the host cell surface as a co-receptor for SARS-CoV-2-binding. This insight has driven research into antiviral therapies, aimed at inhibiting the HS co-receptor-binding, e.g., by glycosaminoglycans (GAGs), a family of sulfated polysaccharides that includes HS. Several GAGs, such as heparin (a highly sulfated analog of HS), are used to treat various health indications, including COVID-19. This review is focused on current research on the involvement of HS in SARS-CoV-2 infection, implications of viral mutations, as well as the use of GAGs and other sulfated polysaccharides as antiviral agents.
Collapse
Affiliation(s)
- Friederike Eilts
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Sarah Bauer
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith Fraser
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
32
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.16.520799. [PMID: 36561187 PMCID: PMC9774211 DOI: 10.1101/2022.12.16.520799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Imanis Life Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
Parigger L, Krassnigg A, Schopper T, Singh A, Tappler K, Köchl K, Hetmann M, Gruber K, Steinkellner G, Gruber CC. Recent changes in the mutational dynamics of the SARS-CoV-2 main protease substantiate the danger of emerging resistance to antiviral drugs. Front Med (Lausanne) 2022; 9:1061142. [PMID: 36590977 PMCID: PMC9794616 DOI: 10.3389/fmed.2022.1061142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction The current coronavirus pandemic is being combated worldwide by nontherapeutic measures and massive vaccination programs. Nevertheless, therapeutic options such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main-protease (Mpro) inhibitors are essential due to the ongoing evolution toward escape from natural or induced immunity. While antiviral strategies are vulnerable to the effects of viral mutation, the relatively conserved Mpro makes an attractive drug target: Nirmatrelvir, an antiviral targeting its active site, has been authorized for conditional or emergency use in several countries since December 2021, and a number of other inhibitors are under clinical evaluation. We analyzed recent SARS-CoV-2 genomic data, since early detection of potential resistances supports a timely counteraction in drug development and deployment, and discovered accelerated mutational dynamics of Mpro since early December 2021. Methods We performed a comparative analysis of 10.5 million SARS-CoV-2 genome sequences available by June 2022 at GISAID to the NCBI reference genome sequence NC_045512.2. Amino-acid exchanges within high-quality regions in 69,878 unique Mpro sequences were identified and time- and in-depth sequence analyses including a structural representation of mutational dynamics were performed using in-house software. Results The analysis showed a significant recent event of mutational dynamics in Mpro. We report a remarkable increase in mutational variability in an eight-residue long consecutive region (R188-G195) near the active site since December 2021. Discussion The increased mutational variability in close proximity to an antiviral-drug binding site as described herein may suggest the onset of the development of antiviral resistance. This emerging diversity urgently needs to be further monitored and considered in ongoing drug development and lead optimization.
Collapse
Affiliation(s)
- Lena Parigger
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Amit Singh
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Tappler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Michael Hetmann
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Karl Gruber
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Georg Steinkellner
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Christian C. Gruber
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
34
|
Conformational Dynamics of the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Biomedicines 2022; 10:biomedicines10123233. [PMID: 36551988 PMCID: PMC9775641 DOI: 10.3390/biomedicines10123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Variants of SARS-CoV-2 keep emerging and causing new waves of COVID-19 around the world. Effective new approaches in drug development are based on the binding of agents, such as neutralizing monoclonal antibodies to a receptor-binding domain (RBD) of SARS-CoV-2 spike protein. However, mutations in RBD may lower the affinity of previously developed antibodies. Therefore, rapid analysis of new variants and selection of a binding partner with high affinity is of great therapeutic importance. Here, we explore a computational approach based on molecular dynamics simulations and conformational clusterization techniques for the wild-type and omicron variants of RBD. Biochemical experiments support the hypothesis of the presence of several conformational states within the RBD assembly. The development of such an approach will facilitate the selection of neutralization drugs with higher affinity based on the primary structure of the target antigen.
Collapse
|
35
|
Dhawan M, Sharma A, Priyanka, Thakur N, Rajkhowa TK, Choudhary OP. Delta variant (B.1.617.2) of SARS-CoV-2: Mutations, impact, challenges and possible solutions. Hum Vaccin Immunother 2022; 18:2068883. [PMID: 35507895 PMCID: PMC9359381 DOI: 10.1080/21645515.2022.2068883] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
Since commencement of COVID-19 pandemic, several SARS-CoV-2 variants have emerged amid containment efforts via vaccination. The Delta variant (B.1.617.2), discovered in October 2020, was designated as a VOC by the WHO on May 11, 2021. The enhanced transmissibility of Delta variant has been associated with critical mutations such as D614G, L452R, P681R, and T478K in the S-protein. The increased affinity of the S-protein and ACE2 has been postulated as a key reason for decreased vaccine efficacy. As per evidence, the Delta variant possesses increased transmissibility and decreased vaccine efficacy compared to other VOCs like Alpha and Beta. This has led to concerns regarding the acquisition of novel mutations in the Delta variant and outbreaks in vulnerable communities, including vaccinated people. In this mini-review of Delta variant, we have explained its evolution and characteristics, the impact of spike mutations on infectivity and immune evasion, and measures to combat future outbreaks.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Trafford College, Altrincham, Manchester, UK
| | - Abhilasha Sharma
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Priyanka
- Independent Researcher, 07, Type IV Quarter, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| | - Nanamika Thakur
- Department of Medical Lab Technology, Faculty of Allied and Healthcare Sciences, GNA University, Phagwara, Punjab, India
| | - Tridib Kumar Rajkhowa
- Department of Veterinary Pathology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| |
Collapse
|
36
|
Planchais C, Reyes‐Ruiz A, Lacombe R, Zarantonello A, Lecerf M, Revel M, Roumenina LT, Atanasov BP, Mouquet H, Dimitrov JD. Evolutionary trajectory of receptor binding specificity and promiscuity of the spike protein of SARS-CoV-2. Protein Sci 2022; 31:e4447. [PMID: 36305765 PMCID: PMC9597384 DOI: 10.1002/pro.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/27/2023]
Abstract
SARS-CoV-2 infects cells by attachment to its receptor-the angiotensin converting enzyme 2 (ACE2). Regardless of the wealth of structural data, little is known about the physicochemical mechanism of interactions of the viral spike (S) protein with ACE2 and how this mechanism has evolved during the pandemic. Here, we applied experimental and computational approaches to characterize the molecular interaction of S proteins from SARS-CoV-2 variants of concern (VOC). Data on kinetics, activation-, and equilibrium thermodynamics of binding of the receptor binding domain (RBD) from VOC with ACE2 as well as data from computational protein electrostatics revealed a profound remodeling of the physicochemical characteristics of the interaction during the evolution. Thus, as compared to RBDs from Wuhan strain and other VOC, Omicron RBD presented as a unique protein in terms of conformational dynamics and types of non-covalent forces driving the complex formation with ACE2. Viral evolution resulted in a restriction of the RBD structural dynamics, and a shift to a major role of polar forces for ACE2 binding. Further, we investigated how the reshaping of the physicochemical characteristics of interaction affects the binding specificity of S proteins. Data from various binding assays revealed that SARS-CoV-2 Wuhan and Omicron RBDs manifest capacity for promiscuous recognition of unrelated human proteins, but they harbor distinct reactivity patterns. These findings might contribute for mechanistic understanding of the viral tropism and capacity to evade immune responses during evolution.
Collapse
Affiliation(s)
- Cyril Planchais
- Laboratory of Humoral ImmunologyInstitut Pasteur, Université Paris Cité, INSERM U1222ParisFrance
| | - Alejandra Reyes‐Ruiz
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Robin Lacombe
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Alessandra Zarantonello
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Maxime Lecerf
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Margot Revel
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Lubka T. Roumenina
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Boris P. Atanasov
- Institute of Organic Chemistry, Bulgarian Academy of SciencesSofiaBulgaria
| | - Hugo Mouquet
- Laboratory of Humoral ImmunologyInstitut Pasteur, Université Paris Cité, INSERM U1222ParisFrance
| | - Jordan D. Dimitrov
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| |
Collapse
|
37
|
Pastorio C, Zech F, Noettger S, Jung C, Jacob T, Sanderson T, Sparrer KMJ, Kirchhoff F. Determinants of Spike infectivity, processing, and neutralization in SARS-CoV-2 Omicron subvariants BA.1 and BA.2. Cell Host Microbe 2022; 30:1255-1268.e5. [PMID: 35931073 PMCID: PMC9289044 DOI: 10.1016/j.chom.2022.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022]
Abstract
SARS-CoV-2 Omicron rapidly outcompeted other variants and currently dominates the COVID-19 pandemic. Its enhanced transmission and immune evasion are thought to be driven by numerous mutations in the Omicron Spike protein. Here, we systematically introduced BA.1 and/or BA.2 Omicron Spike mutations into the ancestral Spike protein and examined the impacts on Spike function, processing, and susceptibility to neutralization. Individual mutations of S371F/L, S375F, and T376A in the ACE2-receptor-binding domain as well as Q954H and N969K in the hinge region 1 impaired infectivity, while changes to G339D, D614G, N764K, and L981F moderately enhanced it. Most mutations in the N-terminal region and receptor-binding domain reduced the sensitivity of the Spike protein to neutralization by sera from individuals vaccinated with the BNT162b2 vaccine and by therapeutic antibodies. Our results represent a systematic functional analysis of Omicron Spike adaptations that have allowed this SARS-CoV-2 variant to dominate the current pandemic.
Collapse
Affiliation(s)
- Chiara Pastorio
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; Electrochemical Energy Storage, Helmholtz-Institute-Ulm (HIU), 89081 Ulm, Germany; Karlsruhe Institute of Technology (KIT), 76344 Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany
| | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany.
| |
Collapse
|
38
|
Li X, Pan Y, Yin Q, Wang Z, Shan S, Zhang L, Yu J, Qu Y, Sun L, Gui F, Lu J, Jing Z, Wu W, Huang T, Shi X, Li J, Li X, Li D, Wang S, Yang M, Zhang L, Duan K, Liang M, Yang X, Wang X. Structural basis of a two-antibody cocktail exhibiting highly potent and broadly neutralizing activities against SARS-CoV-2 variants including diverse Omicron sublineages. Cell Discov 2022; 8:87. [PMID: 36075908 PMCID: PMC9453709 DOI: 10.1038/s41421-022-00449-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), especially the latest Omicron, have exhibited severe antibody evasion. Broadly neutralizing antibodies with high potency against Omicron are urgently needed for understanding the working mechanisms and developing therapeutic agents. In this study, we characterized the previously reported F61, which was isolated from convalescent patients infected with prototype SARS-CoV-2, as a broadly neutralizing antibody against all VOCs including Omicron BA.1, BA.1.1, BA.2, BA.3 and BA.4 sublineages by utilizing antigen binding and cell infection assays. We also identified and characterized another broadly neutralizing antibody D2 with epitope distinct from that of F61. More importantly, we showed that a combination of F61 with D2 exhibited synergy in neutralization and protecting mice from SARS-CoV-2 Delta and Omicron BA.1 variants. Cryo-Electron Microscopy (Cryo-EM) structures of the spike-F61 and spike-D2 binary complexes revealed the distinct epitopes of F61 and D2 at atomic level and the structural basis for neutralization. Cryo-EM structure of the Omicron-spike-F61-D2 ternary complex provides further structural insights into the synergy between F61 and D2. These results collectively indicated F61 and F61-D2 cocktail as promising therapeutic antibodies for combating SARS-CoV-2 variants including diverse Omicron sublineages.
Collapse
Affiliation(s)
- Xiaoman Li
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongbing Pan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Qiangling Yin
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Sisi Shan
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Laixing Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanyuan Qu
- Institution of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Lina Sun
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Gui
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Zhaofei Jing
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Wei Wu
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Huang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuanling Shi
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiandong Li
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Dexin Li
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, Hubei, China
| | - Shiwen Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, Hubei, China
| | - Maojun Yang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Linqi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Mifang Liang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, Hubei, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
39
|
Qiao S, Zhang S, Ge J, Wang X. The spike glycoprotein of highly pathogenic human coronaviruses: structural insights for understanding infection, evolution and inhibition. FEBS Open Bio 2022; 12:1602-1622. [PMID: 35689514 PMCID: PMC9433818 DOI: 10.1002/2211-5463.13454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022] Open
Abstract
Highly pathogenic human coronaviruses (CoV) including SARS-CoV, MERS-CoV and SARS-CoV-2 have emerged over the past two decades, resulting in infectious disease outbreaks that have greatly affected public health. The CoV surface spike (S) glycoprotein mediates receptor binding and membrane fusion for cell entry, playing critical roles in CoV infection and evolution. The S glycoprotein is also the major target molecule for prophylactic and therapeutic interventions, including neutralizing antibodies and vaccines. In this review, we summarize key studies that have revealed the structural basis of S-mediated cell entry of SARS-CoV, MERS-CoV and SARS-CoV-2. Additionally, we discuss the evolution of the S glycoprotein to realize cross-species transmission from the viewpoint of structural biology. Lastly, we describe the recent progress in developing antibodies, nanobodies and peptide inhibitors that target the SARS-CoV-2 S glycoprotein for therapeutic purposes.
Collapse
Affiliation(s)
- Shuyuan Qiao
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| | - Shuyuan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
40
|
Zhang Y, Zheng X, Sheng W, Liang H, Zhao Y, Zhu X, Yang R, Zhang Y, Dong X, Li W, Pei F, Ding L, Chang Z, Deng L, Yuan G, Yang Z, Zhu D, Yang X, Wang H. Alum/CpG Adjuvanted Inactivated COVID-19 Vaccine with Protective Efficacy against SARS-CoV-2 and Variants. Vaccines (Basel) 2022; 10:vaccines10081208. [PMID: 36016098 PMCID: PMC9413105 DOI: 10.3390/vaccines10081208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, numerous variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged, including five variants of concern (VOC) strains listed by the WHO: Alpha, Beta, Gamma, Delta and Omicron. Extensive studies have shown that most of these VOC strains, especially the currently dominant variant Omicron, can escape the host immune response induced by existing COVID-19 vaccines to different extents, which poses considerable risk to the health of human beings around the world. In the present study, we developed a vaccine based on inactivated SARS-CoV-2 and an adjuvant consisting of aluminum hydroxide (alum) and CpG. The immunogenicity and safety of the vaccine were investigated in rats. The candidate vaccine elicited high titers of SARS-CoV-2-spike-specific IgG antibody and neutralizing antibody in immunized rats, which not only neutralize the original SARS-CoV-2, but also showed great cross-neutralization activity against the Beta, Delta and Omicron variants.
Collapse
Affiliation(s)
- Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
- China National Biotec Group Company Limited, Beijing 100024, China
| | - Xiaotong Zheng
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Wang Sheng
- College of Life Sciences and Biotechnology, Beijing University of Technology, Beijing 100021, China;
| | - Hongyang Liang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Yuxiu Zhao
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Xiujuan Zhu
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Rong Yang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Yadan Zhang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Xiaofei Dong
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Weidong Li
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Fei Pei
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Ling Ding
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Zhen Chang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Li Deng
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Guangying Yuan
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Zhaona Yang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Di Zhu
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
| | - Xiaoming Yang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
- China National Biotec Group Company Limited, Beijing 100024, China
- Correspondence: (X.Y.); (H.W.)
| | - Hui Wang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Y.Z.); (X.Z.); (H.L.); (Y.Z.); (X.Z.); (R.Y.); (Y.Z.); (X.D.); (W.L.); (F.P.); (L.D.); (Z.C.); (L.D.); (G.Y.); (Z.Y.); (D.Z.)
- Correspondence: (X.Y.); (H.W.)
| |
Collapse
|
41
|
De Marco C, Veneziano C, Massacci A, Pallocca M, Marascio N, Quirino A, Barreca GS, Giancotti A, Gallo L, Lamberti AG, Quaresima B, Santamaria G, Biamonte F, Scicchitano S, Trecarichi EM, Russo A, Torella D, Quattrone A, Torti C, Matera G, De Filippo C, Costanzo FS, Viglietto G. Dynamics of Viral Infection and Evolution of SARS-CoV-2 Variants in the Calabria Area of Southern Italy. Front Microbiol 2022; 13:934993. [PMID: 35966675 PMCID: PMC9366435 DOI: 10.3389/fmicb.2022.934993] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we report on the results of SARS-CoV-2 surveillance performed in an area of Southern Italy for 12 months (from March 2021 to February 2022). To this study, we have sequenced RNA from 609 isolates. We have identified circulating VOCs by Sanger sequencing of the S gene and defined their genotypes by whole-genome NGS sequencing of 157 representative isolates. Our results indicated that B.1 and Alpha were the only circulating lineages in Calabria in March 2021; while Alpha remained the most common variant between April 2021 and May 2021 (90 and 73%, respectively), we observed a concomitant decrease in B.1 cases and appearance of Gamma cases (6 and 21%, respectively); C.36.3 and Delta appeared in June 2021 (6 and 3%, respectively); Delta became dominant in July 2021 while Alpha continued to reduce (46 and 48%, respectively). In August 2021, Delta became the only circulating variant until the end of December 2021. As of January 2022, Omicron emerged and took over Delta (72 and 28%, respectively). No patient carrying Beta, Iota, Mu, or Eta variants was identified in this survey. Among the genomes identified in this study, some were distributed all over Europe (B1_S477N, Alpha_L5F, Delta_T95, Delta_G181V, and Delta_A222V), some were distributed in the majority of Italian regions (B1_S477N, B1_Q675H, Delta_T95I and Delta_A222V), and some were present mainly in Calabria (B1_S477N_T29I, B1_S477N_T29I_E484Q, Alpha_A67S, Alpha_A701S, and Alpha_T724I). Prediction analysis of the effects of mutations on the immune response (i.e., binding to class I MHC and/or recognition of T cells) indicated that T29I in B.1 variant; A701S in Alpha variant; and T19R in Delta variant were predicted to impair binding to class I MHC whereas the mutations A67S identified in Alpha; E484K identified in Gamma; and E156G and ΔF157/R158 identified in Delta were predicted to impair recognition by T cells. In conclusion, we report on the results of SARS-CoV-2 surveillance in Regione Calabria in the period between March 2021 and February 2022, identified variants that were enriched mainly in Calabria, and predicted the effects of identified mutations on host immune response.
Collapse
Affiliation(s)
- Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
- Carmela De Marco
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Alice Massacci
- UOSD Biostatistics, Bioinformatics, and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- UOSD Biostatistics, Bioinformatics, and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nadia Marascio
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Angela Quirino
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | | | - Luigia Gallo
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Alessandro Russo
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, “Magna Graecia” University, Catanzaro, Italy
| | - Carlo Torti
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
- *Correspondence: Giuseppe Viglietto
| |
Collapse
|
42
|
Description of a One-Year Succession of Variants of Interest and Concern of SARS-CoV-2 in Venezuela. Viruses 2022; 14:v14071378. [PMID: 35891359 PMCID: PMC9317613 DOI: 10.3390/v14071378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Some of the lineages of SARS-CoV-2, the new coronavirus responsible for COVID-19, exhibit higher transmissibility or partial resistance to antibody-mediated neutralization and were designated by WHO as Variants of Interests (VOIs) or Concern (VOCs). The aim of this study was to monitor the dissemination of VOIs and VOCs in Venezuela from March 2021 to February 2022. A 614 nt genomic fragment was sequenced for the detection of some relevant mutations of these variants. Their presence was confirmed by complete genome sequencing, with a correlation higher than 99% between both methodologies. After the introduction of the Gamma VOC since the beginning of the year 2021, the variants Alpha VOC and Lambda VOI were detected as early as March 2021, at a very low frequency. In contrast, the Mu VOI, detected in May 2021, was able to circulate throughout the country. After the detection of the Delta VOC in June 2021, it became the predominant circulating variant. With the arrival of the Omicron VOC in December, this variant was able to displace the Delta one in less than one month.
Collapse
|