1
|
Chen X, Feng S, Yan J, Zou Y, Wang L, Qiao J, Liu Y. In 2O 3/Bi 2O 3 interface induces ultra-stable carbon dioxide electroreduction on heterogeneous InBiO x catalyst. J Colloid Interface Sci 2025; 678:757-766. [PMID: 39217691 DOI: 10.1016/j.jcis.2024.08.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical reduction of CO2 (ERCO2) has emerged as one of the most promising methods for achieving both renewable energy storage and CO2 recovery. However, achieving both high selectivity and stability of catalysts remains a significant challenge. To address this challenge, this study investigated the selective synthesis of formate via ERCO2 at the interface of In2O3 and Bi2O3 in the InBiO6 composite material. Moreover, InBiO6 was synthesized using indium-based metal-organic frameworks as precursor, which underwent continuous processing through ion exchange and thermal reduction. The results revealed that the formate Faradaic efficiency (FEformate) of InBiO6 reached nearly 100 % at -0.86 V vs. reversible hydrogen electrode (RHE) and remained above 90 % after continuous 317-h electrolysis, which exceeded those of previously reported indium-based catalysts. Additionally, the InBiO6 composite material exhibited an FEformate exceeding 80 % across a wide potential range of 500 mV from -0.76 to -1.26 V vs. RHE. Density-functional theory analysis confirmed that the heterogeneous interface of InBiO6 played a role in achieving optimal free energies for *OCHO on its surface. Furthermore, the addition of Bi to the InBiO6 matrix facilitated electron transfer and altered the electronic structure of In2O3, thereby enhancing the adsorption, decomposition, and formate production of *OCHO.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China
| | - Shuoshuo Feng
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China
| | - Jiaying Yan
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China
| | - Yanhong Zou
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China
| | - Linlin Wang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuyu Liu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China.
| |
Collapse
|
2
|
Wei Y, Wang X, Mao J, Song Y, Zhu H, Liu X, Luo C, Li S, Chen A, Li G, Dong X, Wei W, Chen W. Chlorine-Doped SnO 2 Nanoflowers on Nickel Hollow Fiber for Enhanced CO 2 Electroreduction at Ampere-Level Current Densities. Angew Chem Int Ed Engl 2025:e202423370. [PMID: 39761024 DOI: 10.1002/anie.202423370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/07/2025]
Abstract
Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers. This electrode demonstrates exceptional electrocatalytic performance for converting CO2 to formate, achieving a remarkable formate selectivity of 99 % and a CO2 single-pass conversion rate of 93 % at 2 A cm-2. Furthermore, it exhibits excellent stability, maintaining a formate selectivity of above 94 % for 520 h at a current density of 3 A cm-2. Experimental results combined with theoretical calculations confirm that the enhanced mass transfer facilitated by the hollow fiber penetration effect, coupled with the well-retained Sn4+ species and Sn-Cl bonds, synergistically elevates the activity of CO2 conversion. The incorporation of chlorine into SnO2 enhances electron transport and CO2 adsorption, substantially lowering the reaction energy barrier for the crucial intermediate *OCHO formation, and boosting the formate production.
Collapse
Affiliation(s)
- Yiheng Wei
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaotong Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianing Mao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Yanfang Song
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huanyi Zhu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaohu Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201203, P. R. China
| | - Cheng Luo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shoujie Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aohui Chen
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guihua Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Dong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201203, P. R. China
| | - Wei Chen
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Peramaiah K, Yi M, Dutta I, Chatterjee S, Zhang H, Lai Z, Huang KW. Catalyst Design and Engineering for CO 2-to-Formic Acid Electrosynthesis for a Low-Carbon Economy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404980. [PMID: 39394824 DOI: 10.1002/adma.202404980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/19/2024] [Indexed: 10/14/2024]
Abstract
Formic acid (FA) has emerged as a promising candidate for hydrogen energy storage due to its favorable properties such as low toxicity, low flammability, and high volumetric hydrogen storage capacity under ambient conditions. Recent analyses have suggested that FA produced by electrochemical carbon dioxide (CO2) reduction reaction (eCO2RR) using low-carbon electricity exhibits lower fugitive hydrogen (H2) emissions and global warming potential (GWP) during the H2 carrier production, storage and transportation processes compared to those of other alternatives like methanol, methylcyclohexane, and ammonia. eCO2RR to FA can enable industrially relevant current densities without the need for high pressures, high temperatures, or auxiliary hydrogen sources. However, the widespread implementation of eCO2RR to FA is hindered by the requirement for highly stable and selective catalysts. Herein, the aim is to explore and evaluate the potential of catalyst engineering in designing stable and selective nanostructured catalysts that can facilitate economically viable production of FA.
Collapse
Affiliation(s)
- Karthik Peramaiah
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Moyu Yi
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Indranil Dutta
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sudipta Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science - Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, Goa, 403726, India
| | - Huabin Zhang
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Institute of Sustainability for Chemicals, Energy, and Environment, Agency for Science, Technology, and Research, 1 Pesek Rd, Singapore, 627833, Singapore
| |
Collapse
|
4
|
Bang H, Jeon J, Kang J, Ko Y, Oh C, Kim H, Zhang X, Choi KH, Woo C, Dong X, Yu HK, Lee WH, Choi J, Oh H. Exploring Oxygen Vacancy Effect in 1D Structural SnIP for CO 2 Electro-Reduction to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404343. [PMID: 39058242 PMCID: PMC11618705 DOI: 10.1002/smll.202404343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Indexed: 07/28/2024]
Abstract
1D nanostructures exhibit a large surface area and a short network distance, facilitating electron and ion transport. In this study, a 1D van der Waals material, tin iodide phosphide (SnIP), is synthesized and used as an electrocatalyst for the conversion of CO2 to formate. The electrochemical treatment of SnIP reconstructs it into a web-like structure, dissolves the I and P components, and increases the number of oxygen vacancies. The resulting oxygen vacancies promote the activity of the CO2 reduction reaction (CO2RR), increasing the local pH of the electrode surface and maintaining the oxidative metal site of the catalyst despite the electrochemically reducing environment. This strategy, which stabilizes the oxidation state of the catalyst, also helps to improve the durability of CO2RR. In practice, 1D structured SnIP catalyst exhibits outstanding performance with >92% formate faradaic efficiency (FEformate) at 300 mA cm-2, a maximum partial current density for formate of 343 mA cm-2, and excellent long-term stability (>100 h at 100 mA cm-2 with >86% FEformate). This study introduced a method to easily generate oxygen vacancies on the catalyst surface by utilizing 1D materials and a strategy to improve the durability of CO2RR by stabilizing the oxidation state of the catalyst.
Collapse
Affiliation(s)
- Hyeon‐Seok Bang
- Clean Energy Research CenterKorea Institute of Science and TechnologyHwarang‐ro 14‐gil 5SeoulSeongbuk‐gu02792Republic of Korea
- School of Advanced Materials Science & EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Jiho Jeon
- Clean Energy Research CenterKorea Institute of Science and TechnologyHwarang‐ro 14‐gil 5SeoulSeongbuk‐gu02792Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jinsu Kang
- School of Advanced Materials Science & EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Young‐Jin Ko
- Clean Energy Research CenterKorea Institute of Science and TechnologyHwarang‐ro 14‐gil 5SeoulSeongbuk‐gu02792Republic of Korea
| | - Cheoulwoo Oh
- Clean Energy Research CenterKorea Institute of Science and TechnologyHwarang‐ro 14‐gil 5SeoulSeongbuk‐gu02792Republic of Korea
| | - Hyunchul Kim
- Clean Energy Research CenterKorea Institute of Science and TechnologyHwarang‐ro 14‐gil 5SeoulSeongbuk‐gu02792Republic of Korea
| | - Xiaojie Zhang
- School of Advanced Materials Science & EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan UniversitySuwon16419Republic of Korea
| | - Chaeheon Woo
- School of Advanced Materials Science & EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Xue Dong
- SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan UniversitySuwon16419Republic of Korea
| | - Hak Ki Yu
- Department of Materials Science and Engineering & Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
| | - Woong Hee Lee
- Clean Energy Research CenterKorea Institute of Science and TechnologyHwarang‐ro 14‐gil 5SeoulSeongbuk‐gu02792Republic of Korea
| | - Jae‐Young Choi
- Clean Energy Research CenterKorea Institute of Science and TechnologyHwarang‐ro 14‐gil 5SeoulSeongbuk‐gu02792Republic of Korea
- School of Advanced Materials Science & EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan UniversitySuwon16419Republic of Korea
| | - Hyung‐Suk Oh
- Clean Energy Research CenterKorea Institute of Science and TechnologyHwarang‐ro 14‐gil 5SeoulSeongbuk‐gu02792Republic of Korea
- School of Advanced Materials Science & EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
5
|
Jeon J, Bang HS, Ko YJ, Kang J, Zhang X, Oh C, Kim H, Choi KH, Woo C, Dong X, Lee WH, Yu HK, Choi JY, Oh HS. Strategy for Enhancing Catalytic Active Site: Introduction of 1D material InSeI for Electrochemical CO 2 Reduction to Formate. SMALL METHODS 2024:e2401157. [PMID: 39530603 DOI: 10.1002/smtd.202401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The presence of oxygen vacancies (Vo) in electrocatalysts plays a significant role in improving the selectivity and activity of CO2 reduction reaction (CO2RR). In this study, 1D material with large surface area is utilized to enable uniform Vo formation on the catalyst. 1D structured indium selenoiodide (InSeI) is synthesized and used as an electrocatalyst for the conversion of CO2 to formate. The electrochemical treatment of InSeI leads to the leaching of Se and I from the catalyst surface and the formation of Vo. The resulting Vo promotes the activity of the CO2RR, which increases the local pH of the catalyst surface and chemically maintains the oxidized metal sites on the catalyst. Owing to these characteristics, activated In wire exhibited remarkable CO2RR activity, thereby surpassing 93% FEformate at 500 mA cm-2, with a maximum of 97.3% FEformate at 100 mA cm-2. Moreover, the catalytic activity remained consistent for over 50 h at 100 mA cm-2 (FEformate >88%). Thus, the findings imply that using 1D materials can facilitate the formation of oxygen vacancies on the catalyst surface and improve the selectivity and durability of CO2RR. This indicates the potential for further research on 1D materials as electrocatalysts.
Collapse
Affiliation(s)
- Jiho Jeon
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University Suwon, Suwon, 16419, Republic of Korea
| | - Hyeon-Seok Bang
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Young-Jin Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jinsu Kang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xiaojie Zhang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Cheoulwoo Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyunchul Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University Suwon, Suwon, 16419, Republic of Korea
| | - Chaeheon Woo
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xue Dong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University Suwon, Suwon, 16419, Republic of Korea
| | - Woong Hee Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hak Ki Yu
- Department of Materials Science and Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae-Young Choi
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University Suwon, Suwon, 16419, Republic of Korea
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
6
|
Yang Z, Jin Y, Feng Z, Luo P, Feng C, Zhou Y, An X, Hao X, Abudula A, Guan G. Rational Strategies for Preparing Highly Efficient Tin-, Bismuth- or Indium-Based Electrocatalysts for Electrochemical CO 2 Reduction to Formic acid/Formate. CHEMSUSCHEM 2024:e202401181. [PMID: 39375528 DOI: 10.1002/cssc.202401181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) is an environmentally friendly and economically viable approach to convert greenhouse gas CO2 into valuable chemical fuels and feedstocks. Among various products of CO2RR, formic acid/formate (HCOOH/HCOO-) is considered the most attractive one with its high energy density and ease of storage, thereby enabling widespread commercial applications in chemical, medicine, and energy-related industries. Nowadays, the development of efficient and financially feasible electrocatalysts with excellent selectivity and activity towards HCOOH/HCOO- is paramount for the industrial application of CO2RR technology, in which Tin (Sn), Bismuth (Bi), and Indium (In)-based electrocatalysts have drawn significant attention due to their high efficiency and various regulation strategies have been explored to design diverse advanced electrocatalysts. Herein, we comprehensively review the rational strategies to enhance electrocatalytic performances of these electrocatalysts for CO2RR to HCOOH/HCOO-. Specifically, the internal mechanism between the physicochemical properties of engineering materials and electrocatalytic performance is analyzed and discussed in details. Besides, the current challenges and future opportunities are proposed to provide inspiration for the development of more efficient electrocatalysts in this field.
Collapse
Affiliation(s)
- Ziyuan Yang
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
| | - Yuxia Jin
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
| | - Zhongbao Feng
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Shenyang, 110819, Liaoning, China
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
| | - Peng Luo
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
| | - Changrui Feng
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
| | - Yifan Zhou
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
| | - Xiaowei An
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaogang Hao
- College of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Abuliti Abudula
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
| | - Guoqing Guan
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
| |
Collapse
|
7
|
Xu Y, Zhao Y, Kochubei A, Lee CY, Wagner P, Chen Z, Jiang Y, Yan W, Wallace GG, Wang C. Copper/Polyaniline Interfaces Confined CO 2 Electroreduction for Selective Hydrocarbon Production. CHEMSUSCHEM 2024; 17:e202400209. [PMID: 38688856 DOI: 10.1002/cssc.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Polyaniline (PANI) provides an attractive organic platform for CO2 electrochemical reduction due to the ability to adsorb CO2 molecules and in providing means to interact with metal nanostructures. In this work, a novel PANI supported copper catalyst has been developed by coupling the interfacial polymerization of PANI and Cu. The hybrid catalyst demonstrates excellent activity towards production of hydrocarbon products including CH4 and C2H4, compared with the use of bare Cu. A Faradaic efficiency of 71.8 % and a current density of 16.9 mA/cm2 were achieved at -0.86 V vs. RHE, in contrast to only 22.2 % and 1.0 mA/cm2 from the counterpart Cu catalysts. The remarkably enhanced catalytic performance of the hybrid PANI/Cu catalyst can be attributed to the synergistic interaction between the PANI underlayer and copper. The PANI favours the adsorption and binding of CO2 molecules via its nitrogen sites to form *CO intermediates, while the Cu/PANI interfaces confine the diffusion or desorption of the *CO intermediates favouring their further hydrogenation or carbon-carbon coupling to form hydrocarbon products. This work provides insights into the formation of hydrocarbon products on PANI-modified Cu catalysts, which may guide the development of conducting polymer-metal catalysts for CO2 electroreduction.
Collapse
Affiliation(s)
- Yeqing Xu
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| | - Yong Zhao
- CSIRO Energy, 10 Murray Dwyer Circuit, 2304, Mayfield West, NSW, Australia
| | - Alena Kochubei
- School of Engineering, Macquarie University, 2109, Sydney, NSW, Australia
| | - Chong-Yong Lee
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| | - Zhiqi Chen
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| | - Yijiao Jiang
- School of Engineering, Macquarie University, 2109, Sydney, NSW, Australia
| | - Wei Yan
- Department of Environmental Science & Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| | - Caiyun Wang
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| |
Collapse
|
8
|
Tang YF, Liu LB, Yu M, Liu S, Sui PF, Sun W, Fu XZ, Luo JL, Liu S. Strong effect-correlated electrochemical CO 2 reduction. Chem Soc Rev 2024; 53:9344-9377. [PMID: 39162094 DOI: 10.1039/d4cs00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Electrochemical CO2 reduction (ECR) holds great potential to alleviate the greenhouse effect and our dependence on fossil fuels by integrating renewable energy for the electrosynthesis of high-value fuels from CO2. However, the high thermodynamic energy barrier, sluggish reaction kinetics, inadequate CO2 conversion rate, poor selectivity for the target product, and rapid electrocatalyst degradation severely limit its further industrial-scale application. Although numerous strategies have been proposed to enhance ECR performances from various perspectives, scattered studies fail to comprehensively elucidate the underlying effect-performance relationships toward ECR. Thus, this review presents a comparative summary and a deep discussion with respect to the effects strongly-correlated with ECR, including intrinsic effects of materials caused by various sizes, shapes, compositions, defects, interfaces, and ligands; structure-induced effects derived from diverse confinements, strains, and fields; electrolyte effects introduced by different solutes, solvents, cations, and anions; and environment effects induced by distinct ionomers, pressures, temperatures, gas impurities, and flow rates, with an emphasis on elaborating how these effects shape ECR electrocatalytic activities and selectivity and the underlying mechanisms. In addition, the challenges and prospects behind different effects resulting from various factors are suggested to inspire more attention towards high-throughput theoretical calculations and in situ/operando techniques to unlock the essence of enhanced ECR performance and realize its ultimate application.
Collapse
Affiliation(s)
- Yu-Feng Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Lin-Bo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Mulin Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Shuo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Peng-Fei Sui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jing-Li Luo
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
9
|
Wang L, Chen Z, Xiao Y, Huang L, Wang X, Fruehwald H, Akhmetzyanov D, Hanson M, Chen Z, Chen N, Billinghurst B, Smith RDL, Singh CV, Tan Z, Wu YA. Stabilized Cu δ+-OH species on in situ reconstructed Cu nanoparticles for CO 2-to-C 2H 4 conversion in neutral media. Nat Commun 2024; 15:7477. [PMID: 39209896 PMCID: PMC11362302 DOI: 10.1038/s41467-024-52004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Achieving large-scale electrochemical CO2 reduction to multicarbon products with high selectivity using membrane electrode assembly (MEA) electrolyzers in neutral electrolyte is promising for carbon neutrality. However, the unsatisfactory multicarbon products selectivity and unclear reaction mechanisms in an MEA have hindered its further development. Here, we report a strategy that manipulates the interfacial microenvironment of Cu nanoparticles in an MEA to suppress hydrogen evolution reaction and enhance C2H4 conversion. In situ multimodal characterizations consistently reveal well-stabilized Cuδ+-OH species as active sites during MEA testing. The OH radicals generated in situ from water create a locally oxidative microenvironment on the copper surface, stabilizing the Cuδ+ species and leading to an irreversible and asynchronous change in morphology and valence, yielding high-curvature nanowhiskers. Consequently, we deliver a selective C2H4 production with a Faradaic efficiency of 55.6% ± 2.8 at 316 mA cm-2 in neutral media.
Collapse
Affiliation(s)
- Lei Wang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhiwen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Yi Xiao
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Linke Huang
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Holly Fruehwald
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Dmitry Akhmetzyanov
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mathew Hanson
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zuolong Chen
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Ning Chen
- Canadian Light Source, Saskatoon, SK, S7N 2V3, Canada
| | | | - Rodney D L Smith
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada.
| | - Zhongchao Tan
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Eastern Institute of Technology, No. 568 Tongxin Road, Zhenhai District, Ningbo, Zhejiang, 315200, China.
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
10
|
Wang Z, Xu L, Zhou Y, Liang Y, Yang J, Wu D, Zhang S, Han X, Shi X, Li J, Yuan Y, Deng P, Tian X. Stabilizing the oxidation state of catalysts for effective electrochemical carbon dioxide conversion. Chem Soc Rev 2024; 53:6295-6321. [PMID: 38722208 DOI: 10.1039/d3cs00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In the electrocatalytic CO2 reduction reaction (CO2RR), metal catalysts with an oxidation state generally demonstrate more favorable catalytic activity and selectivity than their corresponding metallic counterparts. However, the persistence of oxidative metal sites under reductive potentials is challenging since the transition to metallic states inevitably leads to catalytic degradation. Herein, a thorough review of research on oxidation-state stabilization in the CO2RR is presented, starting from fundamental concepts and highlighting the importance of oxidation state stabilization while revealing the relevance of dynamic oxidation states in product distribution. Subsequently, the functional mechanisms of various oxidation-state protection strategies are explained in detail, and in situ detection techniques are discussed. Finally, the prevailing and prospective challenges associated with oxidation-state protection research are discussed, identifying innovative opportunities for mechanistic insights, technology upgrades, and industrial platforms to enable the commercialization of the CO2RR.
Collapse
Affiliation(s)
- Zhitong Wang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Lizhi Xu
- Hainan Provincial Ecological and Environmental Monitoring Centre, Haikou 571126, China
| | - Yansong Zhou
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ying Liang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Jinlin Yang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Daoxiong Wu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Shuyu Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Xingqi Han
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xiaodong Shi
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Jing Li
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yuliang Yuan
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Mukhopadhyay S, Naeem MS, Shiva Shanker G, Ghatak A, Kottaichamy AR, Shimoni R, Avram L, Liberman I, Balilty R, Ifraemov R, Rozenberg I, Shalom M, López N, Hod I. Local CO 2 reservoir layer promotes rapid and selective electrochemical CO 2 reduction. Nat Commun 2024; 15:3397. [PMID: 38649389 PMCID: PMC11035706 DOI: 10.1038/s41467-024-47498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Electrochemical CO2 reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO2 solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO2-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO2-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm2 (at -0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO2 reduction reaction, leading it closer to the requirements for practical implementation.
Collapse
Affiliation(s)
- Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Muhammad Saad Naeem
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Pl. Imperial Tarraco 1, 43005, Tarragona, Spain
| | - G Shiva Shanker
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Arnab Ghatak
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Alagar R Kottaichamy
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liat Avram
- Department of Chemical Research Support Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rotem Balilty
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Illya Rozenberg
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain.
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
12
|
Li L, Wu S, Cheng D, Zhao ZJ, Gong J. Electronic structure modification of SnO 2 to accelerate CO 2 reduction towards formate. Chem Commun (Camb) 2024; 60:3922-3925. [PMID: 38501201 DOI: 10.1039/d3cc06337b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A systematic theoretical study probing the catalytic potential of metal-doped SnO2(110) was conducted. The incorporation of metals such as Zr, Ti, W, V, Hf, and Ge is shown to drive electron transfer to Sn. The increased charge of Sn is injected into anti-bonding orbitals, finely tuning the catalytic activity and reducing the overpotential to -0.34 V. AIMD simulations show the stability of the modified structures. This work sheds light on the rational design of low-cost metal oxides with a high catalytic performance for CO2ER to formate.
Collapse
Affiliation(s)
- Lulu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin 300072, China
| | - Shican Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin 300072, China
| | - Dongfang Cheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
13
|
Liu MF, Zhang C, Wang J, Han X, Hu W, Deng Y. Recent research progresses of Sn/Bi/In-based electrocatalysts for electroreduction CO 2 to formate. Chemistry 2024; 30:e202303711. [PMID: 38143240 DOI: 10.1002/chem.202303711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Carbon dioxide electroreduction reaction (CO2RR) can take full advantage of sustainable power to reduce the continuously increasing carbon emissions. Recycling CO2 to produce formic acid or formate is a technologically and economically viable route to accomplish CO2 cyclic utilization. Developing efficient and cost-effective electrocatalysts with high selectivity towards formate is prioritized for the industrialized applications of CO2RR electrolysis. From the previous explored CO2RR catalysts, Sn, Bi and In based materials have drawn increasing attentions due to the high selectivity towards formate. However, there are still confronted with several challenges for the practical applications of these materials. Therefore, a rational design of the catalysts for formate is urgently needed for the target of industrialized applications. Herein, we comprehensively summarized the recent development in the advanced electrocatalysts for the CO2RR to formate. Firstly, the reaction mechanism of CO2RR is introduced. Then the preparation and design strategies of the highly active electrocatalysts are presented. Especially the innovative design mechanism in engineering materials for promoting catalytic performance, and the efforts on mechanistic exploration using in situ (ex situ) characterization techniques are reviewed. Subsequently, some perspectives and expectations are proposed about current challenges and future potentials in CO2RR research.
Collapse
Affiliation(s)
- Ms Fei Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Chen Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiajun Wang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaopeng Han
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
14
|
Guo Z, Yu Y, Li C, Campos Dos Santos E, Wang T, Li H, Xu J, Liu C, Li H. Deciphering Structure-Activity Relationship Towards CO 2 Electroreduction over SnO 2 by A Standard Research Paradigm. Angew Chem Int Ed Engl 2024; 63:e202319913. [PMID: 38284290 DOI: 10.1002/anie.202319913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Authentic surface structures under reaction conditions determine the activity and selectivity of electrocatalysts, therefore, the knowledge of the structure-activity relationship can facilitate the design of efficient catalyst structures for specific reactivity requirements. However, understanding the relationship between a more realistic active surface and its performance is challenging due to the complicated interface microenvironment in electrocatalysis. Herein, we proposed a standard research paradigm to effectively decipher the structure-activity relationship in electrocatalysis, which is exemplified in the CO2 electroreduction over SnO2 . The proposed practice has aided in discovering authentic/resting surface states (Sn layer) of SnO2 accountable for the electrochemical CO2 reduction reaction (CO2 RR) performance under electrocatalytic conditions, which then is corroborated in the subsequent CO2 RR experiments over SnO2 with different morphologies (nanorods, nanoparticles, and nanosheets) in combination with in situ characterizations. This proposed methodology is further extended to the SnO electrocatalysts, providing helpful insights into catalytic structures. It is believed that our proposed standard research paradigm is also applicable to other electrocatalytic systems, in the meantime, decreases the discrepancy between theory and experiments, and accelerates the design of catalyst structures that achieve sustainable performance for energy conversion.
Collapse
Affiliation(s)
- Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Yihong Yu
- Key Lab for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Congcong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Egon Campos Dos Santos
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Tianyi Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Huihui Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuangwei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
15
|
Wang M, Cao W, Yu J, Yang D, Qi K, Zhao Y, Hua Z, Li H, Lu S. Electrocatalytic activity of CO 2 reduction to CO on cadmium sulfide enhanced by chloride anion doping. Chemistry 2024:e202303422. [PMID: 38240191 DOI: 10.1002/chem.202303422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 01/31/2024]
Abstract
The electrocatalytic CO2 reduction (ECR) to produce valuable fuel is a promising process for addressing atmospheric CO2 emissions and energy shortages. In this study, Cl-anion doped cadmium sulfide structures were directly fabricated on a nickel foam surface (Cl/CdS-NF) using an in situ hydrothermal method. The Cl-anion doping could significantly improve ECR activity for CO production in ionic liquid and acetonitrile mixed solution, compared to pristine CdS. The highest Faradaic efficiency of CO is 98.1 % on a Cl/CdS-NF-2 cathode with an excellent current density of 137.0 mA cm-2 at -2.25 V versus ferrocene/ferrocenium (Fc/Fc+ , all potentials are versus Fc/Fc+ in this study). In particular, CO Faradaic efficiencies remained above 80 % in a wide potential range of -2.05 V to -2.45 V and a maximum partial current density (192.6 mA cm-2 ) was achieved at -2.35 V. The Cl/CdS-NF-2, with appropriate Cl anions, displayed abundant active sites and a suitable electronic structure, resulting in outstanding ECR activity. Density functional theory calculations further demonstrated that Cl/CdS is beneficial for increasing the adsorption capacities of *COOH and *H, which can enhance the activity of the ECR toward CO and suppress the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Mingyan Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weiqi Cao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingkun Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dexin Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kongsheng Qi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuhua Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhixin Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongping Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
16
|
Liu C, Mei B, Shi Z, Jiang Z, Ge J, Xing W, Song P, Xu W. Operando formation of highly efficient electrocatalysts induced by heteroatom leaching. Nat Commun 2024; 15:242. [PMID: 38172150 PMCID: PMC10764338 DOI: 10.1038/s41467-023-44480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Heterogeneous nano-electrocatalysts doped with nonmetal atoms have been studied extensively based on the so-called dopant-based active sites, while little attention has been paid to the stability of these dopants under working conditions. In this work, we reveal significantly, when the redox working potential is too low negatively or too high positively, the active sites based on these dopants actually tend to collapse. It means that some previously observed "remarkable catalytic performance" actually originated from some unknown active sites formed in situ. Take the Bi-F for the CO2RR as an example, results show that the observed remarkable activity and stability were not directly from F-based active sites, but the defective Bi sites formed in situ after the dopant leaching. Such a fact is unveiled from several heteroatom-doped nanocatalysts for four typical reactions (CO2RR, HER, ORR, and OER). This work provides insight into the role of dopants in electrocatalysis.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhaoping Shi
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zheng Jiang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Junjie Ge
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping Song
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
17
|
Jing H, Zhao P, Liu C, Wu Z, Yu J, Liu B, Su C, Lei W, Hao Q. Surface-Enhanced Raman Spectroscopy for Boosting Electrochemical CO 2 Reduction on Amorphous-Surfaced Tin Oxide Supported by MXene. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59524-59533. [PMID: 38108147 DOI: 10.1021/acsami.3c14682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Amorphous materials disrupt the intrinsic linear scalar dependence seen in their crystalline counterparts, typically exhibiting enhanced catalytic characteristics. Nevertheless, substantial obstacles remain in terms of boosting their stability, enhancing their conductivity, and elucidating distinct catalytic mechanisms. Herein, a core-shell catalyst, comprising a crystalline SnO2 core and an amorphous SnOx shell supported on MXene (denoted as SnO2@SnOx/MXene), was prepared utilizing hydrothermal and solution reduction methods. The SnO2@SnOx/MXene catalyst excels in the electrocatalytic conversion of CO2 to formate, yielding a Faradaic efficiency (FE) as high as 93% for formate production at -1.17 V vs RHE and demonstrating exceptional durability. Both density functional theory (DFT) calculations and experimental results indicate that the SnOx shell bolsters formate formation by fine-tuning the adsorption energy of the *OCHO intermediate. In SnO2@SnOx/MXene, MXene plays a vital role in enhancing the conductivity and stability of the amorphous shell and especially amplifying Raman signals of catalyst components. The ex/in situ surface-enhanced Raman scattering (SERS) application further confirms the formation of amorphous SnOx and further enables the direct detection of the formation of the intermediate species. This work provides the basis for the application of amorphous materials in practical electrocatalytic reduction of CO2 reduction.
Collapse
Affiliation(s)
- Haiyan Jing
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Peng Zhao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Cai Liu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zongdeng Wu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jia Yu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Boyuan Liu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Can Su
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wu Lei
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Qingli Hao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
18
|
Ding Y, Dong Y, Ma M, Luo L, Wang X, Fang B, Li Y, Liu L, Ren F. CO 2 electrocatalytic reduction to ethylene and its application outlook in food science. iScience 2023; 26:108434. [PMID: 38125022 PMCID: PMC10730755 DOI: 10.1016/j.isci.2023.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The efficient conversion of CO2 is considered to be an important step toward carbon emissions peak and carbon neutrality. Presently, great efforts have been devoted to the study of efficient nanocatalysts, electrolytic cell, and electrolytes to achieve high reactivity and selectivity in the electrochemical reduction of CO2 to mono- and multi-carbon (C2+) compounds. However, there are very few reviews focusing on highly reactive and selective ethylene production and application in the field of electrochemical carbon dioxide reduction reaction (CO2RR). Ethylene is a class of multi-carbon compounds that are widely applied in industrial, ecological, and agricultural fields. This review focuses especially on the convertibility of CO2 reduction to generate ethylene technology in practical applications and provides a detailed summary of the latest technologies for the efficient production of ethylene by CO2RR and suggests the potential application of CO2RR systems in food science to further expand the application market of CO2RR for ethylene production.
Collapse
Affiliation(s)
- Yuxuan Ding
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yixuan Dong
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Min Ma
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lili Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xifan Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Wang Z, Zhou Y, Qiu P, Xia C, Fang W, Jin J, Huang L, Deng P, Su Y, Crespo-Otero R, Tian X, You B, Guo W, Di Tommaso D, Pang Y, Ding S, Xia BY. Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303052. [PMID: 37589167 DOI: 10.1002/adma.202303052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2 RR) driven by renewable energy shows great promise in mitigating and potentially reversing the devastating effects of anthropogenic climate change and environmental degradation. The simultaneous synthesis of energy-dense chemicals can meet global energy demand while decoupling emissions from economic growth. However, the development of CO2 RR technology faces challenges in catalyst discovery and device optimization that hinder their industrial implementation. In this contribution, a comprehensive overview of the current state of CO2 RR research is provided, starting with the background and motivation for this technology, followed by the fundamentals and evaluated metrics. Then the underlying design principles of electrocatalysts are discussed, emphasizing their structure-performance correlations and advanced electrochemical assembly cells that can increase CO2 RR selectivity and throughput. Finally, the review looks to the future and identifies opportunities for innovation in mechanism discovery, material screening strategies, and device assemblies to move toward a carbon-neutral society.
Collapse
Affiliation(s)
- Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peng Qiu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wensheng Fang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Jian Jin
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Rachel Crespo-Otero
- Department of Chemistry, University of College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Devis Di Tommaso
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
20
|
Lai W, Qiao Y, Wang Y, Huang H. Stability Issues in Electrochemical CO 2 Reduction: Recent Advances in Fundamental Understanding and Design Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306288. [PMID: 37562821 DOI: 10.1002/adma.202306288] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) offers a promising approach to close the anthropogenic carbon cycle and store intermittent renewable energy in fuels or chemicals. On the path to commercializing this technology, achieving the long-term operation stability is a central requirement but still confronts challenges. This motivates to organize the present review to systematically discuss the stability issue of CO2 RR. This review starts from the fundamental understanding on the destabilization mechanisms of CO2 RR, with focus on the degradation of electrocatalyst and change of reaction microenvironment during continuous electrolysis. Subsequently, recent efforts on catalyst design to stabilize the active sites are summarized, where increasing atomic binding strength to resist surface reconstruction is highlighted. Next, the optimization of electrolysis system to enhance the operation stability by maintaining reaction microenvironment especially mitigating flooding and carbonate problems is demonstrated. The manipulation on operation conditions also enables to prolong CO2 RR lifespan through recovering catalytically active sites and mass transport process. This review finally ends up by indicating the challenges and future opportunities.
Collapse
Affiliation(s)
- Wenchuan Lai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Qiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanan Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
21
|
Zhong X, Yang T, Liang S, Zhong Z, Deng H. Boron Dopant Modulated Electron Localization of Tin Oxide for Efficient Electrochemical CO 2 Reduction to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303185. [PMID: 37490550 DOI: 10.1002/smll.202303185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Sn-based electrocatalysts have great economic potential in the reduction of CO2 to HCOOH, while they still suffer from low current density, dissatisfactory selectivity, and poor stability. Inspired by electronic modification engineering, boron-doped SnO2 nanospheres (B-SnO2 ) are successfully synthesized to achieve high-efficiency CO2 reduction reaction (CO2 RR). It is found that the introduction of boron dopants can increase the number of active sites and facilitate the formation of the electron-rich Sn sites in its structure, thus enhancing the activation of CO2 molecules and reducing the energy barrier of *OCHO intermediates on the SnO2 surface. Thus, the B-doped SnO2 electrocatalyst exhibits a remarkable FEHCOOH above 90% within a broad potential window of -0.7 to -1.3 V versus reversible hydrogen electrode (RHE) (600 mV) and obtains the maximum value of 95.1% (the partial current density of HCOOH is 42.35 mA cm-2 ) at -1 V versus RHE. In conclusion, this work provides a novel strategy for optimizing the intrinsic properties of electrocatalysts for CO2 RR by the method of tuning the electronic structure.
Collapse
Affiliation(s)
- Xiaohui Zhong
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Tingting Yang
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Shujie Liang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Zuqi Zhong
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Hong Deng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
22
|
Liang S, Xiao J, Zhang T, Zheng Y, Wang Q, Liu B. Sulfur Changes the Electrochemical CO 2 Reduction Pathway over Cu Electrocatalysts. Angew Chem Int Ed Engl 2023; 62:e202310740. [PMID: 37703214 DOI: 10.1002/anie.202310740] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Electrochemical CO2 reduction to value-added chemicals or fuels offers a promising approach to reduce carbon emissions and alleviate energy shortage. Cu-based electrocatalysts have been widely reported as capable of reducing CO2 to produce a variety of multicarbon products (e.g., ethylene and ethanol). In this work, we develop sulfur-doped Cu2 O electrocatalysts, which instead can electrochemically reduce CO2 to almost exclusively formate. We show that a dynamic equilibrium of S exists at the Cu2 O-electrolyte interface, and S-doped Cu2 O undergoes in situ surface reconstruction to generate active S-adsorbed metallic Cu sites during the CO2 reduction reaction (CO2 RR). Density functional theory (DFT) calculations together with in situ infrared absorption spectroscopy measurements show that the S-adsorbed metallic Cu surface can not only promote the formation of the *OCHO intermediate but also greatly suppress *H and *COOH adsorption, thus facilitating CO2 -to-formate conversion during the electrochemical CO2 RR.
Collapse
Affiliation(s)
- Shuyu Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jiewen Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Tianyu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yue Zheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Qiang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
23
|
Zhang J, Chen Y, Xu F, Zhang Y, Tian J, Guo Y, Chen G, Wang X, Yang L, Wu Q, Hu Z. High-Dispersive Pd Nanoparticles on Hierarchical N-Doped Carbon Nanocages to Boost Electrochemical CO 2 Reduction to Formate at Low Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301577. [PMID: 37140077 DOI: 10.1002/smll.202301577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) to value-added chemicals/fuels is an effective strategy to achieve the carbon neutral. Palladium is the only metal to selectively produce formate via CO2 RR at near-zero potentials. To reduce cost and improve activity, the high-dispersive Pd nanoparticles on hierarchical N-doped carbon nanocages (Pd/hNCNCs) are constructed by regulating pH in microwave-assisted ethylene glycol reduction. The optimal catalyst exhibits high formate Faradaic efficiency of >95% within -0.05-0.30 V and delivers an ultrahigh formate partial current density of 10.3 mA cm-2 at the low potential of -0.25 V. The high performance of Pd/hNCNCs is attributed to the small size of uniform Pd nanoparticles, the optimized intermediates adsorption/desorption on modified Pd by N-doped support, and the promoted mass/charge transfer kinetics arising from the hierarchical structure of hNCNCs. This study sheds light on the rational design of high-efficient electrocatalysts for advanced energy conversion.
Collapse
Affiliation(s)
- Junru Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiqun Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingyi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Guo
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guanghai Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
24
|
Tan X, Jia S, Song X, Ma X, Feng J, Zhang L, Wu L, Du J, Chen A, Zhu Q, Sun X, Han B. Zn-induced electron-rich Sn catalysts enable highly efficient CO 2 electroreduction to formate. Chem Sci 2023; 14:8214-8221. [PMID: 37538823 PMCID: PMC10395268 DOI: 10.1039/d3sc02790b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/08/2023] [Indexed: 08/05/2023] Open
Abstract
Renewable-energy-driven CO2 electroreduction provides a promising way to address the growing greenhouse effect issue and produce value-added chemicals. As one of the bulk chemicals, formic acid/formate has the highest revenue per mole of electrons among various products. However, the scaling up of CO2-to-formate for practical applications with high faradaic efficiency (FE) and current density is constrained by the difficulty of precisely reconciling the competing intermediates (*COOH and HCOO*). Herein, a Zn-induced electron-rich Sn electrocatalyst was reported for CO2-to-formate with high efficiency. The faradaic efficiency of formate (FEformate) could reach 96.6%, and FEformate > 90% was maintained at formate partial current density up to 625.4 mA cm-1. Detailed study indicated that catalyst reconstruction occurred during electrolysis. With appropriate electron accumulation, the electron-rich Sn catalyst could facilitate the adsorption and activation of CO2 molecules to form a intermediate and then promoted the carbon protonation of to yield a HCOO* intermediate. Afterwards, the HCOO* → HCOOH* proceeded via another proton-coupled electron transfer process, leading to high activity and selectivity for formate production.
Collapse
Affiliation(s)
- Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shunhan Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiaqi Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 P. R. China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
25
|
Deng Y, Zhao J, Wang S, Chen R, Ding J, Tsai HJ, Zeng WJ, Hung SF, Xu W, Wang J, Jaouen F, Li X, Huang Y, Liu B. Operando Spectroscopic Analysis of Axial Oxygen-Coordinated Single-Sn-Atom Sites for Electrochemical CO 2 Reduction. J Am Chem Soc 2023; 145:7242-7251. [PMID: 36877826 DOI: 10.1021/jacs.2c12952] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Sn-based materials have been demonstrated as promising catalysts for the selective electrochemical CO2 reduction reaction (CO2RR). However, the detailed structures of catalytic intermediates and the key surface species remain to be identified. In this work, a series of single-Sn-atom catalysts with well-defined structures is developed as model systems to explore their electrochemical reactivity toward CO2RR. The selectivity and activity of CO2 reduction to formic acid on Sn-single-atom sites are shown to be correlated with Sn(IV)-N4 moieties axially coordinated with oxygen (O-Sn-N4), reaching an optimal HCOOH Faradaic efficiency of 89.4% with a partial current density (jHCOOH) of 74.8 mA·cm-2 at -1.0 V vs reversible hydrogen electrode (RHE). Employing a combination of operando X-ray absorption spectroscopy, attenuated total reflectance surface-enhanced infrared absorption spectroscopy, Raman spectroscopy, and 119Sn Mössbauer spectroscopy, surface-bound bidentate tin carbonate species are captured during CO2RR. Moreover, the electronic and coordination structures of the single-Sn-atom species under reaction conditions are determined. Density functional theory (DFT) calculations further support the preferred formation of Sn-O-CO2 species over the O-Sn-N4 sites, which effectively modulates the adsorption configuration of the reactive intermediates and lowers the energy barrier for the hydrogenation of *OCHO species, as compared to the preferred formation of *COOH species over the Sn-N4 sites, thereby greatly facilitating CO2-to-HCOOH conversion.
Collapse
Affiliation(s)
- Yachen Deng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Shifu Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ruru Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jie Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Hsin-Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing 100049, P. R. China.,RICMASS, Rome International Center for Materials Science Superstripes, Rome 00185, Italy
| | - Junhu Wang
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Frédéric Jaouen
- Institut Charles Gerhardt Montpellier, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
26
|
Tian M, Wu S, Hu Y, Mu Z, Li Z, Hou Y, Xi P, Yan CH. Doping and pretreatment optimized the adsorption of *OCHO on bismuth for the electrocatalytic reduction of CO 2 to formate. NANOSCALE 2023; 15:4477-4487. [PMID: 36752707 DOI: 10.1039/d2nr06638f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrocatalytic reduction of CO2 to formate is considered as a promising method to achieve carbon neutrality, and the introduction of heteroatoms is an effective strategy to improve the catalytic activity and selectivity of catalysts. However, the structural reconstruction behavior of catalysts driven by voltage is usually ignored. Therefore, we used Cu/Bi2S3 as a model to reveal the dynamic reduction process in different atmospheric environments. The catalyst showed an outstanding faradaic efficiency of 94% for formate and a long-term stability of 100 h, and exhibited a high current density of 280 mA cm-2 in a flow cell. The experimental results and theoretical calculations show that the introduction of copper enhances the adsorption of CO2, accelerates the charge transfer and reduces the formation barrier of *OCHO, thus promoting the formation of formate. This work draws attention to the effects of saturated gases in the electrolyte during structural evolution and provides a possibility for designing catalysts with high catalytic activity.
Collapse
Affiliation(s)
- Meng Tian
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shanshan Wu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Zhaori Mu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Zhi Li
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yichao Hou
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Zhu Q, Deng Z, Xie H, Xing M, Zhang J. Investigation of Concerted Proton–Electron Donors for Promoting the Selective Production of HCOOH in CO 2 Photoreduction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Qiaohong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zesheng Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co.Ltd. Y2, Second Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen’er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
28
|
Jiang Y, Shan J, Wang P, Huang L, Zheng Y, Qiao SZ. Stabilizing Oxidation State of SnO 2 for Highly Selective CO 2 Electroreduction to Formate at Large Current Densities. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yunling Jiang
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Jieqiong Shan
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Linsen Huang
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| |
Collapse
|
29
|
In situ/operando characterization techniques for electrochemical CO2 reduction. Sci China Chem 2023. [DOI: 10.1007/s11426-021-1463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Fang L, Lyu X, Xu JJ, Liu Y, Hu X, Reinhart BJ, Li T. Operando X-ray Absorption Spectroscopy Study of SnO 2 Nanoparticles for Electrochemical Reduction of CO 2 to Formate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55636-55643. [PMID: 36508584 DOI: 10.1021/acsami.2c17481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tin-based electrocatalysts exhibit a remarkable ability to catalyze CO2 to formate selectively. Understanding the size-property relationships and exploring the evolution of the active size still lack complete understanding. Herein, we prepared SnO2 nanoparticles (NPs) with a controllable size supported on commercial carbon spheres (SnO2/C-n, n = 1, 2, and 3) by a simple low-temperature annealing method. The transmission electron microscopy/scanning transmission electron microscopy images and fitting results of the small-angle X-ray scattering profile confirm the increased size of SnO2 NPs due to the increase of SnO2 loading. The catalytic performance of SnO2 has proved the size-dependent effect during the CO2 reduction reaction process. The as-prepared SnO2/C-1 displayed the maximum Faradic efficiency of formate (FEHCOO-) of 82.7% at -1.0 V versus reversible hydrogen electrode (RHE). In contrast, SnO2/C-2 and SnO2/C-3 with larger particle sizes achieved lower maximum FEHCOO- and larger overpotential. Moreover, we employed operando X-ray absorption spectroscopy to study the evolution of the oxidation state and local coordination environment of SnO2 under working conditions. In addition to the observed shifts of the rising edge of Sn K-edge X-ray absorption near-edge structure spectra to a lower energy side as the applied voltage decreases, the decreased coordination number of Sn in the Sn-O scattering path and the presence of Sn metal contribution in the extended X-ray absorption fine structure spectra verify the reduction of SnO2 to SnOx and metallic Sn.
Collapse
Affiliation(s)
- Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Xingyi Lyu
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Jason J Xu
- Naperville North High School, Naperville, Illinois 60563, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobing Hu
- The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin J Reinhart
- X-ray Science Division and Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
- X-ray Science Division and Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
31
|
Liu T, Ohashi K, Nagita K, Harada T, Nakanishi S, Kamiya K. A Tin Oxide-Coated Copper Foam Hybridized with a Gas Diffusion Electrode for Efficient CO 2 Reduction to Formate with a Current Density Exceeding 1 A cm -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205323. [PMID: 36319467 DOI: 10.1002/smll.202205323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2 RR) is a promising strategy for closing the carbon cycle. Increasing the current density ( J) for CO2 RR products is a critical requirement for the social implementation of this technology. Herein, nanoscale tin-oxide-modified copper-oxide foam is hybridized with a carbon-based gas-diffusion electrode (GDE). Using the resultant electrode, the Jformate is increased to -1152 mA cm-2 at -1.2 V versus RHE in 1 m KOH, which is the highest value for CO2 -to-formate electrolysis. The formate faradaic efficiency (FEformate ) reaches ≈99% at -0.6 V versus RHE. The achievement of ultra-high-rate formate production is attributable to the following factors: i) homogeneously-modified Sn atoms suppressing H2 evolution and ii) the hydrophobic carbon nanoparticles on GDEs penetrating the macroporous structure of the foam causing the increase in the thickness of triple-phase interface. Additionally, the FEformate remains at ≈70% under a high J of -1.0 A cm-2 for more than 20 h.
Collapse
Affiliation(s)
- Tengyi Liu
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Keitaro Ohashi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Kaito Nagita
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Takashi Harada
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuhide Kamiya
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|