1
|
Gao Q, Li J, Zhang W, Zhang Z, Huang R, Zang P, Li S, Li C, Yao J, Li C, Guo Z, Zhou L. a-SiC heteromorphic immersion nanocavities enabling wide-field real-time single-molecule detection. Biosens Bioelectron 2025; 270:116962. [PMID: 39579680 DOI: 10.1016/j.bios.2024.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Real-time single-molecule detection via fluorescence exhibits advantages of non-contact and specificity, especially in illustrating the dynamic heterogeneity of living substances. However, wide-field view and signal-to-noise ratio (SNR) are always contradictory in real-time single-molecule detection with fluorescence labels, owing to the limitation of the omnidirectional radiation characteristics of fluorophores. Herein, we propose a nano optical sensing device based on a-SiC heteromorphic immersion nanocavities (aHINCs), enabling wide-field real-time single-molecule imaging without sacrificing SNR. The characteristics of architectural aHINCs for far-field imaging are investigated, and the designed sensing device help adjust the emission direction of fluorescence in gold hot spots of nanocavities, allowing the fluorescence divergence angle to be adjusted to ±10°. The experimental results show the SNR reached 22, markedly strengthening the fluorescence collection efficiency. The simultaneous observation of nanocavity sites, within the same field of view of the chip, is 488 times the number of sites observed with classic detection method. Furthermore, the wide-field real-time detection of the single molecule-specific binding process of the oligo DNA complementary chain is successfully realized. The nano optical sensing device based on the aHINC shows potential for parallel real-time single-molecule detection applications.
Collapse
Affiliation(s)
- Qingxue Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Jinze Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China; Suzhou CASENS Co., Ltd, 215163, Suzhou, China
| | - Zhiqi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China; Suzhou CASENS Co., Ltd, 215163, Suzhou, China
| | - Runhu Huang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Peilin Zang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Shuli Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Chao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Jia Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Chuanyu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China.
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China.
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China.
| |
Collapse
|
2
|
Saavedra Salazar CA, Sole-Barber D, Wan S, Rasch JK, Reitz M, Cullinane B, Asgari N, Needham LM, Yuen-Zhou J, Goldsmith RH. The Origin of Single-Molecule Sensitivity in Label-Free Solution-Phase Optical Microcavity Detection. ACS NANO 2025. [PMID: 39919202 DOI: 10.1021/acsnano.4c16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Fiber Fabry-Perot microcavities (FFPCs) enhance light-matter interactions by localizing light in time and space. Such FFPCs are at the heart of this powerful detection scheme exploiting photothermal nonlinearities and Pound-Drever-Hall frequency locking that enabled label-free profiling of single solution-phase biomolecules with unprecedented sensitivity. Here, we deploy a combination of experiment and simulation to provide a quantitative mechanism for the observed single-molecule sensitivity and achieve quantitative agreement with experiment. A key element of the mechanism is maintaining the FFPC in an unstable regime and allowing it to rapidly shift between hot and cold photothermal equilibria upon perturbation. We show how Brownian molecular trajectories, introducing resonance fluctuations less than 1000th of the already narrow microcavity line width, can produce selective and highly amplified responses. Such perturbations are found to exist in a specific and tunable frequency window termed the molecular velocity filter window. The model's predictive capacity suggests it will be an important tool to identify additional modes of sensitivity to single-molecule hydrodynamic behavior.
Collapse
Affiliation(s)
| | - Daniel Sole-Barber
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sushu Wan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Julia K Rasch
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael Reitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Brendan Cullinane
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nasrin Asgari
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lisa-Maria Needham
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Xiao F, Zhang X, Wang Y, Xu X, Zhang T, Hu M. Angle-controlled strong and weak coupling in photon molecules. Sci Rep 2025; 15:1794. [PMID: 39805965 PMCID: PMC11730287 DOI: 10.1038/s41598-024-85088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Strong light-matter coupling occurs when the rate of energy exchange between the electromagnetic mode and the molecular ensemble exceeds the competitive dissipation process. Coupled photon molecules with near-field light-matter interactions may produce new hybridized states when they reach the strong coupling region. Tunable Terahertz (THz) meta materials can be used to design sensors, optical modulators, etc., to improve imaging sensitivity and resolution. In this work, we use the scattering-type scanning near-field microscopy (s-SNOM) to demonstrate an angle-controlled coupling strength in a tunable photon molecules system. The system consists of a base waveguide layer and a single ribbon structure. By changing the in-plane angle between ribbon and incidence, the coupling strength between ribbon resonance and waveguide mode ranges from 0.03 to 0.08 THz, leading to the system's transformation from weak to strong coupling. This work offers a new platform for actively controlling strong light-matter interaction and further applications in strong coupling.
Collapse
Affiliation(s)
- Feng Xiao
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Xiaoqiuyan Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China.
- Tian Fu, Jiang Xi Laboratory, 641419, Chengdu, China.
| | - Yueying Wang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Xingxing Xu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Tianyu Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
- Tian Fu, Jiang Xi Laboratory, 641419, Chengdu, China
| | - Min Hu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China.
- Tian Fu, Jiang Xi Laboratory, 641419, Chengdu, China.
| |
Collapse
|
4
|
Barulin A, Kim Y, Oh DK, Jang J, Park H, Rho J, Kim I. Dual-wavelength metalens enables Epi-fluorescence detection from single molecules. Nat Commun 2024; 15:26. [PMID: 38167868 PMCID: PMC10761847 DOI: 10.1038/s41467-023-44407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Single molecule fluorescence spectroscopy is at the heart of molecular biophysics research and the most sensitive biosensing assays. The growing demand for precision medicine and environmental monitoring requires the creation of miniaturized and portable sensing platforms. However, the need for highly sophisticated objective lenses has precluded the development of single molecule detection systems for truly portable devices. Here, we propose a dielectric metalens device of submicrometer thickness to excite and collect light from fluorescent molecules instead of an objective lens. The high numerical aperture, high focusing efficiency, and dual-wavelength operation of the metalens enable the implementation of fluorescence correlation spectroscopy with a single Alexa 647 molecule in the focal volume. Moreover, the metalens enables real-time monitoring of individual fluorescent nanoparticle transitions and identification of hydrodynamic diameters ranging from a few to hundreds of nanometers. This advancement in sensitivity extends the application of the metalens technology to ultracompact single-molecule sensors.
Collapse
Affiliation(s)
- Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| | - Hyemi Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea.
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Roy P, Zhu S, Claude JB, Liu J, Wenger J. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence. ACS NANO 2023; 17:22418-22429. [PMID: 37931219 PMCID: PMC10690780 DOI: 10.1021/acsnano.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 11/08/2023]
Abstract
Plasmonic optical nanoantennas offer compelling solutions for enhancing light-matter interactions at the nanoscale. However, until now, their focus has been mainly limited to the visible and near-infrared regions, overlooking the immense potential of the ultraviolet (UV) range, where molecules exhibit their strongest absorption. Here, we present the realization of UV resonant nanogap antennas constructed from paired rhodium nanocubes. Rhodium emerges as a robust alternative to aluminum, offering enhanced stability in wet environments and ensuring reliable performance in the UV range. Our results showcase the nanoantenna's ability to enhance the UV autofluorescence of label-free streptavidin and hemoglobin proteins. We achieve significant enhancements of the autofluorescence brightness per protein by up to 120-fold and reach zeptoliter detection volumes, enabling UV autofluorescence correlation spectroscopy (UV-FCS) at high concentrations of several tens of micromolar. We investigate the modulation of fluorescence photokinetic rates and report excellent agreement between the experimental results and numerical simulations. This work expands the applicability of plasmonic nanoantennas to the deep UV range, unlocking the investigation of label-free proteins at physiological concentrations.
Collapse
Affiliation(s)
- Prithu Roy
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Siyuan Zhu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jean-Benoît Claude
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jie Liu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jérôme Wenger
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
6
|
Gao Q, Zang P, Li J, Zhang W, Zhang Z, Li C, Yao J, Li C, Yang Q, Li S, Guo Z, Zhou L. Revealing the Binding Events of Single Proteins on Exosomes Using Nanocavity Antennas beyond Zero-Mode Waveguides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49511-49526. [PMID: 37812455 DOI: 10.1021/acsami.3c11077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Exosomes (EXOs) play a crucial role in biological action mechanisms. Understanding the biological process of single-molecule interactions on the surface of the EXO membrane is essential for elucidating the precise function of the EXO receptor. However, due to dimensional incompatibility, monitoring the binding events between EXOs of tens to hundreds of nanometers and biomolecules of nanometers using existing nanostructure antennas is difficult. Unlike the typical zero-mode waveguides (ZMWs), this work presents a nanocavity antenna (λvNAs) formed by nanocavities with diameters close to the visible light wavelength dimensions. Effective excitation volumes suitable for observing single-molecule fluorescence were generated in nanocavities of larger diameters than typical ZMWs; the optimal signal-to-noise ratio obtained was 19.5 when the diameter was 300 nm and the incident angle was ∼50°. EXOs with a size of 50-150 nm were loaded into λvNAs with an optimized diameter of 300-500 nm, resulting in appreciable occupancy rates that overcame the nanocavity size limitation for large-volume biomaterial loading. Additionally, this method identified the binding events between the single transmembrane CD9 proteins on the EXO surface and their monoclonal antibody anti-CD9, demonstrating that λvNAs expanded the application range beyond subwavelength ZMWs. Furthermore, the λvNAs provide a platform for obtaining in-depth knowledge of the interactions of single molecules with biomaterials ranging in size from tens to hundreds of nanometers.
Collapse
Affiliation(s)
- Qingxue Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Peilin Zang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jinze Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| | - Zhiqi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| | - Chao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jia Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Chuanyu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Qi Yang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Shuli Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| |
Collapse
|
7
|
Barulin A, Park H, Park B, Kim I. Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: A simulation study. PHOTOACOUSTICS 2023; 32:100545. [PMID: 37645253 PMCID: PMC10461252 DOI: 10.1016/j.pacs.2023.100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Photoacoustic microscopy is advancing with research on utilizing ultraviolet and visible light. Dual-wavelength approaches are sought for observing DNA/RNA- and vascular-related disorders. However, the availability of high numerical aperture lenses covering both ultraviolet and visible wavelengths is severely limited due to challenges such as chromatic aberration in the optics. Herein, we present a groundbreaking proposal as a pioneering simulation study for incorporating multilayer metalenses into ultraviolet-visible photoacoustic microscopy. The proposed metalens has a thickness of 1.4 µm and high numerical aperture of 0.8. By arranging cylindrical hafnium oxide nanopillars, we design an achromatic transmissive lens for 266 and 532 nm wavelengths. The metalens achieves a diffraction-limited focal spot, surpassing commercially available objective lenses. Through three-dimensional photoacoustic simulation, we demonstrate high-resolution imaging with superior endogenous contrast of targets with ultraviolet and visible optical absorption bands. This metalens will open new possibilities for downsized multispectral photoacoustic microscopy in clinical and preclinical applications.
Collapse
Affiliation(s)
- Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemi Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Barulin A, Kim I. Hyperlens for capturing sub-diffraction nanoscale single molecule dynamics. OPTICS EXPRESS 2023; 31:12162-12174. [PMID: 37157381 DOI: 10.1364/oe.486702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hyperlenses offer an appealing opportunity to unlock bioimaging beyond the diffraction limit with conventional optics. Mapping hidden nanoscale spatiotemporal heterogeneities of lipid interactions in live cell membrane structures has been accessible only using optical super-resolution techniques. Here, we employ a spherical gold/silicon multilayered hyperlens that enables sub-diffraction fluorescence correlation spectroscopy at 635 nm excitation wavelength. The proposed hyperlens enables nanoscale focusing of a Gaussian diffraction-limited beam below 40 nm. Despite the pronounced propagation losses, we quantify energy localization in the hyperlens inner surface to determine fluorescence correlation spectroscopy (FCS) feasibility depending on hyperlens resolution and sub-diffraction field of view. We simulate the diffusion FCS correlation function and demonstrate the reduction of diffusion time of fluorescent molecules up to nearly 2 orders of magnitude as compared to free space excitation. We show that the hyperlens can effectively distinguish nanoscale transient trapping sites in simulated 2D lipid diffusion in cell membranes. Altogether, versatile and fabricable hyperlens platforms display pertinent applicability for the enhanced spatiotemporal resolution to reveal nanoscale biological dynamics of single molecules.
Collapse
|
9
|
Kim Y, Barulin A, Kim S, Lee LP, Kim I. Recent advances in quantum nanophotonics: plexcitonic and vibro-polaritonic strong coupling and its biomedical and chemical applications. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:413-439. [PMID: 39635391 PMCID: PMC11501129 DOI: 10.1515/nanoph-2022-0542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 12/07/2024]
Abstract
The fundamental understanding of molecular quantum electrodynamics via the strong light-matter interactions between a nanophotonic cavity and quantum emitters opens various applications in quantum biology, biophysics, and chemistry. However, considerable obstacles to obtaining a clear understanding of coupling mechanisms via reliable experimental quantifications remain to be resolved before this field can truly blossom toward practical applications in quantitative life science and photochemistry. Here, we provide recent advancements of state-of-the-art demonstrations in plexcitonic and vibro-polaritonic strong couplings and their applications. We highlight recent studies on various strong coupling systems for altering chemical reaction landscapes. Then, we discuss reports dedicated to the utilization of strong coupling methods for biomolecular sensing, protein functioning studies, and the generation of hybrid light-matter states inside living cells. The strong coupling regime provides a tool for investigating and altering coherent quantum processes in natural biological processes. We also provide an overview of new findings and future avenues of quantum biology and biochemistry.
Collapse
Affiliation(s)
- Yangkyu Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- and Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Sangwon Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA94720, USA
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- and Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
10
|
Roy P, Claude JB, Tiwari S, Barulin A, Wenger J. Ultraviolet Nanophotonics Enables Autofluorescence Correlation Spectroscopy on Label-Free Proteins with a Single Tryptophan. NANO LETTERS 2023; 23:497-504. [PMID: 36603115 DOI: 10.1021/acs.nanolett.2c03797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using the ultraviolet autofluorescence of tryptophan amino acids offers fascinating perspectives to study single proteins without the drawbacks of fluorescence labeling. However, the low autofluorescence signals have so far limited the UV detection to large proteins containing several tens of tryptophan residues. This limit is not compatible with the vast majority of proteins which contain only a few tryptophans. Here we push the sensitivity of label-free ultraviolet fluorescence correlation spectroscopy (UV-FCS) down to the single tryptophan level. Our results show how the combination of nanophotonic plasmonic antennas, antioxidants, and background reduction techniques can improve the signal-to-background ratio by over an order of magnitude and enable UV-FCS on thermonuclease proteins with a single tryptophan residue. This sensitivity breakthrough unlocks the applicability of UV-FCS technique to a broad library of label-free proteins.
Collapse
Affiliation(s)
- Prithu Roy
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Sunny Tiwari
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Aleksandr Barulin
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
11
|
Xia P, Zhou H, Sun H, Sun Q, Griffiths R. Research on a Fiber Optic Oxygen Sensor Based on All-Phase Fast Fourier Transform (apFFT) Phase Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:6753. [PMID: 36146102 PMCID: PMC9506041 DOI: 10.3390/s22186753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Fiber optic oxygen sensors based on fluorescence quenching play an important role in oxygen sensors. They have several advantages over other methods of oxygen sensing-they do not consume oxygen, have a short response time and are of high sensitivity. They are often used in special environments, such as hazardous environments and in vivo. In this paper, a new fiber optic oxygen sensor is introduced, which uses the all-phase fast Fourier transform (apFFT) algorithm, instead of the previous lock-in amplifier, for the phase detection of excitation light and fluorescence. The excitation and fluorescence frequency was 4 KHz, which was conducted between the oxygen-sensitive membrane and the photoelectric conversion module by the optical fiber and specially-designed optical path. The phase difference of the corresponding oxygen concentration was obtained by processing the corresponding electric signals of the excitation light and the fluorescence. At 0%, 5%, 15%, 21% and 50% oxygen concentrations, the experimental results showed that the apFFT had good linearity, precision and resolution-0.999°, 0.05° and 0.0001°, respectively-and the fiber optic oxygen sensor with apFFT had high stability. When the oxygen concentrations were 0%, 5%, 15%, 21% and 50%, the detection errors of the fiber optic oxygen sensor were 0.0447%, 0.1271%, 0.3801%, 1.3426% and 12.6316%, respectively. Therefore, the sensor that we designed has greater accuracy when measuring low oxygen concentrations, compared with high oxygen concentrations.
Collapse
Affiliation(s)
- Pengkai Xia
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Haiyang Zhou
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Haozhe Sun
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Qingfeng Sun
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Rupert Griffiths
- City and Urban Research Lab, LICA, Lancaster University, Lancaster LA1 4YW, UK
| |
Collapse
|