1
|
Absmeier E, Heyd F. Temperature-controlled molecular switches in mammalian cells. J Biol Chem 2024:107865. [PMID: 39374780 DOI: 10.1016/j.jbc.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Temperature is an omnipresent factor impacting on many aspects of life. In bacteria and ectothermic eukaryotes various thermosensors and temperature-controlled switches have been described, ranging from RNA thermometers controlling the heat shock response in prokaryotes to temperature-dependent sex determination in reptiles, likely controlled through protein phosphorylation. However, the impact of subtle changes of human core body temperature are only beginning to be acknowledged. In this review, we will discuss thermosensing mechanisms and their functional implications with a focus on mammalian cells, also in the context of disease conditions. We will point out open questions and possible future directions for this emerging research field, which, in addition to molecular-mechanistic insights, holds the potential for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Eva Absmeier
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of mRNA translation and turnover, Takustrasse 6, 14195 Berlin, Germany.
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Karam JAQ, Fréreux C, Mohanty BK, Dalton AC, Dincman TA, Palanisamy V, Howley BV, Howe PH. The RNA-binding protein PCBP1 modulates transcription by recruiting the G-quadruplex-specific helicase DHX9. J Biol Chem 2024; 300:107830. [PMID: 39342995 DOI: 10.1016/j.jbc.2024.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
PCBP1, polycytosine (poly(C)) binding protein 1, an RNA and single-stranded DNA (ssDNA) binding protein, binds poly(C) DNA tracts but it remains unclear whether its ability to bind ssDNA contributes to transcriptional regulation. Here, we report that PCBP1's DNA binding sites are enriched at transcription start sites and that by binding to promoter regions, PCBP1 regulates transcription in addition to splicing and translation. At PCBP1 target genes, we show that PCBP1 interacts with several RNA/DNA hybrid (R-loop) associated G-quadruplex resolving helicases. Furthermore, we find that PCBP1 interacts with RNA Helicase A (DHX9) to modulate transcription by regulating DHX9 accumulation and activity. PCBP1 depletion leads to defects in R-loop processing and dysregulation of transcription of PCBP1 target genes. PCBP1's high sequence specificity and interaction with helicases suggest that its mechanism in transcription involves guiding helicases to specific loci during transcription, thereby modulating their activity.
Collapse
Affiliation(s)
- Joseph A Q Karam
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Cécile Fréreux
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina, USA
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Division of Molecular Medicine, Department of Internal Medicine, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
3
|
De-Paula RB, Bacolla A, Syed A, Tainer JA. Enriched G4 forming repeats in the human genome are associated with robust well-coordinated transcription and reduced cancer transcriptome variation. J Biol Chem 2024; 300:107822. [PMID: 39341500 DOI: 10.1016/j.jbc.2024.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/01/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024] Open
Abstract
Non-B DNA G-quadruplex (G4) structures with guanine (G) runs of 2 to 4 repeats can trigger opposing experimental transcriptional impacts. Here, we used bioinformatic algorithms to comprehensively assess correlations of steady-state RNA transcript levels with all putative G4 sequence (pG4) locations genome-wide in three mammalian genomes and in normal and tumor human tissues. The human pG4-containing gene set displays higher expression levels than the set without pG4, supporting and extending some prior observations. pG4 enrichment at transcription start sites (TSSs) in human, but not chimpanzee and mouse genomes, suggests possible positive selection pressure for pG4 at human TSS, potentially driving genome rewiring and gene expression divergence between human and chimpanzee. Comprehensive bioinformatic analyses revealed lower pG4-containing gene set variability in humans and among different pG4 genes in tumors. As G4 stabilizers are under therapeutic consideration for cancer and pathogens, such distinctions between human normal and tumor G4s along with other species merit attention. Furthermore, in germline and cancer sequences, the most mutagenic pG4 mapped to regions promoting alternative DNA structures. Overall findings establish high pG4 at TSS as a human genome attribute statistically associated with robust well-coordinated transcription and reduced cancer transcriptome variation with implications for biology, model organisms, and medicine.
Collapse
Affiliation(s)
- Ruth B De-Paula
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
4
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
5
|
Teng X, Hu D, Dai Y, Jing H, Hu W, Zhang Q, Zhang N, Li J. Discovery of A G-Quadruplex Unwinder That Unleashes the Translation of G-Quadruplex-Containing mRNA without Inducing DNA Damage. Angew Chem Int Ed Engl 2024; 63:e202407353. [PMID: 38953247 DOI: 10.1002/anie.202407353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
To explore the mechanisms and therapeutic strategies for G-quadruplex (G4) mediated diseases, it is crucial to manipulate and intervene in intracellular G4 structures using small molecular tools. While hundreds of G4 stabilizers have been developed, there is a significant gap in the availability of G4 unwinding agents. Here, we propose a strategy to disrupt G-quadruplexes by forming G-C hydrogen bonds with chemically modified cytidine trimers. We validated a good G4 unwinder, the 2'-F cytidine trimer (2'-F C3). 2'-F C3 does not inhibit cell growth nor cause severe DNA damage at a concentration below 10 μM. Moreover, 2'-F C3 does not affect gene transcription nor RNA splicing, while it significantly enhances the translation of G4-containing mRNA and upregulates RNA splicing, RNA processing and cell cycle pathways. The discovery of this G4 unwinder provides a functional tool for the chemical modulation of G4s in living cells.
Collapse
Affiliation(s)
- Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
- Beijing Life Science Academy, Beijing, 102209, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Difei Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yicong Dai
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Haitao Jing
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenxuan Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qiushuang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Na Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
- Beijing Life Science Academy, Beijing, 102209, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Luo L, Jea JDY, Wang Y, Chao PW, Yen L. Control of mammalian gene expression by modulation of polyA signal cleavage at 5' UTR. Nat Biotechnol 2024; 42:1454-1466. [PMID: 38168982 DOI: 10.1038/s41587-023-01989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/13/2023] [Indexed: 01/05/2024]
Abstract
The ability to control gene expression in mammalian cells is crucial for safe and efficacious gene therapies and for elucidating gene functions. Current gene regulation systems have limitations such as harmful immune responses or low efficiency. We describe the pA regulator, an RNA-based switch that controls mammalian gene expression through modulation of a synthetic polyA signal (PAS) cleavage introduced into the 5' UTR of a transgene. The cleavage is modulated by a 'dual-mechanism'-(1) aptamer clamping to inhibit PAS cleavage and (2) drug-induced alternative splicing that removes the PAS, both activated by drug binding. This RNA-based methodology circumvents the immune responses observed in other systems and achieves a 900-fold induction with an EC50 of 0.5 µg ml-1 tetracycline (Tc), which is well within the FDA-approved dose range. The pA regulator effectively controls the luciferase transgene in live mice and the endogenous CD133 gene in human cells, in a dose-dependent and reversible manner with long-term stability.
Collapse
Affiliation(s)
- Liming Luo
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jocelyn Duen-Ya Jea
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yan Wang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Pei-Wen Chao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Laising Yen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Schmok JC, Jain M, Street LA, Tankka AT, Schafer D, Her HL, Elmsaouri S, Gosztyla ML, Boyle EA, Jagannatha P, Luo EC, Kwon EJ, Jovanovic M, Yeo GW. Large-scale evaluation of the ability of RNA-binding proteins to activate exon inclusion. Nat Biotechnol 2024; 42:1429-1441. [PMID: 38168984 PMCID: PMC11389820 DOI: 10.1038/s41587-023-02014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
RNA-binding proteins (RBPs) modulate alternative splicing outcomes to determine isoform expression and cellular survival. To identify RBPs that directly drive alternative exon inclusion, we developed tethered function luciferase-based splicing reporters that provide rapid, scalable and robust readouts of exon inclusion changes and used these to evaluate 718 human RBPs. We performed enhanced cross-linking immunoprecipitation, RNA sequencing and affinity purification-mass spectrometry to investigate a subset of candidates with no prior association with splicing. Integrative analysis of these assays indicates surprising roles for TRNAU1AP, SCAF8 and RTCA in the modulation of hundreds of endogenous splicing events. We also leveraged our tethering assays and top candidates to identify potent and compact exon inclusion activation domains for splicing modulation applications. Using these identified domains, we engineered programmable fusion proteins that outperform current artificial splicing factors at manipulating inclusion of reporter and endogenous exons. This tethering approach characterizes the ability of RBPs to induce exon inclusion and yields new molecular parts for programmable splicing control.
Collapse
Affiliation(s)
- Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Manya Jain
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alex T Tankka
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sara Elmsaouri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Evan A Boyle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Lahnsteiner A, Ellmer V, Oberlercher A, Liutkeviciute Z, Schönauer E, Paulweber B, Aigner E, Risch A. G-quadruplex forming regions in GCK and TM6SF2 are targets for differential DNA methylation in metabolic disease and hepatocellular carcinoma patients. Sci Rep 2024; 14:20215. [PMID: 39215018 PMCID: PMC11364803 DOI: 10.1038/s41598-024-70749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.Pyrosequencing of 148 blood samples from a nested cohort study revealed significant differential methylation in GCK and TM6SF2 in MetD patients versus healthy controls. Furthermore, these regions harbor hypervariable and differentially methylated CpGs also in hepatocellular carcinoma versus normal tissue samples from The Cancer Genome Atlas (TCGA). Permanganate/S1 nuclease footprinting with direct adapter ligation (PDAL-Seq), native polyacrylamide DNA gel electrophoresis and circular dichroism (CD) spectroscopy revealed the formation of G4 structures in these regions and demonstrated that their topology and stability is affected by DNA methylation. Detailed analyses including histone marks, chromatin conformation capture data, and luciferase reporter assays, highlighted the cell-type specific regulatory function of the target regions. Based on our analyses, we hypothesize that changes in DNA methylation lead to topological changes, especially in GCK exon 7, and cause the activation of alternative regulatory elements or potentially play a role in alternative splicing.Our analyses provide a new view on the mechanisms underlying the progression of MetDs and their link to hepatocellular carcinomas, unveiling non-B DNA structures as important key players already in early disease stages.
Collapse
Affiliation(s)
- Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
- Cancer Cluster Salzburg, Salzburg, Austria.
| | - Victoria Ellmer
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Anna Oberlercher
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Zita Liutkeviciute
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Esther Schönauer
- Division of Structural Biology, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angela Risch
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
9
|
Park D, Chung WC, Gong S, Ravichandran S, Lee GM, Han M, Kim KK, Ahn JH. G-quadruplex as an essential structural element in cytomegalovirus replication origin. Nat Commun 2024; 15:7353. [PMID: 39191758 PMCID: PMC11350156 DOI: 10.1038/s41467-024-51797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
G-quadruplex (G4) structures are found in eukaryotic cell replication origins, but their role in origin function remains unclear. In this study G4 motifs are found in the lytic DNA replication origin (oriLyt) of human cytomegalovirus (HCMV) and recombinant viruses show that a G4 motif in oriLyt essential region I (ER-I) is necessary for viral growth. Replication assays of oriLyt-containing plasmids and biochemical/biophysical analyses show that G4 formation in ER-I is crucial for viral DNA replication. G4 pull-down analysis identifies viral DNA replication factors, such as IE2, UL84, and UL44, as G4-binding proteins. In enzyme-linked immunosorbent assays, specific G4-binding ligands inhibit G4 binding by the viral proteins. The Epstein-Barr virus oriLyt core element also forms a stable G4 that could substitute for the oriLyt ER-I G4 in HCMV. These results demonstrate that viral G4s in replication origins represent an essential structural element in recruiting replication factors and might be a therapeutic target against viral infections.
Collapse
Affiliation(s)
- Daegyu Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Woo-Chang Chung
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Shuang Gong
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | | | - Gwang Myeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Minji Han
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Zhang R, Wang Y, Wang C, Sun X, Mergny JL. G-quadruplexes as pivotal components of cis-regulatory elements in the human genome. BMC Biol 2024; 22:177. [PMID: 39183303 PMCID: PMC11346177 DOI: 10.1186/s12915-024-01971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Cis-regulatory elements (CREs) are crucial for regulating gene expression, and G-quadruplexes (G4s), as prototypal non-canonical DNA structures, may play a role in this regulation. However, the relationship between G4s and CREs, especially with non-promoter-like functional elements, requires further systematic investigation. We aimed to investigate the associations between G4s and human cCREs (candidate CREs) inferred from the Encyclopedia of DNA Elements (ENCODE) data. RESULTS We found that G4s are prominently enriched in most types of cCREs, especially those with promoter-like signatures (PLS). The co-occurrence of CTCF signals with H3K4me3 or H3K27ac signals strengthens the association between cCREs and G4s. Genetic variants in G4s, particularly within their G-runs, exhibit higher regulatory potential and deleterious effects compared to cCREs. The G-runs within G4s near transcriptional start sites (TSSs) are more evolutionarily constrained compared to G-runs in cCREs, while those far from the TSS are relatively less conserved. The presence of G4s is often linked to a more favorable local chromatin environment for the activation and execution of regulatory function of cCREs, potentially attributable to the formation of G4 secondary structures. Finally, we discovered that G4-associated cCREs exhibit widespread activation in a variety of cancers. CONCLUSIONS Our study suggests that G4s are integral components of human cis-regulatory elements, extending beyond their potential role in promoters. The G4 primary sequences are associated with the localization of CREs, while the G4 structures are linked to the activation of these elements. Therefore, we propose defining G4s as pivotal regulatory elements in the human genome.
Collapse
Affiliation(s)
- Rongxin Zhang
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yuqi Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Cheng Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
11
|
Li H, Ding Z, Fang ZY, Long N, Ang HY, Zhang Y, Fan YJ, Xu YZ. Conserved intronic secondary structures with concealed branch sites regulate alternative splicing of poison exons. Nucleic Acids Res 2024; 52:6002-6016. [PMID: 38499485 PMCID: PMC11162794 DOI: 10.1093/nar/gkae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Alternative splicing (AS) generates multiple RNA isoforms and increases the complexities of transcriptomes and proteomes. However, it remains unclear how RNA structures contribute to AS regulation. Here, we systematically search transcriptomes for secondary structures with concealed branch sites (BSs) in the alternatively spliced introns and predict thousands of them from six organisms, of which many are evolutionarily conserved. Intriguingly, a highly conserved stem-loop structure with concealed BSs is found in animal SF3B3 genes and colocalizes with a downstream poison exon (PE). Destabilization of this structure allows increased usage of the BSs and results in enhanced PE inclusion in human and Drosophila cells, leading to decreased expression of SF3B3. This structure is experimentally validated using an in-cell SHAPE-MaP assay. Through RNA interference screens of 28 RNA-binding proteins, we find that this stem-loop structure is sensitive to U2 factors. Furthermore, we find that SF3B3 also facilitates DNA repair and protects genome stability by enhancing interaction between ERCC6/CSB and arrested RNA polymerase II. Importantly, both Drosophila and human cells with the secondary structure mutated by genome editing exhibit altered DNA repair in vivo. This study provides a novel and common mechanism for AS regulation of PEs and reveals a physiological function of SF3B3 in DNA repair.
Collapse
Affiliation(s)
- Hao Li
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Zhan Ding
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Zhuo-Ya Fang
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Ni Long
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Hao-Yang Ang
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Yu Zhang
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei 430072, China
| |
Collapse
|
12
|
Zhuk AS, Stepchenkova EI, Zotova IV, Belopolskaya OB, Pavlov YI, Kostroma II, Gritsaev SV, Aksenova AY. G-Quadruplex Forming DNA Sequence Context Is Enriched around Points of Somatic Mutations in a Subset of Multiple Myeloma Patients. Int J Mol Sci 2024; 25:5269. [PMID: 38791307 PMCID: PMC11121618 DOI: 10.3390/ijms25105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, which remains incurable despite recent advances in treatment strategies. Like other forms of cancer, MM is characterized by genomic instability, caused by defects in DNA repair. Along with mutations in DNA repair genes and genotoxic drugs used to treat MM, non-canonical secondary DNA structures (four-stranded G-quadruplex structures) can affect accumulation of somatic mutations and chromosomal abnormalities in the tumor cells of MM patients. Here, we tested the hypothesis that G-quadruplex structures may influence the distribution of somatic mutations in the tumor cells of MM patients. We sequenced exomes of normal and tumor cells of 11 MM patients and analyzed the data for the presence of G4 context around points of somatic mutations. To identify molecular mechanisms that could affect mutational profile of tumors, we also analyzed mutational signatures in tumor cells as well as germline mutations for the presence of specific SNPs in DNA repair genes or in genes regulating G-quadruplex unwinding. In several patients, we found that sites of somatic mutations are frequently located in regions with G4 context. This pattern correlated with specific germline variants found in these patients. We discuss the possible implications of these variants for mutation accumulation and specificity in MM and propose that the extent of G4 context enrichment around somatic mutation sites may be a novel metric characterizing mutational processes in tumors.
Collapse
Affiliation(s)
- Anna S. Zhuk
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
- Institute of Applied Computer Science, ITMO University, 197101 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Irina V. Zotova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
| | - Olesya B. Belopolskaya
- Resource Center “Bio-Bank Center”, Research Park of St. Petersburg State University, 198504 St. Petersburg, Russia;
- The Laboratory of Genogeography, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ivan I. Kostroma
- City Hospital No. 15, 198205 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | | | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
| |
Collapse
|
13
|
De Silva N, Lehman N, Fargason T, Paul T, Zhang Z, Zhang J. Unearthing a novel function of SRSF1 in binding and unfolding of RNA G-quadruplexes. Nucleic Acids Res 2024; 52:4676-4690. [PMID: 38567732 PMCID: PMC11077049 DOI: 10.1093/nar/gkae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
SRSF1 governs splicing of over 1500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity. With our success in solving the insolubility problem of SRSF1, we can explore the unknown RNA-binding landscape of SRSF1. We find that SRSF1 RS prefers purine over pyrimidine. Moreover, SRSF1 binds to the G-quadruplex (GQ) from the ARPC2 mRNA, with both RRMs and RS being crucial. Our binding assays show that the traditional RNA-binding sites on the RRM tandem and the Arg in RS are responsible for GQ binding. Interestingly, our FRET and circular dichroism data reveal that SRSF1 unfolds the ARPC2 GQ, with RS leading unfolding and RRMs aiding. Our saturation transfer difference NMR results discover that Arg residues in SRSF1 RS interact with the guanine base but not other nucleobases, underscoring the uniqueness of the Arg/guanine interaction. Our luciferase assays confirm that SRSF1 can alleviate the inhibitory effect of GQ on gene expression in the cell. Given the prevalence of RNA GQ and SR proteins, our findings unveil unexplored SR protein functions with broad implications in RNA splicing and translation.
Collapse
Affiliation(s)
- Naiduwadura Ivon Upekala De Silva
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| | - Nathan Lehman
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| | - Talia Fargason
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| | - Trenton Paul
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| | - Zihan Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| | - Jun Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| |
Collapse
|
14
|
Baek A, Lee GE, Golconda S, Rayhan A, Manganaris AA, Chen S, Tirumuru N, Yu H, Kim S, Kimmel C, Zablocki O, Sullivan MB, Addepalli B, Wu L, Kim S. Single-molecule epitranscriptomic analysis of full-length HIV-1 RNAs reveals functional roles of site-specific m 6As. Nat Microbiol 2024; 9:1340-1355. [PMID: 38605174 PMCID: PMC11087264 DOI: 10.1038/s41564-024-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/15/2024] [Indexed: 04/13/2024]
Abstract
Although the significance of chemical modifications on RNA is acknowledged, the evolutionary benefits and specific roles in human immunodeficiency virus (HIV-1) replication remain elusive. Most studies have provided only population-averaged values of modifications for fragmented RNAs at low resolution and have relied on indirect analyses of phenotypic effects by perturbing host effectors. Here we analysed chemical modifications on HIV-1 RNAs at the full-length, single RNA level and nucleotide resolution using direct RNA sequencing methods. Our data reveal an unexpectedly simple HIV-1 modification landscape, highlighting three predominant N6-methyladenosine (m6A) modifications near the 3' end. More densely installed in spliced viral messenger RNAs than in genomic RNAs, these m6As play a crucial role in maintaining normal levels of HIV-1 RNA splicing and translation. HIV-1 generates diverse RNA subspecies with distinct m6A ensembles, and maintaining multiple of these m6As on its RNAs provides additional stability and resilience to HIV-1 replication, suggesting an unexplored viral RNA-level evolutionary strategy.
Collapse
Affiliation(s)
- Alice Baek
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Ga-Eun Lee
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA
| | - Sarah Golconda
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Asif Rayhan
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Anastasios A Manganaris
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA
- Department of Computer Science and Engineering, Ohio State University, Columbus, OH, USA
| | - Shuliang Chen
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - Nagaraja Tirumuru
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - Hannah Yu
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Shihyoung Kim
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Christopher Kimmel
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA
| | - Olivier Zablocki
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sanggu Kim
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA.
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA.
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA.
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Majocha MR, Jackson DE, Ha NH, Amin R, Pangrácová M, Ross CR, Yang HH, Lee MP, Hunter KW. Resf1 is a compound G4 quadruplex-associated tumor suppressor for triple negative breast cancer. PLoS Genet 2024; 20:e1011236. [PMID: 38722825 PMCID: PMC11081379 DOI: 10.1371/journal.pgen.1011236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/27/2024] [Indexed: 05/13/2024] Open
Abstract
Patients with ER-negative breast cancer have the worst prognosis of all breast cancer subtypes, often experiencing rapid recurrence or progression to metastatic disease shortly after diagnosis. Given that metastasis is the primary cause of mortality in most solid tumors, understanding metastatic biology is crucial for effective intervention. Using a mouse systems genetics approach, we previously identified 12 genes associated with metastatic susceptibility. Here, we extend those studies to identify Resf1, a poorly characterized gene, as a novel metastasis susceptibility gene in ER- breast cancer. Resf1 is a large, unstructured protein with an evolutionarily conserved intron-exon structure, but with poor amino acid conservation. CRISPR or gene trap mouse models crossed to the Polyoma Middle-T antigen genetically engineered mouse model (MMTV-PyMT) demonstrated that reduction of Resf1 resulted in a significant increase in tumor growth, a shortened overall survival time, and increased incidence and number of lung metastases, consistent with patient data. Furthermore, an analysis of matched tail and primary tissues revealed loss of the wildtype copy in tumor tissue, consistent with Resf1 being a tumor suppressor. Mechanistic analysis revealed a potential role of Resf1 in transcriptional control through association with compound G4 quadruplexes in expressed sequences, particularly those associated with ribosomal biogenesis. These results suggest that loss of Resf1 enhances tumor progression in ER- breast cancer through multiple alterations in both transcriptional and translational control.
Collapse
Affiliation(s)
- Megan R. Majocha
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Devin E. Jackson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Ngoc-Han Ha
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ruhul Amin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marie Pangrácová
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christina R. Ross
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maxwell P. Lee
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kent W. Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
De Magis A, Schult P, Schönleber A, Linke R, Ludwig KU, Kümmerer BM, Paeschke K. TMPRSS2 isoform 1 downregulation by G-quadruplex stabilization induces SARS-CoV-2 replication arrest. BMC Biol 2024; 22:5. [PMID: 38185627 PMCID: PMC10773119 DOI: 10.1186/s12915-023-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND SARS-CoV-2 infection depends on the host cell factors angiotensin-converting enzyme 2, ACE2, and the transmembrane serinprotease 2, TMPRSS2. Potential inhibitors of these proteins would be ideal targets against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Our data opens the possibility that changes within TMPRSS2 can modulate the outcome during a SARS-CoV-2 infection. RESULTS We reveal that TMPRSS2 acts not only during viral entry but has also an important role during viral replication. In addition to previous functions for TMPRSS2 during viral entry, we determined by specific downregulation of distinct isoforms that only isoform 1 controls and supports viral replication. G-quadruplex (G4) stabilization by chemical compounds impacts TMPRSS2 gene expression. Here we extend and in-depth characterize these observations and identify that a specific G4 in the first exon of the TMPRSS2 isoform 1 is particular targeted by the G4 ligand and affects viral replication. Analysis of potential single nucleotide polymorphisms (SNPs) reveals that a reported SNP at this G4 in isoform 1 destroys the G4 motif and makes TMPRSS2 ineffective towards G4 treatment. CONCLUSION These findings uncover a novel mechanism in which G4 stabilization impacts SARS-CoV-2 replication by changing TMPRSS2 isoform 1 gene expression.
Collapse
Affiliation(s)
- Alessio De Magis
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Philipp Schult
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Antonia Schönleber
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Rebecca Linke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Beate M Kümmerer
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127, Bonn, Germany
| | - Katrin Paeschke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
17
|
Xu Y, Komiyama M. G-Quadruplexes in Human Telomere: Structures, Properties, and Applications. Molecules 2023; 29:174. [PMID: 38202757 PMCID: PMC10780218 DOI: 10.3390/molecules29010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
G-quadruplexes, intricate four-stranded structures composed of G-tetrads formed by four guanine bases, are prevalent in both DNA and RNA. Notably, these structures play pivotal roles in human telomeres, contributing to essential cellular functions. Additionally, the existence of DNA:RNA hybrid G-quadruplexes adds a layer of complexity to their structural diversity. This review provides a comprehensive overview of recent advancements in unraveling the intricacies of DNA and RNA G-quadruplexes within human telomeres. Detailed insights into their structural features are presented, encompassing the latest developments in chemical approaches designed to probe these G-quadruplex structures. Furthermore, this review explores the applications of G-quadruplex structures in targeting human telomeres. Finally, the manuscript outlines the imminent challenges in this evolving field, setting the stage for future investigations.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
18
|
Dhahri H, Fondufe-Mittendorf YN. Exploring the interplay between PARP1 and circRNA biogenesis and function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1823. [PMID: 37957925 PMCID: PMC11089078 DOI: 10.1002/wrna.1823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023]
Abstract
PARP1 (poly-ADP-ribose polymerase 1) is a multidomain protein with a flexible and self-folding structure that allows it to interact with a wide range of biomolecules, including nucleic acids and target proteins. PARP1 interacts with its target molecules either covalently via PARylation or non-covalently through its PAR moieties induced by auto-PARylation. These diverse interactions allow PARP1 to participate in complex regulatory circuits and cellular functions. Although the most studied PARP1-mediated functions are associated with DNA repair and cellular stress response, subsequent discoveries have revealed additional biological functions. Based on these findings, PARP1 is now recognized as a major modulator of gene expression. Several discoveries show that this multifunctional protein has been intimately connected to several steps of mRNA biogenesis, from transcription initiation to mRNA splicing, polyadenylation, export, and translation of mRNA to proteins. Nevertheless, our understanding of PARP1's involvement in the biogenesis of both coding and noncoding RNA, notably circular RNA (circRNA), remains restricted. In this review, we outline the possible roles of PARP1 in circRNA biogenesis. A full examination of the regulatory roles of PARP1 in nuclear processes with an emphasis on circRNA may reveal new avenues to control dysregulation implicated in the pathogenesis of several diseases such as neurodegenerative disorders and cancers. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | |
Collapse
|
19
|
Le Sénéchal R, Keruzoré M, Quillévéré A, Loaëc N, Dinh VT, Reznichenko O, Guixens-Gallardo P, Corcos L, Teulade-Fichou MP, Granzhan A, Blondel M. Alternative splicing of BCL-x is controlled by RBM25 binding to a G-quadruplex in BCL-x pre-mRNA. Nucleic Acids Res 2023; 51:11239-11257. [PMID: 37811881 PMCID: PMC10639069 DOI: 10.1093/nar/gkad772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/05/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023] Open
Abstract
BCL-x is a master regulator of apoptosis whose pre-mRNA is alternatively spliced into either a long (canonical) anti-apoptotic Bcl-xL isoform, or a short (alternative) pro-apoptotic Bcl-xS isoform. The balance between these two antagonistic isoforms is tightly regulated and overexpression of Bcl-xL has been linked to resistance to chemotherapy in several cancers, whereas overexpression of Bcl-xS is associated to some forms of diabetes and cardiac disorders. The splicing factor RBM25 controls alternative splicing of BCL-x: its overexpression favours the production of Bcl-xS, whereas its downregulation has the opposite effect. Here we show that RBM25 directly and specifically binds to GQ-2, an RNA G-quadruplex (rG4) of BCL-x pre-mRNA that forms at the vicinity of the alternative 5' splice site leading to the alternative Bcl-xS isoform. This RBM25/rG4 interaction is crucial for the production of Bcl-xS and depends on the RE (arginine-glutamate-rich) motif of RBM25, thus defining a new type of rG4-interacting domain. PhenDC3, a benchmark G4 ligand, enhances the binding of RBM25 to the GQ-2 rG4 of BCL-x pre-mRNA, thereby promoting the alternative pro-apoptotic Bcl-xS isoform and triggering apoptosis. Furthermore, the screening of a combinatorial library of 90 putative G4 ligands led to the identification of two original compounds, PhenDH8 and PhenDH9, superior to PhenDC3 in promoting the Bcl-xS isoform and apoptosis. Thus, favouring the interaction between RBM25 and the GQ-2 rG4 of BCL-x pre-mRNA represents a relevant intervention point to re-sensitize cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Oksana Reznichenko
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Pedro Guixens-Gallardo
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Laurent Corcos
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
20
|
De Silva NIU, Lehman N, Fargason T, Paul T, Zhang Z, Zhang J. Unearthing SRSF1's Novel Function in Binding and Unfolding of RNA G-Quadruplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.563137. [PMID: 37961538 PMCID: PMC10634998 DOI: 10.1101/2023.10.30.563137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
SRSF1 governs splicing of over 1,500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity. With our success in solving the insolubility problem of SRSF1, we can explore the unknown RNA-binding landscape of SRSF1. We find that SRSF1 RS prefers purine over pyrimidine. Moreover, SRSF1 binds to the G-quadruplex (GQ) from the ARPC2 mRNA, with both RRMs and RS being crucial. Our binding assays show that the traditional RNA-binding sites on the RRM tandem and the Arg in RS are responsible for GQ binding. Interestingly, our FRET and circular dichroism data reveal that SRSF1 unfolds the ARPC2 GQ, with RS leading unfolding and RRMs aiding. Our saturation transfer difference NMR results discover that Arg residues in SRSF1 RS interact with the guanine base but other nucleobases, underscoring the uniqueness of the Arg/guanine interaction. Our luciferase assays confirm that SRSF1 can alleviate the inhibitory effect of GQ on gene expression in the cell. Given the prevalence of RNA GQ and SR proteins, our findings unveil unexplored SR protein functions with broad implications in RNA splicing and translation.
Collapse
Affiliation(s)
- Naiduwadura Ivon Upekala De Silva
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Nathan Lehman
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Talia Fargason
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Trenton Paul
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Zihan Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Jun Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| |
Collapse
|
21
|
Turcotte MA, Bolduc F, Vannutelli A, Mitteaux J, Monchaud D, Perreault JP. Development of a highly optimized procedure for the discovery of RNA G-quadruplexes by combining several strategies. Biochimie 2023; 214:24-32. [PMID: 37479077 DOI: 10.1016/j.biochi.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
RNA G-quadruplexes (rG4s) are non-canonical secondary structures that are formed by the self-association of guanine quartets and that are stabilized by monovalent cations (e.g. potassium). rG4s are key elements in several post-transcriptional regulation mechanisms, including both messenger RNA (mRNA) and microRNA processing, mRNA transport and translation, to name but a few examples. Over the past few years, multiple high-throughput approaches have been developed in order to identify rG4s, including bioinformatic prediction, in vitro assays and affinity capture experiments coupled to RNA sequencing. Each individual approach had its limits, and thus yielded only a fraction of the potential rG4 that are further confirmed (i.e., there is a significant level of false positive). This report aims to benefit from the strengths of several existing approaches to identify rG4s with a high potential of being folded in cells. Briefly, rG4s were pulled-down from cell lysates using the biotinylated biomimetic G4 ligand BioTASQ and the sequences thus isolated were then identified by RNA sequencing. Then, a novel bioinformatic pipeline that included DESeq2 to identify rG4 enriched transcripts, MACS2 to identify rG4 peaks, rG4-seq to increase rG4 formation probability and G4RNA Screener to detect putative rG4s was performed. This workflow uncovers new rG4 candidates whose rG4-folding was then confirmed in vitro using an array of established biophysical methods. Clearly, this workflow led to the identification of novel rG4s in a highly specific and reliable manner.
Collapse
Affiliation(s)
- Marc-Antoine Turcotte
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - François Bolduc
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Anaïs Vannutelli
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS, UMR 6302, Dijon, 21078, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS, UMR 6302, Dijon, 21078, France
| | - Jean-Pierre Perreault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada.
| |
Collapse
|
22
|
Lejault P, Prudent L, Terrier MP, Perreault JP. Small molecule chaperones facilitate the folding of RNA G-quadruplexes. Biochimie 2023; 214:83-90. [PMID: 37666291 DOI: 10.1016/j.biochi.2023.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
RNA G-quadruplexes (rG4) have recently emerged as major regulatory elements in both mRNA and non-coding RNA. In order to investigate the biological roles of rG4 structures, chemists have developed a variety of highly specific and potent ligands. All of these ligands bind to the rG4s by stacking on top of them. The binding specificity is demonstrated by comparison to other structures such as duplex or three-way junctions. It remains unclear whether rG4-ligands merely stabilize fully formed rG4 structures, or if they actively participate in the folding of the rG4 structure through their association with an unfolded RNA sequence. In order to elucidate the innate steps of ligand-rG4 associations and mechanisms robust in vitro techniques, including FRET, electrophoretic mobility shift assays and reverse transcriptase stalling assays, were used to examine the capacity of five well-known G4 ligands to induce rG4 structures derived from either long non-coding RNAs or from synthetic RNAs. It was found that both PhenDC3 and PDS induce rG4 formation in single RNA strands. This discovery has important implications for the interpretation of RNA-seq experiments. Overall, in vitro data that can assist biochemists in selecting the optimal G4-ligands for their RNA cellular experiments are presented, and the effects induced by these ligands on the rG4s are also considered.
Collapse
Affiliation(s)
- Pauline Lejault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Louis Prudent
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michel-Pierre Terrier
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
23
|
Luo Y, Granzhan A, Marquevielle J, Cucchiarini A, Lacroix L, Amrane S, Verga D, Mergny JL. Guidelines for G-quadruplexes: I. In vitro characterization. Biochimie 2023; 214:5-23. [PMID: 36596406 DOI: 10.1016/j.biochi.2022.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Besides the well-known DNA double-helix, non-canonical nucleic acid structures regulate crucial biological activities. Among these oddities, guanine-rich DNA sequences can form unusual four-stranded secondary structures called G-quadruplexes (G4s). G4-prone sequences have been found in the genomes of most species, and G4s play important roles in essential processes such as transcription, replication, genome integrity and epigenetic regulation. Here, we present a short overview of G-quadruplexes followed by a detailed description of the biophysical and biochemical methods used to characterize G4s in vitro. The principles, experimental details and possible shortcomings of each method are discussed to provide a comprehensive view of the techniques used to study these structures. We aim to provide a set of guidelines for standardizing research on G-quadruplexes; these guidelines are not meant to be a dogmatic set of rules, but should rather provide useful information on the methods currently used to study these fascinating motifs.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
| | - Julien Marquevielle
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Anne Cucchiarini
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Laurent Lacroix
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Samir Amrane
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France.
| | - Jean-Louis Mergny
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
24
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
26
|
Dézé O, Ordanoska D, Rossille D, Miglierina E, Laffleur B, Cogné M. Unique repetitive nucleic acid structures mirror switch regions in the human IgH locus. Biochimie 2023; 214:167-175. [PMID: 37678746 DOI: 10.1016/j.biochi.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Immunoglobulin (Ig) genes carry the unique ability to be reshaped in peripheral B lymphocytes after these cells encounter a specific antigen. B cells can then further improve their affinity, acquire new functions as memory cells and eventually end up as antibody-secreting cells. Ig class switching is an important change that occurs in this context, thanks to local DNA lesions initiated by the enzyme activation-induced deaminase (AID). Several cis-acting elements of the Ig heavy (IgH) chain locus make it accessible to the AID-mediated lesions that promote class switch recombination (CSR). DNA repeats, with a non-template strand rich in G-quadruplexes (G4)-DNA, are prominent cis-targets of AID and define the so-called "switch" (S) regions specifically targeted for CSR. By analyzing the structure of the human IgH locus, we uncover that abundant DNA repeats, some with a putative G4-rich template strand, are additionally present in downstream portions of the IgH coding genes. These like-S (LS) regions stand as 3' mirror-images of S regions and also show analogies to some previously reported repeats associated with the IgH locus 3' super-enhancer. A regulatory role of LS repeats is strongly suggested by their specific localization close to exons encoding the membrane form of Ig molecules, and by their conservation during mammalian evolution.
Collapse
Affiliation(s)
- Ophélie Dézé
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, F-35000, Rennes, France
| | - Delfina Ordanoska
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, F-35000, Rennes, France
| | - Delphine Rossille
- Centre Hospitalier Universitaire de Rennes, SITI, Pôle Biologie, F-35033, Rennes, France
| | - Emma Miglierina
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, F-35000, Rennes, France
| | - Brice Laffleur
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, F-35000, Rennes, France
| | - Michel Cogné
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, F-35000, Rennes, France; Centre Hospitalier Universitaire de Rennes, SITI, Pôle Biologie, F-35033, Rennes, France.
| |
Collapse
|
27
|
Dai Y, Teng X, Zhang Q, Hou H, Li J. Advances and challenges in identifying and characterizing G-quadruplex-protein interactions. Trends Biochem Sci 2023; 48:894-909. [PMID: 37422364 DOI: 10.1016/j.tibs.2023.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
G-quadruplexes (G4s) are peculiar nucleic acid secondary structures formed by DNA or RNA and are considered as fundamental features of the genome. Many proteins can specifically bind to G4 structures. There is increasing evidence that G4-protein interactions involve in the regulation of important cellular processes, such as DNA replication, transcription, RNA splicing, and translation. Additionally, G4-protein interactions have been demonstrated to be potential targets for disease treatment. In order to unravel the detailed regulatory mechanisms of G4-binding proteins (G4BPs), biochemical methods for detecting G4-protein interactions with high specificity and sensitivity are highly demanded. Here, we review recent advances in screening and validation of new G4BPs and highlight both their features and limitations.
Collapse
Affiliation(s)
- Yicong Dai
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Xucong Teng
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Qiushuang Zhang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing 102209, China.
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China; Beijing Life Science Academy, Beijing 102209, China; Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
28
|
Mehta P, Chattopadhyay P, Ravi V, Tarai B, Budhiraja S, Pandey R. SARS-CoV-2 infection severity and mortality is modulated by repeat-mediated regulation of alternative splicing. Microbiol Spectr 2023; 11:e0135123. [PMID: 37604131 PMCID: PMC10580830 DOI: 10.1128/spectrum.01351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
Like single-stranded RNA viruses, SARS-CoV-2 hijacks the host transcriptional machinery for its own replication. Numerous traditional differential gene expression-based investigations have examined the diverse clinical symptoms caused by SARS-CoV-2 infection. The virus, on the other hand, also affects the host splicing machinery, causing host transcriptional dysregulation, which can lead to diverse clinical outcomes. Hence, in this study, we performed host transcriptome sequencing of 125 hospital-admitted COVID-19 patients to understand the transcriptomic differences between the severity sub-phenotypes of mild, moderate, severe, and mortality. We performed transcript-level differential expression analysis, investigated differential isoform usage, looked at the splicing patterns within the differentially expressed transcripts (DET), and elucidated the possible genome regulatory features. Our DTE analysis showed evidence of diminished transcript length and diversity as well as altered promoter site usage in the differentially expressed protein-coding transcripts in the COVID-19 mortality patients. We also investigated the potential mechanisms driving the alternate splicing and discovered a compelling differential enrichment of repeats in the promoter region and a specific enrichment of SINE (Alu) near the splicing sites of differentially expressed transcripts. These findings suggested a repeat-mediated plausible regulation of alternative splicing as a potential modulator of COVID-19 disease severity. In this work, we emphasize the role of scarcely elucidated functional role of alternative splicing in influencing COVID-19 disease severity sub-phenotypes, clinical outcomes, and its putative mechanism. IMPORTANCE The wide range of clinical symptoms reported during the COVID-19 pandemic inherently highlights the numerous factors that influence the progression and prognosis of SARS-CoV-2 infection. While several studies have investigated the host response and discovered immunological dysregulation during severe infection, most of them have the common theme of focusing only up to the gene level. Viruses, especially RNA viruses, are renowned for hijacking the host splicing machinery for their own proliferation, which inadvertently puts pressure on the host transcriptome, exposing another side of the host response to the pathogen challenge. Therefore, in this study, we examine host response at the transcript-level to discover a transcriptional difference that culminates in differential gene-level expression. Importantly, this study highlights diminished transcript diversity and possible regulation of transcription by differentially abundant repeat elements near the promoter region and splicing sites in COVID-19 mortality patients, which together with differentially expressed isoforms hold the potential to elaborate disease severity and outcome.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
29
|
Feng Y, He Z, Luo Z, Sperti FR, Valverde IE, Zhang W, Monchaud D. Side-by-side comparison of G-quadruplex (G4) capture efficiency of the antibody BG4 versus the small-molecule ligands TASQs. iScience 2023; 26:106846. [PMID: 37250775 PMCID: PMC10212998 DOI: 10.1016/j.isci.2023.106846] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
The search for G-quadruplex (G4)-forming sequences across the genome is motivated by their involvement in key cellular processes and their putative roles in dysregulations underlying human genetic diseases. Sequencing-based methods have been developed to assess the prevalence of DNA G4s genome wide, including G4-seq to detect G4s in purified DNA (in vitro) using the G4 stabilizer PDS, and G4 chromatin immunoprecipitation sequencing (G4 ChIP-seq) to detect G4s in in situ fixed chromatin (in vivo) using the G4-specific antibody BG4. We recently reported on G4-RNA precipitation and sequencing (G4RP-seq) to assess the in vivo prevalence of RNA G4 landscapes transcriptome wide using the small molecule BioTASQ. Here, we apply this technique for mapping DNA G4s in plants (rice) and compare the efficiency of this new technique, G4-DNA precipitation and sequencing, G4DP-seq, to that of BG4-DNA-IP-seq that we developed for mapping of DNA G4s in rice using BG4. By doing so, we compare the G4 capture ability of small-sized ligands (BioTASQ and BioCyTASQ) versus the antibody BG4.
Collapse
Affiliation(s)
- Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zexue He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zhenyu Luo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, P.R. China
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, Université de Bourgogne, Dijon, France
| | - Ibai E. Valverde
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, Université de Bourgogne, Dijon, France
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, P.R. China
| | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, Université de Bourgogne, Dijon, France
| |
Collapse
|
30
|
Li G, Su G, Wang Y, Wang W, Shi J, Li D, Sui G. Integrative genomic analyses of promoter G-quadruplexes reveal their selective constraint and association with gene activation. Commun Biol 2023; 6:625. [PMID: 37301913 PMCID: PMC10257653 DOI: 10.1038/s42003-023-05015-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
G-quadruplexes (G4s) regulate DNA replication and gene transcription, and are enriched in promoters without fully appreciated functional relevance. Here we show high selection pressure on putative G4 (pG4) forming sequences in promoters through investigating genetic and genomic data. Analyses of 76,156 whole-genome sequences reveal that G-tracts and connecting loops in promoter pG4s display lower or higher allele frequencies, respectively, than pG4-flanking regions, and central guanines (Gs) in G-tracts show higher selection pressure than other Gs. Additionally, pG4-promoters produce over 72.4% of transcripts, and promoter G4-containing genes are expressed at relatively high levels. Most genes repressed by TMPyP4, a G4-ligand, regulate epigenetic processes, and promoter G4s are enriched with gene activation histone marks, chromatin remodeler and transcription factor binding sites. Consistently, cis-expression quantitative trait loci (cis-eQTLs) are enriched in promoter pG4s and their G-tracts. Overall, our study demonstrates selective constraint of promoter G4s and reinforces their stimulative role in gene expression.
Collapse
Affiliation(s)
- Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Gongbo Su
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yunxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
31
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
32
|
Takemon Y, LeBlanc VG, Song J, Chan SY, Lee SD, Trinh DL, Ahmad ST, Brothers WR, Corbett RD, Gagliardi A, Moradian A, Cairncross JG, Yip S, Aparicio SAJR, Chan JA, Hughes CS, Morin GB, Gorski SM, Chittaranjan S, Marra MA. Multi-Omic Analysis of CIC's Functional Networks Reveals Novel Interaction Partners and a Potential Role in Mitotic Fidelity. Cancers (Basel) 2023; 15:2805. [PMID: 37345142 PMCID: PMC10216487 DOI: 10.3390/cancers15102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
CIC encodes a transcriptional repressor and MAPK signalling effector that is inactivated by loss-of-function mutations in several cancer types, consistent with a role as a tumour suppressor. Here, we used bioinformatic, genomic, and proteomic approaches to investigate CIC's interaction networks. We observed both previously identified and novel candidate interactions between CIC and SWI/SNF complex members, as well as novel interactions between CIC and cell cycle regulators and RNA processing factors. We found that CIC loss is associated with an increased frequency of mitotic defects in human cell lines and an in vivo mouse model and with dysregulated expression of mitotic regulators. We also observed aberrant splicing in CIC-deficient cell lines, predominantly at 3' and 5' untranslated regions of genes, including genes involved in MAPK signalling, DNA repair, and cell cycle regulation. Our study thus characterises the complexity of CIC's functional network and describes the effect of its loss on cell cycle regulation, mitotic integrity, and transcriptional splicing, thereby expanding our understanding of CIC's potential roles in cancer. In addition, our work exemplifies how multi-omic, network-based analyses can be used to uncover novel insights into the interconnected functions of pleiotropic genes/proteins across cellular contexts.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada;
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Véronique G. LeBlanc
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Jungeun Song
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Susanna Y. Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Stephen Dongsoo Lee
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Diane L. Trinh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Shiekh Tanveer Ahmad
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - William R. Brothers
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Richard D. Corbett
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Alessia Gagliardi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Annie Moradian
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - J. Gregory Cairncross
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stephen Yip
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Samuel A. J. R. Aparicio
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Jennifer A. Chan
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher S. Hughes
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Suganthi Chittaranjan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
33
|
Eleazer R, De Silva K, Andreeva K, Jenkins Z, Osmani N, Rouchka EC, Fondufe-Mittendorf Y. PARP1 Regulates Circular RNA Biogenesis though Control of Transcriptional Dynamics. Cells 2023; 12:1160. [PMID: 37190069 PMCID: PMC10136798 DOI: 10.3390/cells12081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a recently discovered class of RNAs derived from protein-coding genes that have important biological and pathological roles. They are formed through backsplicing during co-transcriptional alternative splicing; however, the unified mechanism that accounts for backsplicing decisions remains unclear. Factors that regulate the transcriptional timing and spatial organization of pre-mRNA, including RNAPII kinetics, the availability of splicing factors, and features of gene architecture, have been shown to influence backsplicing decisions. Poly (ADP-ribose) polymerase I (PARP1) regulates alternative splicing through both its presence on chromatin as well as its PARylation activity. However, no studies have investigated PARP1's possible role in regulating circRNA biogenesis. Here, we hypothesized that PARP1's role in splicing extends to circRNA biogenesis. Our results identify many unique circRNAs in PARP1 depletion and PARylation-inhibited conditions compared to the wild type. We found that while all genes producing circRNAs share gene architecture features common to circRNA host genes, genes producing circRNAs in PARP1 knockdown conditions had longer upstream introns than downstream introns, whereas flanking introns in wild type host genes were symmetrical. Interestingly, we found that the behavior of PARP1 in regulating RNAPII pausing is distinct between these two classes of host genes. We conclude that the PARP1 pausing of RNAPII works within the context of gene architecture to regulate transcriptional kinetics, and therefore circRNA biogenesis. Furthermore, this regulation of PARP1 within host genes acts to fine tune their transcriptional output with implications in gene function.
Collapse
Affiliation(s)
- Rebekah Eleazer
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (R.E.); (Z.J.)
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Kalpani De Silva
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA; (K.D.S.); (K.A.)
- Kentucky IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA;
| | - Kalina Andreeva
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA; (K.D.S.); (K.A.)
- Kentucky IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA;
| | - Zoe Jenkins
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (R.E.); (Z.J.)
| | - Nour Osmani
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Eric C. Rouchka
- Kentucky IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA;
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
34
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
35
|
Li F, Guo D, Xie T, Zhang S, Wang A, Li Y, Zhou J. G-quadruplex from precursor miR-1587 modulated its maturation and function. Int J Biol Macromol 2023; 231:123279. [PMID: 36657549 DOI: 10.1016/j.ijbiomac.2023.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/15/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
A certain proportion of pre-miRNAs, which contained potential G-quadruplex forming sequences, was found to act as a mediator to Dicer-mediated cleavage, and that the regulation of miRNA production and function may be achieved through the G-quadruplex structure. In this study, human precursor miR-1587 sequence was transfected after the incubation with different solution conditions (K+, TMPyP4, etc.). Firstly, the formation of G-quadruplex from precursor miR-1587 sequences was confirmed by CD and UV melting. The expression of miR-1587 level was then evaluated by Q-RT-PCR, and the results showed that the formation of G-quadruplex inhibited the miR-1587 maturation process, resulting in a reduced miR-1587 expression. Meanwhile the destabilization of G-quadruplex led to an increased miR-1587 expression by contrast. Then, the weakened inhibition of miR-1587 towards its target genes, such as TAGLN or NCOR1, was presented confirming by Q-RT-PCR and western blot. Molecular mechanism by dual-luciferase assays showed that the modulations of miR-1587 expression and function were due to the G-quadruplex structure transformation, but not the simple change of solution conditions. This study highlighted the importance of maintaining specific structures during miRNA biosynthesis and provided a way to alter the function of G-rich precursor miRNAs by modulating molecular conformation using ionic solutions or ligands.
Collapse
Affiliation(s)
- Fangyuan Li
- Medical Research Central, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China; Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China.
| | - Dan Guo
- Medical Research Central, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China; Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Ting Xie
- Medical Research Central, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China; Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Sumei Zhang
- Medical Research Central, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China; Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Anqi Wang
- Medical Research Central, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China; Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - YingXing Li
- Medical Research Central, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Jiang Zhou
- College of Chemistry and Molecular Engineering, Peking University, China
| |
Collapse
|
36
|
Martin-Trujillo A, Garg P, Patel N, Jadhav B, Sharp AJ. Genome-wide evaluation of the effect of short tandem repeat variation on local DNA methylation. Genome Res 2023; 33:184-196. [PMID: 36577521 PMCID: PMC10069470 DOI: 10.1101/gr.277057.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Short tandem repeats (STRs) contribute significantly to genetic diversity in humans, including disease-causing variation. Although the effect of STR variation on gene expression has been extensively assessed, their impact on epigenetics has been poorly studied and limited to specific genomic regions. Here, we investigated the hypothesis that some STRs act as independent regulators of local DNA methylation in the human genome and modify risk of common human traits. To address these questions, we first analyzed two independent data sets comprising PCR-free whole-genome sequencing (WGS) and genome-wide DNA methylation levels derived from whole-blood samples in 245 (discovery cohort) and 484 individuals (replication cohort). Using genotypes for 131,635 polymorphic STRs derived from WGS using HipSTR, we identified 11,870 STRs that associated with DNA methylation levels (mSTRs) of 11,774 CpGs (Bonferroni P < 0.001) in our discovery cohort, with 90% successfully replicating in our second cohort. Subsequently, through fine-mapping using CAVIAR we defined 585 of these mSTRs as the likely causal variants underlying the observed associations (fm-mSTRs) and linked a fraction of these to previously reported genome-wide association study signals, providing insights into the mechanisms underlying complex human traits. Furthermore, by integrating gene expression data, we observed that 12.5% of the tested fm-mSTRs also modulate expression levels of nearby genes, reinforcing their regulatory potential. Overall, our findings expand the catalog of functional sequence variants that affect genome regulation, highlighting the importance of incorporating STRs in future genetic association analysis and epigenetics data for the interpretation of trait-associated variants.
Collapse
Affiliation(s)
- Alejandro Martin-Trujillo
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, New York 10029, USA
| | - Paras Garg
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, New York 10029, USA
| | - Nihir Patel
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, New York 10029, USA
| | - Bharati Jadhav
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, New York 10029, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, New York 10029, USA
| |
Collapse
|
37
|
Roles of RNA-binding proteins in neurological disorders, COVID-19, and cancer. Hum Cell 2023; 36:493-514. [PMID: 36528839 PMCID: PMC9760055 DOI: 10.1007/s13577-022-00843-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) have emerged as important players in multiple biological processes including transcription regulation, splicing, R-loop homeostasis, DNA rearrangement, miRNA function, biogenesis, and ribosome biogenesis. A large number of RBPs had already been identified by different approaches in various organisms and exhibited regulatory functions on RNAs' fate. RBPs can either directly or indirectly interact with their target RNAs or mRNAs to assume a key biological function whose outcome may trigger disease or normal biological events. They also exert distinct functions related to their canonical and non-canonical forms. This review summarizes the current understanding of a wide range of RBPs' functions and highlights their emerging roles in the regulation of diverse pathways, different physiological processes, and their molecular links with diseases. Various types of diseases, encompassing colorectal carcinoma, non-small cell lung carcinoma, amyotrophic lateral sclerosis, and Severe acute respiratory syndrome coronavirus 2, aberrantly express RBPs. We also highlight some recent advances in the field that could prompt the development of RBPs-based therapeutic interventions.
Collapse
|
38
|
Apostolidi M, Stamatopoulou V. Aberrant splicing in human cancer: An RNA structural code point of view. Front Pharmacol 2023; 14:1137154. [PMID: 36909167 PMCID: PMC9995731 DOI: 10.3389/fphar.2023.1137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Alternative splicing represents an essential process that occurs widely in eukaryotes. In humans, most genes undergo alternative splicing to ensure transcriptome and proteome diversity reflecting their functional complexity. Over the last decade, aberrantly spliced transcripts due to mutations in cis- or trans-acting splicing regulators have been tightly associated with cancer development, largely drawing scientific attention. Although a plethora of single proteins, ribonucleoproteins, complexed RNAs, and short RNA sequences have emerged as nodal contributors to the splicing cascade, the role of RNA secondary structures in warranting splicing fidelity has been underestimated. Recent studies have leveraged the establishment of novel high-throughput methodologies and bioinformatic tools to shed light on an additional layer of splicing regulation in the context of RNA structural elements. This short review focuses on the most recent available data on splicing mechanism regulation on the basis of RNA secondary structure, emphasizing the importance of the complex RNA G-quadruplex structures (rG4s), and other specific RNA motifs identified as splicing silencers or enhancers. Moreover, it intends to provide knowledge on newly established techniques that allow the identification of RNA structural elements and highlight the potential to develop new RNA-oriented therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Maria Apostolidi
- Agilent Laboratories, Agilent Technologies, Santa Clara, CA, United States
| | | |
Collapse
|
39
|
High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation. Genome Biol 2022; 23:159. [PMID: 35851062 PMCID: PMC9290270 DOI: 10.1186/s13059-022-02727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
The most stable structure of DNA is the canonical right-handed double helix termed B DNA. However, certain environments and sequence motifs favor alternative conformations, termed non-canonical secondary structures. The roles of DNA and RNA secondary structures in transcriptional regulation remain incompletely understood. However, advances in high-throughput assays have enabled genome wide characterization of some secondary structures. Here, we describe their regulatory functions in promoters and 3’UTRs, providing insights into key mechanisms through which they regulate gene expression. We discuss their implication in human disease, and how advances in molecular technologies and emerging high-throughput experimental methods could provide additional insights.
Collapse
|