1
|
Petrie J, Hay JA, Srimokla O, Panovska-Griffiths J, Whittaker C, Masel J. Enhanced testing can substantially improve defense against several types of respiratory virus pandemic. Epidemics 2025; 50:100812. [PMID: 39922066 DOI: 10.1016/j.epidem.2024.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 02/10/2025] Open
Abstract
Mass testing to identify and isolate infected individuals is a promising approach for reducing harm from the next acute respiratory virus pandemic. It offers the prospect of averting hospitalizations and deaths whilst avoiding the need for indiscriminate social distancing measures. To understand scenarios where mass testing might or might not be a viable intervention, here we modeled how effectiveness depends both on characteristics of the pathogen (R0, time to peak viral load) and on the testing strategy (limit of detection, testing frequency, test turnaround time, adherence). We base time-dependent test sensitivity and time-dependent infectiousness on an underlying viral load trajectory model. We show that given moderately high public adherence, frequent testing can prevent as many transmissions as more costly interventions such as school or business closures. With very high adherence and fast, frequent, and sensitive testing, we show that most respiratory virus pandemics could be controlled with mass testing alone.
Collapse
Affiliation(s)
- James Petrie
- Pandemic Sciences Institute, University of Oxford, United Kingdom; Big Data Institute, University of Oxford, United Kingdom.
| | - James A Hay
- Pandemic Sciences Institute, University of Oxford, United Kingdom; Big Data Institute, University of Oxford, United Kingdom
| | - Oraya Srimokla
- Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Jasmina Panovska-Griffiths
- Pandemic Sciences Institute, University of Oxford, United Kingdom; Big Data Institute, University of Oxford, United Kingdom; UK Health Security Agency, United Kingdom; The Queen's College, University of Oxford, United Kingdom
| | - Charles Whittaker
- Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom
| | - Joanna Masel
- Ecology & Evolutionary Biology, University of Arizona, United States of America
| |
Collapse
|
2
|
Middleton C, Larremore DB. Modeling the transmission mitigation impact of testing for infectious diseases. SCIENCE ADVANCES 2024; 10:eadk5108. [PMID: 38875334 PMCID: PMC11177932 DOI: 10.1126/sciadv.adk5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
A fundamental question of any program focused on the testing and timely diagnosis of a communicable disease is its effectiveness in reducing transmission. Here, we introduce testing effectiveness (TE)-the fraction by which testing and post-diagnosis isolation reduce transmission at the population scale-and a model that incorporates test specifications and usage, within-host pathogen dynamics, and human behaviors to estimate TE. Using TE to guide recommendations, we show that today's rapid diagnostics should be used immediately upon symptom onset to control influenza A and respiratory syncytial virus but delayed by up to two days to control omicron-era severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, while rapid tests are superior to reverse transcription quantitative polymerase chain reaction (RT-qPCR) to control founder-strain SARS-CoV-2, omicron-era changes in viral kinetics and rapid test sensitivity cause a reversal, with higher TE for RT-qPCR despite longer turnaround times. Last, we illustrate the model's flexibility by quantifying trade-offs in the use of post-diagnosis testing to shorten isolation times.
Collapse
Affiliation(s)
- Casey Middleton
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel B. Larremore
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
3
|
Middleton C, Larremore DB. Modeling the Transmission Mitigation Impact of Testing for Infectious Diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.22.23295983. [PMID: 37808825 PMCID: PMC10557819 DOI: 10.1101/2023.09.22.23295983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A fundamental question of any program focused on the testing and timely diagnosis of a communicable disease is its effectiveness in reducing transmission. Here, we introduce testing effectiveness (TE)-the fraction by which testing and post-diagnosis isolation reduce transmission at the population scale-and a model that incorporates test specifications and usage, within-host pathogen dynamics, and human behaviors to estimate TE. Using TE to guide recommendations, we show that today's rapid diagnostics should be used immediately upon symptom onset to control influenza A and respiratory syncytial virus (RSV), but delayed by up to 2d to control omicron-era SARS-CoV-2. Furthermore, while rapid tests are superior to RT-qPCR for control of founder-strain SARS-CoV-2, omicron-era changes in viral kinetics and rapid test sensitivity cause a reversal, with higher TE for RT-qPCR despite longer turnaround times. Finally, we illustrate the model's flexibility by quantifying tradeoffs in the use of post-diagnosis testing to shorten isolation times.
Collapse
Affiliation(s)
- Casey Middleton
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel B Larremore
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
4
|
Turcinovic J, Kuhfeldt K, Sullivan M, Landaverde L, Platt JT, Alekseyev YO, Doucette-Stamm L, Hamer DH, Klapperich C, Landsberg HE, Connor JH. Transmission Dynamics and Rare Clustered Transmission Within an Urban University Population Before Widespread Vaccination. J Infect Dis 2024; 229:485-492. [PMID: 37856283 DOI: 10.1093/infdis/jiad397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Universities returned to in-person learning in 2021 while SARS-CoV-2 spread remained high. At the time, it was not clear whether in-person learning would be a source of disease spread. METHODS We combined surveillance testing, universal contact tracing, and viral genome sequencing to quantify introductions and identify likely on-campus spread. RESULTS Ninety-one percent of viral genotypes occurred once, indicating no follow-on transmission. Less than 5% of introductions resulted in >3 cases, with 2 notable exceptions of 40 and 47 cases. Both partially overlapped with outbreaks defined by contact tracing. In both cases, viral genomics eliminated over half the epidemiologically linked cases but added an equivalent or greater number of individuals to the transmission cluster. CONCLUSIONS Public health interventions prevented within-university transmission for most SARS-CoV-2 introductions, with only 2 major outbreaks being identified January to May 2021. The genetically linked cases overlap with outbreaks identified by contact tracing; however, they persisted in the university population for fewer days and rounds of transmission than estimated via contact tracing. This underscores the effectiveness of test-trace-isolate strategies in controlling undetected spread of emerging respiratory infectious diseases. These approaches limit follow-on transmission in both outside-in and internal transmission conditions.
Collapse
Affiliation(s)
- Jacquelyn Turcinovic
- Department of Virology, Immunology, and Microbiology, Chobanian & Avedisian School of Medicine
- National Emerging Infectious Diseases Laboratories
- Program in Bioinformatics
| | | | | | - Lena Landaverde
- Department of Biomedical Engineering
- Precision Diagnostics Center
- BU Clinical Testing Laboratory, Research Department
| | | | | | | | - Davidson H Hamer
- National Emerging Infectious Diseases Laboratories
- Precision Diagnostics Center
- Department of Global Health, School of Public Health
- Section of Infectious Disease, Department of Medicine, Chobanian & Avedisian School of Medicine
- Center for Emerging Infectious Disease Policy and Research, Boston University, Massachusetts
| | - Catherine Klapperich
- Department of Biomedical Engineering
- Precision Diagnostics Center
- BU Clinical Testing Laboratory, Research Department
| | | | - John H Connor
- Department of Virology, Immunology, and Microbiology, Chobanian & Avedisian School of Medicine
- National Emerging Infectious Diseases Laboratories
- Program in Bioinformatics
- Center for Emerging Infectious Disease Policy and Research, Boston University, Massachusetts
| |
Collapse
|
5
|
Ng WJ, Kwok G, Hill E, Chua FJD, Leifels M, Kim SY, Afri Affandi SA, Ramasamy SG, Nainani D, Cheng D, Tay M, Wong JCC, Ng LC, Wuertz S, Thompson JR. Longitudinal Wastewater-Based Surveillance for SARS-CoV-2 in High-Density Student Dormitories in Singapore. ACS ES&T WATER 2024; 4:355-367. [DOI: 10.1021/acsestwater.3c00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Wei Jie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Germaine Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Eric Hill
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 637551, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Siti Aisyah Afri Affandi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Shobana Gayathri Ramasamy
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Dhiraj Nainani
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Martin Tay
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore
| | - Judith Chui Ching Wong
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Janelle R. Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
6
|
Farjo M, Koelle K, Martin MA, Gibson LL, Walden KKO, Rendon G, Fields CJ, Alnaji FG, Gallagher N, Luo CH, Mostafa HH, Manabe YC, Pekosz A, Smith RL, McManus DD, Brooke CB. Within-host evolutionary dynamics and tissue compartmentalization during acute SARS-CoV-2 infection. J Virol 2024; 98:e0161823. [PMID: 38174928 PMCID: PMC10805032 DOI: 10.1128/jvi.01618-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
The global evolution of SARS-CoV-2 depends in part upon the evolutionary dynamics within individual hosts with varying immune histories. To characterize the within-host evolution of acute SARS-CoV-2 infection, we sequenced saliva and nasal samples collected daily from vaccinated and unvaccinated individuals early during infection. We show that longitudinal sampling facilitates high-confidence genetic variant detection and reveals evolutionary dynamics missed by less-frequent sampling strategies. Within-host dynamics in both unvaccinated and vaccinated individuals appeared largely stochastic; however, in rare cases, minor genetic variants emerged to frequencies sufficient for forward transmission. Finally, we detected significant genetic compartmentalization of viral variants between saliva and nasal swab sample sites in many individuals. Altogether, these data provide a high-resolution profile of within-host SARS-CoV-2 evolutionary dynamics.IMPORTANCEWe detail the within-host evolutionary dynamics of SARS-CoV-2 during acute infection in 31 individuals using daily longitudinal sampling. We characterized patterns of mutational accumulation for unvaccinated and vaccinated individuals, and observed that temporal variant dynamics in both groups were largely stochastic. Comparison of paired nasal and saliva samples also revealed significant genetic compartmentalization between tissue environments in multiple individuals. Our results demonstrate how selection, genetic drift, and spatial compartmentalization all play important roles in shaping the within-host evolution of SARS-CoV-2 populations during acute infection.
Collapse
Affiliation(s)
- Mireille Farjo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Michael A. Martin
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Laura L. Gibson
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kimberly K. O. Walden
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gloria Rendon
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher J. Fields
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Fadi G. Alnaji
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nicholas Gallagher
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chun Huai Luo
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heba H. Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yukari C. Manabe
- Division of Infectious Disease, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca L. Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David D. McManus
- Division of Cardiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Lu 卢 Z泽, Zhao 赵 S生, Shu 束 H华, Gong 巩 LY龙. Epidemic threshold influenced by non-pharmaceutical interventions in residential university environments. CHINESE PHYSICS B 2024; 33:028707. [DOI: 10.1088/1674-1056/ace2b0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The control of highly contagious disease spreading in campuses is a critical challenge. In residential universities, students attend classes according to a curriculum schedule, and mainly pack into classrooms, dining halls and dorms. They move from one place to another. To simulate such environments, we propose an agent-based susceptible–infected–recovered model with time-varying heterogeneous contact networks. In close environments, maintaining physical distancing is the most widely recommended and encouraged non-pharmaceutical intervention. It can be easily realized by using larger classrooms, adopting staggered dining hours, decreasing the number of students per dorm and so on. Their real-world influence remains uncertain. With numerical simulations, we obtain epidemic thresholds. The effect of such countermeasures on reducing the number of disease cases is also quantitatively evaluated.
Collapse
|
8
|
Moreno-Contreras J, Espinoza MA, Cantú-Cuevas MA, Madrid-González DA, Barón-Olivares H, Ortiz-Orozco OD, Guzmán-Rodríguez C, Arias CF, Lopez S. Saliva sampling and its direct lysis is an excellent option for SARS-CoV-2 diagnosis in paediatric patients: comparison with the PanBio COVID-19 antigen rapid test in symptomatic and asymptomatic children. J Med Microbiol 2023; 72. [PMID: 38014762 DOI: 10.1099/jmm.0.001779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Introduction. Lateral flow test (LFTs) have been used as an alternative to reverse transcription quantitative PCR (RT-qPCR) in point-of-care testing. Despite their benefits, the sensitivity of LFTs may be low and is affected by several factors. We have previously reported the feasibility of using direct lysis of individual or pools of saliva samples from symptomatic and asymptomatic patients as a source of viral genomes for detection by RT-qPCR.Hypothesis. Direct lysed saliva is more sensitive than antigen tests to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in samples from children.Aim. Our goals here were to valuate the specificity and sensitivity of the PanBio COVID-19 antigen rapid test device (Ag-RTD) compared with RT-qPCR of direct lysed saliva.Methodology. We evaluated the performance of the PanBio COVID-19 Ag-RTD in comparison to RT-qPCR direct lysed saliva from paired samples of 256 symptomatic and 242 asymptomatic paediatric patients.Results. Overall, although there were no differences in the specificity (96.6%), we found a lower sensitivity (64.3%) of the PanBio Ag-test RTD compared to saliva in both symptomatic and asymptomatic patients. In addition, the sensitivity of PanBio was not correlated with the viral load present in the samples.Conclusion. Our data highlight the benefits of using RT-qPCR and saliva samples for SARS-CoV-2 detection, particularly in paediatric patients.
Collapse
Affiliation(s)
- Joaquín Moreno-Contreras
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Marco A Espinoza
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Marco A Cantú-Cuevas
- Secretaría de Salud del Edo. de Morelos, Ajusco #2 Col. Buena Vista, Cuernavaca, Morelos, Mexico
| | - Daniel A Madrid-González
- Secretaría de Salud del Edo. de Morelos, Ajusco #2 Col. Buena Vista, Cuernavaca, Morelos, Mexico
| | - Héctor Barón-Olivares
- Servicios de Salud del Edo. de Morelos, Callejón Borda 3 Col. Centro, Cuernavaca, Morelos, Mexico
| | - Oscar D Ortiz-Orozco
- Servicios de Salud del Edo. de Morelos, Callejón Borda 3 Col. Centro, Cuernavaca, Morelos, Mexico
| | - Cecilia Guzmán-Rodríguez
- Servicios de Salud del Edo. de Morelos, Callejón Borda 3 Col. Centro, Cuernavaca, Morelos, Mexico
| | - Carlos F Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Susana Lopez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
9
|
Wang Z, Wu P, Wang L, Li B, Liu Y, Ge Y, Wang R, Wang L, Tan H, Wu CH, Laine M, Salje H, Song H. Marginal effects of public health measures and COVID-19 disease burden in China: A large-scale modelling study. PLoS Comput Biol 2023; 19:e1011492. [PMID: 37721947 PMCID: PMC10538769 DOI: 10.1371/journal.pcbi.1011492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
China had conducted some of the most stringent public health measures to control the spread of successive SARS-CoV-2 variants. However, the effectiveness of these measures and their impacts on the associated disease burden have rarely been quantitatively assessed at the national level. To address this gap, we developed a stochastic age-stratified metapopulation model that incorporates testing, contact tracing and isolation, based on 419 million travel movements among 366 Chinese cities. The study period for this model began from September 2022. The COVID-19 disease burden was evaluated, considering 8 types of underlying health conditions in the Chinese population. We identified the marginal effects between the testing speed and reduction in the epidemic duration. The findings suggest that assuming a vaccine coverage of 89%, the Omicron-like wave could be suppressed by 3-day interval population-level testing (PLT), while it would become endemic with 4-day interval PLT, and without testing, it would result in an epidemic. PLT conducted every 3 days would not only eliminate infections but also keep hospital bed occupancy at less than 29.46% (95% CI, 22.73-38.68%) of capacity for respiratory illness and ICU bed occupancy at less than 58.94% (95% CI, 45.70-76.90%) during an outbreak. Furthermore, the underlying health conditions would lead to an extra 2.35 (95% CI, 1.89-2.92) million hospital admissions and 0.16 (95% CI, 0.13-0.2) million ICU admissions. Our study provides insights into health preparedness to balance the disease burden and sustainability for a country with a population of billions.
Collapse
Affiliation(s)
- Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Peiyi Wu
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Lin Wang
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Bingying Li
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yonghong Liu
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yuxi Ge
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Ruixue Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Ligui Wang
- Center of Disease Control and Prevention, PLA, Beijing, China
| | - Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chieh-Hsi Wu
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Marko Laine
- Finnish Meteorological Institute, Meteorological Research Unit, Helsinki, Finland
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Hongbin Song
- Center of Disease Control and Prevention, PLA, Beijing, China
| |
Collapse
|
10
|
Armenta-Leyva B, Munguía-Ramírez B, Giménez-Lirola LG, Lin X, Ye F, Zimmerman J. Critical evaluation of strategies to achieve direct real-time PCR detection of swine pathogens in oral fluids. J Vet Diagn Invest 2023; 35:521-527. [PMID: 37337714 PMCID: PMC10467463 DOI: 10.1177/10406387231182102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Based on publications reporting improvements in real-time PCR (rtPCR) performance, we compared protocols based on heat treatment or dilution followed by direct rtPCR to standard extraction and amplification methods for the detection of porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus (IAV), porcine epidemic diarrhea virus (PEDV), or Mycoplasma hyopneumoniae (MHP) in swine oral fluids (OFs). In part A, we subjected aliquots of positive OF samples to 1 of 4 protocols: protocol 1: heat (95°C × 30 min) followed by direct rtPCR; protocol 2: heat and cool (25°C × 20 min) followed by direct rtPCR; protocol 3: heat, cool, extraction, and rtPCR; protocol 4 (control): extraction and then rtPCR. In part B, positive OF samples were split into 3, diluted (D1 = 1:2 with Tris-borate-EDTA (TBE); D2 = 1:2 with negative OF; D3 = not diluted), and then tested by rtPCR using the best-performing protocol from part A (protocol 4). In part A, with occasional exceptions, heat treatment resulted in marked reduction in the detection of target and internal sample control (ISC) nucleic acids. In part B, sample dilution with TBE or OF produced no improvement in the detection of targets and ISCs. Thus, standard extraction and amplification methods provided superior detection of PRRSV, IAV, PEDV, and MHP nucleic acids in OFs.
Collapse
Affiliation(s)
- Betsy Armenta-Leyva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Berenice Munguía-Ramírez
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Xue Lin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Fangshu Ye
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
11
|
King KL, Ham R, Smothers A, Lee I, Bowie T, Teetsel E, Peng C, Dean D. Repurposing a SARS-CoV-2 surveillance program for infectious respiratory diseases in a university setting. Front Public Health 2023; 11:1168551. [PMID: 37727605 PMCID: PMC10505707 DOI: 10.3389/fpubh.2023.1168551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Standard multiplex RT-qPCR diagnostic tests use nasopharyngeal swabs to simultaneously detect a variety of infections, but commercially available kits can be expensive and have limited throughput. Previously, we clinically validated a saliva-based RT-qPCR diagnostic test for SARS-CoV-2 to provide low-cost testing with high throughput and low turnaround time on a university campus. Here, we developed a respiratory diagnostic panel to detect SARS-CoV-2, influenza A and B within a single saliva sample. When compared to clinical results, our assay demonstrated 93.5% accuracy for influenza A samples (43/46 concordant results) with no effect on SARS-CoV-2 accuracy or limit of detection. In addition, our assay can detect simulated coinfections at varying virus concentrations generated from synthetic RNA controls. We also confirmed the stability of influenza A in saliva at room temperature for up to 5 days. The cost of the assay is lower than standard nasopharyngeal swab respiratory panel tests as saliva collection does not require specialized swabs or trained clinical personnel. By repurposing the lab infrastructure developed for the COVID-19 pandemic, our multiplex assay can be used to provide expanded access to respiratory disease diagnostics, especially for community, school, or university testing applications where saliva testing was effectively utilized during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kylie L. King
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Rachel Ham
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Austin Smothers
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Isaac Lee
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Tyler Bowie
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Erika Teetsel
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Congyue Peng
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
12
|
Park SW, Dushoff J, Grenfell BT, Weitz JS. Intermediate levels of asymptomatic transmission can lead to the highest epidemic fatalities. PNAS NEXUS 2023; 2:pgad106. [PMID: 37091542 PMCID: PMC10118396 DOI: 10.1093/pnasnexus/pgad106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 04/25/2023]
Abstract
Asymptomatic infections have hampered the ability to characterize and prevent the transmission of SARS-CoV-2 throughout the pandemic. Although asymptomatic infections reduce severity at the individual level, they can make population-level outcomes worse if asymptomatic individuals-unaware they are infected-transmit more than symptomatic individuals. Using an epidemic model, we show that intermediate levels of asymptomatic infection lead to the highest levels of epidemic fatalities when the decrease in symptomatic transmission, due either to individual behavior or mitigation efforts, is strong. We generalize this result to include presymptomatic transmission, showing that intermediate levels of nonsymptomatic transmission lead to the highest levels of fatalities. Finally, we extend our framework to illustrate how the intersection of asymptomatic spread and immunity profiles determine epidemic trajectories, including population-level severity, of future variants. In particular, when immunity provides protection against symptoms, but not against infections or deaths, epidemic trajectories can have faster growth rates and higher peaks, leading to more total deaths. Conversely, even modest levels of protection against infection can mitigate the population-level effects of asymptomatic spread.
Collapse
Affiliation(s)
- Sang Woo Park
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
13
|
Modeling community COVID-19 transmission risk associated with U.S. universities. Sci Rep 2023; 13:1428. [PMID: 36697468 PMCID: PMC9875777 DOI: 10.1038/s41598-023-28212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
The ongoing COVID-19 pandemic is among the worst in recent history, resulting in excess of 520,000,000 cases and 6,200,000 deaths worldwide. The United States (U.S.) has recently surpassed 1,000,000 deaths. Individuals who are elderly and/or immunocompromised are the most susceptible to serious sequelae. Rising sentiment often implicates younger, less-vulnerable populations as primary introducers of COVID-19 to communities, particularly around colleges and universities. Adjusting for more than 32 key socio-demographic, economic, and epidemiologic variables, we (1) implemented regressions to determine the overall community-level, age-adjusted COVID-19 case and mortality rate within each American county, and (2) performed a subgroup analysis among a sample of U.S. colleges and universities to identify any significant preliminary mitigation measures implemented during the fall 2020 semester. From January 1, 2020 through March 31, 2021, a total of 22,385,335 cases and 374,130 deaths were reported to the CDC. Overall, counties with increasing numbers of university enrollment showed significantly lower case rates and marginal decreases in mortality rates. County-level population demographics, and not university level mitigation measures, were the most significant predictor of adjusted COVID-19 case rates. Contrary to common sentiment, our findings demonstrate that counties with high university enrollments may be more adherent to public safety measures and vaccinations, likely contributing to safer communities.
Collapse
|
14
|
Rachaniotis NP. Evaluating the COVID-19 Containment Protocol in Greek Universities for the Academic Year 2021-2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14363. [PMID: 36361242 PMCID: PMC9656207 DOI: 10.3390/ijerph192114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic severely disrupted European universities' educational process. With the vaccination rollout, in-class instruction broadly resumed beginning in September 2021. In order to mitigate the risks of SARS-CoV-2 transmission, European universities apply COVID-19 containment protocols. The aim of this paper is to evaluate the COVID-19 containment protocol that Greek universities implemented in order to fully reopen in the fall of 2021 and for the entire academic year 2021-2022. A case study was conducted at the Department of Industrial Management and Technology, University of Piraeus (Athens' port), Greece. Data were collected from November 2021 to July 2022 and a quantitative statistical analysis (descriptive and inferential) was performed. A total of 330 unique (and 43 reinfections) COVID-19 cases were confirmed, including 241 undergraduate students, 73 postgraduate, and 2 doctoral students, 10 faculty, and 4 administrative personnel. Contact tracing reported four confirmed and eight potential cases of in-classroom transmission. The person in charge of implementing the COVID-19 containment protocol in the department ordered more than 6000 rapid tests during this period. The Department of Industrial Management and Technology at the University of Piraeus used a rigorously monitored and coordinated strategy of vaccine promotion, screening/testing, contact tracing, isolation, and quarantine in order to control COVID-19 transmission. The results show, on one hand, that the protocol's implementation is effective and leads to in-classroom transmission minimization and, on the other hand, verify the hypothesis that the department's confirmed COVID-19 cases are less (with a mean percentage difference of 50%) than the community's respective 18-39 age group.
Collapse
Affiliation(s)
- Nikolaos P Rachaniotis
- Department of Industrial Management and Technology, University of Piraeus, 18534 Piraeus, Greece
| |
Collapse
|
15
|
Nieto-Chaupis H, Alfaro-Acuña A. The Management of a Private Peruvian University at Pandemic Times: Assessment of Decisions and Implications on the Key Indicators. PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY AND COMPUTERS 2022:555-560. [DOI: 10.1145/3572549.3572638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Blake H, Somerset S, Mahmood I, Mahmood N, Corner J, Ball JK, Denning C. A Qualitative Evaluation of the Barriers and Enablers for Implementation of an Asymptomatic SARS-CoV-2 Testing Service at the University of Nottingham: A Multi-Site Higher Education Setting in England. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13140. [PMID: 36293719 PMCID: PMC9603241 DOI: 10.3390/ijerph192013140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Asymptomatic testing for SARS-CoV-2 RNA has been used to prevent and manage COVID-19 outbreaks in university settings, but few studies have explored their implementation. The aim of the study was to evaluate how an accredited asymptomatic SARS-CoV-2 testing service (ATS) was implemented at the University of Nottingham, a multi-campus university in England, to identify barriers and enablers of implementation and to draw out lessons for implementing pandemic response initiatives in higher education settings. A qualitative interview study was conducted with 25 ATS personnel between May and July 2022. Interviews were conducted online, audio-recorded, and transcribed. Participants were asked about their experience of the ATS, barriers and enablers of implementation. Transcripts were thematically analysed. There were four overarching themes: (1) social responsibility and innovation, (2) when, how and why people accessed testing, (3) impact of the ATS on the spread of COVID-19, and (4) lessons learned for the future. In establishing the service, the institution was seen to be valuing its community and socially responsible. The service was viewed to be broadly successful as a COVID-19 mitigation approach. Challenges to service implementation were the rapidly changing pandemic situation and government advice, delays in service accreditation and rollout to staff, ambivalence towards testing and isolating in the target population, and an inability to provide follow-up support for positive cases within the service. Facilitators included service visibility, reduction in organisational bureaucracy and red tape, inclusive leadership, collaborative working with regular feedback on service status, flexibility in service delivery approaches and simplicity of saliva testing. The ATS instilled a perception of early 'return to normality' and impacted positively on staff feelings of safety and wellbeing, with wider benefits for healthcare services and local communities. In conclusion, we identified common themes that have facilitated or hindered the implementation of a SARS-CoV-2 testing service at a university in England. Lessons learned from ATS implementation will inform future pandemic response interventions in higher education settings.
Collapse
Affiliation(s)
- Holly Blake
- School of Health Sciences, University of Nottingham, Nottingham NG7 2HA, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
| | - Sarah Somerset
- NIHR Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ikra Mahmood
- School of Health Sciences, University of Nottingham, Nottingham NG7 2HA, UK
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Neelam Mahmood
- School of Health Sciences, University of Nottingham, Nottingham NG7 2HA, UK
| | - Jessica Corner
- Executive Office, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jonathan K. Ball
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
17
|
Ke R, Martinez PP, Smith RL, Gibson LL, Achenbach CJ, McFall S, Qi C, Jacob J, Dembele E, Bundy C, Simons LM, Ozer EA, Hultquist JF, Lorenzo-Redondo R, Opdycke AK, Hawkins C, Murphy RL, Mirza A, Conte M, Gallagher N, Luo CH, Jarrett J, Conte A, Zhou R, Farjo M, Rendon G, Fields CJ, Wang L, Fredrickson R, Baughman ME, Chiu KK, Choi H, Scardina KR, Owens AN, Broach J, Barton B, Lazar P, Robinson ML, Mostafa HH, Manabe YC, Pekosz A, McManus DD, Brooke CB. Longitudinal Analysis of SARS-CoV-2 Vaccine Breakthrough Infections Reveals Limited Infectious Virus Shedding and Restricted Tissue Distribution. Open Forum Infect Dis 2022; 9:ofac192. [PMID: 35791353 PMCID: PMC9047214 DOI: 10.1093/ofid/ofac192] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The global effort to vaccinate people against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during an ongoing pandemic has raised questions about how vaccine breakthrough infections compare with infections in immunologically naive individuals and the potential for vaccinated individuals to transmit the virus. METHODS We examined viral dynamics and infectious virus shedding through daily longitudinal sampling in 23 adults infected with SARS-CoV-2 at varying stages of vaccination, including 6 fully vaccinated individuals. RESULTS The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. CONCLUSIONS Vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.
Collapse
Affiliation(s)
- Ruian Ke
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Pamela P Martinez
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rebecca L Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Laura L Gibson
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chad J Achenbach
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sally McFall
- Center for Innovation in Point-of-Care Technologies for HIV/AIDS at Northwestern University, Evanston, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua Jacob
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Etienne Dembele
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Camille Bundy
- Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lacy M Simons
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A Ozer
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Judd F Hultquist
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ramon Lorenzo-Redondo
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anita K Opdycke
- Department of Health Service, Northwestern University, Evanston, Illinois, USA
| | - Claudia Hawkins
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert L Murphy
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Agha Mirza
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Madison Conte
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Gallagher
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chun Huai Luo
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Junko Jarrett
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abigail Conte
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mireille Farjo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gloria Rendon
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher J Fields
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Richard Fredrickson
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Melinda E Baughman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Karen K Chiu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hannah Choi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin R Scardina
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alyssa N Owens
- Center for Clinical and Translational Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - John Broach
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- UMass Memorial Medical Center, Worcester, Massachusetts, USA
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bruce Barton
- Division of Biostatistics and Health Services Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Peter Lazar
- Division of Biostatistics and Health Services Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Matthew L Robinson
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Heba H Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yukari C Manabe
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David D McManus
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Division of Cardiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|