1
|
Sun ML, Wang HY, Feng Y, Ren JT, Wang L, Yuan ZY. Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications. Chem Soc Rev 2024; 53:11908-11966. [PMID: 39498737 DOI: 10.1039/d4cs00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (e.g., valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Collapse
Affiliation(s)
- Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Vadakkayil A, Dunlap-Shohl WA, Joy M, Bloom BP, Waldeck DH. Improved Catalyst Performance for the Oxygen Evolution Reaction under a Chiral Bias. ACS Catal 2024; 14:17303-17309. [PMID: 39664775 PMCID: PMC11629287 DOI: 10.1021/acscatal.4c04477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
The oxygen evolution reaction (OER) remains an important bottleneck for widespread implementation of a hydrogen economy. While improvements in the OER can be realized by spin polarizing the reaction intermediates, these methods often rely on applying external magnetic fields to ferromagnetic catalysts or by adsorbing chiral molecules onto the catalyst. Here, we show that the addition of chiral additives to the conductive binder supporting the catalysts enhances the selectivity for O2 formation and results in exceedingly high mass activities. The results are explained within the context of a statistical model in which the additives are hypothesized to act as a localized chiral bias that enhances radical intermediate coupling. More broadly, these studies illustrate a flexible design motif for improving OER catalysis that persists under different pH conditions, is independent of the choice of catalyst, and can be extrapolated to other chemical reactions.
Collapse
Affiliation(s)
- Aravind Vadakkayil
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wiley A. Dunlap-Shohl
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Meera Joy
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brian P. Bloom
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David H. Waldeck
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Ferrari C, Bogdan A, Pop F, Curto C, Carella A, Rossella F, Avarvari N, Fontanesi C. Enantio-Recognition and Charge Transfer Complex Formation Involving Tetrathiafulvalene-Appended Chiral 1,2-Cyclohexane-Diamine: An Integrated Experimental and Theoretical Study. Chirality 2024; 36:e70009. [PMID: 39696729 DOI: 10.1002/chir.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
In this work, we exploit the electronic features of tetrathiafulvalene (TTF) as a backbone in synthesizing chiral derivatives. The aim is to make use of TTF's well-known and unique redox and semiconducting properties in the fields of enantio-selective recognition and chiral charge transfer (CT) complex preparation, with the ultimate objective of obtaining devices with various potential applications, ranging from plasmonics to quantum computing. In particular, both cyclohexane-bis (TTF-amide)-based enantiomers 1-(S,S) and 1-(R,R), stable under an oxidation regime, have been selected, and under these conditions, the electrochemical enantiospecific response of the four possible systems, coming from the combination with L- and D-tartaric acid, respectively, was tested. The 1:tartaric acid adducts show lower oxidation potentials than the pristine 1, together with clear enantio-discrimination demonstrated by sizeable potential differences in the range of 29-46 mV between the diastereomeric adducts. Because the oxidation potential of 1 suggests the possibility of the formation of CT complexes, impedance and FT-IR spectra were recorded to confirm this hypothesis in the case of the CT complex 1:I2. The experimental results obtained through the FT-IR analysis were also compared with the theoretical results deriving from the DFT-based calculations.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Engineering "Enzo Ferrari", (DIEF), Univ. of Modena, Modena, Italy
| | - Alexandra Bogdan
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, Angers, France
- Faculty of Chemistry and Chemical Engineering, Center of Supramolecular Organic and Organometallic Chemistry, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Flavia Pop
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, Angers, France
| | - Cosimo Curto
- Department of Engineering "Enzo Ferrari", (DIEF), Univ. of Modena, Modena, Italy
| | - Alberta Carella
- Department of Physics, Informatics and Mathematics 'FIM', University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Rossella
- Department of Physics, Informatics and Mathematics 'FIM', University of Modena and Reggio Emilia, Modena, Italy
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, Angers, France
| | - Claudio Fontanesi
- Department of Engineering "Enzo Ferrari", (DIEF), Univ. of Modena, Modena, Italy
| |
Collapse
|
4
|
Tan L, Wen Z, Jin Y, Fu W, Gao Q, Xiao C, Chen Z, Wang PP. A Family of Twisted Chiral Engineered Inorganic Nanoarchitectures. NANO LETTERS 2024; 24:13678-13685. [PMID: 39423301 DOI: 10.1021/acs.nanolett.4c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Chiral inorganic materials possess unique asymmetric properties that could significantly impact various fields. However, their practical application has been hindered by challenges in creating structurally robust chiral materials. We report the synthesis of well-defined chiral-shaped hollow cobalt oxide nanostructures, extendable to a family of chalcogenides including sulfide, selenide, and telluride through topological transformations. Taking chiral cobalt oxide nanostructures as a representative material, we demonstrate precise control over their chiral architectures, enabling fine-tuning of parameters, such as twist degrees, handedness, and compositions. These chiral nanostructures exhibit high spin selectivity effects that influence the electron transfer processes in catalytic reactions. Leveraging this spin-selective behavior, the chiral cobalt oxide nanoarchitectures demonstrate enhanced electrocatalytic performance in the oxygen evolution reaction compared to their achiral counterparts. Our findings not only expand the library of chiral inorganic materials but also advance the application of chiral effects in fields such as catalysis, spintronics, and beyond.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhihao Wen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yiran Jin
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Chengyu Xiao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhi Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
5
|
Kong X, Zhu J, Xu Z, Geng Z. Fundamentals and Challenges of Ligand Modification in Heterogeneous Electrocatalysis. Angew Chem Int Ed Engl 2024:e202417562. [PMID: 39446379 DOI: 10.1002/anie.202417562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Indexed: 11/16/2024]
Abstract
The development of efficient catalytic materials in the energy field could promote the structural transformation from traditional fossil fuels to sustainable energy. In heterogeneous catalytic reactions, ligand modification is an effective way to regulate both electronic and steric structures of catalytic sites, thus paving a prospective avenue to design the interfacial structures of heterogeneous catalysts for energy conversion. Although great achievements have been obtained for the study and applications of heterogeneous ligand-modified catalysts, the systematical refinements of ligand modification strategies are still lacking. Here, we reviewed the ligand modification strategy from both the mechanistic and applicable scenarios by focusing on heterogeneous electrocatalysis. We elucidated the ligand-modified catalysts in detail from the perspectives of basic concepts, preparation, regulation of physicochemical properties of catalytic sites, and applications in different electrocatalysis. Notably, we bridged the electrocatalytic performance with the electronic/steric effects induced by ligand modification to gain intrinsic structure-performance relations. We also discussed the challenges and future perspectives of ligand modification strategies in heterogeneous catalysis.
Collapse
Affiliation(s)
- Xiangdong Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiangchen Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zifan Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
6
|
Aminadav G, Shoseyov O, Belsey S, Voignac D, Yochelis S, Levi-Kalisman Y, Yan B, Shoseyov O, Paltiel Y. Chiral Nematic Cellulose Nanocrystal Films for Enhanced Charge Separation and Quantum-Confined Stark Effect. ACS NANO 2024; 18:28609-28621. [PMID: 39381943 PMCID: PMC11503774 DOI: 10.1021/acsnano.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Efficient charge separation is essential in various optoelectronic systems, yet it continues to pose substantial challenges. Building upon the recent evidence that chiral biomolecules can function as electron spin filters, this study aims to extend the application of chirality-driven charge separation from the molecular level to the mesoscale and supramolecular scale. Utilizing cellulose nanocrystals (CNCs) derived from cellulose, the most abundant biomaterial on Earth, this research leverages their self-assembly into chiral nematic structures and their dielectric properties. A device is introduced featuring a chiral nematic hybrid film composed of CNCs and quantum dots (QDs), decorated with iron oxide nanoparticles. Using the quantum-confined Stark effect (QCSE) to probe charge separation, we reveal significant sensitivity to the circular polarization of light and the chiral nematic structure of the film. This approach achieves effective, long-lasting charge separation, both locally and across length scales exceeding 1 μm, enabling potential applications such as self-assembled devices that combine photovoltaic cells with electric capacitance as well as optical electric-field hybrid biosensors.
Collapse
Affiliation(s)
- Gur Aminadav
- Department
of Applied Physics, The Hebrew University
of Jerusalem, Jerusalem 9190401, Israel
- Department
of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, Rehovot 7612001, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Omer Shoseyov
- Department
of Applied Physics, The Hebrew University
of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shylee Belsey
- Department
of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, Rehovot 7612001, Israel
| | - Daniel Voignac
- Department
of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, Rehovot 7612001, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shira Yochelis
- Department
of Applied Physics, The Hebrew University
of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yael Levi-Kalisman
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Binghai Yan
- Department
of Condensed Matter Physics, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Oded Shoseyov
- Department
of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, Rehovot 7612001, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yossi Paltiel
- Department
of Applied Physics, The Hebrew University
of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Sun S, Zhang Y, Shi X, Sun W, Felser C, Li W, Li G. From Charge to Spin: An In-Depth Exploration of Electron Transfer in Energy Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312524. [PMID: 38482969 DOI: 10.1002/adma.202312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/24/2024] [Indexed: 05/01/2024]
Abstract
Catalytic materials play crucial roles in various energy-related processes, ranging from large-scale chemical production to advancements in renewable energy technologies. Despite a century of dedicated research, major enduring challenges associated with enhancing catalyst efficiency and durability, particularly in green energy-related electrochemical reactions, remain. Focusing only on either the crystal structure or electronic structure of a catalyst is deemed insufficient to break the linear scaling relationship (LSR), which is the golden rule for the design of advanced catalysts. The discourse in this review intricately outlines the essence of heterogeneous catalysis reactions by highlighting the vital roles played by electron properties. The physical and electrochemical properties of electron charge and spin that govern catalysis efficiencies are analyzed. Emphasis is placed on the pronounced influence of external fields in perturbing the LSR, underscoring the vital role that electron spin plays in advancing high-performance catalyst design. The review culminates by proffering insights into the potential applications of spin catalysis, concluding with a discussion of extant challenges and inherent limitations.
Collapse
Affiliation(s)
- Shubin Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xin Shi
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering, Ningbo University, 818 A Fenghua Rd, Jiangbei District, Ningbo, 315211, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Claudia Felser
- Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
8
|
Bloom BP, Chen Z, Lu H, Waldeck DH. A chemical perspective on the chiral induced spin selectivity effect. Natl Sci Rev 2024; 11:nwae212. [PMID: 39144747 PMCID: PMC11321253 DOI: 10.1093/nsr/nwae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 08/16/2024] Open
Abstract
This review discusses opportunities in chemistry that are enabled by the chiral induced spin selectivity (CISS) effect. First, the review begins with a brief overview of the seminal studies on CISS. Next, we discuss different chiral material systems whose properties can be tailored through chemical means, with a special emphasis on hybrid organic-inorganic layered materials that exhibit some of the largest spin filtering properties to date. Then, we discuss the promise of CISS for chemical reactions and enantioseparation before concluding.
Collapse
Affiliation(s)
- Brian P Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, USA
| | - Zhongwei Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, USA
| |
Collapse
|
9
|
Ma S, Lee H, Moon J. Chirality-Induced Spin Selectivity Enables New Breakthrough in Electrochemical and Photoelectrochemical Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405685. [PMID: 38963061 DOI: 10.1002/adma.202405685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Indexed: 07/05/2024]
Abstract
To facilitate the transition from a carbon-energy-dependent society to a sustainable society, conventional engineering strategies, which encounter limitations associated with intrinsic material properties, should undergo the paradigm shift. From a theoretical viewpoint, the spin-dependent feature of oxygen evolution reaction (OER) reveals the potential of a spin-polarization strategy in enhancing the performance of electrochemical (EC) reactions. The chirality-induced spin selectivity (CISS) phenomenon attracts unprecedented attention owing to its potential utility in achieving novel breakthroughs. This paper starts with the experimental results aimed at enhancing the efficiency of the spin-dependent OER focusing on the EC system based on the CISS phenomenon. The applicability of spin-polarization to EC system is verified through various analytical methodologies to clarify the theoretical groundwork and mechanisms underlying the spin-dependent reaction pathway. The discussion is then extended to effective spin-control strategies in photoelectrochemical system based on the CISS effect. Exploring the influence of spin-state control on the kinetic and thermodynamic aspects, this perspective also discusses the effect of spin polarization induced by the CISS phenomenon on spin-dependent OER. Lastly, future directions for enhancing the performance of spin-dependent redox systems are discussed, including expansion to various chemical reactions and the development of materials with spin-control capabilities.
Collapse
Affiliation(s)
- Sunihl Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Zhao W, Yang J, Xu F, Weng B. Recent Advancements on Spin Engineering Strategies for Highly Efficient Electrocatalytic Oxygen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401057. [PMID: 38587966 DOI: 10.1002/smll.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Oxygen evolution reaction (OER) is a widely employed half-electrode reaction in oxygen electrochemistry, in applications such as hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. Unfortunately, its slow kinetics limits the commercialization of such applications. It is therefore highly imperative to develop highly robust electrocatalysts with high activity, long-term durability, and low noble-metal contents. Previously intensive efforts have been made to introduce the advancements on developing non-precious transition metal electrocatalysts and their OER mechanisms. Electronic structure tuning is one of the most effective and interesting ways to boost OER activity and spin angular momentum is an intrinsic property of the electron. Therefore, modulation on the spin states and the magnetic properties of the electrocatalyst enables the changes on energy associated with interacting electron clouds with radical absorbance, affecting the OER activity and stability. Given that few review efforts have been made on this topic, in this review, the-state-of-the-art research progress on spin-dependent effects in OER will be briefed. Spin engineering strategies, such as strain, crystal surface engineering, crystal doping, etc., will be introduced. The related mechanism for spin manipulation to boost OER activity will also be discussed. Finally, the challenges and prospects for the development of spin catalysis are presented. This review aims to highlight the significance of spin engineering in breaking the bottleneck of electrocatalysis and promoting the practical application of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jieyu Yang
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
11
|
Martin K, Aharon T, Mastropasqua Talamo M, Hauser A, Bürgi T, Vanthuyne N, Caricato M, Avarvari N. Helicene Appended Benzothiadiazoles as Chiral Emitters. Chemistry 2024; 30:e202401413. [PMID: 38770893 DOI: 10.1002/chem.202401413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
A homologous series of 4,7-bis(aryl) substituted benzothiadiazole (BTD) compounds, containing the helicenic derivatives bis([4]helicene), bis([5]helicene) and bis([6]helicene), have been prepared upon a double Suzuki coupling between 3,6-bis(pinacolyl-borane)-BTD and the corresponding bromo-aryl precursors. The single crystal X-ray structure of the bis([4]helicene) compound shows the existence of both helicities (M) and (P) on the same molecule. All the compounds of the series are highly emissive in solution, with quantum yields of the emission ranging from 50 to 91 %. The enantiopure compounds (M,M) and (P,P) for the BTD-bis([6]helicene) have been prepared from the corresponding enantiopure 2-bromo-[6]helicene precursors. Their chiroptical properties have been investigated in correlation with density functional theory (DFT) calculations, which allowed to confidently assign the absolute configuration of the helicene arms and to characterize the different electronic transitions, including the low energy charge transfer excitation from helicenes to BTD. The enantiomerically pure fluorophores (M,M)- and (P,P)-BTD-bis([6]helicene), which exist in solution as two main conformers, according to the DFT calculations, show CPL activity in solution, with glum factors of ≈1.7×10-3 at λem=525 nm, and also in the solid state, with glum factors of ≈1.2×10-3 in spite of the strong decrease of the quantum efficiency.
Collapse
Affiliation(s)
- Kévin Martin
- Univ Angers, CNRS, MOLTECH-Anjou SFR MATRIX, F-49000, Angers, France
| | - Tal Aharon
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas, 66045, United States of America
- TetraScience, 294 Washington St, Boston, MA 02108, United States of America
| | | | - Andreas Hauser
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva, Switzerland
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille UAR, 1739, FSCM, Chiropole, Marseille, France
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas, 66045, United States of America
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou SFR MATRIX, F-49000, Angers, France
| |
Collapse
|
12
|
Zhang Y, Ma Y, Sun W, Li W, Li G. Structural and Electronic Chirality in Inorganic Crystals: from Construction to Application. Chemistry 2024; 30:e202400436. [PMID: 38571318 DOI: 10.1002/chem.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Chirality represents a fundamental characteristic inherent in nature, playing a pivotal role in the emergence of homochirality and the origin of life. While the principles of chirality in organic chemistry are well-documented, the exploration of chirality within inorganic crystal structures continues to evolve. This ongoing development is primarily due to the diverse nature of crystal/amorphous structures in inorganic materials, along with the intricate symmetrical and asymmetrical relationships in the geometry of their constituent atoms. In this review, we commence with a summary of the foundational concept of chirality in molecules and solid states matters. This is followed by an introduction of structural chirality and electronic chirality in three-dimensional and two-dimensional inorganic materials. The construction of chirality in inorganic materials is classified into physical photolithography, wet-chemistry method, self-assembly, and chiral imprinting. Highlighting the significance of this field, we also summarize the research progress of chiral inorganic materials for applications in optical activity, enantiomeric recognition and chiral sensing, selective adsorption and enantioselective separation, asymmetric synthesis and catalysis, and chirality-induced spin polarization. This review aims to provide a reference for ongoing research in chiral inorganic materials and potentially stimulate innovative strategies and novel applications in the realm of chirality.
Collapse
Affiliation(s)
- Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yuzhe Ma
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wei Li
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
13
|
Liu G, Xie F, Cai X, Ye J. Spin Crossover and Exchange Effects on Oxygen Evolution Reaction Catalyzed by Bimetallic Metal Organic Frameworks. ACS Catal 2024; 14:8652-8665. [PMID: 38868096 PMCID: PMC11165450 DOI: 10.1021/acscatal.4c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Bimetallic metal-organic frameworks (BMOFs) have shown a superior oxygen evolution reaction (OER) performance, attributed to the synergistic effects of dual metal sites. However, the significant role of these dual-metal synergies in the OER is not yet fully understood. In this study, we employed density functional theory to systematically investigate the OER performance of NiAl- and NiFe-based BMOFs by examining all possible spin states of each intermediate across diverse external potentials and pH environments. We found that the spin state featuring a shallow hole trap state and Ni ions with a higher oxidation state serve as strong oxidizing agents, promoting the OER. An external potential-induced spin crossover was observed in each intermediate, resulting in significant changes in the overall reaction and activation energies due to altered energy levels. Combining the constant potential method and the electrochemical nudged elastic band method, we mapped the minimum free energy barriers of the OER under varied external potential and pH by considering the spin crossover effect for both NiAl and NiFe BMOFs. The results showed that NiFe exhibits better OER thermodynamics and kinetics, which is in good agreement with experimentally measured OER polarization curves and Tafel plots. Moreover, we found that the improved OER kinetics of NiFe not only is attributed to lower barriers but also is a result of improved electrical conductivity arising from the synergistic effects of Ni-Fe dual-metal sites. Specifically, replacing the second metal Al with Fe leads to two significant outcomes: a reduction in both the band gap and the effective hole mass compared to NiAl, and the initiation of super- and double-exchange interactions within the Ni-F-Fe chain, thereby enhancing electron transfer and hopping and leading to the improved OER kinetics.
Collapse
Affiliation(s)
- Guangsheng Liu
- Department
of Chemistry and Biochemistry, Duquesne
University, Pittsburgh, Pennsylvania 15282, United States
| | - Feng Xie
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Xu Cai
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Jingyun Ye
- Department
of Chemistry and Biochemistry, Duquesne
University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
14
|
Firouzeh S, Hossain MA, Cuerva JM, Álvarez de Cienfuegos L, Pramanik S. Chirality-Induced Spin Selectivity in Composite Materials: A Device Perspective. Acc Chem Res 2024; 57:1478-1487. [PMID: 38687873 PMCID: PMC11112739 DOI: 10.1021/acs.accounts.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
ConspectusMagnetism is an area of immense fundamental and technological importance. At the atomic level, magnetism originates from electron "spin". The field of nanospintronics (or nanoscale spin-based electronics) aims to control spins in nanoscale systems, which has resulted in astronomical improvement in data storage and magnetic field sensing technologies over the past few decades, recognized by the 2007 Nobel Prize in Physics. Spins in nanoscale solid-state devices can also act as quantum bits or qubits for emerging quantum technologies, such as quantum computing and quantum sensing.Due to the fundamental connection between magnetism and spins, ferromagnets play a key role in many solid-state spintronic devices. This is because at the Fermi level, electron density of states is spin-polarized, which permits ferromagnets to act as electrical injectors and detectors of spins. Ferromagnets, however, have limitations in terms of low spin polarization at the Fermi level, stray magnetic fields, crosstalk, and thermal instability at the nanoscale. Therefore, new physics and new materials are needed to propel spintronic and quantum device technologies to the true atomic limit. Emerging new phenomena such as chirality induced spin selectivity or CISS, in which an intriguing correlation between carrier spin and medium chirality is observed, could therefore be instrumental in nanospintronics. This effect could allow molecular-scale, chirality controlled spin injection and detection without the need for any ferromagnet, thus opening a fundamentally new direction for device spintronics.While CISS finds a myriad of applications in diverse areas such as chiral separation, recognition, detection, and asymmetric catalysis, in this focused Account, we exclusively review spintronic device results of this effect due to its immense potential for future spintronics. The first generation of CISS-based spintronic devices have primarily used chiral bioorganic molecules; however, many practical limitations of these materials have also been identified. Therefore, our discussion revolves around the family of chiral composite materials, which may emerge as an ideal platform for CISS due to their ability to assimilate various desirable material properties on a single platform. This class of materials has been extensively studied by the organic chemistry community in the past decades, and we discuss the various chirality transfer mechanisms that have been identified, which play a central role in CISS. Next, we discuss CISS device studies performed on some of these chiral composite materials. Emphasis is given to the family of chiral organic-carbon allotrope composites, which have been extensively studied by the authors of this Account over the past several years. Interestingly, due to the presence of multiple materials, CISS signals from hybrid chiral systems sometimes differ from those observed in purely chiral systems. Given the sheer diversity of chiral composite materials, CISS device studies so far have been limited to only a few varieties, and this Account is expected to draw increased attention to the family of chiral composites and motivate further studies of their CISS applications.
Collapse
Affiliation(s)
- Seyedamin Firouzeh
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Md Anik Hossain
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Juan Manuel Cuerva
- Universidad
de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina
y Medioambiente, C. U.
Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad
de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina
y Medioambiente, C. U.
Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs., Avda. De Madrid, 15, E-18016 Granada, Spain
| | - Sandipan Pramanik
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
15
|
Krieger JA, Stolz S, Robredo I, Manna K, McFarlane EC, Date M, Pal B, Yang J, B Guedes E, Dil JH, Polley CM, Leandersson M, Shekhar C, Borrmann H, Yang Q, Lin M, Strocov VN, Caputo M, Watson MD, Kim TK, Cacho C, Mazzola F, Fujii J, Vobornik I, Parkin SSP, Bradlyn B, Felser C, Vergniory MG, Schröter NBM. Weyl spin-momentum locking in a chiral topological semimetal. Nat Commun 2024; 15:3720. [PMID: 38697958 PMCID: PMC11066003 DOI: 10.1038/s41467-024-47976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking - a directional relationship between an electron's spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.
Collapse
Affiliation(s)
- Jonas A Krieger
- Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Samuel Stolz
- Department of Physics, University of California, Berkeley, CA, USA
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Iñigo Robredo
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
- Donostia International Physics Center, 20018, Donostia - San Sebastian, Spain
| | - Kaustuv Manna
- Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Emily C McFarlane
- Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany
| | - Mihir Date
- Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany
| | - Banabir Pal
- Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany
| | - Jiabao Yang
- Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany
| | - Eduardo B Guedes
- Photon Science Division, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Institut de Physique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - J Hugo Dil
- Photon Science Division, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Institut de Physique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Craig M Polley
- MAX IV Laboratory, Lund University, Fotongatan 2, 22484, Lund, Sweden
| | - Mats Leandersson
- MAX IV Laboratory, Lund University, Fotongatan 2, 22484, Lund, Sweden
| | - Chandra Shekhar
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Horst Borrmann
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Qun Yang
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Mao Lin
- Department of Physics, University of Illinois, Urbana-Champaign, USA
| | - Vladimir N Strocov
- Photon Science Division, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Marco Caputo
- Photon Science Division, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Matthew D Watson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Timur K Kim
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Cephise Cacho
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Federico Mazzola
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, I-34149, Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy
| | - Jun Fujii
- CNR-IOM, Area Science Park, Strada Statale 14 km 163.5, I-34149, Trieste, Italy
| | - Ivana Vobornik
- CNR-IOM, Area Science Park, Strada Statale 14 km 163.5, I-34149, Trieste, Italy
| | - Stuart S P Parkin
- Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany
| | - Barry Bradlyn
- Department of Physics, University of Illinois, Urbana-Champaign, USA
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Maia G Vergniory
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
- Donostia International Physics Center, 20018, Donostia - San Sebastian, Spain
| | - Niels B M Schröter
- Max Planck Institut für Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany.
| |
Collapse
|
16
|
He Y, Wei Y, Huang R, Xia T, Wang J, Yu Z, Wang Z, Yu R. Interfaces Engineering of Ultrafine Ni@Ni 2P/C Core-Shell Heterostructure for High Yield Hydrogen Peroxide Electrosynthesis. SMALL METHODS 2024:e2301560. [PMID: 38678510 DOI: 10.1002/smtd.202301560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Developing cost-effective and sustainable catalysts with exceptional activity and selectivity is essential for the practical implementation of on-site H2O2 electrosynthesis, yet it remains a formidable challenge. Metal phosphide core-shell heterostructures anchored in carbon nanosheets (denoted as Ni@Ni2P/C NSs) are designed and synthesized via carbonization and phosphidation of the 2D Ni-BDC precursor. This core-shell nanostructure provides more accessible active sites and enhanced durability, while the 2D carbon nanosheet substrate prevents heterostructure aggregation and facilitates mass transfer. Theoretical calculations further reveal that the Ni/Ni2P heterostructure-induced optimization of geometric and electronic structures enables the favored adsorption of OOH* intermediate. All these features endow the Ni@Ni2P/C NSs with remarkable performance in 2e ORR for H2O2 synthesis, achieving a top yield rate of 95.6 mg L-1 h-1 with both selectivity and Faradaic efficiency exceeding 90% under a wide range of applied potentials. Furthermore, when utilized as the anode of an assembled gas diffusion electrode (GDE) device, the Ni@Ni2P/C NSs achieve in situ H2O2 production with excellent long-term durability (>32 h). Evidently, this work provides a unique insight into the origin of 2e ORR and proposes optimization of H2O2 production through nano-interface manipulation.
Collapse
Affiliation(s)
- Yilei He
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Ruiyi Huang
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Tian Xia
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ji Wang
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zijian Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zumin Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Ranbo Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
17
|
Vensaus P, Liang Y, Ansermet JP, Soler-Illia GJAA, Lingenfelder M. Enhancement of electrocatalysis through magnetic field effects on mass transport. Nat Commun 2024; 15:2867. [PMID: 38570499 PMCID: PMC10991325 DOI: 10.1038/s41467-024-46980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles' movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies.
Collapse
Affiliation(s)
- Priscila Vensaus
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jean-Philippe Ansermet
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Magalí Lingenfelder
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
18
|
Vensaus P, Liang Y, Zigon N, Avarvari N, Mujica V, Soler-Illia GJAA, Lingenfelder M. Hybrid mesoporous electrodes evidence CISS effect on water oxidation. J Chem Phys 2024; 160:111103. [PMID: 38511663 DOI: 10.1063/5.0199339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Controlling product selectivity is essential for improving the efficiency of multi-product reactions. Electrochemical water oxidation is a reaction of main importance in different applications, e.g., renewable energy schemes and environmental protection, where H2O2 and O2 are the two principal products. In this Communication, the product selectivity of electrochemical water oxidation was controlled by making use of the chiral induced spin selectivity (CISS) effect at mesoporous-TiO2 on the molecule-modified Au substrate. Our results show a decrease in H2O2 formation when using chiral hetero-helicene molecules adsorbed on the Au substrate. We propose a mechanism for this kinetic effect based on the onset of CISS-induced spin polarization on the Au-helicene chiral interface. We also present a new tunable substrate to investigate the CISS mechanism.
Collapse
Affiliation(s)
- Priscila Vensaus
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín B1650, Buenos Aires, Argentina
| | - Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolas Zigon
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Vladimiro Mujica
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín B1650, Buenos Aires, Argentina
| | - Magalí Lingenfelder
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Mingoes CJ, Schroeder BC, Jorge Sobrido AB. Electron Spin Selective Iridium Electrocatalysts for the Oxygen Evolution Reaction. ACS MATERIALS AU 2024; 4:204-213. [PMID: 38496043 PMCID: PMC10941284 DOI: 10.1021/acsmaterialsau.3c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 03/19/2024]
Abstract
Highly efficient electrocatalysts for water electrolysis are crucial to the widespread commercialization of the technology and an important step forward toward a sustainable energy future. In this study, an alternative method for boosting the electrocatalytic activity toward the oxygen evolution reaction (OER) of a well-known electrocatalyst (iridium) is presented. Iridium nanoparticles (2.1 ± 0.2 nm in diameter) functionalized with chiral molecules were found to markedly enhance the activity of the OER when compared to unfunctionalized and achiral functionalized iridium nanoparticles. At a potential of 1.55 V vs Reference Hydrogen Electrode (RHE), chiral functionalized iridium nanoparticles exhibited an average 85% enhancement in activity with respect to unfunctionalized iridium nanoparticles compared to an average 13% enhancement for the achiral functionalized iridium nanoparticle. This activity enhancement is attributed to a spin-selective electron transfer mechanism taking place on the chiral functionalized catalysts, a characteristic induced by the chirality of the ligand. This alternative path for the OER drastically reduces the production of hydrogen peroxide, which was confirmed via a colorimetric method.
Collapse
Affiliation(s)
- Carlos J. Mingoes
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Bob C. Schroeder
- Chemistry
Department, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Ana B. Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
20
|
Bloom BP, Paltiel Y, Naaman R, Waldeck DH. Chiral Induced Spin Selectivity. Chem Rev 2024; 124:1950-1991. [PMID: 38364021 PMCID: PMC10906005 DOI: 10.1021/acs.chemrev.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Since the initial landmark study on the chiral induced spin selectivity (CISS) effect in 1999, considerable experimental and theoretical efforts have been made to understand the physical underpinnings and mechanistic features of this interesting phenomenon. As first formulated, the CISS effect refers to the innate ability of chiral materials to act as spin filters for electron transport; however, more recent experiments demonstrate that displacement currents arising from charge polarization of chiral molecules lead to spin polarization without the need for net charge flow. With its identification of a fundamental connection between chiral symmetry and electron spin in molecules and materials, CISS promises profound and ubiquitous implications for existing technologies and new approaches to answering age old questions, such as the homochiral nature of life. This review begins with a discussion of the different methods for measuring CISS and then provides a comprehensive overview of molecules and materials known to exhibit CISS-based phenomena before proceeding to identify structure-property relations and to delineate the leading theoretical models for the CISS effect. Next, it identifies some implications of CISS in physics, chemistry, and biology. The discussion ends with a critical assessment of the CISS field and some comments on its future outlook.
Collapse
Affiliation(s)
- Brian P. Bloom
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yossi Paltiel
- Applied
Physics Department and Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Arango JC, Pintro CJ, Singh A, Claridge SA. Inkjet Printing of Nanoscale Functional Patterns on 2D Crystalline Materials and Transfer to Soft Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8055-8065. [PMID: 38300756 PMCID: PMC10875643 DOI: 10.1021/acsami.3c16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Nanometer-scale control over surface functionality is important in applications ranging from nanoscale electronics to regenerative medicine. However, approaches that provide precise control over surface chemistry at the nanometer scale are often challenging to use with higher throughput and in more heterogeneous environments (e.g., complex solutions, porous interfaces) common for many applications. Here, we demonstrate a scalable inkjet-based method to generate 1 nm-wide functional patterns on 2D materials such as graphite, which can then be transferred to soft materials such as hydrogels. We examine fluid dynamics associated with the inkjet printing process for low-viscosity amphiphile inks designed to maximize ordering with limited residue and show that microscale droplet fluid dynamics influence nanoscale molecular ordering. Additionally, we show that scalable patterns generated in this way can be transferred to hydrogel materials and used to create surface chemical patterns that induce adsorption of charged particles, with effects strong enough to overcome electrostatic repulsion between a charged hydrogel and a like-charged nanoparticle.
Collapse
Affiliation(s)
- Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Chris J. Pintro
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette 47907, Indiana
| |
Collapse
|
22
|
Jin Y, Fu W, Wen Z, Tan L, Chen Z, Wu H, Wang PP. Chirality Engineering of Colloidal Copper Oxide Nanostructures for Tailored Spin-Polarized Catalysis. J Am Chem Soc 2024; 146:2798-2804. [PMID: 38145451 DOI: 10.1021/jacs.3c12965] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The combination of the chiral concept and inorganic nanostructures holds great potential for significantly impacting catalytic processes and products. However, the synthesis of inorganic nanomaterials with engineered chiroptical activity and identical structure and size presents a substantial challenge, impeding exploration of the relationship between chirality (optical activity) and catalytic efficiency. Here, we present a facile wet-chemical synthesis for achieving intrinsic and tunable chiroptical activity within colloidal copper oxide nanostructures. These nanostructures exhibit strong spin-polarization selectivity compared with their achiral counterparts. More importantly, the ability to engineer chiroptical activity within the same type of chiral nanostructures allows for the manipulation of spin-dependent catalysis, facilitating a study of the connection between the chiroptical magnitude (asymmetric factor) and catalytic performance in inorganic nanostructures. Specifically, using these materials as model catalysts in a proof-of-concept catalytic reaction, we reveal a linear correlation between the asymmetric factor of chiral nanomaterials and the efficiency of the catalytic reaction. This work paves the way for the development of chiral inorganic nanosystems and their application in catalysis through chiroptical engineering.
Collapse
Affiliation(s)
- Yiran Jin
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhihao Wen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhi Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
23
|
Dai J, Tong Y, Zhao L, Hu Z, Chen CT, Kuo CY, Zhan G, Wang J, Zou X, Zheng Q, Hou W, Wang R, Wang K, Zhao R, Gu XK, Yao Y, Zhang L. Spin polarized Fe 1-Ti pairs for highly efficient electroreduction nitrate to ammonia. Nat Commun 2024; 15:88. [PMID: 38167739 PMCID: PMC10762114 DOI: 10.1038/s41467-023-44469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin-state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin-polarized Fe1-Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h-1 mgFe-1 and a high NH3 Faradic efficiency of 95.2% at -0.4 V vs. RHE, far superior to the counterpart with spin-depressed Fe1-Ti pairs (51000 μg h-1 mgFe-1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow-through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.
Collapse
Affiliation(s)
- Jie Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yawen Tong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Long Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 300092, Taiwan, China
| | - Chang-Yang Kuo
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 300092, Taiwan, China
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaxian Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyue Zou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruizhao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiyuan Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China.
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
24
|
Wang X, Yi C, Felser C. Chiral Quantum Materials: When Chemistry Meets Physics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308746. [PMID: 38126622 DOI: 10.1002/adma.202308746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Chirality is a fundamental property of nature with relevance in biochemistry and physics, particularly in the field of catalysis. Understanding the mechanisms underlying chirality transfer is crucial for advancing the knowledge of chiral-related catalysis. Chiral quantum materials with intriguing chirality-dependent electronic properties, such as spin-orbital coupling (SOC) and exotic spin/orbital angular momentum (SAM/OAM), open novel avenues for linking solid-state topologies with chiral catalysis. In this review, the growth of topological homochiral crystals (THCs) is described, and their applications in heterogeneous catalysis, including hydrogen evolution reaction (HER), oxygen electrocatalysis, and asymmetric catalysis are summarized. A possible link between chirality-dependent electronic properties and heterogeneous catalysis is discussed. Finally, existing challenges in this field are highlighted, and a brief outlook on the impact of THCs on the overarching chemical-physical research is presented.
Collapse
Affiliation(s)
- Xia Wang
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Changjiang Yi
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| |
Collapse
|
25
|
Zhang DY, Sang Y, Das TK, Guan Z, Zhong N, Duan CG, Wang W, Fransson J, Naaman R, Yang HB. Highly Conductive Topologically Chiral Molecular Knots as Efficient Spin Filters. J Am Chem Soc 2023; 145:26791-26798. [PMID: 37972388 PMCID: PMC10722505 DOI: 10.1021/jacs.3c08966] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Knot-like structures were found to have interesting magnetic properties in condensed matter physics. Herein, we report on topologically chiral molecular knots as efficient spintronic chiral material. The discovery of the chiral-induced spin selectivity (CISS) effect opens the possibility of manipulating the spin orientation with soft materials at room temperature and eliminating the need for a ferromagnetic electrode. In the chiral molecular trefoil knot, there are no stereogenic carbon atoms, and chirality results from the spatial arrangements of crossings in the trefoil knot structures. The molecules show a very high spin polarization of nearly 90%, a conductivity that is higher by about 2 orders of magnitude compared with that of other chiral small molecules, and enhanced thermal stability. A plausible explanation for these special properties is provided, combined with model calculations, that supports the role of electron-electron interaction in these systems.
Collapse
Affiliation(s)
- Dan-Yang Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung
Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yutao Sang
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Tapan Kumar Das
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Zhao Guan
- Key
Laboratory of Polar Materials and Devices (MOE) and State Key Laboratory
of Precision Spectroscopy, East China Normal
University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Ni Zhong
- Key
Laboratory of Polar Materials and Devices (MOE) and State Key Laboratory
of Precision Spectroscopy, East China Normal
University, 500 Dongchuan Rd., Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 237016 Shanxi, China
| | - Chun-Gang Duan
- Key
Laboratory of Polar Materials and Devices (MOE) and State Key Laboratory
of Precision Spectroscopy, East China Normal
University, 500 Dongchuan Rd., Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 237016 Shanxi, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung
Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jonas Fransson
- Department
of Physics and Astronomy, Uppsala University, Uppsala 75236, Sweden
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung
Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute
of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
26
|
Stefani A, Bogdan A, Pop F, Tassinari F, Pasquali L, Fontanesi C, Avarvari N. Spin-dependent electrochemistry and electrochemical enantioselective recognition with chiral methylated bis(ethylenedithio)-tetrathiafulvalenes. J Chem Phys 2023; 159:204706. [PMID: 38014785 DOI: 10.1063/5.0171831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
Enantio-discrimination and spin-dependent electrochemistry (SDE), as a manifestation of the chirality-induced spin selectivity (CISS) effect, are important phenomena that can be probed by "chiral" electrochemistry. Here, we prepared chiralized surfaces of gold and nickel, to serve as working electrodes, through effective chemisorption of enantiopure dimethyl-bis(ethylenedithio)-tetrathiafulvalene (DM-BEDT-TTF) 1, tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) 2, and their capped silver nanoparticle (AgNPs) aggregate by simple incubation of the metallic substrates. The effective chemisorption was checked by means of ultrahigh vacuum x-ray photoelectron spectroscopy (XPS) and by electro-desorption experiments, i.e., cyclic voltammetry (CV) scans showing a first electro-desorption peak at about -1.0 V. The Au|1 and Au|2 chiral electrodes were successfully used in CV experiments exploiting chiral redox probes. Finally, the hybrid interfaces Ni|enantiopure 1 or 2|AgNPs served as working electrodes in SDE experiments. In particular, the hybrid chiral interfaces Ni|(R)-2|AgNPs and Ni|(S)-2|AgNPs exhibited a significant spin-filtering ability, as a manifestation of the CISS effect, with average spin polarization values of 15%.
Collapse
Affiliation(s)
- Andrea Stefani
- Department of Physics, (FIM), University of Modena, Via Campi 213/A, 41125 Modena, Italy
| | - Alexandra Bogdan
- University of Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, SOOMCC, Babes-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania and SOOMCC, Romania
| | - Flavia Pop
- University of Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Francesco Tassinari
- Department of Chemical and Earth Science, (DSCG), University of Modena, Via Campi 103, 41125 Modena, Italy
| | - Luca Pasquali
- Department of Engineering "Enzo Ferrari," (DIEF), University of Modena, Via Vivarelli 10, 41125 Modena, Italy
- IOM-CNR, Strada Statale 14, Km. 163.5 in AREA Science Park, Basovizza, 34149 Trieste, Italy
- Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Claudio Fontanesi
- Department of Engineering "Enzo Ferrari," (DIEF), University of Modena, Via Vivarelli 10, 41125 Modena, Italy
| | - Narcis Avarvari
- University of Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| |
Collapse
|
27
|
Rodríguez R, Naranjo C, Kumar A, Dhbaibi K, Matozzo P, Camerel F, Vanthuyne N, Gómez R, Naaman R, Sánchez L, Crassous J. Weakly Self-Assembled [6]Helicenes: Circularly Polarized Light and Spin Filtering Properties. Chemistry 2023; 29:e202302254. [PMID: 37635073 DOI: 10.1002/chem.202302254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 08/29/2023]
Abstract
Self-assembling features, chiroptical activity, and spin filtering properties are reported for 2,15- and 4,13-disubstituted [6]helicenes decorated in their periphery with 3,4,5-tris(dodecyloxy)-N-(4-ethynylphenyl)benzamide moieties. The weak non-covalent interaction between these units conditions the corresponding circularly polarized luminescence and spin polarization. The self-assembly is overall weak for these [6]helicene derivatives that, despite the formation of H-bonding interactions between the amide groups present in the peripheral moieties, shows very similar chiroptical properties both in the monomeric or aggregated states. This effect could be explained by considering the steric effect that these groups could generate in the growing of the corresponding aggregate formed. Importantly, the self-assembling features also condition chiral induced spin selectivity (CISS effect), with experimental spin polarization (SP) values found between 35-40 % for both systems, as measured by magnetic-conducting atomic force microscopy (AFM) technique.
Collapse
Affiliation(s)
- Rafael Rodríguez
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Cristina Naranjo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Anil Kumar
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Kais Dhbaibi
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Paola Matozzo
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Franck Camerel
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, Marseille, 13397, France
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| |
Collapse
|
28
|
Nair AN, Fernandez S, Marcos-Hernández M, Romo DR, Singamaneni SR, Villagran D, Sreenivasan ST. Spin-Selective Oxygen Evolution Reaction in Chiral Iron Oxide Nanoparticles: Synergistic Impact of Inherent Magnetic Moment and Chirality. NANO LETTERS 2023; 23:9042-9049. [PMID: 37737823 DOI: 10.1021/acs.nanolett.3c02752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Electron spin polarization is identified as a promising avenue for enhancing the oxygen evolution reaction (OER), which is the bottleneck that limits the energy efficiency of water-splitting. Here, we report that both ferrimagnetic (f-Fe3O4) and superparamagnetic iron oxide (s-Fe3O4) catalysts can exhibit external magnetic field (Hext)-induced OER enhancement, and the activity is proportional to their intrinsic magnetic moment. Additionally, the chirality-induced spin selectivity (CISS) effect was utilized in synergy with Hext to get a maximum enhancement of up to 89% improvement in current density (at 1.8 V vs RHE) with a low onset potential of 270 mV in s-Fe3O4 catalysts. Spin polarization and the resultant spin selectivity suppress the production of H2O2 and promote the formation of ground state triplet O2 during the OER. Furthermore, the design of chiral s-Fe3O4 with synergistic spin potential effect demonstrates a high spin polarization of ∼42%, as measured using conductive atomic force microscopy (c-AFM).
Collapse
Affiliation(s)
- Aruna Narayanan Nair
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Sara Fernandez
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mariana Marcos-Hernández
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Daniel Rascon Romo
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | | | - Dino Villagran
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Sreeprasad T Sreenivasan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
29
|
Fu W, Tan L, Wang PP. Chiral Inorganic Nanomaterials for Photo(electro)catalytic Conversion. ACS NANO 2023; 17:16326-16347. [PMID: 37540624 DOI: 10.1021/acsnano.3c04337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Chiral inorganic nanomaterials due to their unique asymmetric nanostructures have gradually demonstrated intriguing chirality-dependent performance in photo(electro)catalytic conversion, such as water splitting. However, understanding the correlation between chiral inorganic characteristics and the photo(electro)catalytic process remains challenging. In this perspective, we first highlight the chirality source of inorganic nanomaterials and briefly introduce photo(electro)catalysis systems. Then, we delve into an in-depth discussion of chiral effects exerted by chiral nanostructures and their photo-electrochemistry properties, while emphasizing the emerging chiral inorganic nanomaterials for photo(electro)catalytic conversion. Finally, the challenges and opportunities of chiral inorganic nanomaterials for photo(electro)catalytic conversion are prospected. This perspective provides a comprehensive overview of chiral inorganic nanomaterials and their potential in photo(electro)catalytic conversion, which is beneficial for further research in this area.
Collapse
Affiliation(s)
- Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
30
|
Privitera A, Faccio D, Giuri D, Latawiec EI, Genovese D, Tassinari F, Mummolo L, Chiesa M, Fontanesi C, Salvadori E, Cornia A, Wasielewski MR, Tomasini C, Sessoli R. Challenges in the Direct Detection of Chirality-induced Spin Selectivity: Investigation of Foldamer-based Donor-acceptor Dyads. Chemistry 2023:e202301005. [PMID: 37677125 DOI: 10.1002/chem.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Over the past two decades, the chirality-induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time-resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady-state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi-technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS-polarized ET.
Collapse
Affiliation(s)
- Alberto Privitera
- Department of Industrial Engineering, University of Florence, Via Santa Marta 3, 50139, Firenze, Italy
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Davide Faccio
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Demetra Giuri
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Elisabeth I Latawiec
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Francesco Tassinari
- Department of Chemical and Geological Sciences and, INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Liviana Mummolo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Mario Chiesa
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Claudio Fontanesi
- Department of Engineering "E. Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125, Modena, Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Andrea Cornia
- Department of Chemical and Geological Sciences and, INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Claudia Tomasini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
31
|
Volpi M, Jouclas R, Liu J, Liu G, Catalano L, McIntosh N, Bardini M, Gatsios C, Modesti F, Turetta N, Beljonne D, Cornil J, Kennedy AR, Koch N, Erk P, Samorì P, Schweicher G, Geerts YH. Enantiopure Dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophenes: Reaching High Magnetoresistance Effect in OFETs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301914. [PMID: 37424043 PMCID: PMC10502826 DOI: 10.1002/advs.202301914] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Indexed: 07/11/2023]
Abstract
Chiral molecules are known to behave as spin filters due to the chiral induced spin selectivity (CISS) effect. Chirality can be implemented in molecular semiconductors in order to study the role of the CISS effect in charge transport and to find new materials for spintronic applications. In this study, the design and synthesis of a new class of enantiopure chiral organic semiconductors based on the well-known dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) core functionalized with chiral alkyl side chains is presented. When introduced in an organic field-effect transistor (OFET) with magnetic contacts, the two enantiomers, (R)-DNTT and (S)-DNTT, show an opposite behavior with respect to the relative direction of the magnetization of the contacts, oriented by an external magnetic field. Each enantiomer displays an unexpectedly high magnetoresistance over one preferred orientation of the spin current injected from the magnetic contacts. The result is the first reported OFET in which the current can be switched on and off upon inversion of the direction of the applied external magnetic field. This work contributes to the general understanding of the CISS effect and opens new avenues for the introduction of organic materials in spintronic devices.
Collapse
Affiliation(s)
- Martina Volpi
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Rémy Jouclas
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Jie Liu
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Guangfeng Liu
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Luca Catalano
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Nemo McIntosh
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Marco Bardini
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Christos Gatsios
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH12489BerlinGermany
- Institut für Physik and IRIS AdlershofHumboldt‐Universitat zu Berlin12489BerlinGermany
| | | | - Nicholas Turetta
- CNRSUniversity of StrasbourgISIS UMR 7006, 8 Alleé Gaspard MongeStrasbourgF‐67000France
| | - David Beljonne
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Alan R. Kennedy
- Department of Pure and Applied ChemistryUniversity of StrathclydeCathedral Street 295GlasgowG1 1XLUK
| | - Norbert Koch
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH12489BerlinGermany
- Institut für Physik and IRIS AdlershofHumboldt‐Universitat zu Berlin12489BerlinGermany
| | - Peter Erk
- BASF SERGD – J542S67056Ludwigshafen am RheinGermany
| | - Paolo Samorì
- CNRSUniversity of StrasbourgISIS UMR 7006, 8 Alleé Gaspard MongeStrasbourgF‐67000France
| | - Guillaume Schweicher
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Yves H. Geerts
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
- International Solvay Institutes for Physics and ChemistryUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 231Bruxelles1050Belgium
| |
Collapse
|
32
|
Baljozović M, Arnoldi B, Grass S, Lacour J, Aeschlimann M, Stadtmüller B, Ernst KH. Spin- and angle-resolved photoemission spectroscopy study of heptahelicene layers on Cu(111) surfaces. J Chem Phys 2023; 159:044701. [PMID: 37486054 DOI: 10.1063/5.0156581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
It has been demonstrated previously that electrons interact differently with chiral molecules depending on their polarization. For enantiomeric pure monolayers of heptahelicene, opposite asymmetries in spin polarization were reported and attributed to the so-called chirality-induced spin selectivity effect. However, these promising proof-of-concept photoemission experiments lack the angular and energy resolution that could provide the necessary insights into the mechanism of this phenomenon. In order to fill in the missing gaps, we provide a detailed spin- and angle-resolved photoemission spectroscopy study of heptahelicene layers on a Cu(111) substrate. Throughout the large accessible energy and angle range, no chirality induced spin asymmetry in photoemission could be observed. Possible reasons for the absence of signatures of the spin-dependent electron transmission through the chiral molecular layer are briefly discussed.
Collapse
Affiliation(s)
- M Baljozović
- Molecular Surface Science Group, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - B Arnoldi
- Department of Physics and Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - S Grass
- Department of Organic Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - J Lacour
- Department of Organic Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - M Aeschlimann
- Department of Physics and Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - B Stadtmüller
- Department of Physics and Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
- Institute of Physics Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - K-H Ernst
- Molecular Surface Science Group, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, 16200 Prague, Czech Republic
- Department of Chemistry, University of Zurich, 8057 Zürich, Switzerland
| |
Collapse
|
33
|
Ai M, Pan L, Shi C, Huang ZF, Zhang X, Mi W, Zou JJ. Spin selection in atomic-level chiral metal oxide for photocatalysis. Nat Commun 2023; 14:4562. [PMID: 37507418 PMCID: PMC10382512 DOI: 10.1038/s41467-023-40367-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
The spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality. Magnetic circular dichroism spectroscopic and magnetic conductive-probe atomic force microscopic measurements demonstrate that chiral structure acts as spin filters and induces spin polarization in photoinduced carriers. The polarized carriers not only possess the prolonged carrier lifetime, but also increase the triplet species instead of singlet byproducts during reaction. Accordingly, the left- and right-hand chiral ZnO exhibit 2.0- and 1.9-times higher activity in photocatalytic O2 production and 2.5- and 2.0-times higher activities in contaminant photodegradation, respectively, compared with achiral ZnO. This work provides a feasible strategy to manipulate the spin properties in metal oxides for electron spin-related redox catalysis.
Collapse
Affiliation(s)
- Minhua Ai
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
34
|
Li C, Shao YB, Gao X, Ren Z, Guo C, Li M, Li X. Enantioselective synthesis of chiral quinohelicenes through sequential organocatalyzed Povarov reaction and oxidative aromatization. Nat Commun 2023; 14:3380. [PMID: 37291164 DOI: 10.1038/s41467-023-39134-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Heterohelicenes are of increasing importance in the fields of materials science, molecular recognition, and asymmetric catalysis. However, enantioselective construction of these molecules, especially by organocatalytic methods, is challenging, and few methods are available. In this study, we synthesize enantioenriched 1-(3-indol)-quino[n]helicenes through chiral phosphoric acid-catalyzed Povarov reaction followed by oxidative aromatization. The method has a broad substrate scope and offers rapid access to an array of chiral quinohelicenes with enantioselectivities up to 99%. Additionally, the photochemical and electrochemical properties of selected quinohelicenes are explored.
Collapse
Affiliation(s)
- Chengwen Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ying-Bo Shao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xi Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiyuan Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chenhao Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
35
|
Lee G, Jun SE, Kim Y, Park IH, Jang HW, Park SH, Kwon KC. Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3280. [PMID: 37110115 PMCID: PMC10145119 DOI: 10.3390/ma16083280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Developing cost-effective, highly catalytic active, and stable electrocatalysts in alkaline electrolytes is important for the development of highly efficient anion-exchange membrane water electrolysis (AEMWE). To this end, metal oxides/hydroxides have attracted wide research interest for efficient electrocatalysts in water splitting owing to their abundance and tunable electronic properties. It is very challenging to achieve an efficient overall catalytic performance based on single metal oxide/hydroxide-based electrocatalysts due to low charge mobilities and limited stability. This review is mainly focused on the advanced strategies to synthesize the multicomponent metal oxide/hydroxide-based materials that include nanostructure engineering, heterointerface engineering, single-atom catalysts, and chemical modification. The state of the art of metal oxide/hydroxide-based heterostructures with various architectures is extensively discussed. Finally, this review provides the fundamental challenges and perspectives regarding the potential future direction of multicomponent metal oxide/hydroxide-based electrocatalysts.
Collapse
Affiliation(s)
- Goeun Lee
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sang Eon Jun
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Yujin Kim
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hwa Park
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Ki Chang Kwon
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| |
Collapse
|
36
|
Vadakkayil A, Clever C, Kunzler KN, Tan S, Bloom BP, Waldeck DH. Chiral electrocatalysts eclipse water splitting metrics through spin control. Nat Commun 2023; 14:1067. [PMID: 36828840 PMCID: PMC9958132 DOI: 10.1038/s41467-023-36703-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Continual progress in technologies that rely on water splitting are often hampered by the slow kinetics associated with the oxygen evolution reaction (OER). Here, we show that the efficiency of top-performing catalysts can be improved, beyond typical thermodynamic considerations, through control over reaction intermediate spin alignment during electrolysis. Spin alignment is achieved using the chiral induced spin selectivity (CISS) effect and the improvement in OER manifests as an increase in Faradaic efficiency, decrease in reaction overpotential, and change in the rate determining step for chiral nanocatalysts over compositionally analogous achiral nanocatalysts. These studies illustrate that a defined spatial orientation of the nanocatalysts is not necessary to exhibit spin selectivity and therefore represent a viable platform for employing the transformative role of chirality in other reaction pathways and processes.
Collapse
Affiliation(s)
- Aravind Vadakkayil
- grid.21925.3d0000 0004 1936 9000Chemistry Department, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Caleb Clever
- grid.21925.3d0000 0004 1936 9000Chemistry Department, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Karli N. Kunzler
- grid.21925.3d0000 0004 1936 9000Chemistry Department, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Susheng Tan
- grid.21925.3d0000 0004 1936 9000Petersen Institute of Nanoscience and Engineering, University of Pittsburgh, Pittsburgh, PA 15260 USA ,grid.21925.3d0000 0004 1936 9000Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Brian P. Bloom
- grid.21925.3d0000 0004 1936 9000Chemistry Department, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - David H. Waldeck
- grid.21925.3d0000 0004 1936 9000Chemistry Department, University of Pittsburgh, Pittsburgh, PA 15260 USA ,grid.21925.3d0000 0004 1936 9000Petersen Institute of Nanoscience and Engineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
37
|
Cao LM, Hu CG, Li HH, Huang HB, Ding LW, Zhang J, Wu JX, Du ZY, He CT, Chen XM. Molecule-Enhanced Electrocatalysis of Sustainable Oxygen Evolution Using Organoselenium Functionalized Metal-Organic Nanosheets. J Am Chem Soc 2023; 145:1144-1154. [PMID: 36538569 DOI: 10.1021/jacs.2c10823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Remolding the reactivity of metal active sites is critical to facilitate renewable electricity-powered water electrolysis. Doping heteroatoms, such as Se, into a metal crystal lattice has been considered an effective approach, yet usually suffers from loss of functional heteroatoms during harsh electrocatalytic conditions, thus leading to the gradual inactivation of the catalysts. Here, we report a new heteroatom-containing molecule-enhanced strategy toward sustainable oxygen evolution improvement. An organoselenium ligand, bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide containing robust C-Se-C covalent bonds equipped in the precatalyst of ultrathin metal-organic nanosheets Co-SeMON, is revealed to significantly enhance the catalytic mass activity of the cobalt site by 25 times, as well as extend the catalyst operation time in alkaline conditions by 1 or 2 orders of magnitude compared with these reported metal selenides. A combination of various in situ/ex situ spectroscopic techniques, ab initio molecular dynamics, and density functional theory calculations unveiled the organoselenium intensified mechanism, in which the nonclassical bonding of Se to O-containing intermediates endows adsorption-energy regulation beyond the conventional scaling relationship. Our results showcase the great potential of molecule-enhanced catalysts for highly efficient and economical water oxidation.
Collapse
Affiliation(s)
- Li-Ming Cao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chang-Guo Hu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hai-Hong Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hui-Bin Huang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Li-Wen Ding
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jia Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jun-Xi Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zi-Yi Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chun-Ting He
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
38
|
Chen J, Lu N, Zhao Y, Huang J, Gan X, Chen X, Yang Z, Wen Q, Zhai T, Liu Y. On-Chip Microdevice Unveils Reactant Enrichment Effect Dominated Electrocatalysis Activity in Molecular-Linked Catalysts. NANO LETTERS 2022; 22:10154-10162. [PMID: 36512651 DOI: 10.1021/acs.nanolett.2c04087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular functionalization has been intensely studied and artificially constructed to advance various electrocatalytic processes. While there is a widely approved charge-doping effect, the underlying action for reactant distribution/transport remains long neglected. Here an on-chip microdevice unravels that the proton enrichment effect at prototypical methylene blue (MB)/MoS2 interfaces rather than charge doping contributes to the hydrogen evolution reaction (HER) activity. Back-gated electrical/electrochemical tests detect quantitatively a strong charge injection from MB to MoS2 realized over diploid carrier density, but these excess carriers are unqualified for the actual enhanced HER activity (from 32 to 125 mA cm-2 at -0.29 V). On-chip electrochemical impedance further certifies that the proton enrichment in the vicinity of MoS2, which is generated by the nucleophilic group of MB, actually dominates the HER activity. This finding uncovers the leading function of molecular-linked catalysts.
Collapse
Affiliation(s)
- Jianqiang Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Ning Lu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Yang Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jiazhao Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xiaojuan Gan
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xuezhen Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zhenhong Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Qunlei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
39
|
Liang Y, Lihter M, Lingenfelder M. Spin‐Control in Electrocatalysis for Clean Energy. Isr J Chem 2022. [DOI: 10.1002/ijch.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Institut of Physics (IPHYS) Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Martina Lihter
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Institut of Physics (IPHYS) Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Magalí Lingenfelder
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Institut of Physics (IPHYS) Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|