1
|
Huang P, Lan H, Liu B, Mo Y, Gao Z, Ye H, Pan T. Transformative laboratory medicine enabled by microfluidic automation and artificial intelligence. Biosens Bioelectron 2025; 271:117046. [PMID: 39671961 DOI: 10.1016/j.bios.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Laboratory medicine provides pivotal medical information through analyses of body fluids and tissues, and thus, it is essential for diagnosis of diseases as well as monitoring of disease progression. Despite its universal importance, the field is currently suffering from the limited workforce and analytical capabilities due to the increasing pressure from expanding global population and unexpected rise of noncommunicable diseases. The emerging technologies of microfluidic automation and artificial intelligence (AI) has led to the development of advanced diagnostic platforms, positioning themselves as adaptable solutions to enable highly efficient and accessible laboratory medicine. In this review, we will provide a comprehensive review of microfluidic automation, focusing on the microstructure design and automation principles, along with its intended functionalities for diagnostic purposes. Subsequently, we exemplify the integration of AI with microfluidics and illustrating how their combination benefits for the applications and what the challenges are in this rapidly evolving field. Finally, the review offers a balanced perspective on the microfluidics and AI, discussing their promising role in advancing laboratory medicine.
Collapse
Affiliation(s)
- Pijiang Huang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Huaize Lan
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Binyao Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Yuhao Mo
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Zhuangqiang Gao
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| | - Haihang Ye
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China; Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Tingrui Pan
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026 PR China.
| |
Collapse
|
2
|
Yao C, Wang Q, Lu X, Chen X, Li Z. Hydrogel-Based Microdroplet Ensembles Encapsulating Multiplexed EXPAR Assays for Trichromic Digital Profiling of MicroRNAs and in-Depth Classification of Primary Urethral Cancers. NANO LETTERS 2024; 24:15861-15869. [PMID: 39585792 DOI: 10.1021/acs.nanolett.4c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The primary challenge in microarray-based biological analysis lies in achieving the sensitive and specific detection of single-molecule targets while ensuring high reproducibility. A user-friendly digital imaging platform has been developed for the encoded trichromic profiling of circulating microRNAs (miRNAs). This platform replaces the traditional exponential polymerase amplification reaction (EXPAR) conducted on the microliter scale with a system that confines the amplification process within thousands of femtoliter-sized microdroplet reactors, cross-linked from tetra-armed poly(ethylene glycol) acrylate (Tetra-PEGA) and poly(ethylene glycol) dithiol (HS-PEG-SH), thus offering significant advantages, including minimal sample input, enhanced reactivity, and simplified analytical procedures. The quantitative analysis relies on digital counting of fluorescently positive microdroplets, each containing an individual miRNA sequence. This approach significantly reduces nonspecific amplification and improves sensitivity by over 2 orders of magnitude. The system has shown great potential in differentiating between subtypes of primary urethral carcinoma, suggesting its practical application in routine cancer diagnostics through simple urinalysis.
Collapse
Affiliation(s)
- Chanyu Yao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qiang Wang
- Department of Radiology, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518000, People's Republic of China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaofeng Chen
- School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
3
|
Mao T, Nan L, Shum HC. Digital Quantification and Ultrasensitive Detection of Single Influenza Virus Using Microgel-in-Droplet Enzyme-Linked Immunosorbent Assay. Anal Chem 2024; 96:16134-16144. [PMID: 39360754 DOI: 10.1021/acs.analchem.4c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Detection and quantification of viral particles (VPs) facilitate both diagnostics of pathogenic viruses and quality control testing of virus-based products. However, existing technologies fail to afford concurrent ultrasensitive detection and large-scale absolute quantification of VPs. Here, we propose a digital Microgel-in-Droplet enzyme-linked immunosorbent assay (ELISA) system that enables the processing and monitoring of millions of ELISA reactions at the single-VP level by incorporating droplet microfluidics with sandwich ELISA. Upon validating the microfluidic workflow and optimizing ELISA parameters, we demonstrate ultrasensitive VP detection at a limit of detection of 56 PFU/test. Leveraging a fluorescence-based screening platform, we further realize high-throughput digital counting of VPs with a linear detection range of 500-64 000 PFU/test. The precision is comparable to that of the gold standard, the plaque assay, across a wide range of virus concentrations. We anticipate that our system will provide a novel paradigm for the absolute enumeration of various types of viral particles.
Collapse
Affiliation(s)
- Tianjiao Mao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lang Nan
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
4
|
Wang F, Hu Z, Zeng B, Xia C, Dong L, Wang H, Yang L, Wang Y. Submegahertz Nucleation of Plasmonic Vapor Microbubbles near a Solid Vertical Boundary. PHYSICAL REVIEW LETTERS 2024; 133:064001. [PMID: 39178449 DOI: 10.1103/physrevlett.133.064001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/27/2024] [Indexed: 08/25/2024]
Abstract
Laser triggered and photothermally induced vapor bubbles have emerged as promising approaches to facilitate optomechanical energy conversion for numerous applications in microfluidics and nanofluidics. Here, we report an observation of spontaneously triggered periodic nucleation of plasmonic vapor bubbles near a rigid sidewall with readily tuned nucleation frequency from 0.8 kHz to over 200 kHz. The detailed collapsing process of the vapor bubbles was experimentally and numerically investigated. We find that the lateral migration of residual bubbles toward the sidewall refreshes the laser spot area, terminates the subsequent steady bubble growth, and leads to the repeatable bubble nucleation. A mathematic model regarding the Kelvin impulses was derived. It shows that the competition between the rigid boundary induced Bjerknes force and laser irradiation caused thermal Marangoni force on collapsing bubbles governs the process. The model also leads to a criterion of γζ<0.34 for repeatable bubble nucleation, where γ is the normalized distance and ζ thermal Marangoni coefficient. This study demonstrates nucleation of violent vapor bubbles at extreme high frequencies, providing an approach to remotely realize strong localized flows in microfluidics and nanofluidics.
Collapse
Affiliation(s)
| | - Zhibin Hu
- Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China
| | | | | | - Lihua Dong
- Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China
| | | | | | | |
Collapse
|
5
|
Xie C, Zhang T, Qin Z. Plasmonic-Driven Regulation of Biomolecular Activity In Situ. Annu Rev Biomed Eng 2024; 26:475-501. [PMID: 38594921 DOI: 10.1146/annurev-bioeng-110222-105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Selective and remote manipulation of activity for biomolecules, including protein, DNA, and lipids, is crucial to elucidate their molecular function and to develop biomedical applications. While advances in tool development, such as optogenetics, have significantly impacted these directions, the requirement for genetic modification significantly limits their therapeutic applications. Plasmonic nanoparticle heating has brought new opportunities to the field, as hot nanoparticles are unique point heat sources at the nanoscale. In this review, we summarize fundamental engineering problems such as plasmonic heating and the resulting biomolecular responses. We highlight the biological responses and applications of manipulating biomolecules and provide perspectives for future directions in the field.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Tingting Zhang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Zhenpeng Qin
- Department of Biomedical Engineering, University of Texas at Southwestern Medical Center, Richardson, Texas, USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA;
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
6
|
Xie C, Wilson BA, Qin Z. Regulating nanoscale directional heat transfer with Janus nanoparticles. NANOSCALE ADVANCES 2024; 6:3082-3092. [PMID: 38868822 PMCID: PMC11166103 DOI: 10.1039/d3na00781b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Janus nanoparticles (JNPs) with heterogeneous compositions or interfacial properties can exhibit directional heating upon external excitation with optical or magnetic energy. This directional heating may be harnessed for new nanotechnology and biomedical applications. However, it remains unclear how the JNP properties (size, interface) and laser excitation method (pulsed vs. continuous) regulate the directional heating. Here, we developed a numerical framework to analyze the asymmetric thermal transport in JNP heating under photothermal stimulation. We found that JNP-induced temperature contrast, defined as the ratio of temperature increase on the opposite sides in the surrounding medium, is highest for smaller JNPs and when a low thermal resistance coating covers a minor fraction of JNP surface. Notably, we discovered up to 20-fold enhancement of the temperature contrast based on thermal confinement under pulsed heating compared with continuous heating. This work brings new insights to maximize the asymmetric thermal responses for JNP heating.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
| | - Blake A Wilson
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080 USA
- Department of Biomedical Engineering, University of Texas at Southwestern Medical Center 5323 Harry Hines Boulevard Dallas Texas 75390 USA
| |
Collapse
|
7
|
Huang Q, Qi J, Zhou L, Wang Y, Zhang WX, Hu J, Tai R, Wang S, Liu A, Zhang L. Hydrogen Nanobubbles Generated In Situ from Nanoscale Zerovalent Iron with Water to Further Enhance Selenite Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4357-4367. [PMID: 38326940 DOI: 10.1021/acs.est.3c09187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Gas nanobubbles used for water treatment and recovery give rise to great concern for their unique advantages of less byproducts, higher efficiency, and environmental friendliness. Nanoscale zerovalent iron (nZVI), which has also been widely explored in the field of environmental remediation, can generate gas hydrogen by direct reaction with water. Whether nanoscale hydrogen bubbles can be produced to enhance the pollution removal of the nZVI system is one significant concern involved. Herein, we report direct observations of in situ generation of hydrogen nanobubbles (HNBs) from nZVI in water. More importantly, the formed HNBs can enhance indeed the reduction of Se(IV) beyond the chemical reduction ascribed to Fe(0), especially in the anaerobic environment. The possible mechanism is that HNBs enhance the reducibility of the system and promote electron transport in the solution. This study demonstrates a unique function of HNBs combined with nZVI for the pollutant removal and a new approach for in situ HNB generation for potential applications in the fields of in situ remediation agriculture, biotechnology, medical treatment, health, etc.
Collapse
Affiliation(s)
- Qing Huang
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Juncheng Qi
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wang
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jun Hu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Airong Liu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
8
|
Wang Z, Feng N, Zhou Y, Cheng X, Zhou C, Ma A, Wang Q, Li Y, Chen Y. Mesophilic Argonaute-Mediated Polydisperse Droplet Biosensor for Amplification-Free, One-Pot, and Multiplexed Nucleic Acid Detection Using Deep Learning. Anal Chem 2024; 96:2068-2077. [PMID: 38259216 DOI: 10.1021/acs.analchem.3c04426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Detection of nucleic acids from a single multiplexed and amplification-free test is critical for ensuring food safety, clinical diagnostics, and environmental monitoring. In this study, we introduced a mesophilic Argonaute protein from Clostridium butyricum (CbAgo), which exhibits nucleic acid endonuclease activity, to achieve a programmable, amplification-free system (PASS) for rapid nucleic acid quantification at ambient temperatures in one pot. By using CbAgo-mediated binding with specific guide DNA (gDNA) and subsequent targeted cleavage of wild-type target DNAs complementary to gDNA, PASS can detect multiple foodborne pathogen DNA (<102 CFU/mL) simultaneously. The fluorescence signals were then transferred to polydisperse emulsions and analyzed by using deep learning. This simplifies the process and increases the suitability of polydisperse emulsions compared to traditional digital PCR, which requires homogeneous droplets for accurate detection. We believe that PASS has the potential to become a next-generation point-of-care digital nucleic acid detection method.
Collapse
Affiliation(s)
- Zhipan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanan Zhou
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xinrui Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Cuiyun Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qinyu Wang
- Department of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430000, Hubei China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
9
|
Mokudai T, Kawada M, Tadaki D, Hirano-Iwata A, Kanetaka H, Fujimori H, Takemoto E, Niwano M. Radical generation and bactericidal activity of nanobubbles produced by ultrasonic irradiation of carbonated water. ULTRASONICS SONOCHEMISTRY 2024; 103:106809. [PMID: 38364483 PMCID: PMC10879770 DOI: 10.1016/j.ultsonch.2024.106809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Our previous study showed that nanobubbles (NBs) encapsulating CO2 gas have bactericidal activity due to reactive oxygen species (ROS) (Yamaguchi et al., 2020). Here, we report that bulk NBs encapsulating CO2 can be efficiently generated by ultrasonically irradiating carbonated water using a piezoelectric transducer with a frequency of 1.7 MHz. The generated NBs were less than 100 nm in size and had a lifetime of 500 h. Furthermore, generation of ROS in the NB suspension was investigated using electron spin resonance spectroscopy and fluorescence spectrometry. The main ROS was found to be the hydroxyl radical, which is consistent with our previous observations. The bactericidal activity lasted for at least one week. Furthermore, a mist generated by atomizing the NB suspension with ultrasonic waves was confirmed to have the same bactericidal activity as the suspension itself. We believe that the strong, persistent bactericidal activity and radical generation phenomenon are unique to NBs produced by ultrasonic irradiation of carbonated water. We propose that entrapped CO2 molecules strongly interact with water at the NB interface to weaken the interface, and high-pressure CO2 gas erupts from this weakened interface to generate ROS with bactericidal activity.
Collapse
Affiliation(s)
- Takayuki Mokudai
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan; Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan
| | - Michi Kawada
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Daisuke Tadaki
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Hiroyasu Kanetaka
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Hiroshi Fujimori
- Planning & Development Department, Takemoto Yohki Co., Ltd., Tokyo 111-0036, Japan
| | - Emiko Takemoto
- Planning & Development Department, Takemoto Yohki Co., Ltd., Tokyo 111-0036, Japan
| | - Michio Niwano
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
10
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
11
|
Niwano M, Ma T, Iwata K, Tadaki D, Yamamoto H, Kimura Y, Hirano-Iwata A. Two-dimensional water-molecule-cluster layers at nanobubble interfaces. J Colloid Interface Sci 2023; 652:1775-1783. [PMID: 37678082 DOI: 10.1016/j.jcis.2023.08.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
HYPOTHESIS Bulk nanobubbles (NBs) have high surface charge densities and long lifetimes. Despite several attempts to understand the lifetime of NBs, their interfacial layer structure remains unknown. It is hypothesized that a specific interfacial layer exists with a hydrogen bond network that stabilizes NBs. EXPERIMENTS In situ infrared reflectance-absorption spectroscopy and density functional theory were used to determine the interfacial layer structure of NBs. Furthermore, nuclear magnetic resonance spectroscopy was used to examine the interfacial layer hardness of bubbles filled with N2, O2, and CO2, which was expected to depend on the encapsulated gas species. FINDINGS The interfacial layer was composed of three-, four-, and five-membered ring clusters of water molecules. An interface model was proposed in which a two-dimensional layer of clusters with large electric dipole moments is oriented toward the endohedral gas, and the hydrophobic surface is adjacent to the free water. The interfacial layer hardness was dependent on the interaction with the gas (N2 > O2 > CO2), which supports the proposed interface model. These findings can be generalized to the structure of water at gas-water interfaces.
Collapse
Affiliation(s)
- Michio Niwano
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan.
| | - Teng Ma
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kazuki Iwata
- Faculty of Comprehensive Management, Tohoku Fukushi University, Sendai, Miyagi 989-3201, Japan
| | - Daisuke Tadaki
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hideaki Yamamoto
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasuo Kimura
- Department of Electric and Electronic Engineering, Tokyo University of Technology, Hachioji, Tokyo 192-0983, Japan
| | - Ayumi Hirano-Iwata
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan; Faculty of Comprehensive Management, Tohoku Fukushi University, Sendai, Miyagi 989-3201, Japan
| |
Collapse
|
12
|
Bao M, Waitkus J, Liu L, Chang Y, Xu Z, Qin P, Chen J, Du K. Micro- and nanosystems for the detection of hemorrhagic fever viruses. LAB ON A CHIP 2023; 23:4173-4200. [PMID: 37675935 DOI: 10.1039/d3lc00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Jacob Waitkus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Yu Chang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Zhiheng Xu
- Department of Industrial Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
13
|
AbdElFatah T, Jalali M, Yedire SG, I Hosseini I, Del Real Mata C, Khan H, Hamidi SV, Jeanne O, Siavash Moakhar R, McLean M, Patel D, Wang Z, McKay G, Yousefi M, Nguyen D, Vidal SM, Liang C, Mahshid S. Nanoplasmonic amplification in microfluidics enables accelerated colorimetric quantification of nucleic acid biomarkers from pathogens. NATURE NANOTECHNOLOGY 2023; 18:922-932. [PMID: 37264088 DOI: 10.1038/s41565-023-01384-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/22/2023] [Indexed: 06/03/2023]
Abstract
Deployment of nucleic acid amplification assays for diagnosing pathogens in point-of-care settings is a challenge due to lengthy preparatory steps. We present a molecular diagnostic platform that integrates a fabless plasmonic nano-surface into an autonomous microfluidic cartridge. The plasmonic 'hot' electron injection in confined space yields a ninefold kinetic acceleration of RNA/DNA amplification at single nucleotide resolution by one-step isothermal loop-mediated and rolling circle amplification reactions. Sequential flow actuation with nanoplasmonic accelerated microfluidic colorimetry and in conjugation with machine learning-assisted analysis (using our 'QolorEX' device) offers an automated diagnostic platform for multiplexed amplification. The versatility of QolorEX is demonstrated by detecting respiratory viruses: SARS-CoV-2 and its variants at the single nucleotide polymorphism level, H1N1 influenza A, and bacteria. For COVID-19 saliva samples, with an accuracy of 95% on par with quantitative polymerase chain reaction and a sample-to-answer time of 13 minutes, QolorEX is expected to advance the monitoring and rapid diagnosis of pathogens.
Collapse
Affiliation(s)
- Tamer AbdElFatah
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | | | - Imman I Hosseini
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | | | - Haleema Khan
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Seyed Vahid Hamidi
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Olivia Jeanne
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | | | - Myles McLean
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, Canada
| | - Dhanesh Patel
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Zhen Wang
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, Canada
| | - Geoffrey McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Mitra Yousefi
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Chen Liang
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Chen H, Zhou S, Chen W, Zhu M, Yu H, Zheng L, Wang B, Wang M, Feng W. PEG-GNPs aggravate MCD-induced steatohepatitic injury and liver fibrosis in mice through excessive lipid accumulation-mediated hepatic inflammatory damage. NANOIMPACT 2023; 31:100469. [PMID: 37270064 DOI: 10.1016/j.impact.2023.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Rapid development of gold nanoparticles (GNPs) in delivering pharmaceutics and therapeutics approaches still linger the concerns of their toxic effects. Nonalcoholic steatohepatitis (NASH) is characterized by excessive lipid accumulation and overt hepatic inflammatory damage, and is the leading cause of chronic liver disease worldwide. This study aimed to assess the potential hepatic effects of GNPs on NASH phenotype and progression in mice. Mice were fed a MCD diet for 8 weeks to elicit NASH and then intravenously injected with PEG-GNPs at a single dose of 1, 5, and 25 mg/kg-bw. After 24 h and 1 week of administration, the levels of plasma ALT and AST, and the number of lipid droplets, the degree of lobular inflammation and the contents of triglycerides and cholesterols in the livers of the NASH mice significantly increased compared with the untreated NASH mice, indicating that the severity of MCD diet-induced NASH-like symptoms in mice increased after PEG-GNP administration. Moreover, the aggravated hepatic steatosis in a manner involving altered expression of the genes related to hepatic de novo lipogenesis, lipolysis, and fatty acid oxidation was observed after PEG-GNP administration. Additionally, the RNA levels of biomarkers of hepatic pro-inflammatory responses, endoplasmic reticulum stress, apoptosis, and autophagy in MCD-fed mice increased compared with the untreated NASH group. Moreover, PEG-GNP-treated NASH mice displayed an increase in MCD diet-induced hepatic fibrosis, revealed by massive deposition of collagen fiber in the liver and increased expression of fibrogenic genes. Collectively, these results suggest that hepatic GNP deposition after PEG-GNP administration increase the severity of MCD-induced NASH phenotype in mice, which is attributable to, in large part, increased steatohepatitic injury and liver fibrosis in mice.
Collapse
Affiliation(s)
- Hanqing Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Shuang Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; Beijing Institute of Medical Device Testing, Beijing 101111, China
| | - Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Meilin Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Hongyang Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
15
|
Accelerated germination of aged recalcitrant seeds by K +-rich bulk oxygen nanobubbles. Sci Rep 2023; 13:3301. [PMID: 36849737 PMCID: PMC9971192 DOI: 10.1038/s41598-023-30343-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Bulk nanobubbles, measuring less than 200 nm in water, have shown their salient properties in promoting growth in various species of plants and orthodox seeds, and as potential drug-delivery carriers in medicine. Studies of recalcitrant seeds have reported markedly increased germination rates with gibberellin treatment; however, neither the mechanism promoting germination nor the implication for food safety is well elucidated. In our study, recalcitrant wasabi (Eutrema japonicum) seeds treated with bulk oxygen nanobubbles (BONB) containing K+, Na+, and Cl- (BONB-KNaCl) showed significantly accelerated germination. As germination progressed, 99% of K+ ions in the BONB-KNaCl medium were absorbed by the seeds, whereas Ca2+ ions were released. These results suggest that the germination mechanism involves the action of K+ channels for migration of K+ ions down their concentration gradient and Ca2+ pumps for the movement of Ca2+ ions, the first potential discovery in germination promotion in recalcitrant seeds using nutrient solutions with BONB-KNaCl.
Collapse
|
16
|
An T, Wen J, Dong Z, Zhang Y, Zhang J, Qin F, Wang Y, Zhao X. Plasmonic Biosensors with Nanostructure for Healthcare Monitoring and Diseases Diagnosis. SENSORS (BASEL, SWITZERLAND) 2022; 23:445. [PMID: 36617043 PMCID: PMC9824517 DOI: 10.3390/s23010445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Nanophotonics has been widely utilized in enhanced molecularspectroscopy or mediated chemical reaction, which has major applications in the field of enhancing sensing and enables opportunities in developing healthcare monitoring. This review presents an updated overview of the recent exciting advances of plasmonic biosensors in the healthcare area. Manufacturing, enhancements and applications of plasmonic biosensors are discussed, with particular focus on nanolisted main preparation methods of various nanostructures, such as chemical synthesis, lithography, nanosphere lithography, nanoimprint lithography, etc., and describing their respective advances and challenges from practical applications of plasmon biosensors. Based on these sensing structures, different types of plasmonic biosensors are summarized regarding detecting cancer biomarkers, body fluid, temperature, gas and COVID-19. Last, the existing challenges and prospects of plasmonic biosensors combined with machine learning, mega data analysis and prediction are surveyed.
Collapse
Affiliation(s)
- Tongge An
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiahong Wen
- The College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Shangyu Institute of Science and Engineering, Hangzhou Dianzi University, Shaoxing 312000, China
| | - Zhichao Dong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yongjun Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jian Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Faxiang Qin
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yaxin Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaoyu Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
17
|
Yuan H, Chen P, Wan C, Li Y, Liu BF. Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. Trends Analyt Chem 2022; 157:116814. [PMID: 36373139 PMCID: PMC9637550 DOI: 10.1016/j.trac.2022.116814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) outbreak has urged the establishment of a global-wide rapid diagnostic system. Current widely-used tests for COVID-19 include nucleic acid assays, immunoassays, and radiological imaging. Immunoassays play an irreplaceable role in rapidly diagnosing COVID-19 and monitoring the patients for the assessment of their severity, risks of the immune storm, and prediction of treatment outcomes. Despite of the enormous needs for immunoassays, the widespread use of traditional immunoassay platforms is still limited by high cost and low automation, which are currently not suitable for point-of-care tests (POCTs). Microfluidic chips with the features of low consumption, high throughput, and integration, provide the potential to enable immunoassays for POCTs, especially in remote areas. Meanwhile, luminescence detection can be merged with immunoassays on microfluidic platforms for their good performance in quantification, sensitivity, and specificity. This review introduces both homogenous and heterogenous luminescence immunoassays with various microfluidic platforms. We also summarize the strengths and weaknesses of the categorized methods, highlighting their recent typical progress. Additionally, different microfluidic platforms are described for comparison. The latest advances in combining luminescence immunoassays with microfluidic platforms for POCTs of COVID-19 are further explained with antigens, antibodies, and related cytokines. Finally, challenges and future perspectives were discussed.
Collapse
Affiliation(s)
- Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
18
|
Luciano K, Wang X, Liu Y, Eyler G, Qin Z, Xia X. Noble Metal Nanoparticles for Point-of-Care Testing: Recent Advancements and Social Impacts. Bioengineering (Basel) 2022; 9:666. [PMID: 36354576 PMCID: PMC9687823 DOI: 10.3390/bioengineering9110666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 09/01/2023] Open
Abstract
Point-of-care (POC) tests for the diagnosis of diseases are critical to the improvement of the standard of living, especially for resource-limited areas or countries. In recent years, nanobiosensors based on noble metal nanoparticles (NM NPs) have emerged as a class of effective and versatile POC testing technology. The unique features of NM NPs ensure great performance of associated POC nanobiosensors. In particular, NM NPs offer various signal transduction principles, such as plasmonics, catalysis, photothermal effect, and so on. Significantly, the detectable signal from NM NPs can be tuned and optimized by controlling the physicochemical parameters (e.g., size, shape, and elemental composition) of NPs. In this article, we introduce the inherent merits of NM NPs that make them attractive for POC testing, discuss recent advancement of NM NPs-based POC tests, highlight their social impacts, and provide perspectives on challenges and opportunities in the field. We hope the review and insights provided in this article can inspire new fundamental and applied research in this emerging field.
Collapse
Affiliation(s)
- Keven Luciano
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaochuan Wang
- School of Social Work, College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Yaning Liu
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gabriella Eyler
- School of Social Work, College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaohu Xia
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
19
|
Kang P, Wang Y, Wilson BA, Liu Y, Dawkrajai N, Randrianalisoa J, Qin Z. Nanoparticle Fragmentation Below the Melting Point Under Single Picosecond Laser Pulse Stimulation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:26718-26730. [PMID: 35872880 PMCID: PMC9302544 DOI: 10.1021/acs.jpcc.1c06684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Understanding the laser-nanomaterials interaction including nanomaterial fragmentation has important implications in nanoparticle manufacturing, energy, and biomedical sciences. So far, three mechanisms of laser-induced fragmentation have been recognized including non-thermal processes and thermomechanical force under femtosecond pulses, and the phase transitions under nanosecond pulses. Here we show that single picosecond (ps) laser pulse stimulation leads to anomalous fragmentation of gold nanoparticles that deviates from these three mechanisms. The ps laser fragmentation was weakly dependent on particle size, and it resulted in a bimodal size distribution. Importantly, ps laser stimulation fragmented particles below the whole particle melting point and below the threshold for non-thermal mechanism. We propose a framework based on near-field enhancement and nanoparticle surface melting to account for the ps laser-induced fragmentation observed here. This study reveals a new form of surface ablation that occurs under picosecond laser stimulation at low fluence.
Collapse
Affiliation(s)
- Peiyuan Kang
- Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Yang Wang
- Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Blake A. Wilson
- Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Yaning Liu
- Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Napat Dawkrajai
- Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jaona Randrianalisoa
- Institut de Thermique, Mécanique, Matériaux (ITheMM EA 7548), University of Reims Champagne–Ardenne, Reims, Cedex 2 51687, France
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Center for Advanced Pain Studies, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Surgery, University of Texas at Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
- Corresponding Author.
| |
Collapse
|