1
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
2
|
Kahl S, Roden M. Reply to: "Dysglycemia and liver lipid content influence the link between insulin resistance and liver mitochondrial function in obesity". J Hepatol 2024:S0168-8278(24)02699-0. [PMID: 39522883 DOI: 10.1016/j.jhep.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
4
|
Deng Y, Dong Y, Zhang S, Feng Y. Targeting mitochondrial homeostasis in the treatment of non-alcoholic fatty liver disease: a review. Front Pharmacol 2024; 15:1463187. [PMID: 39290869 PMCID: PMC11405192 DOI: 10.3389/fphar.2024.1463187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and its prevalence is rapidly increasing. Antioxidants, lipid-lowering medications, and lifestyle interventions are the most commonly used treatment options for NAFLD, but their efficacy in inhibiting steatosis progression is limited and their long-term ineffectiveness and adverse effects have been widely reported. Therefore, it is important to gain a deeper understanding of the pathogenesis of NAFLD and to identify more effective therapeutic approaches. Mitochondrial homeostasis governs cellular redox biology, lipid metabolism, and cell death, all of which are crucial to control hepatic function. Recent findings have indicated that disruption of mitochondrial homeostasis occurs in the early stage of NAFLD and mitochondrial dysfunction reinforces disease progression. In this review, we summarize the physical roles of the mitochondria and describe their response and dysfunction in the context of NAFLD. We also discuss the drug targets associated with the mitochondria that are currently in the clinical trial phase of exploration. From our findings, we hope that the mitochondria may be a promising therapeutic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yalan Deng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuan Dong
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Sitian Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yingmei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Kahl S, Straßburger K, Pacini G, Trinks N, Pafili K, Mastrototaro L, Dewidar B, Sarabhai T, Trenkamp S, Esposito I, Schlensak M, Granderath FA, Roden M. Dysglycemia and liver lipid content determine the relationship of insulin resistance with hepatic OXPHOS capacity in obesity. J Hepatol 2024:S0168-8278(24)02490-5. [PMID: 39218222 DOI: 10.1016/j.jhep.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND & AIMS Hepatic mitochondrial respiration is higher in steatosis, but lower in overt type 2 diabetes. We hypothesized that hepatic oxidative phosphorylation (OXPHOS) capacity increases with a greater degree of insulin resistance in obesity, independent of other metabolic diseases. METHODS We analyzed 65 humans without diabetes (BMI 50 ± 7 kg/m2, hemoglobin A1c 5.5 ± 0.4%) undergoing bariatric surgery. Metabolic dysfunction-associated steatotic liver disease (MASLD) stages were assessed by histology, whole-body insulin sensitivity (PREDIcted-M index) by oral glucose tolerance tests, and maximal ADP-stimulated mitochondrial OXPHOS capacity by high-resolution respirometry of liver samples. RESULTS Prediabetes was present in 30 participants and MASLD in 46 participants, of whom 25 had metabolic dysfunction-associated steatohepatitis, and seven had F2-F3 fibrosis. While simple regression did not detect an association of insulin sensitivity with hepatic OXPHOS capacity, interaction analyses revealed that the regression coefficient of OXPHOS capacity depended on fasting plasma glucose (FPG) and liver lipid content. Interestingly, the respective slopes were negative for FPG ≤100 mg/dl, but positive for FPG >100 mg/dl. Liver lipid content displayed similar behavior, with a threshold value of 24%. Post-challenge glycemia affected the association between insulin sensitivity and OXPHOS capacity normalized for citrate synthase activity. Presence of prediabetes affected hepatic insulin signaling, mitochondrial dynamics and fibrosis prevalence, while the presence of MASLD was associated with increases in biomarkers of hepatic inflammation, cell damage and lipid peroxidation in people with normal glucose tolerance. CONCLUSIONS Increasing liver lipid contents and plasma glucose concentrations, even in the non-diabetic range, are associated with a progressive decline of hepatic mitochondrial adaptation in people with obesity and insulin resistance. IMPACT AND IMPLICATIONS Mechanisms underlying the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) are still unclear, but a better understanding of the pathogenesis of MASLD is essential for the development of targeted treatments. Adaptation of liver oxidative capacity was found to be impaired in people with diabetes and MASLD or liver fibrosis. Glycemia and liver lipid content affect the adaptation of hepatic oxidative capacity to insulin resistance in obesity. These results highlight the relevance of metabolically active drugs in individuals with grade 3 obesity and early MASLD. CLINTRIALS. GOV IDENTIFIER NCT01477957.
Collapse
Affiliation(s)
- Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Straßburger
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany
| | - Kalliopi Pafili
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias Schlensak
- Adipositas- und Refluxzentrum, Krankenhaus Neuwerk, Mönchengladbach, Germany
| | - Frank A Granderath
- Adipositas- und Refluxzentrum, Krankenhaus Neuwerk, Mönchengladbach, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany.
| |
Collapse
|
6
|
Shao H, Zhang H, Jia D. The Role of Exerkines in Obesity-Induced Disruption of Mitochondrial Homeostasis in Thermogenic Fat. Metabolites 2024; 14:287. [PMID: 38786764 PMCID: PMC11122964 DOI: 10.3390/metabo14050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
There is a notable correlation between mitochondrial homeostasis and metabolic disruption. In this review, we report that obesity-induced disruption of mitochondrial homeostasis adversely affects lipid metabolism, adipocyte differentiation, oxidative capacity, inflammation, insulin sensitivity, and thermogenesis in thermogenic fat. Elevating mitochondrial homeostasis in thermogenic fat emerges as a promising avenue for developing treatments for metabolic diseases, including enhanced mitochondrial function, mitophagy, mitochondrial uncoupling, and mitochondrial biogenesis. The exerkines (e.g., myokines, adipokines, batokines) released during exercise have the potential to ameliorate mitochondrial homeostasis, improve glucose and lipid metabolism, and stimulate fat browning and thermogenesis as a defense against obesity-associated metabolic diseases. This comprehensive review focuses on the manifold benefits of exercise-induced exerkines, particularly emphasizing their influence on mitochondrial homeostasis and fat thermogenesis in the context of metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Hui Shao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
- Graduate School of Harbin Sport University, Harbin Sport University, Harbin 150006, China
| | - Huijie Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| |
Collapse
|
7
|
Kunlayawutipong T, Apaijai N, Tepmalai K, Kongkarnka S, Leerapun A, Pinyopornpanish K, Soontornpun A, Chattipakorn SC, Chattipakorn N, Pinyopornpanish K. Imbalance of mitochondrial fusion in peripheral blood mononuclear cells is associated with liver fibrosis in patients with metabolic dysfunction-associated steatohepatitis. Heliyon 2024; 10:e27557. [PMID: 38496899 PMCID: PMC10944232 DOI: 10.1016/j.heliyon.2024.e27557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Mitochondrial dysfunction and inflammation contribute to the pathophysiology of metabolic dysfunction-associated steatohepatitis (MASH). This study aims to evaluate the potential association between mitochondrial dynamics and cell death markers from peripheral blood mononuclear cells (PBMCs) and the presence of MASH with significant liver fibrosis among metabolic dysfunction-associated steatotic liver disease (MASLD) patients. Consecutive patients undergoing bariatric surgery from January to December 2022 were included. Patients with histologic steatosis were classified into MASH with significant fibrosis (F2-4) group or MASLD/MASH without significant fibrosis group (F0-1). Mitochondrial dynamic proteins and cell death markers were extracted from PBMCs. A total of 23 MASLD/MASH patients were included (significant fibrosis group, n = 7; without significant fibrosis group, n = 16). Of the mitochondrial dynamics and cell death markers evaluated, OPA1 protein, a marker of mitochondrial fusion is higher in MASH patients with significant fibrosis compared to those without (0.861 ± 0.100 vs. 0.560 ± 0.260 proportional to total protein, p = 0.001). Mitochondrial fusion/fission (OPA1/DRP1) ratio is significantly higher in MASH patients with significant fibrosis (1.072 ± 0.307 vs. 0.634 ± 0.313, p = 0.009). OPA1 (per 0.01 proportional to total protein) was associated with the presence of significant liver fibrosis with an OR of 1.08 (95%CI, 1.01-1.15, p = 0.035), and adjusted OR of 1.10 (95%CI, 1.00-1.21, p = 0.042). OPA1 from PBMCs is associated with MASH and substantial fibrosis. Future studies should explore if OPA1 could serve as a novel non-invasive liver fibrosis marker.
Collapse
Affiliation(s)
- Thanaput Kunlayawutipong
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokkan Tepmalai
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Apinya Leerapun
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Atiwat Soontornpun
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Boesch M, Lindhorst A, Feio-Azevedo R, Brescia P, Silvestri A, Lannoo M, Deleus E, Jaekers J, Topal H, Topal B, Ostyn T, Wallays M, Smets L, Van Melkebeke L, Härtlova A, Roskams T, Bedossa P, Verbeek J, Govaere O, Francque S, Sifrim A, Voet T, Rescigno M, Gericke M, Korf H, van der Merwe S. Adipose tissue macrophage dysfunction is associated with a breach of vascular integrity in NASH. J Hepatol 2024; 80:397-408. [PMID: 37977244 DOI: 10.1016/j.jhep.2023.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND & AIMS In non-alcoholic fatty liver disease (NAFLD), monocytes infiltrate visceral adipose tissue promoting local and hepatic inflammation. However, it remains unclear what drives inflammation and how the immune landscape in adipose tissue differs across the NAFLD severity spectrum. We aimed to assess adipose tissue macrophage (ATM) heterogeneity in a NAFLD cohort. METHODS Visceral adipose tissue macrophages from lean and obese patients, stratified by NAFLD phenotypes, underwent single-cell RNA sequencing. Adipose tissue vascular integrity and breaching was assessed on a protein level via immunohistochemistry and immunofluorescence to determine targets of interest. RESULTS We discovered multiple ATM populations, including resident vasculature-associated macrophages (ResVAMs) and distinct metabolically active macrophages (MMacs). Using trajectory analysis, we show that ResVAMs and MMacs are replenished by a common transitional macrophage (TransMac) subtype and that, during NASH, MMacs are not effectively replenished by TransMac precursors. We postulate an accessory role for MMacs and ResVAMs in protecting the adipose tissue vascular barrier, since they both interact with endothelial cells and localize around the vasculature. However, across the NAFLD severity spectrum, alterations occur in these subsets that parallel an adipose tissue vasculature breach characterized by albumin extravasation into the perivascular tissue. CONCLUSIONS NAFLD-related macrophage dysfunction coincides with a loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. IMPACT AND IMPLICATIONS Our study describes for the first time the myeloid cell landscape in human visceral adipose tissue at single-cell level within a cohort of well-characterized patients with non-alcoholic fatty liver disease. We report unique non-alcoholic steatohepatitis-specific transcriptional changes within metabolically active macrophages (MMacs) and resident vasculature-associated macrophages (ResVAMs) and we demonstrate their spatial location surrounding the vasculature. These dysfunctional transcriptional macrophage states coincided with the loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. Our study provides a theoretical basis for new therapeutic strategies to be directed towards reinstating the endogenous metabolic, homeostatic and cytoprotective functions of ResVAMs and MMacs, including their role in protecting vascular integrity.
Collapse
Affiliation(s)
- Markus Boesch
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | | | - Rita Feio-Azevedo
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Paola Brescia
- IRCCS Humanitas Research Hospital, Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | | | - Ellen Deleus
- Department of Abdominal Surgery, UZ Leuven, Leuven, Belgium
| | - Joris Jaekers
- Department of Abdominal Surgery, UZ Leuven, Leuven, Belgium
| | - Halit Topal
- Department of Abdominal Surgery, UZ Leuven, Leuven, Belgium
| | - Baki Topal
- Department of Abdominal Surgery, UZ Leuven, Leuven, Belgium
| | - Tessa Ostyn
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium
| | - Marie Wallays
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Lena Smets
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Lukas Van Melkebeke
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium
| | - Pierre Bedossa
- Department of Pathology, Physiology and Imaging, Beaujon Hospital Paris Diderot University, Paris, France
| | - Jef Verbeek
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Olivier Govaere
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Translational Research in Inflammation and Immunology (TWI2N), Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Alejandro Sifrim
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium; Laboratory of Multi-omic Integrative Bioinformatics, Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072 Pieve Emanuele, Milan, Italy
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium.
| | - Schalk van der Merwe
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Natsui H, Watanabe M, Yokota T, Tsuneta S, Fumoto Y, Handa H, Shouji M, Koya J, Nishino K, Tatsuta D, Koizumi T, Kadosaka T, Nakao M, Koya T, Temma T, Ito YM, Kanako HC, Hatanaka Y, Yasushige S, Wakasa S, Miura S, Masuda T, Nishioka N, Naraoka S, Ochi K, Kudo T, Ishikawa T, Anzai T. Influence of epicardial adipose tissue inflammation and adipocyte size on postoperative atrial fibrillation in patients after cardiovascular surgery. Physiol Rep 2024; 12:e15957. [PMID: 38546216 PMCID: PMC10976808 DOI: 10.14814/phy2.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 04/28/2024] Open
Abstract
Epicardial adipose tissue (EAT) is an active endocrine organ that is closely associated with occurrence of atrial fibrillation (AF). However, the role of EAT in the development of postoperative AF (POAF) remains unclear. We aimed to investigate the association between EAT profile and POAF occurrence in patients who underwent cardiovascular surgery. We obtained EAT samples from 53 patients to evaluate gene expression, histological changes, mitochondrial oxidative phosphorylation (OXPHOS) capacity in the EAT, and protein secretion in EAT-conditioned medium. EAT volume was measured using computed tomography scan. Eighteen patients (34%) experienced POAF within 7 days after surgery. Although no significant difference was observed in EAT profile between patients with and without POAF, logistic regression analysis identified that the mRNA expression levels of tumor necrosis factor-alpha (TNF-α) were positively correlated and adipocyte size in the EAT was inversely correlated with onset of POAF, respectively. Mitochondrial OXPHOS capacity in the EAT was not associated with POAF occurrence; however, it showed an inverse correlation with adipocyte size and a positive correlation with adiponectin secretion. In conclusion, changes in the secretory profile and adipocyte morphology of the EAT, which represent qualitative aspects of the adipose tissue, were present before the onset of AF.
Collapse
Affiliation(s)
- Hiroyuki Natsui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Takashi Yokota
- Institute of Health Science Innovation for Medical Care, Hokkaido University HospitalSapporoJapan
| | - Satonori Tsuneta
- Department of Diagnostic and Interventional RadiologyHokkaido University HospitalSapporoJapan
| | - Yoshizuki Fumoto
- Department of Molecular Biology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Haruka Handa
- Department of Molecular Biology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Matsushima Shouji
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineKyushu UniversityFukuokaJapan
| | - Jiro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Kotaro Nishino
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Daishiro Tatsuta
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Yoichi M. Ito
- Institute of Health Science Innovation for Medical Care, Hokkaido University HospitalSapporoJapan
| | - Hatanaka C. Kanako
- Center for Development of Advanced DiagnosticsHokkaido University HospitalSapporoJapan
| | - Yutaka Hatanaka
- Center for Development of Advanced DiagnosticsHokkaido University HospitalSapporoJapan
| | - Shingu Yasushige
- Department of Cardiovascular Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Satoru Wakasa
- Department of Cardiovascular Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Shuhei Miura
- Department of Cardiovascular Surgery, Teine Keijinkai HospitalSapporoJapan
| | - Takahiko Masuda
- Department of Cardiovascular Surgery, Teine Keijinkai HospitalSapporoJapan
| | - Naritomo Nishioka
- Department of Cardiovascular Surgery, Teine Keijinkai HospitalSapporoJapan
| | - Shuichi Naraoka
- Department of Cardiovascular Surgery, Teine Keijinkai HospitalSapporoJapan
| | - Kayoko Ochi
- Department of Clinical Laboratory MedicineTeine Keijinkai HospitalSapporoJapan
| | - Tomoko Kudo
- Department of Clinical Laboratory MedicineTeine Keijinkai HospitalSapporoJapan
| | - Tsugumine Ishikawa
- Department of Clinical Laboratory MedicineTeine Keijinkai HospitalSapporoJapan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
10
|
Yang M, Shu W, Zhai X, Yang X, Zhou H, Pan B, Li C, Lu D, Cai J, Zheng S, Jin B, Wei X, Xu X. Integrated multi-omic analysis identifies fatty acid binding protein 4 as a biomarker and therapeutic target of ischemia-reperfusion injury in steatotic liver transplantation. Cell Mol Life Sci 2024; 81:83. [PMID: 38341383 PMCID: PMC10858962 DOI: 10.1007/s00018-023-05110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND AIMS Due to a lack of donor grafts, steatotic livers are used more often for liver transplantation (LT). However, steatotic donor livers are more sensitive to ischemia-reperfusion (IR) injury and have a worse prognosis after LT. Efforts to optimize steatotic liver grafts by identifying injury targets and interventions have become a hot issue. METHODS Mouse LT models were established, and 4D label-free proteome sequencing was performed for four groups: normal control (NC) SHAM, high-fat (HF) SHAM, NC LT, and HF LT to screen molecular targets for aggravating liver injury in steatotic LT. Expression detection of molecular targets was performed based on liver specimens from 110 donors to verify its impact on the overall survival of recipients. Pharmacological intervention using small-molecule inhibitors on an injury-related target was used to evaluate the therapeutic effect. Transcriptomics and metabolomics were performed to explore the regulatory network and further integrated bioinformatics analysis and multiplex immunofluorescence were adopted to assess the regulation of pathways and organelles. RESULTS HF LT group represented worse liver function compared with NC LT group, including more apoptotic hepatocytes (P < 0.01) and higher serum transaminase (P < 0.05). Proteomic results revealed that the mitochondrial membrane, endocytosis, and oxidative phosphorylation pathways were upregulated in HF LT group. Fatty acid binding protein 4 (FABP4) was identified as a hypoxia-inducible protein (fold change > 2 and P < 0.05) that sensitized mice to IR injury in steatotic LT. The overall survival of recipients using liver grafts with high expression of FABP4 was significantly worse than low expression of FABP4 (68.5 vs. 87.3%, P < 0.05). Adoption of FABP4 inhibitor could protect the steatotic liver from IR injury during transplantation, including reducing hepatocyte apoptosis, reducing serum transaminase (P < 0.05), and alleviating oxidative stress damage (P < 0.01). According to integrated transcriptomics and metabolomics analysis, cAMP signaling pathway was enriched following FABP4 inhibitor use. The activation of cAMP signaling pathway was validated. Microscopy and immunofluorescence staining results suggested that FABP4 inhibitors could regulate mitochondrial membrane homeostasis in steatotic LT. CONCLUSIONS FABP4 was identified as a hypoxia-inducible protein that sensitized steatotic liver grafts to IR injury. The FABP4 inhibitor, BMS-309403, could activate of cAMP signaling pathway thereby modulating mitochondrial membrane homeostasis, reducing oxidative stress injury in steatotic donors.
Collapse
Affiliation(s)
- Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, 250012, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China
| | - Xinyu Yang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China
| | - Binhua Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, 266035, China
| | - Shusen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bin Jin
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China.
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
11
|
Flensted-Jensen M, Oró D, Rørbeck EA, Zhang C, Madsen MR, Madsen AN, Norlin J, Feigh M, Larsen S, Hansen HH. Dietary intervention reverses molecular markers of hepatocellular senescence in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH. BMC Gastroenterol 2024; 24:59. [PMID: 38308212 PMCID: PMC10835988 DOI: 10.1186/s12876-024-03141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Hepatocellular senescence may be a causal factor in the development and progression of non-alcoholic steatohepatitis (NASH). The most effective currently available treatment for NASH is lifestyle intervention, including dietary modification. This study aimed to evaluate the effects of dietary intervention on hallmarks of NASH and molecular signatures of hepatocellular senescence in the Gubra-Amylin NASH (GAN) diet-induced obese (DIO) and biopsy-confirmed mouse model of NASH. METHODS GAN DIO-NASH mice with liver biopsy-confirmed NASH and fibrosis received dietary intervention by switching to chow feeding (chow reversal) for 8, 16 or 24 weeks. Untreated GAN DIO-NASH mice and chow-fed C57BL/6J mice served as controls. Pre-to-post liver biopsy histology was performed for within-subject evaluation of NAFLD Activity Score and fibrosis stage. Terminal endpoints included blood/liver biochemistry, quantitative liver histology, mitochondrial respiration and RNA sequencing. RESULTS Chow-reversal promoted substantial benefits on metabolic outcomes and liver histology, as demonstrated by robust weight loss, complete resolution of hepatomegaly, hypercholesterolemia, elevated transaminase levels and hepatic steatosis in addition to attenuation of inflammatory markers. Notably, all DIO-NASH mice demonstrated ≥ 2 point significant improvement in NAFLD Activity Score following dietary intervention. While not improving fibrosis stage, chow-reversal reduced quantitative fibrosis markers (PSR, collagen 1a1, α-SMA), concurrent with improved liver mitochondrial respiration, complete reversal of p21 overexpression, lowered γ-H2AX levels and widespread suppression of gene expression markers of hepatocellular senescence. CONCLUSIONS Dietary intervention (chow reversal) substantially improves metabolic, biochemical and histological hallmarks of NASH and fibrosis in GAN DIO-NASH mice. These benefits were reflected by progressive clearance of senescent hepatocellular cells, making the model suitable for profiling potential senotherapeutics in preclinical drug discovery for NASH.
Collapse
Affiliation(s)
- Mathias Flensted-Jensen
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Denise Oró
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | | | - Chen Zhang
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Present address: Novo Nordisk A/S, Beijing, China
| | | | | | - Jenny Norlin
- Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Michael Feigh
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Steen Larsen
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
12
|
Bilson J, Oquendo CJ, Read J, Scorletti E, Afolabi PR, Lord J, Bindels LB, Targher G, Mahajan S, Baralle D, Calder PC, Byrne CD, Sethi JK. Markers of adipose tissue fibrogenesis associate with clinically significant liver fibrosis and are unchanged by synbiotic treatment in patients with NAFLD. Metabolism 2024; 151:155759. [PMID: 38101770 DOI: 10.1016/j.metabol.2023.155759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND AIMS Subcutaneous adipose tissue (SAT) dysfunction contributes to NAFLD pathogenesis and may be influenced by the gut microbiota. Whether transcript profiles of SAT are associated with liver fibrosis and are influenced by synbiotic treatment (that changes the gut microbiome) is unknown. We investigated: (a) whether the presence of clinically significant, ≥F2 liver fibrosis associated with adipose tissue (AT) dysfunction, differential gene expression in SAT, and/or a marker of tissue fibrosis (Composite collagen gene expression (CCGE)); and (b) whether synbiotic treatment modified markers of AT dysfunction and the SAT transcriptome. METHODS Sixty-two patients with NAFLD (60 % men) were studied before and after 12 months of treatment with synbiotic or placebo and provided SAT samples. Vibration-controlled transient elastography (VCTE)-validated thresholds were used to assess liver fibrosis. RNA-sequencing and histological analysis of SAT were performed to determine differential gene expression, CCGE and the presence of collagen fibres. Regression modelling and receiver operator characteristic curve analysis were used to test associations with, and risk prediction for, ≥F2 liver fibrosis. RESULTS Patients with ≥F2 liver fibrosis (n = 24) had altered markers of AT dysfunction and a SAT gene expression signature characterised by enrichment of inflammatory and extracellular matrix-associated genes, compared to those with CONCLUSION A differential gene expression signature in SAT associates with ≥F2 liver fibrosis is explained by a measure of systemic insulin resistance and is not changed by synbiotic treatment. SAT CCGE values are a good predictor of ≥F2 liver fibrosis in NAFLD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Carolina J Oquendo
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Read
- School of Chemistry, Faculty of Engineering and Physical sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Eleonora Scorletti
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK; Division of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul R Afolabi
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UC Louvain, Université Catholique de Louvain, Brussels, Belgium; Welbio department, WEL Research Institute, Wavre, Belgium
| | - Giovanni Targher
- Department of Medicine, University of Verona, Italy; Metabolic Diseases Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Sumeet Mahajan
- School of Chemistry, Faculty of Engineering and Physical sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK.
| | - Jaswinder K Sethi
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
13
|
Sarabhai T, Kahl S, Gancheva S, Mastrototaro L, Dewidar B, Pesta D, Ratter-Rieck JM, Bobrov P, Jeruschke K, Esposito I, Schlensak M, Roden M. Loss of mitochondrial adaptation associates with deterioration of mitochondrial turnover and structure in metabolic dysfunction-associated steatotic liver disease. Metabolism 2024; 151:155762. [PMID: 38122893 DOI: 10.1016/j.metabol.2023.155762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Obesity and type 2 diabetes frequently have metabolic dysfunction-associated steatotic liver disease (MASLD) including steatohepatitis (MASH). In obesity, the liver may adapt its oxidative capacity, but the role of mitochondrial turnover in MASLD remains uncertain. METHODS This cross-sectional study compared individuals with class III obesity (n = 8/group) without (control, OBE CON; NAFLD activity score: 0.4 ± 0.1) or with steatosis (OBE MASL, 2.3 ± 0.4), or MASH (OBE MASH, 5.3 ± 0.3, p < 0.05 vs. other groups). Hepatic mitochondrial ultrastructure was assessed by transmission electron microscopy, mitochondrial respiration by high-resolution respirometry, biomarkers of mitochondrial quality control and endoplasmic reticulum (ER) stress by Western Blot. RESULTS Mitochondrial oxidative capacity was 31 % higher in OBE MASL, but 25 % lower in OBE MASH (p < 0.05 vs. OBE CON). OBE MASH showed ~1.5fold lower mitochondrial number, but ~1.2-1.5fold higher diameter and area (p < 0.001 vs. other groups). Biomarkers of autophagy (p62), mitophagy (PINK1, PARKIN), fission (DRP-1, FIS1) and fusion (MFN1/2, OPA1) were reduced in OBE MASH (p < 0.05 vs. OBE CON). OBE MASL showed lower p62, p-PARKIN/PARKIN, and p-DRP-1 (p < 0.05 vs. OBE CON). OBE MASL and MASH showed higher ER stress markers (PERK, ATF4, p-eIF2α-S51/eIF2α; p < 0.05 vs. OBE CON). Mitochondrial diameter associated inversely with fusion/fission biomarkers and with oxidative capacity, but positively with H2O2. CONCLUSION Humans with hepatic steatosis already exhibit impaired mitochondrial turnover, despite upregulated oxidative capacity, and evidence for ER stress. In MASH, oxidative stress likely mediates progressive decline of mitochondrial turnover, ultrastructure and respiration indicating that mitochondrial quality control is key for energy metabolism and may have potential for targeting MASH. ClinGovTrial:NCT01477957.
Collapse
Affiliation(s)
- Theresia Sarabhai
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sabine Kahl
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; Centre for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Jacqueline M Ratter-Rieck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Pavel Bobrov
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
| | - Kay Jeruschke
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital and Heinrich-Heine-University, Düsseldorf, Germany
| | - Matthias Schlensak
- Department of Obesity and Reflux Center, Neuwerk Hospital Mönchengladbach, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany.
| |
Collapse
|
14
|
Santamarina AB, Mennitti LV, de Souza EA, Mesquita LMDS, Noronha IH, Vasconcelos JRC, Prado CM, Pisani LP. A low-carbohydrate diet with different fatty acids' sources in the treatment of obesity: Impact on insulin resistance and adipogenesis. Clin Nutr 2023; 42:2381-2394. [PMID: 37862824 DOI: 10.1016/j.clnu.2023.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The search for nutritional intervention strategies against obesity has grown, highlighting the low-carbohydrate diet model. However, little is known about the impact of the quality of fatty acids consumed in this diet. Thus, we aim to investigate the influence of fatty acid quality on dietary strategy on obesity. METHODS Male Swiss mice were diet-induced to obesity. Afterward, mice consume a low-carb diet with different types of fat: saturated, polyunsaturated ω-3, ω-6, and monounsaturated ω-9 fatty acids. Weight gain and food consumption were monitored weekly. An oral glucose tolerance test was performed and blood and tissue samples were collected for analysis of insulin resistance markers. Protein expression of insulin signaling pathway molecules, lipid metabolism, mitochondrial function, macrophage polarization, and cytokine production were analyzed. RESULTS The high-fat diet was able to induce obesity and glucose intolerance. The switch to a low-carbohydrate dietary pattern reversed the glucose intolerance, with better results in the ω-3 and ω-9 groups. After the low-carbohydrate diet, groups ω-3 and ω-9 presented improved fasting serum glucose, insulin, and HOMA indexes. The low-carbohydrate diet also increased the activity of insulin pathway proteins such as IR, IRS1, and AKT. Furthermore, the ω-3 diet group showed greater activity of mitochondrial complexes and AMPK signaling pathway proteins. The ω-6 and ω-9 -rich diet induced M2-type macrophage polarization, as well as cytokine production modulation by the low-carbohydrate diet in the ω-3 and ω-9 groups. CONCLUSIONS Consuming a low-carbohydrate diet pattern promotes weight loss and improves glucose intolerance in obesity. Also, the quality of lipids has a direct influence, demonstrating that the consumption of ω-3 polyunsaturated and ω-9 monounsaturated lipids can lead to more favorable outcomes for the improvement of glucose intolerance, lipid metabolism, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Aline B Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Laís V Mennitti
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Esther A de Souza
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo, Brazil
| | - Isaú H Noronha
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - José Ronnie C Vasconcelos
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Carla M Prado
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil.
| |
Collapse
|
15
|
Yuzefovych LV, Pastukh VM, Mulekar MS, Ledbetter K, Richards WO, Rachek LI. Effect of Bariatric Surgery on Plasma Cell-Free Mitochondrial DNA, Insulin Sensitivity and Metabolic Changes in Obese Patients. Biomedicines 2023; 11:2514. [PMID: 37760955 PMCID: PMC10526219 DOI: 10.3390/biomedicines11092514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
While improvement of mitochondrial function after bariatric surgery has been demonstrated, there is limited evidence about the effects of bariatric surgery on circulatory cell-free (cf) mitochondrial DNA (mtDNA) and intracellular mtDNA abundance. Plasma and peripheral blood mononuclear (PBM) cells were isolated from healthy controls (HC) and bariatric surgery patients before surgery and 2 weeks, 3 months, and 6 months after surgery. At baseline, the plasma level of short cf-mtDNA (ND6, ~100 bp) fragments was significantly higher in obese patients compared to HC. But there was no significant variation in mean ND6 values post-surgery. A significant positive correlation was observed between preop plasma ND6 levels and HgbA1c, ND6 and HOMA-IR 2 weeks post-surgery, and mtDNA content 6 months post-surgery. Interestingly, plasma from both HC and obese groups at all time points post-surgery contains long (~8 kb) cf-mtDNA fragments, suggesting the presence of near-intact and/or whole mitochondrial genomes. No significant variation was observed in mtDNA content post-surgery compared to baseline data in both PBM and skeletal muscle samples. Overall, bariatric surgery improved insulin sensitivity and other metabolic parameters without significant changes in plasma short cf-mtDNA levels or cellular mtDNA content. Our study provides novel insights about possible molecular mechanisms underlying the metabolic effects of bariatric surgery and suggests the development of new generalized approaches to characterize cf-mtDNA.
Collapse
Affiliation(s)
- Larysa V. Yuzefovych
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (L.V.Y.); (V.M.P.)
| | - Viktor M. Pastukh
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (L.V.Y.); (V.M.P.)
| | - Madhuri S. Mulekar
- Department of Mathematics and Statistics, College of Art and Science, University of South Alabama, Mobile, AL 36688, USA;
| | - Kate Ledbetter
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.L.); (W.O.R.)
| | - William O. Richards
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.L.); (W.O.R.)
| | - Lyudmila I. Rachek
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (L.V.Y.); (V.M.P.)
| |
Collapse
|
16
|
Dewidar B, Mastrototaro L, Englisch C, Ress C, Granata C, Rohbeck E, Pesta D, Heilmann G, Wolkersdorfer M, Esposito I, Reina Do Fundo M, Zivehe F, Yavas A, Roden M. Alterations of hepatic energy metabolism in murine models of obesity, diabetes and fatty liver diseases. EBioMedicine 2023; 94:104714. [PMID: 37454552 PMCID: PMC10384226 DOI: 10.1016/j.ebiom.2023.104714] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Disturbed hepatic energy metabolism contributes to non-alcoholic fatty liver (NAFLD), but the development of changes over time and obesity- or diabetes-related mechanisms remained unclear. METHODS Two-day old male C57BL/6j mice received streptozotocin (STZ) or placebo (PLC) and then high-fat (HFD) or regular chow diet (RCD) from week 4 (W4) to either W8 or W16, yielding control [CTRL = PLC + RCD], diabetes [DIAB = STZ + RCD], obesity [OBES = PLC + HFD] and diabetes-related non-alcoholic steatohepatitis [NASH = STZ + HFD] models. Mitochondrial respiration was measured by high-resolution respirometry and insulin-sensitive glucose metabolism by hyperinsulinemic-euglycemic clamps with stable isotope dilution. FINDINGS NASH showed higher steatosis and NAFLD activity already at W8 and liver fibrosis at W16 (all p < 0.01 vs CTRL). Ballooning was increased in DIAB and NASH at W16 (p < 0.01 vs CTRL). At W16, insulin sensitivity was 47%, 58% and 75% lower in DIAB, NASH and OBES (p < 0.001 vs CTRL). Hepatic uncoupled fatty acid oxidation (FAO)-associated respiration was reduced in OBES at W8, but doubled in DIAB and NASH at W16 (p < 0.01 vs CTRL) and correlated with biomarkers of unfolded protein response (UPR), oxidative stress and hepatic expression of certain enzymes (acetyl-CoA carboxylase 2, Acc2; carnitine palmitoyltransferase I, Cpt1a). Tricarboxylic acid cycle (TCA)-driven respiration was lower in OBES at W8 and doubled in DIAB at W16 (p < 0.0001 vs CTRL), which positively correlated with expression of genes related to lipolysis. INTERPRETATION Hepatic mitochondria adapt to various metabolic challenges with increasing FAO-driven respiration, which is linked to dysfunctional UPR, systemic oxidative stress, insulin resistance and altered lipid metabolism. In a diabetes model, higher TCA-linked respiration reflected mitochondrial adaptation to greater hepatic lipid turnover. FUNDING Funding bodies that contributed to this study were listed in the acknowledgements section.
Collapse
Affiliation(s)
- Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Cornelia Englisch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Claudia Ress
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Insulin Resistance, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Cesare Granata
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Elisabeth Rohbeck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Geronimo Heilmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Martin Wolkersdorfer
- Landesapotheke Salzburg, Department of Production, Hospital Pharmacy, Salzburg, Austria
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michelle Reina Do Fundo
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Fariba Zivehe
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Aslihan Yavas
- Institute of Pathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
17
|
Guo Y, Wang M, Liu Y, Pang Y, Tian L, Zhao J, Liu M, Shen C, Meng Y, Wang Y, Cai Z, Zhao W. BaoShenTongLuo formula protects against podocyte injury by regulating AMPK-mediated mitochondrial biogenesis in diabetic kidney disease. Chin Med 2023; 18:32. [PMID: 36967383 PMCID: PMC10040124 DOI: 10.1186/s13020-023-00738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is considered to be an important contributor in podocyte injury under diabetic conditions. The BaoShenTongLuo (BSTL) formula has been shown to reduce podocyte damage and postpone the progression of diabetic kidney disease (DKD). The potential mechanisms underlying the effects of BSTL, however, have yet to be elucidated. In this study, we aimed to investigate whether the effects of BSTL are related to the regulation of mitochondrial biogenesis via the adenosine monophosphate-activated protein kinase (AMPK) pathway. METHODS High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometer (HPLC-ESI-MS) analysis was performed to investigate the characteristics of pure compounds in BSTL. db/db mice and mouse podocyte clone-5 (MPC5) cells were exposed to high glucose (HG) to induce DKD and podocyte damage. Body weight, random blood glucose, urinary albumin/creatinine ratio (UACR), indicators of renal function and renal histological lesions were measured. Markers of podocyte injury, mitochondrial morphology, mitochondrial deoxyribonucleic acid (mtDNA) content, mitochondrial respiratory chain complexes activities, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) levels were assessed. Protein expressions of AMPK, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), transcription factor A (TFAM), mitochondrial fusion protein 2 (MFN2) and dynamin-related protein 1 (DRP1) were also detected. MPC5 cells were transfected with AMPKα small interfering RNA (AMPKα siRNA) to determine the underlying mechanisms of BSTL improvement of mitochondrial function under diabetic conditions. RESULTS In vivo, treatment with BSTL reduced the UACR levels, reversed the histopathological changes in renal tissues, and alleviated the podocyte injury observed in db/db mice. After BSTL treatment, the decreased mtDNA content and mitochondrial respiratory chain complex I, III, and IV activities were significantly improved, and these effects were accompanied by maintenance of the protein expression of p-AMPKαT172, PGC-1α, TFAM and MFN2. The in vitro experiments also showed that BSTL reduced podocyte apoptosis, suppressed excessive cellular ROS production, and reversed the decreased in MMP that were observed under HG conditions. More importantly, the effects of BSTL in enhancing mitochondrial biogenesis and reducing podocyte apoptosis were inhibited in AMPKα siRNA-treated podocytes. CONCLUSION BSTL plays a crucial role in protecting against podocyte injury by regulating the AMPK-mediated mitochondrial biogenesis in DKD.
Collapse
Affiliation(s)
- Yifan Guo
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mengdi Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yufei Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanyu Pang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lei Tian
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jingwen Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mengchao Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yuefen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhen Cai
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Wenjing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
18
|
Fromenty B, Roden M. Mitochondrial alterations in fatty liver diseases. J Hepatol 2023; 78:415-429. [PMID: 36209983 DOI: 10.1016/j.jhep.2022.09.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022]
Abstract
Fatty liver diseases can result from common metabolic diseases, as well as from xenobiotic exposure and excessive alcohol use, all of which have been shown to exert toxic effects on hepatic mitochondrial functionality and dynamics. Invasive or complex methodology limits large-scale investigations of mitochondria in human livers. Nevertheless, abnormal mitochondrial function, such as impaired fatty acid oxidation and oxidative phosphorylation, drives oxidative stress and has been identified as an important feature of human steatohepatitis. On the other hand, hepatic mitochondria can be flexible and adapt to the ambient metabolic condition to prevent triglyceride and lipotoxin accumulation in obesity. Experience from studies on xenobiotics has provided important insights into the regulation of hepatic mitochondria. Increasing awareness of the joint presence of metabolic disease-related (lipotoxic) and alcohol-related liver diseases further highlights the need to better understand their mutual interaction and potentiation in disease progression. Recent clinical studies have assessed the effects of diets or bariatric surgery on hepatic mitochondria, which are also evolving as an interesting therapeutic target in non-alcoholic fatty liver disease. This review summarises the current knowledge on hepatic mitochondria with a focus on fatty liver diseases linked to obesity, type 2 diabetes and xenobiotics.
Collapse
Affiliation(s)
- Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
19
|
Reliability of Non-invasive Liver Fibrosis Assessment Tools Versus Biopsy in Pre- and Post-bariatric Surgery Patients with Non-alcoholic Fatty Liver Disease. Obes Surg 2023; 33:247-255. [PMID: 36464738 DOI: 10.1007/s11695-022-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022]
Abstract
PURPOSE Liver biopsy (LBx) remains the gold standard to assess fibrosis in non-alcoholic fatty liver disease (NAFLD). Biochemical markers are also useful, but their reliability is not clear in patients with morbid obesity. We assessed the performance of six non-invasive fibrosis assessment tools before and after bariatric surgery (BSx) using LBx. MATERIALS AND METHODS This is a cross-sectional and prospective cohort study. LBx was performed at the time of BSx and 12-month post-operatively and assessed using the Brunt system. Clinical and biochemical measurements were collected at the same time points and six non-invasive fibrosis assessment tools were calculated. RESULTS One hundred seventy patients had BSx; 79.4% female; age was 46.6 ± 9.8 years, and BMI was 48.6 ± 7.5 kg/m2. From liver histology, 88% had F0-F2 and 11.2% F3-F4. At BSx, aspartate aminotransferase to platelet ratio index (APRI) and FIB-4 had better accuracy (0.86 and 0.88) with specificity of 96.6% and 94.0% and negative predictive values (NPV) of 88.9% and 93.7%. However, sensitivity (6.7% and 40.0%) and positive predictive values (PPV) (20.0% and 46.2%) were low. Twelve months post-surgery (n = 54), 88.9% of patients had F0-F2 and 11.1% had F3-F4. Fibrosis-4 index (FIB-4) and NAFLD fibrosis score (NFS) had the best accuracy (0.79 and 0.77) with specificity of 83.7% and 86.9% and NPV of 92.3% and 86.9%. However, sensitivity (25% and 0%) and PPV (12.5% and 0%) were low. CONCLUSION Overall, FIB-4, APRI, and NFS showed similar performances with higher accuracy, specificity, and NPV. Sensitivity and PPV were low. These tests are more useful at excluding advanced fibrosis.
Collapse
|
20
|
Hughey CC, Puchalska P, Crawford PA. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159209. [DOI: 10.1016/j.bbalip.2022.159209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|