1
|
Lee H, Ding G, Wang L, Sun L. A Chalcogenide-Derived NiFe 2O 4 as Highly Efficient and Stable Anode for Anion Exchange Membrane Water Electrolysis. Chemistry 2025; 31:e202403198. [PMID: 39573942 DOI: 10.1002/chem.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Developing low-cost, highly active, and durable oxygen evolution reaction (OER) electrodes is one of the critical scientific issues for anion exchange membrane water electrolyzer (AEM-WE). Herein, we report a vacancy-rich and alkali-stable NiFe2O4-type electrode (named as NiFeOx-350-Ov), derived from the chemical-vapor deposited precursor NiFeSexSy-350, as an efficient and robust anode material. The obtained electrode affords current densities of 100 and 500 mA cm-2 at overpotentials of 245 and 270 mV, respectively, and displays excellent long-term durability sustaining 1.0 A cm-2 at least for 1000 h. When coupled with Ni4Mo/MoO2/NF as a hydrogen evolution reaction (HER) catalyst, the resulting platinum-group metal (PGM)-free single-cell AEM-WE exhibits a cell voltage of 1.71 V at the current density of 1000 mA cm-2 at 80 °C and long-term durability during a current-cycling test between 0.5 A cm-2 and 1.0 A cm-2 over 150 h at 60 °C. This work highlights a unique reconstruction strategy for preparing highly active and durable OER catalysts used in PGM-free AEM-WE.
Collapse
Affiliation(s)
- Husileng Lee
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Guoheng Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory, Hangzhou, 310000, Zhejiang Province, China
| |
Collapse
|
2
|
Weng Y, Li Q, Li K. Cost-Effective RuNi Solid Solutions Prepared by Electrodeposition for Efficient Alkaline Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410778. [PMID: 39780616 DOI: 10.1002/smll.202410778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Indexed: 01/11/2025]
Abstract
The development of efficient hydrogen evolution reaction (HER) catalysts is crucial for water electrolysis. Currently, Ru-based catalysts are considered top contenders, but issues with stability, activity, and cost remain. In this work, RuNi alloys possessing a solid solution structure within the Ru lattice are prepared via straightforward electrodeposition on various substrates and assessed as HER catalysts in alkaline media. A RuNi solid solution containing 9.8 at. % Ni deposited on Ti substrate, wherein the Ni content greatly surpasses the solubility limit of Ni in Ru at room temperature, exhibits a considerably low overpotential of 28 mV at a current density of 10 mA cm- 2, along with good long-term stability (less than 100 mV increase in overpotential after 600 h). The enhancement in HER performance results from the increased electron density around Ru atoms due to Ni coordination, which facilitates the desorption of H* from the catalyst surface to produce H2. Concurrently, incorporating Ni reduces the Ru usage, rendering the RuNi alloy a viable cost-effective HER catalyst for practical applications.
Collapse
Affiliation(s)
- Yibo Weng
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Qingqing Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Kaikai Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Chauhan C, Gupta T, Mondal B. Deciphering the Role of Second Metal in M-Ni (M = Fe, Ni, and Mn) Heterobimetallic Electrocatalysts in Controlling the HAT versus Hydride Transfer Mechanism for the Dehydrogenation of Alcohols. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410228. [PMID: 39776280 DOI: 10.1002/smll.202410228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/30/2024] [Indexed: 01/11/2025]
Abstract
The second 3d-transition metal incorporation in Ni-(oxy)hydroxide has a drastic effect on alkaline OER and alcohol dehydrogenation reactivity. While Mn incorporation suppresses the alkaline OER, it greatly improves the alcohol dehydrogenation reactivity. A complete reversal of reactivity is obtained when Fe is incorporated, which shows better performance for alkaline OER with poor alcohol dehydrogenation reactivity. The role of the second 3d-metal is elusive due to the lack of systematic mechanistic studies. In this report, we thoroughly analyzed a series of M─Ni (M = Fe, Ni, Mn) (oxy)hydroxides derived from electrochemical activation of M-MOF grown on nickel foam for its electrochemical activity in alkaline OER and aliphatic, benzyl alcohol dehydrogenation. With the help of pH-dependence and kinetic isotope effect studies, the potential-determining step (PDS) and the rate-determining step (RDS) have been elucidated. The Hammett analysis revealed critical information about the transition state and offered insight into the hydrogen atom transfer (HAT) versus hydride transfer (HT) for alcohol dehydrogenation operative in various heterobimetallic electrocatalysts. Further, the superior alcohol dehydrogenation reactivity of NiMn catalyst for PET hydrolysate electro-oxidation is extended to afford valuable chemicals with concomitant production of hydrogen.
Collapse
Affiliation(s)
| | - Tarisha Gupta
- Department of Chemistry, IIT Gandhinagar, Palaj, Gujarat, 382355, India
| | - Biswajit Mondal
- Department of Chemistry, IIT Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
4
|
Truong-Phuoc L, Duong-Viet C, Nhut JM, Pappa A, Zafeiratos S, Pham-Huu C. Induction Heating for the Electrification of Catalytic Processes. CHEMSUSCHEM 2024:e202402335. [PMID: 39714867 DOI: 10.1002/cssc.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
The increasing availability of electrical energy generated from clean, low-carbon, renewable sources like solar and wind power is paving the way for a more sustainable future. This has resulted in a growing trend in the chemical industry to increase the share of electricity use in chemical processes, particularly catalytic ones. This shift towards electrifying catalytic processes offers significant environmental benefits. Current practices rely heavily on fossil fuel-based burners, primarily using natural gas, which contribute significantly to greenhouse gas emissions. Therefore, replacing fossil fuels with electricity can significantly reduce the carbon footprint associated with chemical production. Additionally, the energy-intensive production of metal catalysts used in these processes further exacerbates the environmental impact. This review focuses on the electrification of chemical processes, particularly using induction heating (IH), as a method to reduce the environmental impact of both catalyst production and operation. IH shows promise compared to conventional heating methods, since it offers a cleaner, more efficient, and precise way to heat catalysts in chemical processes by directly generating heat within the catalyst itself. It can potentially even enhance the reaction performance through its influence on the reaction mechanism. By exploring recent advancements in IH-driven catalytic processes, the review delves into how this method is revolutionizing catalysis by enhancing performance, selectivity, and sustainability. It highlights recent breakthroughs and discusses perspectives for further exploration in this rapidly developing field.
Collapse
Affiliation(s)
- Lai Truong-Phuoc
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
- BlackLeaf SAS, 210 rue Geiler de Kayserberg, 67400, Illkirch, France
| | - Cuong Duong-Viet
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
- BlackLeaf SAS, 210 rue Geiler de Kayserberg, 67400, Illkirch, France
| | - Jean-Mario Nhut
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Anastasia Pappa
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Spyridon Zafeiratos
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| |
Collapse
|
5
|
Li X, Xie Z, Roy S, Gao L, Liu J, Zhao B, Wei R, Tang B, Wang H, Ajayan P, Tang K. Amorphous High-entropy Phosphide Nanosheets With Multi-atom Catalytic Sites for Efficient Oxygen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410295. [PMID: 39713949 DOI: 10.1002/adma.202410295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/31/2024] [Indexed: 12/24/2024]
Abstract
The alkaline oxygen evolution reaction (OER) mainly encompasses four elementary reactions, involving intermediates such as HO*, O*, and HOO*. Balancing the Gibbs free energies of these intermediates at a single active site is a challenging task. In this work, a high-entropy metal-organic framework incorporating Fe, Ni, Co, Cu, and Y metal elements is synthesized using an electrodeposition method, which then serves as a template for preparing a high-entropy phosphide/carbon (FeCoNiCuYP/C) composite. Notably, the obtained composite exhibits an amorphous structure with multiple catalytically active sites. Combined theoretical calculations and experimental measurements reveal the critical roles of Co/Ni and Fe atoms in tuning the electronic structure of FeCoNiCuYP and optimizing the binding strength of intermediates. Furthermore, Fe and Ni/Co sites prefer to stabilize the HO* and HOO* intermediates respectively, conducive to breaking their scaling relation of Gibbs free energy during OER. Owing to its fine-tuned composition and the synergistic effect of multiple active sites, the FeCoNiCuYP/C electrocatalyst demonstrates superior OER performance in alkaline solutions, requiring a mere 316 mV overpotential to yield 100 mA cm-2 current density with excellent stability. This work provides an innovative route to design efficient high-entropy electrocatalysts, holding significant promise for cutting-edge electrocatalytic applications.
Collapse
Affiliation(s)
- Xiumin Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Longqing Gao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Bing Zhao
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Ran Wei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Bijun Tang
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hongyan Wang
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, 450046, China
| | - Pulickel Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Cheng M, Lan J, Sun X, Wang F, Tuerdi A, Jia F, Guo Y, Liu X. Cascading Water Activation and Interfacial Lattice Oxygen over Nanocluster CuO x-Modified MnO 2 for Electrocatalytic Propylene Oxidation. Angew Chem Int Ed Engl 2024:e202420780. [PMID: 39643851 DOI: 10.1002/anie.202420780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/09/2024]
Abstract
Direct electrooxidation of propylene using water-oxidation intermediates represents a promising route for propylene glycol production. Unfortunately, this economic and environmentally friendly process suffers from low yield and poor Faradaic efficiency resulting from the mismatched oxidative capacity of reactive oxygen species and pronounced side reactions. Herein, we developed an earth-abundant metal-based nanocluster CuOx-modified MnO2 catalyst for the efficient electrooxidation of propylene into propylene glycol, achieving a remarkable production rate of 63.0 g/m2/h and 95 % Faradaic efficiency at 1.3 V vs. Ag/AgCl. Mechanistic studies revealed that the oxygen vacancy-mediated water activation on CuOx-MnO2 in synergy with the activated interfacial lattice oxygen drove the propylene oxidation to a novel *OOH pathway rather than the traditional *OH route. Additionally, the interfacial interactions intensified the propylene adsorption and polarization for its activation. This work offers new insights into the mechanism of electrocatalytic propylene oxidation and presents great opportunities for the synthesis of commercial chemicals based on earth-abundant metal catalysts and renewable electricity-driven route.
Collapse
Affiliation(s)
- Ming Cheng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jintong Lan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiaoxian Sun
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Fanyu Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ailijiang Tuerdi
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Falong Jia
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yanbing Guo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiao Liu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
7
|
Bib Khan J, Liang YC. Recent Progress in Non-Noble Metal Catalysts for Oxygen Evolution Reaction: A Focus on Transition and Rare-Earth Elements. CHEM REC 2024; 24:e202400151. [PMID: 39460472 DOI: 10.1002/tcr.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Indexed: 10/28/2024]
Abstract
The demand for renewable energy sources has become more urgent due to climate change and environmental pollution. The oxygen evolution reaction (OER) plays a crucial role in green energy sources. This article primarily explores the potential of using non-noble metals, such as transition and rare earth metals, to enhance the efficiency of the OER process. Due to their cost-effectiveness and unique electronic structure, these non-noble metals could be a game-changer in the field. 'Doping,' which is the process of adding a small amount of impurity to a material to alter its properties, and 'synergistic effects,' which refer to the combined effect of two or more elements that is greater than the sum of their individual effects, are two key concepts in this field. Transition and rare earth metals can reduce the overpotential, a measure of the excess potential required to drive a reaction, thus enhancing the OER process by engineering the electronic and surface molecular structure. This article summarizes the roles of various non-noble metals in the OER process and highlights opportunities for researchers to propose innovative ways to optimize the OER process.
Collapse
Affiliation(s)
- Jala Bib Khan
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yuan-Chang Liang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
8
|
Guo Z, Wang T, Xu J, Cao A, Li H. Surface coverage and reconstruction analyses bridge the correlation between structure and activity for electrocatalysis. Chem Commun (Camb) 2024. [PMID: 39555896 DOI: 10.1039/d4cc03875d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Electrocatalysis is key to realizing a sustainable future for our society. However, the complex interface between electrocatalysts and electrolytes presents an ongoing challenge in electrocatalysis, hindering the accurate identification of effective/authentic structure-activity relationships and determination of favourable reaction mechanisms. Surface coverage and reconstruction analyses of electrocatalysts are important to address each conjecture and/or conflicting viewpoint on surface-active phases and their corresponding electrocatalytic origin, i.e., so-called structure-activity relationships. In this review, we emphasize the importance of surface states in electrocatalysis experimentally and theoretically, providing guidelines for research practices in discovering promising electrocatalysts. Then, we summarize some recent progress of how surface states determine the adsorption strengths and reaction mechanisms of occurring electrocatalytic reactions, exemplified in the electrochemical oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, CO2 reduction reaction, CO2 and N2 co-reductions, and hydrogen evolution reaction. Finally, the review proposes deep insights into the in situ study of surface states, their efficient building and the application of surface Pourbaix diagrams. This review will accelerate the development of electrocatalysts and electrocatalysis theory by arousing broad consensus on the significance of surface states.
Collapse
Affiliation(s)
- Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Tianyi Wang
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ang Cao
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
- Inner Mongolia Daqingshan Laboratory, Hohhot 017000, China
| | - Hao Li
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
9
|
Liu T, Chen C, Pu Z, Huang Q, Zhang X, Al-Enizi AM, Nafady A, Huang S, Chen D, Mu S. Non-Noble-Metal-Based Electrocatalysts for Acidic Oxygen Evolution Reaction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405399. [PMID: 39183523 DOI: 10.1002/smll.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The oxygen evolution reaction (OER) plays a pivotal role in diverse renewable energy storage and conversion technologies, including water electrolysis, electrochemical CO2 reduction, nitrogen fixation, and metal-air batteries. Among various water electrolysis techniques, proton exchange membrane (PEM)-based water electrolysis devices offer numerous advantages, including high current densities, exceptional chemical stability, excellent proton conductivity, and high-purity H2. Nevertheless, the prohibitive cost associated with Ir/Ru-based OER electrocatalysts poses a significant barrier to the broad-scale application of PEM-based water splitting. Consequently, it is crucial to advance the development of non-noble metal OER catalysis substance with high acid-activity and stability, thereby fostering their widespread integration into PEM water electrolyzers (PEMWEs). In this review, a comprehensive analysis of the acidic OER mechanism, encompassing the adsorbate evolution mechanism (AEM), lattice oxygen mechanism (LOM) and oxide path mechanism (OPM) is offered. Subsequently, a systematic summary of recently reported noble-metal-free catalysts including transition metal-based, carbon-based and other types of catalysts is provided. Additionally, a comprehensive compilation of in situ/operando characterization techniques is provided, serving as invaluable tools for furnishing experimental evidence to comprehend the catalytic mechanism. Finally, the present challenges and future research directions concerning precious-metal-free acidic OER are comprehensively summarized and discussed in this review.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
10
|
Liu H, Shi W, Guo Y, Mei Y, Rao Y, Chen J, Liu S, Lin C, Nie A, Wang Q, Yuan Y, Xia BY, Yao Y. Supersaturated Doping-Induced Maximized Metal-Support Interaction for Highly Active and Durable Oxygen Evolution. ACS NANO 2024; 18:29724-29735. [PMID: 39401376 DOI: 10.1021/acsnano.4c09249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Metal-support interaction (MSI) is pivotal and ubiquitously used in the development of next-generation catalysts, offering a pathway to enhance both catalytic activity and stability. However, owing to the lattice mismatch and poor solubility, traditional catalysts often exhibit a metal-on-support heterogeneous structure with limited interfaces and interaction and, consequently, a compromised enhancement of properties. Herein, we report a universal and tunable method for supersaturated doping of transition-metal carbides via strongly nonequilibrium carbothermal shock synthesis, characterized by rapid heating and swift quenching. Our results enable ∼20 at. % Ni2FeCo doping in Mo2C, significantly surpassing the thermodynamic equilibrium limit of <3 at. %. The supersaturation ensures more catalytically active NiFeCo doping and sufficient interaction with Mo2C, resulting in the maximized MSI (Max-MSI) effect. The Max-MSI enables outstanding activity and particularly stability in alkaline oxygen evolution reaction, showing an overpotential of 284 mV at 100 mA cm-2 and stable for 700 h, while individual Ni2FeCo and Mo2C only last less than 70 and 10 h (completely dissolved), respectively. In particular, the SD-Mo2C catalyst also exhibits excellent durability at 100 mA cm-2 for up to 400 h in 7 M KOH. Such a significantly improved stability is attributed to the supersaturated doping that led to each Mo atom strongly binding with adjacent heteroatoms, thus elevating the dissolution potential and corrosion resistance of Mo2C at a high current density. Additionally, the highly dispersed NiFeCo also facilitates the formation of dense oxyhydroxide coating during reconstruction, further protecting the integrated catalysts for durable operation. Furthermore, the synthesis has been successfully scaled up to fabricate large (16 cm2) electrodes and is adaptable to nickel foam substrates, indicating promising industrial applications. Our strategy allows the general and versatile production of various highly doped transition-metal carbides, such as Ni2FeCo-doped TiC, NbC, and W2C, thus unlocking the potential of maximized or adjustable MSI for diverse catalytic applications.
Collapse
Affiliation(s)
- Hanwen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenhui Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaqing Guo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yunjie Mei
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Rao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinli Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shijing Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng Lin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Qi Wang
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Yifei Yuan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggang Yao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Li H, Lin Y, Duan J, Wen Q, Liu Y, Zhai T. Stability of electrocatalytic OER: from principle to application. Chem Soc Rev 2024; 53:10709-10740. [PMID: 39291819 DOI: 10.1039/d3cs00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hydrogen energy, derived from the electrolysis of water using renewable energy sources such as solar, wind, and hydroelectric power, is considered a promising form of energy to address the energy crisis. However, the anodic oxygen evolution reaction (OER) poses limitations due to sluggish kinetics. Apart from high catalytic activity, the long-term stability of electrocatalytic OER has garnered significant attention. To date, several research studies have been conducted to explore stable electrocatalysts for the OER. A comprehensive review is urgently warranted to provide a concise overview of the recent advancements in the electrocatalytic OER stability, encompassing both electrocatalyst and device developments. This review aims to succinctly summarize the primary factors influencing OER stability, including morphological/phase change and electrocatalyst dissolution, as well as mechanical detachment, alongside chemical, mechanical, and operational degradation observed in devices. Furthermore, an overview of contemporary approaches to enhance stability is provided, encompassing electrocatalyst design (structural regulation, protective layer coating, and stable substrate anchoring) and device optimization (bipolar plates, gas diffusion layers, and membranes). Hopefully, more attention will be paid to ensuring the stable operation of electrocatalytic OER and the future large-scale water electrolysis applications. This review presents design principles aimed at addressing challenges related to the stability of electrocatalytic OER.
Collapse
Affiliation(s)
- HuangJingWei Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Yu Lin
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205, P. R. China
| | - Qunlei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| |
Collapse
|
12
|
Zhou J, Guan X. Closed-Loop and Precipitation-Free CO 2 Capture Process Enabled by Electrochemical pH Gradient. CHEMSUSCHEM 2024:e202401533. [PMID: 39370892 DOI: 10.1002/cssc.202401533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
Carbon dioxide (CO2) capture is a crucial negative-emission technology for the mitigation of climate change and global warming. The urgent need of combating climate change motivates the research and development of economical, effective and environmentally benign processes for CO2 capture. Herein, we design and report a flow cell for the CO2 capture from air or flue gas in a precipitate-free and closed-loop manner. No ion-exchange membrane is used in the electrolyser. The water electrolysis produces acidic solution near the anode and alkaline solution near the cathode, while generating valuable hydrogen and oxygen byproducts. The dilute CO2 in air or flue gas is captured by the alkaline solution, which is then mixed with the acidic solution to release the concentrated CO2. The process operates in a cyclic manner as driven by the water electrolysis and the mechanical pumping. No precipitation of calcium carbonate is involved for fixing CO2, which may simplify the separation process and minimizing the materials loss. The simple process enabled by electrochemical pH gradient shows promise for efficient CO2 capture on both small and large scales.
Collapse
Affiliation(s)
- Jiayin Zhou
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai, 201210, China
| | - Xiaofei Guan
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai, 201210, China
| |
Collapse
|
13
|
Zhang D, Wu Q, Wu L, Cheng L, Huang K, Chen J, Yao X. Optimal Electrocatalyst Design Strategies for Acidic Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401975. [PMID: 39120481 PMCID: PMC11481214 DOI: 10.1002/advs.202401975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Indexed: 08/10/2024]
Abstract
Hydrogen, a clean resource with high energy density, is one of the most promising alternatives to fossil. Proton exchange membrane water electrolyzers are beneficial for hydrogen production because of their high current density, facile operation, and high gas purity. However, the large-scale application of electrochemical water splitting to acidic electrolytes is severely limited by the sluggish kinetics of the anodic reaction and the inadequate development of corrosion- and highly oxidation-resistant anode catalysts. Therefore, anode catalysts with excellent performance and long-term durability must be developed for anodic oxygen evolution reactions (OER) in acidic media. This review comprehensively outlines three commonly employed strategies, namely, defect, phase, and structure engineering, to address the challenges within the acidic OER, while also identifying their existing limitations. Accordingly, the correlation between material design strategies and catalytic performance is discussed in terms of their contribution to high activity and long-term stability. In addition, various nanostructures that can effectively enhance the catalyst performance at the mesoscale are summarized from the perspective of engineering technology, thus providing suitable strategies for catalyst design that satisfy industrial requirements. Finally, the challenges and future outlook in the area of acidic OER are presented.
Collapse
Affiliation(s)
- Dongdong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Qilong Wu
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Lina Cheng
- Institute for Green Chemistry and Molecular EngineeringSun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- School of Advanced Energy and IGCMEShenzhen CampusSun Yat‐Sen University (SYSU)ShenzhenGuangdong518100P. R. China
| |
Collapse
|
14
|
Du H, Wang T, Li M, Yin Z, Lv R, Zhang M, Wu X, Tang Y, Li H, Fu G. Identifying Highly Active and Selective Cobalt X-Ides for Electrocatalytic Hydrogenation of Quinoline. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411090. [PMID: 39221520 DOI: 10.1002/adma.202411090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Earth-abundant Co X-ides are emerging as promising catalysts for the electrocatalytic hydrogenation of quinoline (ECHQ), yet challenging due to the limited fundamental understanding of ECHQ mechanism on Co X-ides. This work identifies the catalytic performance differences of Co X-ides in ECHQ and provides significant insights into the catalytic mechanism of ECHQ. Among selected Co X-ides, the Co3O4 presents the best ECHQ performance with a high conversion of 98.2% and 100% selectivity at ambient conditions. The Co3O4 sites present a higher proportion of 2-coordinated hydrogen-bonded water at the interface than other Co X-ides at a low negative potential, which enhances the kinetics of subsequent water dissociation to produce H*. An ideal 1,4/2,3-H* addition pathway on Co3O4 surface with a spontaneous desorption of 1,2,3,4-tetrahydroquinoline is demonstrated through operando tracing and theoretical calculations. In comparison, the Co9S8 sites display the lowest ECHQ performance due to the high thermodynamic barrier in the H* formation step, which suppresses subsequent hydrogenation; while the ECHQ on Co(OH)F and CoP sites undergo the 1,2,3,4- and 4,3/1,2-H* addition pathway respectively with the high desorption barriers and thus low conversion of quinoline. Moreover, the Co3O4 presents a wide substrate scope and allows excellent conversion of other quinoline derivatives and N-heterocyclic substrates.
Collapse
Affiliation(s)
- Han Du
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tianyi Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, China
| | - Zitong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ransheng Lv
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Muzhe Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiangrui Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
15
|
Bagdwal H, Sood P, Dhillon AK, Singh A, Singh M. Deciphering the work function induced local charge regulation towards activating an octamolybdate cluster-based solid for acidic water oxidation. NANOSCALE 2024; 16:16420-16429. [PMID: 39171964 DOI: 10.1039/d4nr02645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The advancement of highly robust and efficient electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions is imperative for the sustainable production of green hydrogen. In accomplishing sustainable and sturdy electrocatalysts for oxygen evolution at low pH, the challenge is tough for non-iridium/ruthenium-based electrocatalysts. This study elaborates on the intrinsic alterations in electronic arrangements and structural disorder upon the precise activation of an octamolybdate cluster-based solid [{Cu(pz)4}2Mo8O26]·2H2O through room temperature grinding with rGO (reduced graphene oxide), resulting in enhanced conductivity, stability, and activity of the electrocatalyst towards the acidic OER without employing any benchmark metal ion (Ru or Ir). Additionally, the work function of the composites was found to be low compared to that of pristine polyoxometalates (POMs), indicative of the improved conducive behavior, which is lacking in the POM structure. The catalyst displays a notably reduced overpotential of 185 mV to achieve a current density of 10 mA cm-2, coupled with significant stability lasting 24 hours at a higher current density of 100 mA cm-2. These findings propose the manipulation of crystalline POMs with highly conductive non-metallic elements to facilitate superior water oxidation at lower pH levels which can help in the production of green hydrogen.
Collapse
Affiliation(s)
- Harshita Bagdwal
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Parul Sood
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Arshminder Kaur Dhillon
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Ashi Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Monika Singh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
16
|
Liu Z, Liu H, Xue T, Zhou K, Li C, Shen Y, Su X, Wu ZY, Li H, Li H, Li C. Synergistic Sr Activation and Cr Buffering Effect on RuO 2 Electronic Structures for Enhancing the Acidic Oxygen Evolution Reaction. NANO LETTERS 2024; 24:10899-10907. [PMID: 39186254 DOI: 10.1021/acs.nanolett.4c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The oxygen evolution reaction (OER) performance of ruthenium-based oxides strongly correlates with the electronic structures of Ru. However, the widely adopted monometal doping method unidirectionally regulates only the electronic structures, often failing to balance the activity and stability. Here, we propose an "elastic electron transfer" strategy to achieve bidirectional optimization of the electronic structures of Sr, Cr codoped RuO2 catalysts for acidic OER. The introduction of electron-withdrawing Sr intrinsically activates the Ru sites by increasing the oxidation state of Ru. Simultaneously, Cr acts as an electron buffer, donating electrons to Ru in the presence of Sr in the as-prepared catalysts and absorbing excess electrons from Sr leaching during the OER. Such a bidirectional regulation feature of Cr prevents overoxidation of Ru and maintains its high oxidation state during the OER. The optimal Ru3Cr1Sr0.175 catalyst exhibits a low overpotential (214 mV @ 10 mA cm-2) and excellent stability (over 300 h).
Collapse
Affiliation(s)
- Zhongliang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Tianrui Xue
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Congcong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongjun Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhen-Yu Wu
- Department of Chemistry, Institute of Innovative Material, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Huihui Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Li J, Tian W, Li Q, Zhao S. Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design. CHEMSUSCHEM 2024; 17:e202400239. [PMID: 38481084 DOI: 10.1002/cssc.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Water electrolysis driven by "green electricity" is an ideal technology to realize energy conversion and store renewable energy into hydrogen. With the development of proton exchange membrane (PEM), water electrolysis in acidic media suitable for many situations with an outstanding advantage of high gas purity has attracted significant attention. Compared with hydrogen evolution reaction (HER) in water electrolysis, oxygen evolution reaction (OER) is a kinetic sluggish process that needs a higher overpotential. Especially in acidic media, OER process poses higher requirements for the electrocatalysts, such as high efficiency, high stability and low costs. This review focuses on the acidic OER electrocatalysis, reaction mechanisms, and critical parameters used to evaluate performance. Especially the modification strategies applied in the design and construction of new-type electrocatalysts are also summarized. The characteristics of traditional noble metal-based electrocatalysts and the noble metal-free electrocatalysts developed in recent decades are compared and discussed. Finally, the current challenges for the most promising acidic OER electrocatalysts are presented, together with a perspective for future water electrolysis.
Collapse
Affiliation(s)
- Jiao Li
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, P.R. China
| | - Weichen Tian
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, P.R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
18
|
Li R, Liu J, Xiao M, Sun Y, Liu F, Gan J, Gao S. Atomic Strain Wave-Featured LaRuIr Nanocrystals: Achieving Simultaneous Enhancement of Catalytic Activity and Stability toward Acidic Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400095. [PMID: 38529761 DOI: 10.1002/smll.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Rare earth microalloying nanocrystals have gotten widespread attention due to their unprecedented performances with customization-defected nanostructures, divided energy bands, and ensembled surface chemistry, regarded as a class of ideal electrocatalysts for oxygen evolution reaction (OER). Herein, a lanthanide microalloying strategy is proposed to fabricate strain wave-featured LaRuIr nanocrystals with oxide skin through a rapid crystal nucleation, using thermally assisted sodium borohydride reduction in aqueous solution at 60 °C. The atomic strain waves with alternating compressive and tensile strains, resulting from La-stabilized edge dislocations in form of Cottrell atmospheres. In 0.5 m H2SO4, the LaRuIr displays an overpotential of 184 mV at 10 mA cm-2, running at a steadily cell voltage for 60 h at 50 mA cm-2, eightfold enhancement of IrO2||Pt/C assemble in PEMWE. The coupled compressive and tensile profiles boost the OER kinetics via faster AEM and LOM pathways. Moreover, the tensile facilitates surface structure stabilization through dynamic refilling of lattice oxygen vacancies by the adsorbed oxyanions on La, Ru, and Ir sites, eventually achieving a long-term stability. This work contributes to developing advanced catalysts with unique strain to realize simultaneous improvement of activity and durability by breaking the so-called seesaw relationship between them during OER for water splitting.
Collapse
Affiliation(s)
- Rongchao Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingyue Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanhui Sun
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Jun Gan
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Shixin Gao
- Yunnan Precious Metals Lab, Kunming, 650100, China
| |
Collapse
|
19
|
Yan Q, Feng J, Shi W, Niu W, Lu Z, Sun K, Yang X, Xue L, Liu Y, Li Y, Zhang B. Chromium-Induced High Covalent Co-O Bonds for Efficient Anodic Catalysts in PEM Electrolyzer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402356. [PMID: 38647401 PMCID: PMC11220634 DOI: 10.1002/advs.202402356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
The proton exchange membrane water electrolyzer (PEMWE), crucial for green hydrogen production, is challenged by the scarcity and high cost of iridium-based materials. Cobalt oxides, as ideal electrocatalysts for oxygen evolution reaction (OER), have not been extensively applied in PEMWE, due to extremely high voltage and poor stability at large current density, caused by complicated structural variations of cobalt compounds during the OER process. Thus, the authors sought to introduce chromium into a cobalt spinel (Co3O4) catalyst to regulate the electronic structure of cobalt, exhibiting a higher oxidation state and increased Co-O covalency with a stable structure. In-depth operando characterizations and theoretical calculations revealed that the activated Co-O covalency and adaptable redox behavior are crucial for facilitating its OER activity. Both turnover frequency and mass activity of Cr-doped Co3O4 (CoCr) at 1.67 V (vs RHE) increased by over eight times than those of as-synthesized Co3O4. The obtained CoCr catalyst achieved 1500 mA cm-2 at 2.17 V and exhibited notable durability over extended operation periods - over 100 h at 500 mA cm-2 and 500 h at 100 mA cm-2, demonstrating promising application in the PEMWE industry.
Collapse
Affiliation(s)
- Qisheng Yan
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438China
| | - Jie Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Wenjuan Shi
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438China
| | - Wenzhe Niu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438China
| | - Zhuorong Lu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438China
| | - Kai Sun
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438China
| | - Xiao Yang
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438China
| | - Liangyao Xue
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438China
| |
Collapse
|
20
|
Ram R, Xia L, Benzidi H, Guha A, Golovanova V, Garzón Manjón A, Llorens Rauret D, Sanz Berman P, Dimitropoulos M, Mundet B, Pastor E, Celorrio V, Mesa CA, Das AM, Pinilla-Sánchez A, Giménez S, Arbiol J, López N, García de Arquer FP. Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis. Science 2024; 384:1373-1380. [PMID: 38900890 DOI: 10.1126/science.adk9849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
The oxygen evolution reaction is the bottleneck to energy-efficient water-based electrolysis for the production of hydrogen and other solar fuels. In proton exchange membrane water electrolysis (PEMWE), precious metals have generally been necessary for the stable catalysis of this reaction. In this work, we report that delamination of cobalt tungstate enables high activity and durability through the stabilization of oxide and water-hydroxide networks of the lattice defects in acid. The resulting catalysts achieve lower overpotentials, a current density of 1.8 amperes per square centimeter at 2 volts, and stable operation up to 1 ampere per square centimeter in a PEMWE system at industrial conditions (80°C) at 1.77 volts; a threefold improvement in activity; and stable operation at 1 ampere per square centimeter over the course of 600 hours.
Collapse
Affiliation(s)
- Ranit Ram
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Lu Xia
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Hind Benzidi
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Anku Guha
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Viktoria Golovanova
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Alba Garzón Manjón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - David Llorens Rauret
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Pol Sanz Berman
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Marinos Dimitropoulos
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Bernat Mundet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Ernest Pastor
- CNRS, Université de Rennes, IPR (Institut de Physique de Rennes) - UMR 6251, Rennes, France
- CNRS, Université de Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Veronica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Camilo A Mesa
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Aparna M Das
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Adrián Pinilla-Sánchez
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Núria López
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
21
|
Guan Z, Chen Q, Liu L, Xia C, Cao L, Dong B. Heterointerface MnO 2/RuO 2 with rich oxygen vacancies for enhanced oxygen evolution in acidic media. NANOSCALE 2024; 16:10325-10332. [PMID: 38738334 DOI: 10.1039/d4nr00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The design and synthesis of oxygen evolution reaction (OER) electrocatalysts that operate efficiently and stably under acidic conditions are important for the preparation of green hydrogen energy. The low intrinsic catalytic activity and poor acid resistance of commercial RuO2 limit its further development, and the construction of heterointerface structures is the most promising strategy to break through the intrinsic activity limitation of electrocatalysts. Herein, we synthesized spherical and oxygen vacancy-rich heterointerface MnO2/RuO2 using morphology control, which promoted the kinetics of the oxygen evolution reaction with the interaction between oxygen vacancies and the oxide heterointerface. MnO2/RuO2 was reported to be an acidic OER catalyst with excellent performance and stability, requiring only an ultra-low overpotential of 181 mV in 0.5 M H2SO4 to achieve a current density of 10 mA cm-2. The catalyst activity remained essentially unchanged in a 140 h stability test with an ultra-high mass activity (858.9 A g-1@ 1.5 V), which was far superior to commercial RuO2 and most previously reported noble metal-based acidic OER catalysts. The experimental results showed that the effect of more oxygen vacancies and the heterointerfaces of manganese ruthenium oxides broke the intrinsic activity limitation, provided more active sites for the OER, accelerated reaction kinetics, and improved the stability of the catalyst. The excellent performance of the catalyst suggests that MnO2/RuO2 provides a new idea for the design and study of heterointerfaces in metal oxide nanomaterials.
Collapse
Affiliation(s)
- Zhiming Guan
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Qian Chen
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Lin Liu
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Chenghui Xia
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Lixin Cao
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Bohua Dong
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| |
Collapse
|
22
|
Dowling J, Ifkovits ZP, Carim AI, Evans JM, Swint MC, Ye AZ, Richter MH, Li AX, Lewis NS. Catalysis of the Oxygen-Evolution Reaction in 1.0 M Sulfuric Acid by Manganese Antimonate Films Synthesized via Chemical Vapor Deposition. ACS APPLIED ENERGY MATERIALS 2024; 7:4288-4293. [PMID: 38817848 PMCID: PMC11134315 DOI: 10.1021/acsaem.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024]
Abstract
Manganese antimonate (MnySb1-yOx) electrocatalysts for the oxygen-evolution reaction (OER) were synthesized via chemical vapor deposition. Mn-rich rutile Mn0.63Sb0.37Ox catalysts on fluorine-doped tin oxide (FTO) supports drove the OER for 168 h (7 days) at 10 mA cm-2 with a time-averaged overpotential of 687 ± 9 mV and with >97% Faradaic efficiency. Time-dependent anolyte composition analysis revealed the steady dissolution of Mn and Sb. Extended durability analysis confirmed that Mn-rich MnySb1-yOx materials are more active but dissolve at a faster rate than previously reported Sb-rich MnySb1-yOx alloys.
Collapse
Affiliation(s)
- Jacqueline
A. Dowling
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Zachary P. Ifkovits
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Azhar I. Carim
- Division
of Chemistry and Chemical Engineering and Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Jake M. Evans
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Madeleine C. Swint
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Alexandre Z. Ye
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Matthias H. Richter
- Division
of Engineering and Applied Sciences, California
Institute of Technology, Pasadena, California 91125, United States
| | - Anna X. Li
- Division
of Engineering and Applied Sciences, California
Institute of Technology, Pasadena, California 91125, United States
| | - Nathan S. Lewis
- Division
of Chemistry and Chemical Engineering and Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Zhuang S, Duan N, Xu F. Synergistic strategy of solute environment and phase control of Pb-based anodes to solve the activity-stability trade-off. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134119. [PMID: 38579581 DOI: 10.1016/j.jhazmat.2024.134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
The contradiction between the activity and stability of metal anodes exists extensively, especially in acid electrooxidation under industrial-level current density. Although the anode modification enhanced the initial activity of anodes, its long-term activity is limited by anode slime accumulation. Herein, a synergistic strategy, coupling the solute environment with the phase control of anodes, is proposed to achieve the trade-off between activity and stability of Pb-based anodes in concentrated sulfuric acid electrolysis. Non-exogenous Mn2+ motivated a series of positive behaviours of reactive-oxygen-species capture, anode reconstruction and corrosion-dependent activity alleviation. The synergistic effects, which are crystal phase-dependent, mainly benefit from the continuous self-healing ability of the specific crystal phase of MnO2 on the anodes by the coexisted Mn2+. Compared with Mn2+/α-MnO2, Mn2+/γ-MnO2 exhibited outperformed activity and stability in boosting oxygen evolution reaction (OER) and reducing hazardous pollutants, which resulted from the energy difference in the rate-determining step of OER and in the selectivity priority of Mn2+/MnO2 oxidation pathway. Interestingly, the pre-coated γ-MnO2 on the anode also presents excellent inheritance, guaranteeing the unchanged crystal phase of MnO2 and the high performance in ultra-low hazardous slime generation in subsequent Mn2+ oxidation. The sustainability of Mn2+/γ-MnO2 was proved in the operating hydrometallurgy conditions on Pb-based anodes. This strategy offers a promising approach for this common issue in electrooxidation-related areas.
Collapse
Affiliation(s)
- Siwei Zhuang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ning Duan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Fuyuan Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
24
|
Liu H, Wang Y, Tan P, Dos Santos EC, Holmes SM, Li H, Pan J, D'Agostino C. A Doping-Induced SrCo 0.4Fe 0.6O 3/CoFe 2O 4 Nanocomposite for Efficient Oxygen Evolution in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308948. [PMID: 38109148 DOI: 10.1002/smll.202308948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Perovskite and spinel oxides are promising alternatives to noble metal-based electrocatalysts for oxygen evolution reaction (OER). Herein, a novel perovskite/spinel nanocomposite comprised of SrCo0.4Fe0.6O3 and CoFe2O4 (SCF/CF) is prepared through a simple one-step method that incorporates iron doping into a SrCoO3- δ matrix, circumventing complex fabrication processes typical of these materials. At a Fe dopant content of 60%, the CoFe2O4 spinel phase is directly precipitated from the parent SrCo0.4Fe0.6O3 perovskite phase and the number of active B-site metals (Co/Fe) in the parent SCF can be maximized. This nanocomposite exhibits a remarkable OER activity in alkaline media with a small overpotentional of 294 mV at 10 mA cm-2. According to surface states analysis, the parent SCF perovskite remains in its pristine form under alkaline OER conditions, serving as a stable substrate, while the second spinel CF is covered by 5/8 monolayer (ML) O*, exhibiting considerable affinity toward the oxygen species involved in the OER. Analysis based on advanced OER microkinetic volcano model indicates that a 5/8 ML O* covered-CF is the origin for the remarkable activity of this nanocomposite. The results reported here significantly advance knowledge in OER and can boost application, scale-up and commercialisation of electrocatalytic technologies toward clean energy devices.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yuan Wang
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Pengfei Tan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Egon C Dos Santos
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Stuart M Holmes
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum-Università di Bologna, Via Terracini, 28, Bologna, 40131, Italy
| |
Collapse
|
25
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
26
|
Liu H, Zhang D, Wang Y, Li H. Reversible Hydrogen Electrode (RHE) Scale Dependent Surface Pourbaix Diagram at Different pH. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7632-7638. [PMID: 38552647 PMCID: PMC11008240 DOI: 10.1021/acs.langmuir.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
In the analysis of electrocatalysis mechanisms and the design of catalysts, the effect of electrochemistry-induced surface coverage is a critical consideration that should not be overlooked. The surface Pourbaix diagram emerges as a fundamental tool in this context, providing essential insights into the surface coverage of adsorbates generated via electrochemical potential-driven water activation. A classic surface Pourbaix diagram considers the pH effects by correcting the free energy of H+ ions by the concentration-dependent term: -kBT ln(10) × pH, which is independent of the reversible hydrogen electrode (RHE) scale. However, this is sometimes inconsistent with the experimentally observed potential-dependent surface coverage at an RHE scale, especially under high-pH conditions. Here, we derived the pH-dependent surface Pourbaix diagram at an RHE scale by considering the energetics computed by density functional theory with the Bayesian Error Estimation Functional with van der Waals corrections (BEEF-vdW), the electric field effects, the derived adsorption-induced dipole moment and polarizability, and the potential of zero-charge. Using Pt(111) as the typical example, we found that the surface coverage predicted by the proposed RHE-dependent surface Pourbaix diagram can significantly minimize the discrepancy between theory and experimental observations, especially under neutral-alkaline, moderate-potential conditions. This work provides a new methodology and establishes guidelines for the precise analysis of the surface coverage prior to the evaluation of the activity of an electrocatalyst.
Collapse
Affiliation(s)
- Heng Liu
- Advanced Institute for Materials
Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Di Zhang
- Advanced Institute for Materials
Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Yuan Wang
- Advanced Institute for Materials
Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Hao Li
- Advanced Institute for Materials
Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
27
|
Mo Q, Meng Y, Qin L, Shi C, Zhang HB, Yu X, Rong J, Hou PX, Liu C, Cheng HM, Li JC. Universal Sublimation Strategy to Stabilize Single-Metal Sites on Flexible Single-Wall Carbon-Nanotube Films with Strain-Enhanced Activities for Zinc-Air Batteries and Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16164-16174. [PMID: 38514249 DOI: 10.1021/acsami.3c19236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Single-metal-site catalysts have recently aroused extensive research in electrochemical energy fields such as zinc-air batteries and water splitting, but their preparation is still a huge challenge, especially in flexible catalyst films. Herein, we propose a sublimation strategy in which metal phthalocyanine molecules with defined isolated metal-N4 sites are gasified by sublimation and then deposited on flexible single-wall carbon nanotube (SWCNT) films by means of π-π coupling interactions. Specifically, iron phthalocyanine anchored on the SWCNT film prepared was directly used to boost the cathodic oxygen reduction reaction of the zinc-air battery, showing a high peak power density of 247 mW cm-2. Nickel phthalocyanine and cobalt phthalocyanine were, respectively, stabilized on SWCNT films as the anodic and cathodic electrocatalysts for water splitting, showing a low potential of 1.655 V at 10 mA cm-2. In situ Raman spectra and theoretical studies demonstrate that highly efficient activities originate from strain-induced metal phthalocyanine on SWCNTs. This work provides a universal preparation method for single-metal-site catalysts and innovative insights for electrocatalytic mechanisms.
Collapse
Affiliation(s)
- Qian Mo
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| | - Yu Meng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Qin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Chao Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hong-Bo Zhang
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaohua Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Ju Rong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jin-Cheng Li
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
28
|
Liu GQ, Yang Y, Zhang XL, Li HH, Yu PC, Gao MR, Yu SH. Porous Tellurium-Doped Ruthenium Dioxide Nanotubes for Enhanced Acidic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306914. [PMID: 38041488 DOI: 10.1002/smll.202306914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Electrocatalysts with high activity and durability for acidic oxygen evolution reaction (OER) play a crucial role in achieving cost-effective hydrogen production via proton exchange membrane water electrolysis. A novel electrocatalyst, Te-doped RuO2 (Te-RuO2) nanotubes, synthesized using a template-directed process, which significantly enhances the OER performance in acidic media is reported. The Te-RuO2 nanotubes exhibit remarkable OER activity in acidic media, requiring an overpotential of only 171 mV to achieve an anodic current density of 10 mA cm-2. Furthermore, they maintain stable chronopotentiometric performance under 10 mA cm-2 in acidic media for up to 50 h. Based on the experimental results and density functional calculations, this significant improvement in OER performance to the synergistic effect of large specific surface area and modulated electronic structure resulting from the doping of Te cations is attributed.
Collapse
Affiliation(s)
- Guo-Qiang Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Yang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao-Long Zhang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hui-Hui Li
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Peng-Cheng Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Min-Rui Gao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
29
|
Ping X, Liu Y, Zheng L, Song Y, Guo L, Chen S, Wei Z. Locking the lattice oxygen in RuO 2 to stabilize highly active Ru sites in acidic water oxidation. Nat Commun 2024; 15:2501. [PMID: 38509091 PMCID: PMC10954744 DOI: 10.1038/s41467-024-46815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Ruthenium dioxide is presently the most active catalyst for the oxygen evolution reaction (OER) in acidic media but suffers from severe Ru dissolution resulting from the high covalency of Ru-O bonds triggering lattice oxygen oxidation. Here, we report an interstitial silicon-doping strategy to stabilize the highly active Ru sites of RuO2 while suppressing lattice oxygen oxidation. The representative Si-RuO2-0.1 catalyst exhibits high activity and stability in acid with a negligible degradation rate of ~52 μV h-1 in an 800 h test and an overpotential of 226 mV at 10 mA cm-2. Differential electrochemical mass spectrometry (DEMS) results demonstrate that the lattice oxygen oxidation pathway of the Si-RuO2-0.1 was suppressed by ∼95% compared to that of commercial RuO2, which is highly responsible for the extraordinary stability. This work supplied a unique mentality to guide future developments on Ru-based oxide catalysts' stability in an acidic environment.
Collapse
Affiliation(s)
- Xinyu Ping
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Yongduo Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Lixia Zheng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Yang Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Lin Guo
- State Key Laboratory of Catalytic Materials and Reaction Engineering, SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, China
| | - Siguo Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China.
| | - Zidong Wei
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| |
Collapse
|
30
|
Kogler A, Sharma N, Tiburcio D, Gong M, Miller DM, Williams KS, Chen X, Tarpeh WA. Long-Term Robustness and Failure Mechanisms of Electrochemical Stripping for Wastewater Ammonia Recovery. ACS ENVIRONMENTAL AU 2024; 4:89-105. [PMID: 38525023 PMCID: PMC10958661 DOI: 10.1021/acsenvironau.3c00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 03/26/2024]
Abstract
Nitrogen in wastewater has negative environmental, human health, and economic impacts but can be recovered to reduce the costs and environmental impacts of wastewater treatment and chemical production. To recover ammonia/ammonium (total ammonia nitrogen, TAN) from urine, we operated electrochemical stripping (ECS) for over a month, achieving 83.4 ± 1.5% TAN removal and 73.0 ± 2.9% TAN recovery. With two reactors, we recovered sixteen 500-mL batches (8 L total) of ammonium sulfate (20.9 g/L TAN) approaching commercial fertilizer concentrations (28.4 g/L TAN) and often having >95% purity. While evaluating the operation and maintenance needs, we identified pH, full-cell voltage, product volume, and water flux into the product as informative process monitoring parameters that can be inexpensively and rapidly measured. Characterization of fouled cation exchange and omniphobic membranes informs cleaning and reactor modifications to reduce fouling with organics and calcium/magnesium salts. To evaluate the impact of urine collection and storage on ECS, we conducted experiments with urine at different levels of dilution with flush water, extents of divalent cation precipitation, and degrees of hydrolysis. ECS effectively treated urine under all conditions, but minimizing flush water and ensuring storage until complete hydrolysis would enable energy-efficient TAN recovery. Our experimental results and cost analysis motivate a multifaceted approach to improving ECS's technical and economic viability by extending component lifetimes, decreasing component costs, and reducing energy consumption through material, reactor, and process engineering. In summary, we demonstrated urine treatment as a foothold for electrochemical nutrient recovery from wastewater while supporting the applicability of ECS to seven other wastewaters with widely varying characteristics. Our findings will facilitate the scale-up and deployment of electrochemical nutrient recovery technologies, enabling a circular nitrogen economy that fosters sanitation provision, efficient chemical production, and water resource protection.
Collapse
Affiliation(s)
- Anna Kogler
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Neha Sharma
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94205, United States
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| | - Diana Tiburcio
- Department
of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Meili Gong
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| | - Dean M. Miller
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| | - Kindle S. Williams
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| | - Xi Chen
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| | - William A. Tarpeh
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| |
Collapse
|
31
|
Li W, Zhang H. Questing for High-Performance Electrocatalysts for Oxygen Evolution Reaction: Importance of Chemical Complexity, Active Phase, and Surface-Adsorbed Species. CHEMSUSCHEM 2024; 17:e202300927. [PMID: 38200675 DOI: 10.1002/cssc.202300927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Indexed: 01/12/2024]
Abstract
Rational design of advanced electrocatalysts for oxygen evolution reaction (OER) is of vital importance for the development of sustainable energy. Entropy engineering is emerging as a promising approach for the design of efficient OER electrocatalysts. However, other multi-anion/cation electrocatalysts with compositional complexity, particularly the medium-entropy and other non-equimolar cation/anion complex electrocatalysts, have not received noteworthy attention. In this perspective, we review and highlight the importance of compositionally complex catalysts and propose a concept of chemical complexity to correlate the OER catalytic activity with the contributions from the pairwise cation-anion interactions. Then, we offer a new view on the active catalytic sites being the hydroxylated reacting interface in an alkaline solution. Further, we argue that the common discrepancies between computationally predicted OER activities and experimental results stem from lack of considerations of surface-adsorbed species in modeling the active catalytic phases or sites. This perspective would facilitate achieving a renewed and profound understanding of the OER mechanism and promote efficient design of OER electrocatalysts for renewable energy conversion and storage.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P.R. China
| | - Hengzhong Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P.R. China
| |
Collapse
|
32
|
Jia X, Yu Z, Liu F, Liu H, Zhang D, Campos dos Santos E, Zheng H, Hashimoto Y, Chen Y, Wei L, Li H. Identifying Stable Electrocatalysts Initialized by Data Mining: Sb 2 WO 6 for Oxygen Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305630. [PMID: 38059832 PMCID: PMC10837344 DOI: 10.1002/advs.202305630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Data mining from computational materials database has become a popular strategy to identify unexplored catalysts. Herein, the opportunities and challenges of this strategy are analyzed by investigating a discrepancy between data mining and experiments in identifying low-cost metal oxide (MO) electrocatalysts. Based on a search engine capable of identifying stable MOs at the pH and potentials of interest, a series of MO electrocatalysts is identified as potential candidates for various reactions. Sb2 WO6 attracted the attention among the identified stable MOs in acid. Based on the aqueous stability diagram, Sb2 WO6 is stable under oxygen reduction reaction (ORR) in acidic media but rather unstable under high-pH ORR conditions. However, this contradicts to the subsequent experimental observation in alkaline ORR conditions. Based on the post-catalysis characterizations, surface state analysis, and an advanced pH-field coupled microkinetic modeling, it is found that the Sb2 WO6 surface will undergo electrochemical passivation under ORR potentials and form a stable and 4e-ORR active surface. The results presented here suggest that though data mining is promising for exploring electrocatalysts, a refined strategy needs to be further developed by considering the electrochemistry-induced surface stability and activity.
Collapse
Affiliation(s)
- Xue Jia
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
| | - Zixun Yu
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
- School of Chemical and Biomolecule EngineeringThe University of SydneyDarlingtonNSW2006Australia
| | - Fangzhou Liu
- School of Chemical and Biomolecule EngineeringThe University of SydneyDarlingtonNSW2006Australia
| | - Heng Liu
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
| | - Di Zhang
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
- State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Egon Campos dos Santos
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
| | - Hao Zheng
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
| | | | - Yuan Chen
- School of Chemical and Biomolecule EngineeringThe University of SydneyDarlingtonNSW2006Australia
| | - Li Wei
- School of Chemical and Biomolecule EngineeringThe University of SydneyDarlingtonNSW2006Australia
| | - Hao Li
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
| |
Collapse
|
33
|
Wu Q, Gao Q, Wang X, Qi Y, Shen L, Tai X, Yang F, He X, Wang Y, Yao Y, Ren Y, Luo Y, Sun S, Zheng D, Liu Q, Alfaifi S, Sun X, Tang B. Boosting electrocatalytic performance via electronic structure regulation for acidic oxygen evolution. iScience 2024; 27:108738. [PMID: 38260173 PMCID: PMC10801216 DOI: 10.1016/j.isci.2023.108738] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
High-purity hydrogen produced by water electrolysis has become a sustainable energy carrier. Due to the corrosive environments and strong oxidizing working conditions, the main challenge faced by acidic water oxidation is the decrease in the activity and stability of anodic electrocatalysts. To address this issue, efficient strategies have been developed to design electrocatalysts toward acidic OER with excellent intrinsic performance. Electronic structure modification achieved through defect engineering, doping, alloying, atomic arrangement, surface reconstruction, and constructing metal-support interactions provides an effective means to boost OER. Based on introducing OER mechanism commonly present in acidic environments, this review comprehensively summarizes the effective strategies for regulating the electronic structure to boost the activity and stability of catalytic materials. Finally, several promising research directions are discussed to inspire the design and synthesis of high-performance acidic OER electrocatalysts.
Collapse
Affiliation(s)
- Qian Wu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Qingping Gao
- Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, Shandong, China
| | - Xingpeng Wang
- Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, Shandong, China
| | - Yuping Qi
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Li Shen
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Xishi Tai
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Fan Yang
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610068, Sichuan, China
| | - Sulaiman Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
- Laoshan Laboratory, Qingdao 266237, Shandong, China
| |
Collapse
|
34
|
Li W, Xiao D, Gong X, Xu X, Ma F, Wang Z, Wang P, Liu Y, Dai Y, Zheng Z, Fan Y, Huang B. Electrocatalytic upgrading of polyethylene terephthalate plastic to formic acid at an industrial-scale current density via Ni-MOF@MnCo-OH catalyst. CHEMICAL ENGINEERING JOURNAL 2024; 480:148087. [DOI: 10.1016/j.cej.2023.148087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
|
35
|
Liang R, Fan J, Guo Y, Huang X, Lei F, Ji DK, Hao W. In situ fabrication of sporoid-like flexible electrodes via Fe-regulated electron density for highly efficient and ultra-stable overall seawater splitting. J Colloid Interface Sci 2023; 652:1170-1183. [PMID: 37657217 DOI: 10.1016/j.jcis.2023.08.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Construction of ultra-stable, flexible, efficient and economical catalytic electrodes is of great significance for the seawater electrolysis for hydrogen production. This work is grounded in a one-step mild electroless plating method to construct industrial-grade super-stable overall water splitting (OWS) catalytic electrodes (Fe1-Ni1P@GF) by growing loose and porous spore-like Fe1-Ni1P conductive catalysts in situ on flexible glass fibre (GF) insulating substrates with precise elemental regulation. Cost-effective Fe regulation boosts the electronic conductivity and charge transfer ability to achieve the construction of high intrinsic activity and strong electron density electrodes. Fe1-Ni1P@GF exhibits remarkable catalytic performance in hydrogen and oxygen evolution reaction (HER and OER), providing current densities of 10 mA cm-2 for HER and 100 mA cm-2 for OER at overpotentials of 51 and 216 mV, respectively. Moreover, it achieves 10 mA cm-2 at 1.42 V for OWS, and exhibits stable operation for over 1440 h at 1000 mA cm-2 in quasi-industrial environment of 6.0 M KOH + 0.5 M NaCl, without any performance degradation. This strategy enables the preparation of universally applicable P-based electrodes (ternary, quaternary, etc.) and large-area flexible electrodes (paper or cotton), significantly expands the practicality of the electrodes and demonstrating promising potential for industrial applications.
Collapse
Affiliation(s)
- Rikai Liang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yanhui Guo
- Department of Materials Science, Fudan University, Songhu Road 2005, Yangpu District, Shanghai 200433, PR China
| | - Xinke Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Fengjing Lei
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ding-Kun Ji
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, PR China.
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
36
|
Li L, Wang Z, She X, Pan L, Xi C, Wang D, Yi J, Yang J. Ni-modified FeOOH integrated electrode by self-source corrosion of nickel foam for high-efficiency electrochemical water oxidation. J Colloid Interface Sci 2023; 652:789-797. [PMID: 37619258 DOI: 10.1016/j.jcis.2023.08.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
The construction and application of efficient iron oxyhydroxide (FeOOH) is still a challenge in the field of energy conversion. Here, a facile preparation method is developed by directly utilizing commercialized nickel foams (NF) as the nickel source and the supporting framework, as well as the ingenious use of etching effect originating from acidic medium in the process of iron salt hydrolysis. As a result, a Ni-modulated FeOOH integrated electrode (Ni-FeOOH/NF) is obtained. Unexpectedly, the implementation of our scheme effectively activates the catalytic intrinsic activity of FeOOH, successfully transforming the inert NF into an integrated electrode with high oxygen evolution reaction (OER) performance. Specifically, the Ni-FeOOH/NF exhibits the overpotential of 277 mV (@100 mA cm-2) and superior stability for OER. Additionally, the as-prepared Ni-FeOOH/NF electrode could also operate steadily for OER in alkaline adjusted saline water. Our research provides a new idea for the preparation of satisfactory Fe-based metal materials as OER electrocatalysts.
Collapse
Affiliation(s)
- Li Li
- Analysis and Testing Center, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhaolong Wang
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaojie She
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Li Pan
- Analysis and Testing Center, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunyan Xi
- Analysis and Testing Center, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dan Wang
- Analysis and Testing Center, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
37
|
Sun H, Chen S, Zhang B, Wang J, Yao J, Li D, Yuan G. Cation-doped sea-urchin-like MnO 2 for electrocatalytic overall water splitting. Dalton Trans 2023; 52:17407-17415. [PMID: 37946582 DOI: 10.1039/d3dt03059h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
It is necessary to take full account of the activity, selectivity, dynamic performance, economic benefits, and environmental impact of the catalysts in the overall water splitting of electrocatalysis for the reasonable design of electrocatalysts. Designing nanostructures of catalysts and optimizing defect engineering are considered environmentally friendly and cost-effective electrocatalyst synthesis strategies. Herein, we report that metal cations regulate the microstructure of sea-urchin-like MnO2 and act as dopants to cause the lattice expansion of MnO2, resulting in crystal surface defects. The valence unsaturated Mn4+/Mn3+ greatly promotes the electrocatalytic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The optimal Al-MnO2 showed that the overpotential is 390 and 170 mV in the process of catalyzing OER and HER, respectively, at a current density of 10 mA cm-2. It is exciting to note that after 5000 cycles of Al-MnO2 within the kinetic potential range of OER and HER, its performance remained almost unchanged. This work provides a simple, efficient, and environmentally friendly route for the design of efficient integrated water-splitting electrocatalysts.
Collapse
Affiliation(s)
- Haolu Sun
- Anhui Vocational And Technical College, Hefei, 230011, China.
- School of Basic Medicine, Anhui Medical University, Hefei, 230011, China
| | - Songlin Chen
- Anhui Vocational And Technical College, Hefei, 230011, China.
| | - Bo Zhang
- Anhui Vocational And Technical College, Hefei, 230011, China.
| | - Jing Wang
- Wuhai Industrial Energy Conservation Supervision and Guarantee Center, 016000, China
| | - Jun Yao
- Anhui Vocational And Technical College, Hefei, 230011, China.
| | - Deming Li
- Anhui Vocational And Technical College, Hefei, 230011, China.
| | - Guojun Yuan
- Anhui Vocational And Technical College, Hefei, 230011, China.
- Xinjiang University, Urumqi, 830000, China
| |
Collapse
|
38
|
Deng L, Hung SF, Lin ZY, Zhang Y, Zhang C, Hao Y, Liu S, Kuo CH, Chen HY, Peng J, Wang J, Peng S. Valence Oscillation of Ru Active Sites for Efficient and Robust Acidic Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305939. [PMID: 37671910 DOI: 10.1002/adma.202305939] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/05/2023] [Indexed: 09/07/2023]
Abstract
The continuous oxidation and leachability of active sites in Ru-based catalysts hinder practical application in proton-exchange membrane water electrolyzers (PEMWE). Herein, robust inter-doped tungsten-ruthenium oxide heterostructures [(Ru-W)Ox ] fabricated by sequential rapid oxidation and metal thermomigration processes are proposed to enhance the activity and stability of acidic oxygen evolution reaction (OER). The introduction of high-valent W species induces the valence oscillation of the Ru sites during OER, facilitating the cyclic transition of the active metal oxidation states and maintaining the continuous operation of the active sites. The preferential oxidation of W species and electronic gain of Ru sites in the inter-doped heterostructure significantly stabilize RuOx on WOx substrates beyond the Pourbaix stability limit of bare RuO2 . Furthermore, the asymmetric Ru-O-W active units are generated around the heterostructure interface to adsorb the oxygen intermediates synergistically, enhancing the intrinsic OER activity. Consequently, the inter-doped (Ru-W)Ox heterostructures not only demonstrate an overpotential of 170 mV at 10 mA cm-2 and excellent stability of 300 h in acidic electrolytes but also exhibit the potential for practical applications, as evidenced by the stable operation at 0.5 A cm-2 for 300 h in PEMWE.
Collapse
Affiliation(s)
- Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Zih-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuyi Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jian Peng
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
39
|
Zheng X, Yang J, Li P, Wang Q, Wu J, Zhang E, Chen S, Zhuang Z, Lai W, Dou S, Sun W, Wang D, Li Y. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. SCIENCE ADVANCES 2023; 9:eadi8025. [PMID: 37851800 PMCID: PMC10584348 DOI: 10.1126/sciadv.adi8025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
The anode corrosion induced by the harsh acidic and oxidative environment greatly restricts the lifespan of catalysts. Here, we propose an antioxidation strategy to mitigate Ir dissolution by triggering strong electronic interaction via elaborately constructing a heterostructured Ir-Sn pair-site catalyst. The formation of Ir-Sn dual-site at the heterointerface and the resulting strong electronic interactions considerably reduce d-band holes of Ir species during both the synthesis and the oxygen evolution reaction processes and suppress their overoxidation, enabling the catalyst with substantially boosted corrosion resistance. Consequently, the optimized catalyst exhibits a high mass activity of 4.4 A mgIr-1 at an overpotential of 320 mV and outstanding long-term stability. A proton-exchange-membrane water electrolyzer using this catalyst delivers a current density of 2 A cm-2 at 1.711 V and low degradation in an accelerated aging test. Theoretical calculations unravel that the oxygen radicals induced by the π* interaction between Ir 5d-O 2p might be responsible for the boosted activity and durability.
Collapse
Affiliation(s)
- Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng Li
- School of Science, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Qishun Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Erhuan Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weihong Lai
- Institute for Superconducting and Electronic Materials, Australia Institute for Innovation Material, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
40
|
Zhang JZ, Zhang Z, Zhang HB, Mei Y, Zhang F, Hou PX, Liu C, Cheng HM, Li JC. Prussian-Blue-Analogue-Derived Ultrathin Co 2P-Fe 2P Nanosheets for Universal-pH Overall Water Splitting. NANO LETTERS 2023; 23:8331-8338. [PMID: 37647133 DOI: 10.1021/acs.nanolett.3c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The great interest in large-scale electrochemical water splitting toward clean hydrogen has spurred large numbers of studies on developing cost-efficient and high-performance bifunctional electrocatalysts. Here, a Prussian-blue-analogue-derived method is proposed to prepare honeycomb-like ultrathin and heterogeneous Co2P-Fe2P nanosheets on nickel foam, showing low overpotentials of 0.080, 0.088, and 0.109 V for the hydrogen evolution reaction (HER) at 10 mA cm-2 as well as 0.290, 0.370, and 0.730 V for the oxygen evolution reaction (OER) at 50 mA cm-2 in alkaline, acidic, and neutral electrolytes, respectively. When directly applied for universal-pH water electrolysis, excellent performances are achieved especially at ultralow voltages of 1.45 V at 10 mA cm-2, 1.66 V at 100 mA cm-2, and 1.79 V at 500 mA cm-2 under alkaline conditions. In situ Raman spectroscopy measurements demonstrate that the excellent HER performance can be attributed to heterogeneous Co2P-Fe2P while the ultrahigh alkaline OER performance originates from reconstruction-induced oxyhydroxides.
Collapse
Affiliation(s)
- Ju-Zhen Zhang
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Zichu Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Hong-Bo Zhang
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Yi Mei
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Feng Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Peng-Xiang Hou
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Jin-Cheng Li
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| |
Collapse
|
41
|
Yang W, Jia Z, Chen L, Zhou B, Zhang D, Han Y, Gao Z, Li H. Effects of intermetal distance on the electrochemistry-induced surface coverage of M-N-C dual-atom catalysts. Chem Commun (Camb) 2023; 59:10761-10764. [PMID: 37589047 DOI: 10.1039/d3cc03208f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The often-overlooked electrocatalytic bridge-site poisoning of the emerging dual-atom catalysts (DACs) has aroused broad concerns very recently. Herein, based on surface Pourbaix analysis, we identified a significant change in the electrochemistry-induced surface coverages of DACs upon changing the intermetal distance. We found a pronounced effect of the intermetal distance on the electrochemical potential window and the type of pre-covered adsorbate, suggesting an interesting avenue to tune the electrocatalytic function of DACs.
Collapse
Affiliation(s)
- Weijie Yang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| | - Zhenhe Jia
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| | - Liugang Chen
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| | - Binghui Zhou
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.
| | - Yulan Han
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Zhengyang Gao
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
42
|
Liu H, Zhang D, Holmes SM, D'Agostino C, Li H. Origin of the superior oxygen reduction activity of zirconium nitride in alkaline media. Chem Sci 2023; 14:9000-9009. [PMID: 37655027 PMCID: PMC10466308 DOI: 10.1039/d3sc01827j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
The anion exchange membrane fuel cell (AEMFC), which can operate in alkaline media, paves a promising avenue for the broad application of earth-abundant element based catalysts. Recent pioneering studies found that zirconium nitride (ZrN) with low upfront capital cost can exhibit high activity, even surpassing that of Pt in alkaline oxygen reduction reaction (ORR). However, the origin of its superior ORR activity was not well understood. Herein, we propose a new theoretical framework to uncover the ORR mechanism of ZrN by integrating surface state analysis, electric field effect simulations, and pH-dependent microkinetic modelling. The ZrN surface was found to be covered by ∼1 monolayer (ML) HO* under ORR operating conditions, which can accommodate the adsorbates in a bridge-site configuration for the ORR. Electric field effect simulations demonstrate that O* adsorption on a 1 ML HO* covered surface only induces a consistently small dipole moment change, resulting in a moderate bonding strength that can account for the superior activity. Based on the identified surface state of ZrN and electric field simulations, pH-dependent microkinetic modelling found that ZrN reaches the Sabatier optimum of the kinetic ORR volcano model in alkaline media, with the simulated polarization curves being in excellent agreement with the experimental data of ZrN and Pt/C. Finally, we show that this theoretical framework can lead to a good explanation for the alkaline oxygen electrocatalysis of other transition metal nitrites such as Fe3N, TiN, and HfN. In summary, this study proposes a new framework to rationalize and design transition metal nitrides for alkaline ORR.
Collapse
Affiliation(s)
- Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| | - Stuart M Holmes
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna Via Terracini, 28 40131 Bologna Italy
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
43
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
44
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
45
|
Deng L, Liu S, Liu D, Chang YM, Li L, Li C, Sun Y, Hu F, Chen HY, Pan H, Peng S. Activity-Stability Balance: The Role of Electron Supply Effect of Support in Acidic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302238. [PMID: 37191328 DOI: 10.1002/smll.202302238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Developing efficient and durable electrocatalysts for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzers represents a significant challenge. Herein, the cobalt-ruthenium oxide nano-heterostructures are successfully synthesized on carbon cloth (CoOx /RuOx -CC) for acidic OER through a simple and fast solution combustion strategy. The rapid oxidation process endows CoOx /RuOx -CC with abundant interfacial sites and defect structures, which enhances the number of active sites and the charge transfer at the electrolyte-catalyst interface, promoting the OER kinetics. Moreover, the electron supply effect of the CoOx support allows electrons to transfer from Co to Ru sites during the OER process, which is beneficial to alleviate the ion leaching and over-oxidation of Ru sites, improving the catalyst activity and stability. As a self-supported electrocatalyst, CoOx /RuOx -CC displays an ultralow overpotential of 180 mV at 10 mA cm-2 for OER. Notably, the PEM electrolyzer using CoOx /RuOx -CC as the anode can be operated at 100 mA cm-2 stably for 100 h. Mechanistic analysis shows that the strong catalyst-support interaction is beneficial to redistribute the electronic structure of RuO bond to weaken its covalency, thereby optimizing the binding energy of OER intermediates and lowering the reaction energy barrier.
Collapse
Affiliation(s)
- Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuyi Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Zhuhai, Macao SAR, 999078, China
| | - Yu-Ming Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Zhuhai, Macao SAR, 999078, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
46
|
Wang AB, Zhang X, Xu HJ, Gao LJ, Li L, Cao R, Hao QY. Engineering Cu/NiCu LDH Heterostructure Nanosheet Arrays for Highly-Efficient Water Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093372. [PMID: 37176251 PMCID: PMC10179677 DOI: 10.3390/ma16093372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
The development of stable and efficient electrocatalysts for oxygen evolution reaction is of great significance for electro-catalytic water splitting. Bimetallic layered double hydroxides (LDHs) are promising OER catalysts, in which NiCu LDH has excellent stability compared with the most robust NiFe LDH, but the OER activity is not satisfactory. Here, we designed a NiCu LDH heterostructure electrocatalyst (Cu/NiCu LDH) modified by Cu nanoparticles which has excellent activity and stability. The Cu/NiCu LDH electrocatalyst only needs a low over-potential of 206 mV and a low Tafel slope of 86.9 mV dec-1 at a current density of 10 mA cm-2 and maintains for 70 h at a high current density of 100 mA cm-2 in 1M KOH. X-ray photoelectron spectroscopy (XPS) showed that there was a strong electronic interaction between Cu nanoparticles and NiCu LDH. Density functional theory (DFT) calculations show that the electronic coupling between Cu nanoparticles and NiCu LDH can effectively improve the intrinsic OER activity by optimizing the conductivity and the adsorption energy of oxygen-containing intermediates.
Collapse
Affiliation(s)
- Ao-Bing Wang
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Xin Zhang
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Hui-Juan Xu
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Li-Jun Gao
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Li Li
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Rui Cao
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Qiu-Yan Hao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
47
|
Huang Y, Chen H, Zhang B. Constructing Molybdenum Phosphide@Cobalt Phosphide Heterostructure Nanoarrays on Nickel Foam as a Bifunctional Electrocatalyst for Enhanced Overall Water Splitting. Molecules 2023; 28:molecules28093647. [PMID: 37175057 PMCID: PMC10180104 DOI: 10.3390/molecules28093647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The construction of multi-level heterostructure materials is an effective way to further the catalytic activity of catalysts. Here, we assembled self-supporting MoS2@Co precursor nanoarrays on the support of nickel foam by coupling the hydrothermal method and electrostatic adsorption method, followed by a low-temperature phosphating strategy to obtain Mo4P3@CoP/NF electrode materials. The construction of the Mo4P3@CoP heterojunction can lead to electron transfer from the Mo4P3 phase to the CoP phase at the phase interface region, thereby optimizing the charge structure of the active sites. Not only that, the introduction of Mo4P3 will make water molecules preferentially adsorb on its surface, which will help to reduce the water molecule decomposition energy barrier of the Mo4P3@CoP heterojunction. Subsequently, H* overflowed to the surface of CoP to generate H2 molecules, which finally showed a lower water molecule decomposition energy barrier and better intermediate adsorption energy. Based on this, the material shows excellent HER/OER dual-functional catalytic performance under alkaline conditions. It only needs 72 mV and 238 mV to reach 10 mA/cm2 for HER and OER, respectively. Meanwhile, in a two-electrode system, only 1.54 V is needed to reach 10 mA/cm2, which is even better than the commercial RuO2/NF||Pt/C/NF electrode pair. In addition, the unique self-supporting structure design ensures unimpeded electron transmission between the loaded nanoarray and the conductive substrate. The loose porous surface design is not only conducive to the full exposure of more catalytic sites on the surface but also facilitates the smooth escape of gas after production so as to improve the utilization rate of active sites. This work has important guiding significance for the design and development of high-performance bifunctional electrolytic water catalysts.
Collapse
Affiliation(s)
- Yingchun Huang
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Hongming Chen
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Busheng Zhang
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| |
Collapse
|
48
|
Zhu B, Dong B, Wang F, Yang Q, He Y, Zhang C, Jin P, Feng L. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides. Nat Commun 2023; 14:1686. [PMID: 36973279 PMCID: PMC10042884 DOI: 10.1038/s41467-023-37441-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
For nickel-based catalysts, in-situ formed nickel oxyhydroxide has been generally believed as the origin for anodic biomass electro-oxidations. However, rationally understanding the catalytic mechanism still remains challenging. In this work, we demonstrate that NiMn hydroxide as the anodic catalyst can enable methanol-to-formate electro-oxidation reaction (MOR) with a low cell-potential of 1.33/1.41 V at 10/100 mA cm-2, a Faradaic efficiency of nearly 100% and good durability in alkaline media, remarkably outperforming NiFe hydroxide. Based on a combined experimental and computational study, we propose a cyclic pathway that consists of reversible redox transitions of NiII-(OH)2/NiIII-OOH and a concomitant MOR. More importantly, it is proved that the NiIII-OOH provides combined active sites including NiIII and nearby electrophilic oxygen species, which work in a cooperative manner to promote either spontaneous or non-spontaneous MOR process. Such a bifunctional mechanism can well account for not only the highly selective formate formation but also the transient presence of NiIII-OOH. The different catalytic activities of NiMn and NiFe hydroxides can be attributed to their different oxidation behaviors. Thus, our work provides a clear and rational understanding of the overall MOR mechanism on nickel-based hydroxides, which is beneficial for advanced catalyst design.
Collapse
Affiliation(s)
- Botao Zhu
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China
| | - Bo Dong
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China
| | - Feng Wang
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China
| | - Qifeng Yang
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China
| | - Yunpeng He
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China
| | - Cunjin Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Peng Jin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China.
| | - Lai Feng
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China.
| |
Collapse
|
49
|
Pan S, Li R, Wang J, Zhang Q, Wang M, Shi B, Wang P, Zhao Y, Zhang X. Floating Seawater Splitting Device Based on NiFeCrMo Metal Hydroxide Electrocatalyst and Perovskite/Silicon Tandem Solar Cells. ACS NANO 2023; 17:4539-4550. [PMID: 36808966 DOI: 10.1021/acsnano.2c10477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photovoltaic hydrogen production from seawater is of great significance. Challenges of solar-driven seawater electrolysis, for example, competing among chlorine evolution reactions, chloride corrosion, and catalyst poisoning, seriously restrict the development of this technology. In this paper, we report a two-dimensional nanosheet quaternary metal hydroxide catalyst composed of Ni, Fe, Cr, and Mo elements. By in situ electrochemical activation, a partial Mo element was leached and morphologically transformed in the catalyst. The higher metal valence states and many O vacancies were obtained, providing excellent catalytic activity and corrosion resistance in overall alkaline seawater electrolysis operating at an industrial-required current density of 500 mA cm-2 over 1000 h under 1.82 V low voltages at room temperature. The floating solar seawater splitting device shows a 20.61 ± 0.77% efficiency of solar energy to hydrogen (STH). This work demonstrates the development of efficient solar seawater electrolysis devices and potentially promotes research on clean energy conversion.
Collapse
Affiliation(s)
- Sanjiang Pan
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Renjie Li
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Jin Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Qixing Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Manjing Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Biao Shi
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Pengyang Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| |
Collapse
|
50
|
Design of molecular MNC dual-atom catalysts for nitrogen reduction starting from surface state analysis. J Colloid Interface Sci 2023; 640:983-989. [PMID: 36913836 DOI: 10.1016/j.jcis.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Under electrocatalytic conditions, the state of a catalyst surface (e.g., adsorbate coverage) can be very different from a pristine form due to the existing conversion equilibrium between water and H- and O-containing adsorbates. Dismissing the analysis of the catalyst surface state under operating conditionsmay lead to misleading guidelines for experiments. Given that confirming the actual active site of the catalyst under operating conditions is indispensable to providing practical guidance for experiments, herein, we analyzed the relations between the Gibbs free energy and the potential of a new type of molecular metal-nitrogen-carbon (MNC) dual-atom catalysts (DACs) with a unique 5 N-coordination environment, by spin-polarized density functional theory (DFT) and surface Pourbaix diagram calculations. Analyzing the derived surface Pourbaix diagrams, we screened out three catalysts, N3-Ni-Ni-N2, N3-Co-Ni-N2, and N3-Ni-Co-N2, to further study the activity of nitrogen reduction reaction (NRR). The results display that N3-Co-Ni-N2 is a promising NRR catalyst with a relatively low ΔG of 0.49 eV and slow kinetics of the competing hydrogen evolution. This work proposes a new strategy to guide DAC experiments more precisely: the analysis of the surface occupancy state of the catalysts under electrochemical conditions should be performed before activity analysis.
Collapse
|