1
|
Yao C, Feng H, Weng S, Li J, Huo YF, Yan W, Dong R, Yang L. Cu 2O 1-x-Superlattices Induced Oxygen Vacancy for Localized Surface Plasmon Resonance. NANO LETTERS 2025. [PMID: 39748672 DOI: 10.1021/acs.nanolett.4c06330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metallic oxide can induce localized surface plasmon resonance (LSPR) through creating vacancies, which effectively achieve high carrier concentrations and offer advantages such as versatility and tunability. However, vacancies are typically created by altering the stoichiometric ratio of elements through doping, and it is challenging to achieve LSPR enhancement in the visible spectral range. Here, we have assembled Cu2O1-x-superlattices to induce a high concentration of oxygen vacancies, resulting in LSPR within the visible spectrum. Combining this technique with theoretical models, we have elucidated the mechanism behind the origin of LSPR. We also provide evidence of strong and uniform LSPR exhibited by this structure under visible light. This significantly enhances the electromagnetic field in semiconductor-based surface-enhanced Raman scattering (SERS), with a detection limit concentration reaching 10-9 M compared to conventional gold nanoparticles (55 nm). Our strategy provides a new perspective and potential for controlling carrier concentration and generating LSPR in metal oxide nanoparticles.
Collapse
Affiliation(s)
- Chang Yao
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Haochuan Feng
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Junxiang Li
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ying-Fei Huo
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Wuwen Yan
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Liangbao Yang
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| |
Collapse
|
2
|
Zhu Q, Li Z, Zheng T, Zheng X, Liu S, Gao S, Fu X, Su X, Zhu Y, Zhang Y, Wei Y. High-Selectivity Tandem Photocatalytic Methanation of CO 2 by Lacunary Polyoxometalates-Stabilized *CO Intermediate. Angew Chem Int Ed Engl 2025; 64:e202413594. [PMID: 39394806 DOI: 10.1002/anie.202413594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Stabilizing specific intermediates to produce CH4 remains a main challenge in solar-driven CO2 reduction. Herein, g-C3N4 is modified with saturated and lacunary phosphotungstates (PWx, x=12, 11, 9) to tailor the CO2 reduction pathway to yield CH4 in high selectivity. Increased lacuna of phosphotungstates leads to higher CH4 yield and selectivity, with a superior CH4 selectivity of 80 % and 40.8 μmol ⋅ g-1 ⋅ h-1 evolution rate for PW9/g-C3N4. Conversely, g-C3N4 and PWx alone show negligible CH4 production. The conversion of CO2 to CH4 follows a tandem catalytic process. CO2 is initially activated on g-C3N4 to form *CO intermediates, meanwhile photogenerated electrons derived from g-C3N4 transfer to PWx. Then the reduced PWx captures *CO, which is subsquently hydrogenated to CH4. With the injection of two photogenerated electrons, PW9 is capable of adsorbing and activating *CO. However, the reduced PW12 and PW11 are incapable of adsorbing *CO due to the small energy of occupied molecular orbitals, which is the reason for the poorer activity of PWx/g-C3N4 (x=12, 11) compared with that of PW9/g-C3N4. This work provides new insights to regulate highly selective CO2 photoreduction to CH4 by utilizing lacuna of polyoxometalates to enhance the interaction of metals in polyoxometalates with key intermediates.
Collapse
Affiliation(s)
- Qian Zhu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhaohui Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Tao Zheng
- Collaborative Innovation Centre of Henan, Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 Henan, P. R. China
| | - Xingxing Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Si Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Shen Gao
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Xionghui Fu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaofang Su
- Collaborative Innovation Centre of Henan, Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 Henan, P. R. China
| | - Yi Zhu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Yuanming Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China
| |
Collapse
|
3
|
Zadehnazari A, Auras F, Altaf AA, Zarei A, Khosropour A, Amirjalayer S, Abbaspourrad A. Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation. Nat Commun 2024; 15:10846. [PMID: 39737983 DOI: 10.1038/s41467-024-55156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses. TTF-COF has an adsorption capacity toward aqueous Au(III) of 2440 mg g-1, and TPE-COF's Au(III) adsorption capacity is 1639 mg g-1. The gold source is metal flakes isolated from waste computer processing units. Of the gold present, > 99% is selectively captured by TTF-COF whereas only 5% of the Ni and 2% of the Cu in the solution is adsorbed. The Au-loaded covalent organic frameworks catalyze the carboxylation of terminal alkynes and are stable and reusable for six reuse cycles. Our covalent organic frameworks convert e-waste into a valuable catalyst for a useful green organic transformation.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Florian Auras
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Ataf Ali Altaf
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Amin Zarei
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Saeed Amirjalayer
- University of Münster, Institute for Solid State Theory, Center for Nanotechnology and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, Münster, Germany
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.
| |
Collapse
|
4
|
Wu C, Dai M, Qin X, Liu G, Zhang H. Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates as oxidase mimetics for ratiometric colorimetric detection of nitrite. Mikrochim Acta 2024; 192:23. [PMID: 39708207 DOI: 10.1007/s00604-024-06879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates (Fe-HHTP@HZIF-8@ AuNCs) was formed through self-assembly of Fe3+ and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), in situ embedding of ZIF-8, and Au3+-Zn2+ exchange reaction. Its morphology and structure were fully characterized by high-resolution transmission electron microscopy, X-ray diffraction, transmission electron microscopy element mapping, and X-ray photoelectron spectroscopy. Additionally, its oxidase-like activity was explored with Km of 0.21 mM and Vmax of 1.74 × 10-6 M·s-1 toward 3,3',5,5'-tetramethylbenzidine (TMB). Due to its excellent catalytic activity and nitrite mediated diazotization of oxTMB, a ratiometric colorimetric method for nitrite detection was established and validated with wide linear range (2.0-400.0 μM), low LOD (0.12 μM), high accuracy (recovery of 95.11-102.14%), and good selectivity. This method was then utilized to determine the nitrite content in sausages and tap water. This study provided a new idea for developing efficient nanozymes and offered an accurate approach for nitrite determination.
Collapse
Affiliation(s)
- Cunhui Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China
| | - Mengzhen Dai
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China.
| |
Collapse
|
5
|
Tong Q, Tang Y, Zou W, Ye YX, Dong L, Ouyang G. Simultaneous Photocatalytic CO 2 Reduction and H 2O Oxidation Under Non-Sacrificial Ambient Conditions. Chemistry 2024; 30:e202402629. [PMID: 39353881 DOI: 10.1002/chem.202402629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
The utilization of CO2, H2O, and solar energy is regarded as a sustainable route for converting CO2 into chemical feedstocks, paving the way for carbon neutrality and reclamation. However, the simultaneous photocatalytic CO2 reduction and H2O oxidation under non-sacrificial ambient conditions is still a significant challenge. Researchers have carried out extensive exploration and achieved dramatic developments in this area. In this review, we first primarily elucidate the principles of two half-reactions in the photocatalytic conversion of CO2 with H2O, i. e., CO2 reduction by the photo-generated electrons and protons, and H2O oxidation by the photo-generated holes without sacrificial agents. Subsequently, the strategies to promote two half-reactions are summarized, including the vacancy/facet/morphology design, adjacent redox site construction, and Z-scheme heterojunction development. Finally, we present the advanced in situ characterizations and future perspectives in this field. This review aims to provide fresh insights into effectively simultaneous photocatalytic CO2 reduction and H2O oxidation under non-sacrificial ambient conditions.
Collapse
Affiliation(s)
- Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Weixin Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu-Xin Ye
- School, of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Gangfeng Ouyang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, Scho, ol of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Khurshid F, Muthu J, Wang YY, Wang YW, Shih MC, Chen DR, Lu YJ, Austin D, Glavin N, Plšek J, Kalbáč M, Hsieh YP, Hofmann M. The Importance of Catalytic Effects in Hot-Electron-Driven Chemical Reactions. ACS NANO 2024; 18:34332-34340. [PMID: 39632340 DOI: 10.1021/acsnano.4c12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Hot electrons (HEs) represent out-of-equilibrium carriers that are capable of facilitating reactions which are inaccessible under conventional conditions. Despite the similarity of the HE process to catalysis, optimization strategies such as orbital alignment and adsorption kinetics have not received significant attention in enhancing the HE-driven reaction yield. Here, we investigate catalytic effects in HE-driven reactions using a compositional catalyst modification (CCM) approach. Through a top-down alloying process and systematic characterization, using electrochemical, photodegradation, and ultrafast spectroscopy, we are able to disentangle chemical effects from competing electronic phenomena. Correlation between reactant energetics and the HE reaction yield demonstrates the crucial role of orbital alignment in HE catalytic efficiency. Optimization of this parameter was found to enhance HE reaction efficiency 5-fold, paving the way for tailored design of HE-based catalysts for sustainable chemistry applications. Finally, our study unveils an emergent ordering effect in photocatalytic HE processes that imparts the catalyst with an unexpected polarization dependence.
Collapse
Affiliation(s)
- Farheen Khurshid
- Department of Low-Dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jeyavelan Muthu
- Department of Low-Dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Yu Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yao-Wei Wang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Mu-Chen Shih
- Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ding-Rui Chen
- Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
| | - Yu-Jung Lu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Drake Austin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Ohio 45433, United States
| | - Nicholas Glavin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Ohio 45433, United States
| | - Jan Plšek
- Department of Low-Dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Martin Kalbáč
- Department of Low-Dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Ya-Ping Hsieh
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
| | - Mario Hofmann
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Zhang Q, Yang C, Chen Y, Yan Y, Kan M, Wang H, Lv X, Han Q, Zheng G. Efficient Photocatalytic CH 4-to-Ethanol Conversion by Limiting Interfacial Hydroxyl Radicals Using Gold Nanoparticles. Angew Chem Int Ed Engl 2024:e202419282. [PMID: 39660632 DOI: 10.1002/anie.202419282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/17/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
Photocatalytic CH4 oxidation to ethanol with high selectivity is attractive but substantially challenging. The activation of inert C-H bonds at ambient conditions requires highly reactive oxygen species like hydroxyl radicals (⋅OH), while the presence of those oxidative species also facilitates fast formation of C1 products, instead of the kinetically sluggish C-C coupling to produce ethanol. Herein, we developed a BiVO4 photocatalyst with surface functionalization of Au nanoparticles (BiVO4@Au), which not only enables photogeneration of ⋅OH to activate CH4 into ⋅CH3, but also in situ consumes those ⋅OH species to retard their further attack on ⋅CH3, resulting in an enhanced ⋅CH3/⋅OH ratio and facilitating C-C coupling toward ethanol. The ⋅CH3/⋅OH ratio is further improved by transporting CH4 via a gas-diffusion layer to the photocatalytic interface, leading to even higher ethanol selectivity and production rates. At ambient conditions and without photosensitizers or sacrificial agents, the BiVO4@Au photocatalyst exhibited an outstanding CH4-to-ethanol conversion performance, including a peak ethanol yield of 680 μmol ⋅ g-1 ⋅ h-1, a high selectivity of 86 %, and a stable photoconversion of >100 h, substantially exceeding most of the previous reports. Our work suggests an attractive approach of in situ generation and modulation of the ⋅OH levels for photocatalytic CH4 conversion toward multi-carbon products.
Collapse
Affiliation(s)
- Quan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yaqin Yan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Miao Kan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Huining Wang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qing Han
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
8
|
Ling W, Ma J, Jiang W, Wei H, Ren Y, Hong M, Kong L, Sun R. Interfacial engineering of Co(OH) 2@CN composites: A study of p-n heterojunctions with enhanced xylose/xylan photoreforming and CO 2 reduction performance. J Colloid Interface Sci 2024; 682:814-824. [PMID: 39644751 DOI: 10.1016/j.jcis.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The construction of p-n heterojunction is considered a prominent method for promoting efficient separation/migration of photoinduced carriers, thereby enhancing photocatalytic performance. Herein, a series of nanoflower spherical Co(OH)2@CN-x p-n heterojunction photocatalysts were fabricated using a simplified one-step hydrothermal strategy. Notably, Co(OH)2@CN-2 exhibited optimal performance, showcasing a carbon monoxide (CO) evolution rate of 46.2 μmol g-1 h-1 and a xylonic acid yield of 69.9 %. These values are 14.7/3.7 and 2.8/2.4 times higher than those of pristine CN and Co(OH)2, respectively. Additionally, Co(OH)2@CN-2 demonstrated excellent recyclability and chemical stability. Comparative experiments, coupled with 13CO2-labelling testing, confirmed the carbon sources of the obtained CO (72.3 % from CO2 reduction and 27.7 % from xylose oxidation). The charge transfer mechanism in Co(OH)2@CN-x p-n heterojunctions was systematically elucidated using in-situ X-ray photoelectron spectroscopy (in-situ XPS) and density functional theory (DFT) calculations. This work presents a practical approach for constructing p-n heterojunction photocatalysts to enhance photocatalytic biomass oxidation coupled with CO2 reduction.
Collapse
Affiliation(s)
- Weikang Ling
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Weikun Jiang
- State Key Laboratory of Bio-based Materials and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Huanqiu Wei
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuchen Ren
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Min Hong
- Centre for Future Materials and School of Engineering, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Lingzhao Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, China.
| | - Runcang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
9
|
Hu J, Zhao R, Ni J, Luo W, Yu H, Huang H, Wu B, Wang Y, Han J, Guo R. Enhanced Ferroelectric Polarization in Au@BaTiO 3 Yolk-in-Shell Nanostructure for Synergistic Boosting Visible-Light- Piezocatalytic CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410357. [PMID: 39413017 PMCID: PMC11615802 DOI: 10.1002/advs.202410357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Developing efficient photo-piezocatalytic systems to achieve the conversion of renewable energy to chemical energy emerges enormous potential. However, poor catalytic efficiency remains a significant obstacle to future practical applications. Herein, a series of unique Au@BaTiO3 (Au@BT) yolk-shell nanostructure photo-piezocatalyst is constructed with single Au nanoparticle (Au NP) embedded in different positions within ferroelectric BaTiO3 hollow nanosphere (BT-HNS). This special structure showcases excellent mechanical force sensitivity and provides ample plasmon-induced interfacial charge-transfer pathways. In addition, the powerful piezoelectric polarization electric field induced by the enhanced ferroelectric polarization electric field via corona poling treatment in BT-HNS further promotes charge separation, CO2 adsorption and key intermediate conversion. Notably, BT with single Au NP encapsulated into hollow nanosphere shell with reinforced polarization (Au@BT-1-P) shows synergistically improved photo-piezocatalytic CO2 reduction activity for producing CO with a high production rate of 31.29 µmol g-1 h-1 under visible light irradiation and ultrasonic vibration. This work highlights a generic tactic for optimized design of high-performance and multifunctional nanostructured photo-piezocatalyst. Meanwhile, these yolk-in-shell nanostructures with single Au nanoparticle as an ideal model may hold great promise to inspire in-depth exploration of carrier dynamics and mechanistic understanding of the catalytic reaction.
Collapse
Affiliation(s)
- Jun Hu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002China
| | - Rufang Zhao
- Hubei Key Laboratory of Pollutant Analysis & Reuse TechnologyCollege of Chemistry and Chemical EngineeringHubei Normal UniversityHuangshiHubei435002China
| | - Jingren Ni
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002China
| | - Wei Luo
- Hubei Key Laboratory of Hydropower Engineering Construction and Managementand College of Hydraulic & Environmental EngineeringChina Three Gorges UniversityYichangHubei443002China
| | - Hongjian Yu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of ResourcesBeijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral MaterialsSchool of Material Sciences and TechnologyChina University of Geosciences (Beijing)Beijing100083China
| | - Boyuan Wu
- Department of PhysicsThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Yang Wang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002China
| | - Jie Han
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002China
| | - Rong Guo
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002China
| |
Collapse
|
10
|
Hoffman L, Hennes DJ, Lyu P. Deciphering the Photocatalysis Mechanism of Semimetallic Bismuth Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:20118-20128. [PMID: 39634023 PMCID: PMC11613560 DOI: 10.1021/acs.jpcc.4c06136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Metallic nanoparticle photocatalysts have been developed in various catalytic systems over the past few decades, including diverse noble and non-noble metals with plasmonic properties. The hot-carrier-induced mechanism is one of the most appealing pathways as it can provide energetic electrons or holes for driving thermodynamically unfavorable reactions or increasing the reaction rate. In this work, we evaluate the photocatalytic performance of semimetallic bismuth nanoparticles and offer detailed mechanistic interpretations in terms of hot carriers and interband transitions. The photocatalyzed nitrophenol reduction with sodium borohydride serves as a model reaction, and a wavelength-dependent study reveals the contribution of hot carriers. It is demonstrated that light irradiation under shorter wavelengths could produce deeper hot holes in bismuth nanoparticles, which can be quenched more effectively by hole scavengers, thus facilitating the electron-transfer process and resulting in larger apparent reaction rate constants. The observed photocatalysis enhancement accounts for the unique band structure with an extremely small band gap and exclusive interband absorption in the visible region. This proof-of-concept work offers a different perspective on the photocatalysis mechanism of bismuth nanoparticles and could help us better understand the role of hot carriers involved in photocatalysis, especially with interband transitions.
Collapse
Affiliation(s)
- Lauren
M. Hoffman
- Department of Chemistry and
Biochemistry, University of North Carolina
Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| | - Delaney J. Hennes
- Department of Chemistry and
Biochemistry, University of North Carolina
Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| | - Pin Lyu
- Department of Chemistry and
Biochemistry, University of North Carolina
Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| |
Collapse
|
11
|
Xu F, He Y, Zhang J, Liang G, Liu C, Yu J. Prolonging Charge Carrier Lifetime via Intraband Defect Levels in S-Scheme Heterojunctions for Artificial Photosynthesis. Angew Chem Int Ed Engl 2024:e202414672. [PMID: 39542852 DOI: 10.1002/anie.202414672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
S-scheme heterostructure photocatalysts, distinguished by unique charge-transfer pathways and exceptional catalytic redox capabilities, have found widespread applications in addressing challenging chemical processes, including the photocatalytic reduction of CO2 with a high reaction barrier. Nevertheless, the influence of intraband defect levels within S-scheme heterojunctions on charge separation, carrier lifetime, and surface catalytic reactions has, for the most part, been overlooked. Herein, we develop a tunable defect-level-assisted strategy to construct an electron reservoir, effectively prolonging the lifetime of charge carriers through the rapid capture and gradual release of photoelectrons within WO3-x/In2S3 S-scheme heterojunctions, as authenticated by femtosecond transient absorption spectroscopy and theoretical simulations. The surface photoredox mechanism, unraveled by Gibbs free energy calculations, demonstrates that oxygen-vacancy-induced defect states in WO3-x/In2S3 heterojunctions unlock the rate-determining H2O oxidation into free oxygen molecules by forming metastable oxygen intermediates, contributing to the facilitation of H2O photooxidation. This distinct role, combined with the extended carrier lifetime, results in boosted CO2 photoreduction with nearly 100 % CO selectivity in the absence of any photosensitizer or scavenger. Our work sheds light on the role of controllable defect levels in governing charge transfer dynamics within S-scheme heterojunctions, thereby inspiring the development of more advanced photocatalysts for artificial photosynthesis.
Collapse
Affiliation(s)
- Feiyan Xu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, 430078, Wuhan, P. R. China
| | - Ying He
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, 430078, Wuhan, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, 430078, Wuhan, P. R. China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, 441053, Xiangyang, P. R. China
| | - Chengyuan Liu
- National synchrotron radiation laboratory, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, 430078, Wuhan, P. R. China
| |
Collapse
|
12
|
Wang M, Zhang G, Wang H, Wang Z, Zhou Y, Nie X, Yin BH, Song C, Guo X. Understanding and Tuning the Effects of H 2O on Catalytic CO and CO 2 Hydrogenation. Chem Rev 2024; 124:12006-12085. [PMID: 39481078 DOI: 10.1021/acs.chemrev.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Catalytic COx (CO and CO2) hydrogenation to valued chemicals is one of the promising approaches to address challenges in energy, environment, and climate change. H2O is an inevitable side product in these reactions, where its existence and effect are often ignored. In fact, H2O significantly influences the catalytic active centers, reaction mechanism, and catalytic performance, preventing us from a definitive and deep understanding on the structure-performance relationship of the authentic catalysts. It is necessary, although challenging, to clarify its effect and provide practical strategies to tune the concentration and distribution of H2O to optimize its influence. In this review, we focus on how H2O in COx hydrogenation induces the structural evolution of catalysts and assists in the catalytic processes, as well as efforts to understand the underlying mechanism. We summarize and discuss some representative tuning strategies for realizing the rapid removal or local enrichment of H2O around the catalysts, along with brief techno-economic analysis and life cycle assessment. These fundamental understandings and strategies are further extended to the reactions of CO and CO2 reduction under an external field (light, electricity, and plasma). We also present suggestions and prospects for deciphering and controlling the effect of H2O in practical applications.
Collapse
Affiliation(s)
- Mingrui Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiqun Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ben Hang Yin
- Paihau-Robinson Research Institute, the MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5010, New Zealand
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, the Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Tian T, Hu X, Huang Y, Du H, Wang C, Yang M. Enhancing CO 2 photoreduction to CO with 100 % selectivity by constructing heterojunctions and regulating open metal sites in Au/Fe 3O 4/MIL-101(Fe) catalysts. J Colloid Interface Sci 2024; 680:33-41. [PMID: 39488897 DOI: 10.1016/j.jcis.2024.10.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
The widespread utilization of fossil fuels has resulted in a significant increase in CO2 emissions, leading to a variety of environmental issues. The photocatalytic conversion of CO2 into fuel presents an effective solution to both the energy crisis and environmental warming. Therefore, the selection of a suitable catalyst is paramount. However, traditional photocatalysts often encounter challenges such as rapid electron-hole recombination and limited exposure of active sites. To improve these limitations, this study introduces AFM-X, a heterojunction catalyst composed of Au/Fe3O4/MIL-101(Fe)-X, which facilitates the formation of open metal sites (OMS) that enhance the effective separation of photogenerated carriers. In AFM-X, OMS function as Lewis acid sites, thereby enhancing CO2 adsorption. The presence of Au nanoparticles (NPs) introduces additional active sites for CO2 reduction. The synergistic effect between OMS and Au NPs increases the catalyst's active sites, while the heterojunction construction promotes electron transfer, thereby enhancing CO2 photocatalytic reduction efficiency. The CO generation rate of AFM-2 reached 98.8 μmol g-1 h-1, surpassing those of FM, MIL-101(Fe), Fe3O4, and Au NPs, by 4.1, 6.3, 6.2, and 3.2 times, respectively. Furthermore, AFM-2 maintains stable performance over a 40 h cycle test. In-situ DRIFTS spectroscopy reveals that CO2 reduction occurs through two parallel pathways. This study offers new insights into the design of composite photocatalytic materials, highlighting the effectiveness of OMS Lewis acid sites in significantly enhancing the photocatalytic reduction of CO2.
Collapse
Affiliation(s)
- Tian Tian
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Yao Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Huixian Du
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Mina Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
14
|
Huang Y, Shi Q, Cheng W. A Rootless Duckweed-Inspired Flexible Artificial Leaf from Plasmonic Photocatalysts. ACS NANO 2024; 18:29214-29222. [PMID: 39387648 DOI: 10.1021/acsnano.4c11435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The naturally existing leaves are ubiquitous two-dimensional flexible solar-to-chemical conversion systems that can run continuously in a sustainable manner. However, the current artificial photocatalytic systems are unable to achieve this due to the grand challenge in integrating existing photocatalysts in a flexible layout with high conversion efficiency and the ability to function independently. Here, we report on a rootless duckweed-inspired artificial leaf based on a lightweight, flexible, Janus plasmonic nanosheet-integrated sponge. The Janus plasmonic catalytically active nanosheet was made from self-assembled gold nanocube nanoassemblies grown on the porous sponges, which were further coated with an ultrathin palladium layer on one side via a ligand symmetry-breaking method. This sponge-based photocatalytic system is lightweight yet able to float on a water surface and conducts the gas-liquid reaction without auxiliary pumping and mixing devices. In a model reaction of 4-nitrophenol reduction, this floating leaf could achieve 2.5-fold and 65-fold higher efficiency than the corresponding dispersion and precipitation systems, respectively. The film theory is used to explain the sponge-based lightweight solar-to-chemical conversion system in a detailed kinetic and thermodynamic analysis, including the reaction rate constant, activation energy, enthalpy, entropy, Gibbs energy, and equilibrium constant.
Collapse
Affiliation(s)
- Yifeng Huang
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia
| | - Qianqian Shi
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia
- School of Biomedical Engineering, University of Sydney, Darlington 2008, New South Wales, Australia
| |
Collapse
|
15
|
Zou JF, Li S, Liu P, Zhao Y, Wang T, Pan YX, Yan X. Strategy in Promoting Visible Light Absorption, Charge Separation, CO 2 Adsorption and Proton Production for Efficient Photocatalytic CO 2 Reduction with H 2O. Chem Asian J 2024:e202400781. [PMID: 39418204 DOI: 10.1002/asia.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Solar-energy-driven photocatalytic CO2 reduction by H2O to high-valuable carbon-containing chemicals has become one of the greatest concerns in both scientific and industrial communities, due to its potential in solving energy and environmental problems. However, efficiency of photocatalytic CO2 reduction by H2O is still far below the needs of large-scale applications. The reduction efficiency is closely related to ability of photocatalysts in absorbing visible light which is the main part of sunlight (44 %), separating photogenerated electron-hole pairs, adsorbing CO2 and producing protons for reducing CO2. Thus, photocatalysts with enhanced visible light absorption, electron-hole separation, CO2 adsorption and proton production are highly desired. Herein, we aim to provide a picture of recent progresses in improving ability of photocatalysts in visible light absorption, electron-hole separation, CO2 adsorption and proton production, and give an outlook for future researches associated with photocatalytic CO2 reduction by H2O.
Collapse
Affiliation(s)
- Jia-Fu Zou
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Sha Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yiyi Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tingwei Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yun-Xiang Pan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaoliang Yan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| |
Collapse
|
16
|
Kaushik T, Ghosh S, Dolkar T, Biswas R, Dutta A. Noble Metal Plasmon-Molecular Catalyst Hybrids for Renewable Energy Relevant Small Molecule Activation. ACS NANOSCIENCE AU 2024; 4:273-289. [PMID: 39430376 PMCID: PMC11487674 DOI: 10.1021/acsnanoscienceau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 10/22/2024]
Abstract
Significant endeavors have been dedicated to the advancement of materials for artificial photosynthesis, aimed at efficiently harvesting light and catalyzing reactions such as hydrogen production and CO2 conversion. The application of plasmonic nanomaterials emerges as a promising option for this purpose, owing to their excellent light absorption properties and ability to confine solar energy at the nanoscale. In this regard, coupling plasmonic particles with molecular catalysts offers a pathway to create high-performance hybrid catalysts. In this review, we discuss the plasmonic-molecular complex hybrid catalysts where the plasmonic nanoparticles serve as the light-harvesting unit and promote interfacial charge transfer in tandem with the molecular catalyst which drives chemical transformation. In the initial section, we provide a concise overview of plasmonic nanomaterials and their photophysical properties. We then explore recent breakthroughs, highlighting examples from literature reports involving plasmonic-molecular complex hybrids in various catalytic processes. The utilization of plasmonic materials in conjunction with molecular catalysts represents a relatively unexplored area with substantial potential yet to be realized. This review sets a strong basis and motivation to explore the plasmon-induced hot-electron mediated photelectrochemical small molecule activation reactions. Utilizing in situ spectroscopic investigations and ultrafast transient absorption spectroscopy, it presents a comprehensive template for scalable and sustainable antenna-reactor systems.
Collapse
Affiliation(s)
- Tannu Kaushik
- Interdisciplinary
Program Climate Studies, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Suchismita Ghosh
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Thinles Dolkar
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Rathindranath Biswas
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Arnab Dutta
- Interdisciplinary
Program Climate Studies, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
- National
Centre of Excellence in Carbon Capture and Utilization, Mumbai, Maharashtra 400076, India
| |
Collapse
|
17
|
Fang J, Li J, Chen Y, Cheng J, Zhu C, Mao J. Au Cluster-Nanoparticle Dual Coupling for Photocatalytic CO 2 Conversion. Inorg Chem 2024; 63:19375-19381. [PMID: 39344921 DOI: 10.1021/acs.inorgchem.4c03287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
CO2-selective photoreduction to value-added products is ideal, but its practical application suffers from weak photogenerated carrier separation and insufficient multielectron transport. Herein, we constructed the tricomponent AuNPs@SnO2-AuNCs hybrid by decorating Au nanoclusters (AuNCs) on the Au nanoparticle (AuNPs)@SnO2 core-shell structure. AuNC-NP dual coupling endowed AuNPs@SnO2-AuNCs with an excellent CO yield of 64.8 μmol g-1 h-1 during CO2 photoreduction, which was higher than the role of separate application of AuNCs (25.3 μmol g-1 h-1) and AuNPs (16.0 μmol g-1 h-1). It was mainly attributed that the coaction of AuNPs and AuNCs not only enhanced the visible light absorption capacity but also improved the photogenerated carrier separation/migration. As a result, the electron-rich AuNCs induced from plasmonic AuNPs and photoexcited SnO2 promoted the photocatalytic CO2-to-CO performance. This work provides a new perspective to design multicomponent photocatalysts for highly efficient CO2 conversion.
Collapse
Affiliation(s)
- Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jiaqi Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yukai Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiale Cheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Chengyang Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
18
|
Liu H, Sun B, Li Z, Xiao D, Wang Z, Liu Y, Zheng Z, Wang P, Dai Y, Cheng H, Huang B. Plasmon-Driven Highly Selective CO 2 Photoreduction to C 2H 4 on Ionic Liquid-Mediated Copper Nanowires. Angew Chem Int Ed Engl 2024; 63:e202410596. [PMID: 39031951 DOI: 10.1002/anie.202410596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Selective CO2 photoreduction to value-added multi-carbon (C2+) feedstocks, such as C2H4, holds great promise in direct solar-to-chemical conversion for a carbon-neutral future. Nevertheless, the performance is largely inhibited by the high energy barrier of C-C coupling process, thereby leading to C2+ products with low selectivity. Here we report that through facile surface immobilization of a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid, plasmonic Cu nanowires could enable highly selective CO2 photoreduction to C2H4 product. At an optimal condition, the resultant plasmonic photocatalyst exhibits C2H4 production with selectivity up to 96.7 % under 450 nm monochromatic light irradiation, greatly surpassing its pristine Cu counterpart. Combined in situ spectroscopies and computational calculations unravel that the addition of EMIM-BF4 ionic liquid modulates the local electronic structure of Cu, resulting in its enhanced adsorption strength of *CO intermediate and significantly reduced energy barrier of C-C coupling process. This work paves new path for Cu surface plasmons in selective artificial photosynthesis to targeted products.
Collapse
Affiliation(s)
- Hongli Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Bin Sun
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zaiqi Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Difei Xiao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
19
|
Jiang K, Yan P, Shi P, Zhang J, Chai X, Wang Y, Zhu C, Yang C, Lu C, Liu Y, Cao K, Zhuang X. Two-Dimensional Silver-Isocyanide Frameworks. Angew Chem Int Ed Engl 2024:e202417658. [PMID: 39354679 DOI: 10.1002/anie.202417658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
Metal-organic frameworks (MOFs) have been widely studied due to their versatile applications and easily tunable structures. However, heteroatom-metal coordination dominates the MOFs community, and the rational synthesis of carbon-metal coordination-based MOFs remains a significant challenge. Herein, two-dimensional (2D) MOFs based on silver-carbon linkages are synthesized through the coordination between silver(I) salt and isocyanide-based monomers at ambient condition. The as-synthesized 2D MOFs possess well-defined crystalline structures and a staggered AB stacking mode. Most interestingly, these 2D MOFs, without π-π stacking between layers, exhibit narrow band gaps down to 1.42 eV. As electrochemical catalysts for converting CO2 to CO, such 2D MOFs demonstrate Faradaic efficiency over 92 %. Surprisingly, the CO2 reduction catalyzed by these MOFs indicates favorable adsorption of CO2 and *COOH on the active carbon sites of the isocyanide groups rather than on silver sites. This is attributed to the critical σ donor role of isocyanides and the corresponding ligand-to-metal charge-transfer effect. This work not only paves the way toward a new family of MOFs based on metal-isocyanide coordination but also offers a rare platform for understanding the electrocatalysis processes on strongly polarized carbon species.
Collapse
Affiliation(s)
- Kaiyue Jiang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Pu Yan
- School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Pengfei Shi
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Xinyu Chai
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Yunfei Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chongqing Yang
- Carbon Capture and Utilization Research Center, College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenbao Lu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kecheng Cao
- School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|
20
|
Vahidzadeh E, Rajashekhar H, Riddell S, Alam KM, Vrushabendrakumar D, Kumar N, Shankar K. Sponge-shaped Au nanoparticles: a stand-alone metallic photocatalyst for driving the light-induced CO 2reduction reaction. NANOTECHNOLOGY 2024; 35:495402. [PMID: 39084236 DOI: 10.1088/1361-6528/ad6998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Coinage metal nanoparticles (NPs) enable plasmonic catalysis by generating hot carriers that drive chemical reactions. Making NPs porous enhances the adsorption of reactant molecules. We present a dewetting and dealloying strategy to fabricate porous gold nanoparticles (Au-Sponge) and compare their CO2photoreduction activity with respect to the conventional gold nanoisland (Au-Island) morphology. Porous gold nanoparticles exhibit an unusually broad and red-shifted plasmon resonance which is in agreement with the results of finite difference time domain (FDTD) simulations. The key insight of this work is that the multi-step reduction of CO2driven by short-lived hot carriers generated by the d → s interband transition proceeds extremely quickly as evidenced by the generation of methane. A 3.8-fold enhancement in the photocatalytic performance is observed for the Au-Sponge in comparison to the Au-Island. Electrochemical cyclic voltammetry measurements confirm the 2.5-fold increase in the surface area and roughness factor of the Au-Sponge sample due to its porous nature. Our results indicate that the product yield is limited by the amount of surface adsorbates i.e. reactant-limited. Isotope-labeled mass spectrometry using13CO2was used to confirm that the reaction product (13CH4) originated from CO2photoreduction. We also present the plasmon-mediated photocatalytic transformation of 4-aminothiophenol (PATP) into p,p'-dimercaptoazobenzene (DMAB) using Au-Sponge and Au-Island samples.
Collapse
Affiliation(s)
- Ehsan Vahidzadeh
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Harshitha Rajashekhar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Saralyn Riddell
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Kazi M Alam
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Damini Vrushabendrakumar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Navneet Kumar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| |
Collapse
|
21
|
Tao QQ, Xu CH, Zhao W, Chen HY, Xu JJ. Nanostructure impact on electrocatalysis in gold nanodimers via electrochemiluminescence microscopy. Chem Commun (Camb) 2024; 60:10556-10559. [PMID: 39229780 DOI: 10.1039/d4cc03443k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This study explores the mechanism of enhanced electrochemiluminescence (ECL) due to the coupling effect in gold nanodimers (Au NDs) with precisely controlled interparticle distances via electrochemiluminescence microscopy (ECLM). Our research revealed that the enhancement in ECL was predominantly attributed to increased charge density and elevated electric fields resulting from overlapping electrochemical double layers. These findings offer new insights into the fundamental processes that govern nanostructure-mediated electrocatalysis, opening up exciting possibilities for future applications.
Collapse
Affiliation(s)
- Qian-Qian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Cong-Hui Xu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Zhao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
22
|
Chen C, Ye C, Zhao X, Zhang Y, Li R, Zhang Q, Zhang H, Wu Y. Supported Au single atoms and nanoparticles on MoS 2 for highly selective CO 2-to-CH 3COOH photoreduction. Nat Commun 2024; 15:7825. [PMID: 39244601 PMCID: PMC11380681 DOI: 10.1038/s41467-024-52291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Effectively controlling the selective conversion of CO2 photoreduction to C2 products presents a significant challenge. Here, we develop a heterojunction photocatalyst by controllably implanting Au nanoparticles and single atoms into unsaturated Mo atoms of edge-rich MoS2, denoted as Aun/Au1-CMS. Photoreduction of CO2 results in the production of CH3COOH with a selectivity of 86.4%, which represents a 6.4-fold increase compared to samples lacking single atoms, and the overall selectivity for C2 products is 95.1%. Furthermore, the yield of CH3COOH is 22.4 times higher compared to samples containing single atoms and without nanoparticles. Optical experiments demonstrate that the single atoms domains can effectively capture photoexcited electrons by the Au nanoparticles, or the local electric field generated by the nanoparticles promotes the transfer of photogenerated electrons in MoS2 to Au single atoms, prolonging the relaxation time of photogenerated electrons. Mechanistic investigations reveal that the orbital coupling of Au5d and Mo4d strengthens the oxygen affinity of Mo and carbon affinity of Au. The hybridized orbitals reduce energy splitting levels of CO molecular orbitals, aiding C-C coupling. Moreover, the Mo-Au dual-site stabilize the crucial oxygen-associated intermediate *CH2CO, thereby enhancing the selectivity towards CH3COOH. The cross-scale heterojunctions provide an effective strategy to simultaneously address the kinetical and thermodynamical limitations of CO2-to-CH3COOH conversion.
Collapse
Affiliation(s)
- Cai Chen
- Institute of Carbon Neutrality, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunyin Ye
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinglei Zhao
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing, China
| | - Yizhen Zhang
- Institute of Carbon Neutrality, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Ruilong Li
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Qun Zhang
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Zhang
- Institute of Carbon Neutrality, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China.
| | - Yuen Wu
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
23
|
Wang W, Chen D, Fung V, Zhuang S, Zhou Y, Wang C, Bian G, Zhao Y, Xia N, Li J, Deng H, Liao L, Yang J, Jiang DE, Wu Z. Gapped and Rotated Grain Boundary Revealed in Ultra-Small Au Nanoparticles for Enhancing Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2024:e202410109. [PMID: 39234799 DOI: 10.1002/anie.202410109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Although gapped grain boundaries have often been observed in bulk and nanosized materials, and their crucial roles in some physical and chemical processes have been confirmed, their acquisition at ultrasmall nanoscale presents a significant challenge. To date, they had not been reported in metal nanoparticles smaller than 2 nm owing to the difficulty in characterization and the high instability of grain boundary (GB) atoms. Herein, we have successfully developed a synthesis method for producing a novel chiral nanocluster Au78(TBBT)40 (TBBT=4-tert-butylphenylthiolate) with a 26-atom gapped and rotated GB. This nanocluster was precisely characterized using single-crystal X-ray crystallography and mass spectrometry. Additionally, an offset atomic defect linked to the peripheral Au(TBBT)2 staple was found in the structure. Comparing it to similarly face-centered cubic-structured Au36(TBBT)24, Au44(TBBT)28, Au52(TBBT)32, Au92(TBBT)44, and ~5 nm nanocrystals, the bridging Au78(TBBT)40 nanocluster exhibited higher catalytic activity in the electroreduction of CO2 to CO. This enhanced activity was explained through density functional theory calculations and X-ray photoelectron spectroscopy analysis, which highlight the impact of GBs and point defects on the surface properties of metal nanoclusters in balancing intermediate adsorption and product desorption.
Collapse
Grants
- 21925303, 21829501, 22471275, 21771186, 22075290, 22075291, 22272179, 21222301, 21171170, and 21528303 National Natural Science Foundation of China
- BJPY2019A02 CASHIPS Director's Fund
- MESO-23-A06 State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- 2020HSC-CIP005, 2022HSC-CIP018 Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
- YZJJ-GGZX-2022-01 HFIPS Director's Fund
Collapse
Affiliation(s)
- Wenying Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Dong Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Victor Fung
- Department of Chemistry, University of California, 92521, Riverside, CA, USA
- School of Computational Science and Engineering, Georgia Institute of Technology, 30332, Atlanta, Georgia, USA
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R. China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Chengming Wang
- Instruments' Center for Physical Science, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R. China
| | - Jun Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - De-En Jiang
- Department of Chemistry, University of California, 92521, Riverside, CA, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 37235, Nashville, Tennessee, USA
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R. China
| |
Collapse
|
24
|
Liu H, Du C, Sheng J, Zhong F, He Y, Zhang F, Zhou Y, Sun Y, Dong F. Strong Dipole Moments from Ferrocene Methanol Clusters Boost Exciton Dissociation in Quantum-Confined Perovskite for CO 2 Photoreduction. ACS NANO 2024; 18:24558-24568. [PMID: 39159432 DOI: 10.1021/acsnano.4c09197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Perovskite nanocrystals (PCNs) exhibit a significant quantum confinement effect that enhances multiexciton generation, making them promising for photocatalytic CO2 reduction. However, their conversion efficiency is hindered by poor exciton dissociation. To address this, we synthesized ferrocene-methanol-functionalized CsPbBr3 (CPB/FcMeOH) using a ligand engineering approach. By manipulating the electronic coupling between ligands and the PCN surface, facilitated by the increased dipole moment from hydrogen bonding in FcMeOH molecules, we effectively controlled exciton dissociation and interfacial charge transfer. Under 5 h of irradiation, the CO yield of CPB/FcMeOH reached 772.79 μmol g-1, 4.95 times higher than pristine CPB. This high activity is due to the formation of hydrogen-bonded FcMeOH clusters on the CPB surface. The nonpolar disruption and strong dipole moment of FcMeOH molecules enhance electronic coupling between the FcMeOH ligands and the CPB surface, reducing the surface barrier energy. Consequently, exciton dissociation and interfacial charge transfer are promoted, efficiently utilizing multiple excitons in quantum-confined domains. Transient absorption spectroscopy confirms that CPB/FcMeOH exhibits optimized exciton behavior with fast internal relaxation, trapping, and a short recombination time, allowing photogenerated charges to more rapidly participate in CO2 reduction.
Collapse
Affiliation(s)
- Huiyu Liu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chenyu Du
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fengyi Zhong
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ye He
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fengying Zhang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Ying Zhou
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
25
|
Huo H, Hu T, Zhong Z, Zhan C, Huang C, Ju Q, Zhang L, Wu F, Kan E, Li A. Nanoconfined tandem three-phase photocatalysis for highly selective CO 2 reduction to ethanol. Chem Sci 2024:d4sc04647a. [PMID: 39246337 PMCID: PMC11376270 DOI: 10.1039/d4sc04647a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
The conversion of CO2 and H2O into ethanol with high selectivity via photocatalysis is greatly desired for effective CO2 resource utilization. However, the sluggish and challenging C-C coupling hinders this goal, with the behavior of *CO holding the key. Here, a nanoconfined and tandem three-phase reaction system is established to simultaneously enhance the *CO concentration and interaction time, achieving an outstanding ethanol selectively of 94.15%. This system utilizes a tandem catalyst comprising an Ag core and a hydrophobic Cu2O shell. The hydrophobic Cu2O shell acts as a CO2 reservoir, effectively overcoming the CO2 mass-transfer limitation, while the Ag core facilitates the conversion of CO2 to CO. Subsequently, CO undergoes continuous reduction within the nanoconfined mesoporous channels of Cu2O. The synergy of enhanced mass transfer, nanoconfinement, and tandem reaction leads to elevated *CO concentrations and prolonged interaction time within the Cu2O shell, significantly reducing the energy barrier for *CO-*CO coupling compared to the formation of *CHO from *CO, as determined by density functional theory calculations. Consequently, C-C coupling preferentially occurs over *CHO formation, producing excellent ethanol selectivity. These findings provide valuable insights into the efficient production of C2+ compounds.
Collapse
Affiliation(s)
- Hailing Huo
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Ting Hu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Zhiqing Zhong
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Cheng Zhan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Chengxi Huang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Qiang Ju
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Liang Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Fang Wu
- College of Information Science and Technology, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Ang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| |
Collapse
|
26
|
Sudo T, Sagawa M, Adachi S, Kato Y, Nakanishi Y, Nakamura T, Yamashita S, Kamiya H, Okada Y. Understanding Flexdispersion: Structure-Function Relationship Studies of Organic Amphiphilic Ligands. Chemistry 2024; 30:e202304324. [PMID: 38654689 DOI: 10.1002/chem.202304324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Since inorganic nanoparticles have unique properties that differ from those of bulk materials, their material applications have attracted attention in various fields. In order to utilize inorganic nanoparticles for functional materials, they must be dispersed without agglomeration. Therefore, the surfaces of inorganic nanoparticles are typically modified with organic ligands to improve their dispersibility. Nevertheless, the relationship between the tail group structure in organic ligands and the dispersibility of inorganic nanoparticles in organic solvents remains poorly understood. We previously developed amphiphilic ligands that consist of ethylene glycol chains and alkyl chains to disperse inorganic nanoparticles in a variety of organic solvents. However, the structural requirements for amphiphilic ligands to "flexibly" disperse nanoparticles in less polar to polar solvents are still unclear. Here, we designed and synthesized several phosphonic acid ligands for structure-function relationship studies of flexdispersion. Dynamic light scattering analysis and visible light transmittance measurements revealed that the ratio of alkyl/ethylene glycol chains in organic ligands alone does not determine the dispersibility of the nanoparticles in organic solvents, but the arrangement of the individual chains also has an effect. From a practical application standpoint, it is preferable to design ligands with ethylene glycol chains on the outside relative to the particle surface.
Collapse
Affiliation(s)
- Tatsuya Sudo
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Masahiko Sagawa
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Sota Adachi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yusuke Kato
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yuki Nakanishi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tatsuya Nakamura
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Shohei Yamashita
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hidehiro Kamiya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
27
|
Tudor M, Borlan R, Maniu D, Astilean S, de la Chapelle ML, Focsan M. Plasmon-enhanced photocatalysis: New horizons in carbon dioxide reduction technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172792. [PMID: 38688379 DOI: 10.1016/j.scitotenv.2024.172792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The urgent need for transition to renewable energy is underscored by a nearly 50 % increase in atmospheric carbon dioxide levels over the past century. The combustion of fossil fuels for energy production, transportation, and industrial activities are the main contributors to carbon dioxide emissions in the anthroposphere. Present approaches to reducing carbon emissions are proving inefficient, thereby accentuating the relevance of carbon dioxide photocatalysis in combating climate change - one of the critical issues of public concern. This process uses sunlight to convert carbon dioxide into valuable products, e.g., clean fuels, effectively reducing the carbon footprint and offering a sustainable use of carbon dioxide. In this context, plasmonic nanoparticles such as gold, silver, and copper play a pivotal role due to their proficiency in absorbing a wide range of light spectra, thereby effectively generating the necessary electrons and holes for the degradation of pollutants and surpassing the capabilities of traditional semiconductor catalysts. This review meticulously examines the latest advancements in plasmon-based carbon dioxide photocatalysis, scrutinizing the methodologies, characterizations, and experimental outcomes. The critical evaluation extends to exploring adjustments in the dimensional and morphological aspects of plasmonic nanoparticles, complemented by the incorporation of stabilizing agents, which may offer additional benefits. Furthermore, the review includes a thorough analysis of production rates and quantum yields based on different plasmonic materials and nanoparticle shapes and sizes, enriching the ongoing discourse on effective solutions in the field. Thus, our work emphasizes the pivotal role of plasmon-based photocatalysts in reducing carbon dioxide, investigating both the merits and challenges associated with integrating this emerging technology into climate change mitigation efforts.
Collapse
Affiliation(s)
- Madalina Tudor
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Marc Lamy de la Chapelle
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania; IMMM - UMR 6283 CNRS, Le Mans Université, Olivier Messiaen Avenue, 72085 Le Mans, France.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania.
| |
Collapse
|
28
|
Xiao Y, Li H, Yao B, Xiao K, Wang Y. Hollow g-C 3N 4@Ag 3PO 4 Core-Shell Nanoreactor Loaded with Au Nanoparticles: Boosting Photothermal Catalysis in Confined Space. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308032. [PMID: 38801010 DOI: 10.1002/smll.202308032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Indexed: 05/29/2024]
Abstract
Low solar energy utilization efficiency and serious charge recombination remain major challenges for photocatalytic systems. Herein, a hollow core-shell Au/g-C3N4@Ag3PO4 photothermal nanoreactor is successfully prepared by a two-step deposition method. Benefit from efficient spectral utilization and fast charge separation induced by the unique hollow core-shell heterostructure, the H2 evolution rate of Au/g-C3N4@Ag3PO4 is 16.9 times that of the pristine g-C3N4, and the degradation efficiency of tetracycline is increased by 88.1%. The enhanced catalytic performance can be attributed to the ordered charge movement on the hollow core-shell structure and a local high-temperature environment, which effectively accelerates the carrier separation and chemical reaction kinetics. This work highlights the important role of the space confinement effect in photothermal catalysis and provides a promising strategy for the development of the next generation of highly efficient photothermal catalysts.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Haoyu Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 650504, P. R. China
| |
Collapse
|
29
|
Tatar D, Ullah H, Yadav M, Kojčinović J, Šarić S, Szenti I, Skalar T, Finšgar M, Tian M, Kukovecz Á, Kónya Z, Sápi A, Djerdj I. High-Entropy Oxides: A New Frontier in Photocatalytic CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29946-29962. [PMID: 38821886 DOI: 10.1021/acsami.4c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Herein, we investigate the potential of nanostructured high-entropy oxides (HEOs) for photocatalytic CO2 hydrogenation, a process with significant implications for environmental sustainability and energy production. Several cerium-oxide-based rare-earth HEOs with fluorite structures were prepared for UV-light driven photocatalytic CO2 hydrogenation toward valuable fuels and petrochemical precursors. The cationic composition profoundly influences the selectivity and activity of the HEOs, where the Ce0.2Zr0.2La0.2Nd0.2Sm0.2O2-δ catalyst showed outstanding CO2 activation (14.4 molCO kgcat-1 h-1 and 1.27 mol CH 3 OH kgcat-1 h-1) and high methanol and CO selectivity (7.84% CH3OH and 89.26% CO) under ambient conditions with 4 times better performance in comparison to pristine CeO2. Systematic tests showed the effect of a high-entropy system compared to midentropy oxides. XPS, in situ DRIFTS, as well as DFT calculation elucidate the synergistic impact of Ce, Zr, La, Nd, and Sm, resulting in an optimal Ce3+/Ce4+ ratio. The observed formate-routed mechanism and a surface with high affinity to CO2 reduction offer insights into the photocatalytic enhancement. While our findings lay a solid foundation, further research is needed to optimize these catalysts and expand their applications.
Collapse
Affiliation(s)
- Dalibor Tatar
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek HR-31000, Croatia
| | - Habib Ullah
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Mohit Yadav
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, Szeged H-6720, Hungary
| | - Jelena Kojčinović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek HR-31000, Croatia
| | - Stjepan Šarić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek HR-31000, Croatia
| | - Imre Szenti
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, Szeged H-6720, Hungary
| | - Tina Skalar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Street 17, Maribor SI-2000, Slovenia
| | - Mi Tian
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, Szeged H-6720, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, Szeged H-6720, Hungary
| | - András Sápi
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, Szeged H-6720, Hungary
| | - Igor Djerdj
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek HR-31000, Croatia
| |
Collapse
|
30
|
Ali S, Ali S, Khan I, Zahid M, Muhammad Ismail P, Ismail A, Zada A, Ullah R, Hayat S, Ali H, Kamal MR, Alibrahim KA, Bououdina M, Hasnain Bakhtiar S, Wu X, Wang Q, Raziq F, Qiao L. Molecular modulation of interfaces in a Z-scheme van der Waals heterojunction for highly efficient photocatalytic CO 2 reduction. J Colloid Interface Sci 2024; 663:31-42. [PMID: 38387184 DOI: 10.1016/j.jcis.2024.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The construction of van der Waals (vdW) heterojunctions is a key approach for efficient and stable photocatalysts, attracting marvellous attention due to their capacity to enhance interfacial charge separation/transfer and offer reactive sites. However, when a vdW heterojunction is made through an ex-situ assembly, electron transmission faces notable obstacles at the components interface due to the substantial spacing and potential barrier. Herein, we present a novel strategy to address this challenge via wet chemistry by synthesizing a functionalized graphene-modulated Z-scheme vdW heterojunction of zinc phthalocyanine/tungsten trioxide (xZnPc/yG-WO3). The functionalized G-modulation forms an electron "bridge" across the ZnPc/WO3 interface to improve electron transfer, get rid of barriers, and ultimately facilitating the optimal transfer of excited photoelectrons from WO3 to ZnPc. The Zn2+ in ZnPc picks up these excited photoelectrons, turning CO2 into CO/CH4 (42/22 μmol.g-1.h-1) to deliver 17-times better efficiency than pure WO3. Therefore, the introduction of a molecular "bridge" as a means to establish an electron transfer conduit represents an innovative approach to fabricate efficient photocatalysts designed for the conversion of CO2 into valued yields.
Collapse
Affiliation(s)
- Sharafat Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China; School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Sajjad Ali
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Imran Khan
- School of Physics and Electronics, Central South University, 410083 Changsha, China
| | - Muhammad Zahid
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Pir Muhammad Ismail
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ahmed Ismail
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Rizwan Ullah
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Salman Hayat
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haider Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Muhammad Rizwan Kamal
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Khuloud A Alibrahim
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University,Riyadh 11671, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Syedul Hasnain Bakhtiar
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoqiang Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Qingyuan Wang
- Institute for Advanced Study, Chengdu University, Chengdu, China.
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Liang Qiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China; School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
31
|
Cao Y, Wang S, Li H, Gao YY, Li M, Wang H, Zhu W, Zhou Y. Anisotropic growth of gold anchors on CdSe semiconductor quantum platelets for self-assembled architectures with well-connected electronic circuits for the electrochemical detection of enrofloxacin. Analyst 2024; 149:3131-3139. [PMID: 38639445 DOI: 10.1039/d4an00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Anisotropic growth of nanomaterials enables advances in building diverse and complex architectures, which exhibit unique properties and enrich the choice of nano-building modules for electrochemical sensor devices. Herein, an anisotropic growth method was proposed to anchor gold nanoparticles (AuNPs) onto both ends of quasi-two-dimensional CdSe semiconductor quantum nanoplatelets (NPLs), appearing with a monodisperse and uniform nano-dumbbell shape. Then, these AuNPs were exploited as natural anchor points and further initiated self-assembly to create complex architectures via dithiol bridges. Detailed studies illustrated that the covalent Se-Au bonds facilitate effective charge transfer in the internal metal-semiconductor (M-S) electric field. The narrowed energy gap and up-shifted highest occupied molecular orbital were favored for electron removal during the electro-oxidation process. The ultrathin CdSe NPLs supplied a large specific surface area, carrying remaining holes and abundant active sites for target electro-catalysis. As a result, using the assembled complex as the electrode matrix with well-connected electronic circuits, a reliable electrochemical sensor was achieved for enrofloxacin detection. Under the optimal conditions, the current response exhibits two linear dynamic ranges, 0.01-10.0 μM and 10.0-250 μM, and the detection limit was calculated as 0.0026 μM. This work not only opens up broad application prospects for heterogeneous M-S combinations as effective electrochemical matrixes but also develops reliable antibiotic assays for food and environmental safety.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, PR China.
| | - Shengyan Wang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, PR China.
| | - Huan Li
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, PR China.
| | - Yan-Yan Gao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, PR China.
| | - Mei Li
- School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, the Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, PR China.
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China
| | - Wenlei Zhu
- School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, the Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, PR China.
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, PR China.
| |
Collapse
|
32
|
Ma X, Ma C, Xia J, Han S, Zhang H, He C, Feng F, Lin G, Cao W, Meng X, Zhu L, Zhu X, Wang AL, Yin H, Lu Q. Heterophase Intermetallic Compounds for Electrocatalytic Hydrogen Production at Industrial-Scale Current Densities. J Am Chem Soc 2024. [PMID: 38767649 DOI: 10.1021/jacs.4c01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Heterophase nanomaterials have sparked significant research interest in catalysis due to their distinctive properties arising from synergistic effects of different components and the formed phase boundary. However, challenges persist in the controlled synthesis of heterophase intermetallic compounds (IMCs), primarily due to the lattice mismatch of distinct crystal phases and the difficulty in achieving precise control of the phase transitions. Herein, orthorhombic/cubic Ru2Ge3/RuGe IMCs with engineered boundary architecture are synthesized and anchored on the reduced graphene oxide. The Ru2Ge3/RuGe IMCs exhibit excellent hydrogen evolution reaction (HER) performance with a high current density of 1000 mA cm-2 at a low overpotential of 135 mV. The presence of phase boundaries enhances charge transfer and improves the kinetics of water dissociation while optimizing the processes of hydrogen adsorption/desorption, thus boosting the HER performance. Moreover, an anion exchange membrane electrolyzer is constructed using Ru2Ge3/RuGe as the cathode electrocatalyst, which achieves a current density of 1000 mA cm-2 at a low voltage of 1.73 V, and the activity remains virtually undiminished over 500 h.
Collapse
Affiliation(s)
- Xiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chaoqun Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sumei Han
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huaifang Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Caihong He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fukai Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Gang Lin
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijie Zhu
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Xiaojuan Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - An-Liang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Haiqing Yin
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
- State Key Laboratory of Nuclear Power Safety Technology and Equipment, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
33
|
Zhu C, Xu L, Liu Y, Liu J, Wang J, Sun H, Lan YQ, Wang C. Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion. Nat Commun 2024; 15:4213. [PMID: 38760369 PMCID: PMC11101624 DOI: 10.1038/s41467-024-48613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
Nanofluidic membranes have demonstrated great potential in harvesting osmotic energy. However, the output power densities are usually hampered by insufficient membrane permselectivity. Herein, we design a polyoxometalates (POMs)-based nanofluidic plasmonic electron sponge membrane (PESM) for highly efficient osmotic energy conversion. Under light irradiation, hot electrons are generated on Au NPs surface and then transferred and stored in POMs electron sponges, while hot holes are consumed by water. The stored hot electrons in POMs increase the charge density and hydrophilicity of PESM, resulting in significantly improved permselectivity for high-performance osmotic energy conversion. In addition, the unique ionic current rectification (ICR) property of the prepared nanofluidic PESM inhibits ion concentration polarization effectively, which could further improve its permselectivity. Under light with 500-fold NaCl gradient, the maximum output power density of the prepared PESM reaches 70.4 W m-2, which is further enhanced even to 102.1 W m-2 by changing the ligand to P5W30. This work highlights the crucial roles of plasmonic electron sponge for tailoring the surface charge, modulating ion transport dynamics, and improving the performance of nanofluidic osmotic energy conversion.
Collapse
Affiliation(s)
- Chengcheng Zhu
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Li Xu
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yazi Liu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jin Wang
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ya-Qian Lan
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Chen Wang
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
34
|
Zhang M, Zhang D, Jing X, Xu B, Duan C. Engineering NH 2-Cu-NH 2 Triple-atom Sites in Defective MOFs for Selective Overall Photoreduction of CO 2 into CH 3COCH 3. Angew Chem Int Ed Engl 2024; 63:e202402755. [PMID: 38462995 DOI: 10.1002/anie.202402755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Selective photoreduction of CO2 to multicarbon products, is an important but challenging task, due to high CO2 activation barriers and insufficient catalytic sites for C-C coupling. Herein, a defect engineering strategy for incorporating copper sites into the connected nodes of defective metal-organic framework UiO-66-NH2 for selective overall photo-reduction of CO2 into acetone. The Cu2+ site in well-modified CuN2O2 units served as a trapping site to capture electrons via efficient electron-hole separation, forming the active Cu+ site for CO2 reduction. Two NH2 groups in CuN2O2 unit adsorb CO2 and cooperated with copper ion to functionalize as a triple atom catalytic site, each interacting with one CO2 molecule to strengthen the binding of *CO intermediate to the catalytic site. The deoxygenated *CO attached to the Cu site interacted with *CH3 fixed at one amino group to form the key intermediate CO*-CH3, which interacted with the third reduction intermediate on another amino group to produce acetone. Our photocatalyst realizes efficient overall CO2 reduction to C3 product acetone CH3COCH3 with an evolution rate of 70.9 μmol gcat -1 h-1 and a selectivity up to 97 % without any adducts, offering a promising avenue for designing triple-atomic sites to producing C3 product from photosynthesis with water.
Collapse
Affiliation(s)
- Mengrui Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Dan Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Baijie Xu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
35
|
Yu H, Liu D, Fu Z, Wang S, Zuo X, Feng X, Zhang Y. Dynamic Modulation of Li 2O 2 Growth in Li-O 2 Batteries through Regulating Oxygen Reduction Kinetics with Photo-Assisted Cathodes. Angew Chem Int Ed Engl 2024; 63:e202401272. [PMID: 38375744 DOI: 10.1002/anie.202401272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Widely acknowledged that the capacity of Li-O2 batteries (LOBs) should be strongly determined by growth behaviors of the discharge product of lithium peroxide (Li2O2) that follows both coexisting surface and solution pathways. However until now, it remains still challenging to achieve dynamic modulation on Li2O2 morphologies. Herein, the photo-responsive Au nanoparticles (NPs) supported on reduced oxide graphene (Au/rGO) have been utilized as cathode to manipulate oxygen reduction reaction (ORR) kinetics by aid of surface plasmon resonance (SPR) effects. Thus, we can experimentally reveal the importance of matching ORR kinetics with Li+ migration towards battery performance. Moreover, it is found that Li+ concentration polarization caused "sudden death" of LOBs is supposed to be just a form of suspended animation that could timely recover under irradiation. This work provides us an in-depth explanation on the working mechanism of LOBs from a kinetic perspective, offering valuable insights for the future battery design.
Collapse
Affiliation(s)
- Haohan Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zerui Fu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shu Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xintao Zuo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xilan Feng
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
36
|
Wu J, Chen X, Li A, Xing T, Chen G. Preparation of CS-LS/AgNPs Composites and Photocatalytic Degradation of Dyes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1214. [PMID: 38473686 DOI: 10.3390/ma17051214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Synthetic dyes are prone to water pollution during use, jeopardizing biodiversity and human health. This study aimed to investigate the adsorption and photocatalytic assist potential of sodium lignosulfonate (LS) in in situ reduced silver nanoparticles (AgNPs) and chitosan (CS)-loaded silver nanoparticles (CS-LS/AgNPs) as adsorbents for Rhodamine B (RhB). The AgNPs were synthesized by doping LS on the surface of chitosan for modification. Fourier transform infrared (FT-IR) spectrometry, energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to confirm the synthesis of nanomaterials. The adsorption and photocatalytic removal experiments of RhB were carried out under optimal conditions (initial dye concentration of 20 mg/L, adsorbent dosage of 0.02 g, time of 60 min, and UV power of 250 W), and the kinetics of dye degradation was also investigated, which showed that the removal rate of RhB by AgNPs photocatalysis can reach 55%. The results indicated that LS was highly effective as a reducing agent for the large-scale production of metal nanoparticles and can be used for dye decolorization. This work provides a new catalyst for the effective removal of dye from wastewater, and can achieve high-value applications of chitosan and lignin.
Collapse
Affiliation(s)
- Jiabao Wu
- Discharge Reduction and Cleaner Production (ERC), Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xinpeng Chen
- Discharge Reduction and Cleaner Production (ERC), Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Aijing Li
- Discharge Reduction and Cleaner Production (ERC), Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tieling Xing
- Discharge Reduction and Cleaner Production (ERC), Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guoqiang Chen
- Discharge Reduction and Cleaner Production (ERC), Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
37
|
Xiao Y, Wang Z, Yao B, Cao M, Wang Y. Guiding the Driving Factors on Plasma Super-Photothermal S-Scheme Core-Shell Nanoreactor to Enhance Photothermal Catalytic H 2 Evolution and Selective CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304843. [PMID: 37936334 DOI: 10.1002/smll.202304843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Indexed: 11/09/2023]
Abstract
Light-induced heat has a non-negligible role in photocatalytic reactions. However, it is still challenging to design highly efficient catalysts that can make use of light and thermal energy synergistically. Herein, the study proposes a plasma super-photothermal S-scheme heterojunction core-shell nanoreactor based on manipulation of the driving factors, which consists of α-Fe2 O3 encapsulated by g-C3 N4 modified with gold quantum dots. α-Fe2 O3 can promote carrier spatial separation while also acting as a thermal core to radiate heat to the shell, while Au quantum dots transfer energetic electrons and heat to g-C3 N4 via surface plasmon resonance. Consequently, the catalytic activity of Au/α-Fe2 O3 @g-C3 N4 is significantly improved by internal and external double hot spots, and it shows an H2 evolution rate of 5762.35 µmol h-1 g-1 , and the selectivity of CO2 conversion to CH4 is 91.2%. This work provides an effective strategy to design new plasma photothermal catalysts for the solar-to-fuel transition.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Zhezhe Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 6500504, P. R. China
| |
Collapse
|
38
|
Seong H, Chang K, Sun F, Lee S, Han SM, Kim Y, Choi CH, Tang Q, Lee D. ClAg 14 (C≡C t Bu) 12 Nanoclusters as Efficient and Selective Electrocatalysts Toward Industrially Relevant CO 2 Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306089. [PMID: 38145332 PMCID: PMC10933691 DOI: 10.1002/advs.202306089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Indexed: 12/26/2023]
Abstract
Atomically precise metal nanoclusters (NCs) have emerged as a promising frontier in the field of electrochemical CO2 reduction reactions (CO2 RR) because of their distinctive catalytic properties. Although numerous metal NCs are developed for CO2 RR, their use in practical applications has suffered from their low-yield synthesis and insufficient catalytic activity. In this study, the large-scale synthesis and electrocatalytic performance of ClAg14 (C≡Ct Bu)12 + NCs, which exhibit remarkable efficiency in catalyzing CO2 -to-CO electroreduction with a CO selectivity of over 99% are reported. The underlying mechanisms behind this extraordinary CO2 RR activity of ClAg14 (C≡Ct Bu)12 + NCs are investigated by a combination of electrokinetic and theoretical studies. These analyses reveal that different active sites, generated through electrochemical activation, have unique adsorption properties for the reaction intermediates, leading to enhanced CO2 RR and suppressed hydrogen production. Furthermore, industrially relevant CO2 -to-CO electroreduction using ClAg14 (C≡Ct Bu)12 + NCs in a zero-gap CO2 electrolyzer, achieving high energy efficiency of 51% and catalyst activity of over 1400 A g-1 at a current density of 400 mA cm-2 is demonstrated.
Collapse
Affiliation(s)
- Hoeun Seong
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Kiyoung Chang
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing UniversityChongqing401331China
| | - Sojung Lee
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Sang Myeong Han
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Yujin Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Chang Hyuck Choi
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I–CREATE)Yonsei UniversitySeoul03722Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing UniversityChongqing401331China
| | - Dongil Lee
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
39
|
Fusco Z, Beck FJ. Advances in fundamentals and application of plasmon-assisted CO 2 photoreduction. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:387-417. [PMID: 39635649 PMCID: PMC11501834 DOI: 10.1515/nanoph-2023-0793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/23/2023] [Indexed: 12/07/2024]
Abstract
Artificial photosynthesis of hydrocarbons from carbon dioxide (CO2) has the potential to provide renewable fuels at the scale needed to meet global decarbonization targets. However, CO2 is a notoriously inert molecule and converting it to energy dense hydrocarbons is a complex, multistep process, which can proceed through several intermediates. Recently, the ability of plasmonic nanoparticles to steer the reaction down specific pathways and enhance both reaction rate and selectivity has garnered significant attention due to its potential for sustainable energy production and environmental mitigation. The plasmonic excitation of strong and confined optical near-fields, energetic hot carriers and localized heating can be harnessed to control or enhance chemical reaction pathways. However, despite many seminal contributions, the anticipated transformative impact of plasmonics in selective CO2 photocatalysis has yet to materialize in practical applications. This is due to the lack of a complete theoretical framework on the plasmonic action mechanisms, as well as the challenge of finding efficient materials with high scalability potential. In this review, we aim to provide a comprehensive and critical discussion on recent advancements in plasmon-enhanced CO2 photoreduction, highlighting emerging trends and challenges in this field. We delve into the fundamental principles of plasmonics, discussing the seminal works that led to ongoing debates on the reaction mechanism, and we introduce the most recent ab initio advances, which could help disentangle these effects. We then synthesize experimental advances and in situ measurements on plasmon CO2 photoreduction before concluding with our perspective and outlook on the field of plasmon-enhanced photocatalysis.
Collapse
Affiliation(s)
- Zelio Fusco
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT2601, Australia
| | - Fiona J. Beck
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT2601, Australia
| |
Collapse
|
40
|
Huo H, He H, Huang C, Guan X, Wu F, Du Y, Xing H, Kan E, Li A. Solar-driven CO 2-to-ethanol conversion enabled by continuous CO 2 transport via a superhydrophobic Cu 2O nano fence. Chem Sci 2024; 15:1638-1647. [PMID: 38303942 PMCID: PMC10829006 DOI: 10.1039/d3sc05702j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 02/03/2024] Open
Abstract
The overall photocatalytic CO2 reduction reaction presents an eco-friendly approach for generating high-value products, specifically ethanol. However, ethanol production still faces efficiency issues (typically formation rates <605 μmol g-1 h-1). One significant challenge arises from the difficulty of continuously transporting CO2 to the catalyst surface, leading to inadequate gas reactant concentration at reactive sites. Here, we develop a mesoporous superhydrophobic Cu2O hollow structure (O-CHS) for efficient gas transport. O-CHS is designed to float on an aqueous solution and act as a nano fence, effectively impeding water infiltration into its inner space and enabling CO2 accumulation within. As CO2 is consumed at reactive sites, O-CHS serves as a gas transport channel and diffuser, continuously and promptly conveying CO2 from the gas phase to the reactive sites. This ensures a stable high CO2 concentration at reactive sites. Consequently, O-CHS achieves the highest recorded ethanol formation rate (996.18 μmol g-1 h-1) to the best of our knowledge. This strategy combines surface engineering with geometric modulation, providing a promising pathway for multi-carbon production.
Collapse
Affiliation(s)
- Hailing Huo
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Chengxi Huang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Xin Guan
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Fang Wu
- College of Information Science and Technology, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Yongping Du
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Hongbin Xing
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Ang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| |
Collapse
|
41
|
Guo ST, Du YW, Luo H, Zhu Z, Ouyang T, Liu ZQ. Stabilizing Undercoordinated Zn Active Sites through Confinement in CeO 2 Nanotubes for Efficient Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202314099. [PMID: 38059828 DOI: 10.1002/anie.202314099] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Zn-based catalysts hold great potential to replace the noble metal-based ones for CO2 reduction reaction (CO2 RR). Undercoordinated Zn (Znδ+ ) sites may serve as the active sites for enhanced CO production by optimizing the binding energy of *COOH intermediates. However, there is relatively less exploration into the dynamic evolution and stability of Znδ+ sites during CO2 reduction process. Herein, we present ZnO, Znδ+ /ZnO and Zn as catalysts by varying the applied reduction potential. Theoretical studies reveal that Znδ+ sites could suppress HER and HCOOH production to induce CO generation. And Znδ+ /ZnO presents the highest CO selectivity (FECO 70.9 % at -1.48 V vs. RHE) compared to Zn and ZnO. Furthermore, we propose a CeO2 nanotube with confinement effect and Ce3+ /Ce4+ redox to stabilize Znδ+ species. The hollow core-shell structure of the Znδ+ /ZnO/CeO2 catalyst enables to extremely expose electrochemically active area while maintaining the Znδ+ sites with long-time stability. Certainly, the target catalyst affords a FECO of 76.9 % at -1.08 V vs. RHE and no significant decay of CO selectivity in excess of 18 h.
Collapse
Affiliation(s)
- Si-Tong Guo
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Yu-Wei Du
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Huihua Luo
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ziyin Zhu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
42
|
Tang H, Ang Chen Z, Wu M, Li S, Ye Z, Zhi M. Au-CeO 2 composite aerogels with tunable Au nanoparticle sizes as plasmonic photocatalysts for CO 2 reduction. J Colloid Interface Sci 2024; 653:316-326. [PMID: 37717432 DOI: 10.1016/j.jcis.2023.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Tuning the size of Au nanoparticles is always an interesting task when constructing Au/semiconductor heterojunctions for surface plasmon resonance-enhanced photocatalysis. In particular, the size of Au nanoparticles in the newly emerging "plasmonic aerogel" photocatalyst concept could approach the size of the semiconductor phase. This work provides an alternative route to realize the size tuning of Au nanoparticles in Au-CeO2 composite aerogels to some extent, within the framework of the well-established epoxide addition sol-gel method. The size tuning is achieved by exploiting the multi-functionalities of a mixed organic acid additive containing a thiol group in the gelation step. The obtained aerogel photocatalysts are composed of a porous backbone of interconnected CeO2 nanoparticles and Au nanoparticles, and the size of Au nanoparticles ranges from ∼30 nm to sub-10 nm, while the size of CeO2 remains at ∼15-10 nm. The surface plasmon resonance peak position and intensity contributed by the Au nanoparticles then vary accordingly. Photocatalytic CO2 reduction at the gas-solid interface is chosen as a model reaction to study the effect of Au nanoparticle size on the photocatalytic activity of composite aerogel photocatalysts. The addition of Au nanoparticles undoubtedly enhances the overall activity of the CeO2 aerogel photocatalyst, while the degree of enhancement (in terms of total charge consumption) and product selectivity (CH4 or CO) are different and correlated with the size of the Au nanoparticles. The best performance can be achieved in a composite in which the Au sizes are the smallest.
Collapse
Affiliation(s)
- Hao Tang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zi Ang Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Muchen Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shunbo Li
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronics Engineering, Chongqing University, Chongqing 400044, PR China
| | - Ziran Ye
- Department of Applied Physics, College of Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Mingjia Zhi
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
43
|
Su B, Kong Y, Wang S, Zuo S, Lin W, Fang Y, Hou Y, Zhang G, Zhang H, Wang X. Hydroxyl-Bonded Ru on Metallic TiN Surface Catalyzing CO 2 Reduction with H 2O by Infrared Light. J Am Chem Soc 2023; 145:27415-27423. [PMID: 38078702 DOI: 10.1021/jacs.3c08311] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Synchronized conversion of CO2 and H2O into hydrocarbons and oxygen via infrared-ignited photocatalysis remains a challenge. Herein, the hydroxyl-coordinated single-site Ru is anchored precisely on the metallic TiN surface by a NaBH4/NaOH reforming method to construct an infrared-responsive HO-Ru/TiN photocatalyst. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (ac-HAADF-STEM) and X-ray absorption spectroscopy (XAS) confirm the atomic distribution of the Ru species. XAS and density functional theory (DFT) calculations unveil the formation of surface HO-RuN5-Ti Lewis pair sites, which achieves efficient CO2 polarization/activation via dual coordination with the C and O atoms of CO2 on HO-Ru/TiN. Also, implanting the Ru species on the TiN surface powerfully boosts the separation and transfer of photoinduced charges. Under infrared irradiation, the HO-Ru/TiN catalyst shows a superior CO2-to-CO transformation activity coupled with H2O oxidation to release O2, and the CO2 reduction rate can further be promoted by about 3-fold under simulated sunlight. With the key reaction intermediates determined by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and predicted by DFT simulations, a possible photoredox mechanism of the CO2 reduction system is proposed.
Collapse
Affiliation(s)
- Bo Su
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yuehua Kong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shouwei Zuo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huabin Zhang
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
44
|
Liu T, Tan G, Feng S, Zhang B, Liu Y, Wang Z, Bi Y, Yang Q, Xia A, Liu W, Ren H, Lv L. Dual Localized Surface Plasmon Resonance effect enhances Nb 2AlC/Nb 2C MXene thermally coupled photocatalytic reduction of CO 2 hydrogenation activity. J Colloid Interface Sci 2023; 652:599-611. [PMID: 37611469 DOI: 10.1016/j.jcis.2023.08.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Nb2AlC/Nb2C MXene (NAC/NC) heterojunction photocatalysts with Schottky junctions were obtained by selective etching of the Al layer, resulting in 146.25 μmol·g-1 electrons and 15.28 μmol·g-1 holes stored in the heterojunction. The average conversion of NAC/NC thermally coupled photocatalytic reduction of CO2 under the simulated solar irradiation reached 110.15 μmol⋅g-1⋅h-1, and the CO selectivity reached over 92%, which was 1.49 and 1.74 times higher than that of pure Nb2AlC and Nb2C MXene, respectively. After light excitation, the localized surface plasmon resonance (LSPR) effect of holes distributed on the surface of Nb2C MXene crystals in the heterojunction will form high-energy thermal holes to dissociate H2 to H+ and reduce CO2 to form H2O at the same time. The high-energy electrons formed by the LSPR effect of Nb2C MXene and the conduction band electrons generated by the photoexcitation of Nb2C MXene can be migrated to Nb2AlC under the action of the interfacial Schottky junction to supplement the electrons needed for the LSPR effect of Nb2AlC, which continuously forms high-energy hot electrons to convert the adsorbed CO2 into *CO2-, b-HCO3, and HCOO. Subsequently, HCOO releases ⋅OH in a cyclic reaction to continuously reduce to form CO. The dual LSPR effect of Nb2AlC and Nb2C MXene is used to enhance the hydrogenation activity of thermally coupled photocatalytic reduction of CO2, which provides a new research idea for the application of MXene in thermally coupled photoreduction of CO2.
Collapse
Affiliation(s)
- Tian Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Guoqiang Tan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Stomatological Medical Equipment and Equipment Engineering Technology Research Center, Xianyang 712000, China.
| | - Shuaijun Feng
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bixin Zhang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ying Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zeqiong Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yu Bi
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qian Yang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ao Xia
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wenlong Liu
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Huijun Ren
- School of Arts and Science, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Long Lv
- College of Cryptography Engineering, Engineering University of PAP, Xi'an 710086, China
| |
Collapse
|
45
|
Yang T, Zhou D, Ye S, Li X, Li H, Feng Y, Jiang Z, Yang L, Ye K, Shen Y, Jiang S, Feng S, Zhang G, Huang Y, Wang S, Jiang J. Catalytic Structure Design by AI Generating with Spectroscopic Descriptors. J Am Chem Soc 2023. [PMID: 38019281 DOI: 10.1021/jacs.3c09299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Generative artificial intelligence has depicted a beautiful blueprint for on-demand design in chemical research. However, the few successful chemical generations have only been able to implement a few special property values because most chemical descriptors are mathematically discrete or discontinuously adjustable. Herein, we use spectroscopic descriptors with machine learning to establish a quantitative spectral structure-property relationship for adsorbed molecules on metal monatomic catalysts. Besides catalytic properties such as adsorption energy and charge transfer, the complete spatial relative coordinates of the adsorbed molecule were successfully inverted. The spectroscopic descriptors and prediction models are generalized, allowing them to be transferred to several different systems. Due to the continuous tunability of the spectroscopic descriptors, the design of catalytic structures with continuous adsorption states generated by AI in the catalytic process has been achieved. This work paves the way for using spectroscopy to enable real-time monitoring of the catalytic process and continuous customization of catalytic performance, which will lead to profound changes in catalytic research.
Collapse
Affiliation(s)
- Tongtong Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Donglai Zhou
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Ye
- School of Artificial Intelligence, Anhui University, Hefei, Anhui 230601, China
| | - Xiyu Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Huirong Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zifan Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Ke Ye
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yixi Shen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuo Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guozhen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Song Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
46
|
Ma W, Sun J, Yao S, Wang Y, Chen G, Fan G, Li Y. Synergistic Interplay of Dual-Active-Sites on Metallic Ni-MOFs Loaded with Pt for Thermal-Photocatalytic Conversion of Atmospheric CO 2 under Infrared Light Irradiation. Angew Chem Int Ed Engl 2023; 62:e202313784. [PMID: 37819255 DOI: 10.1002/anie.202313784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Infrared light driven photocatalytic reduction of atmospheric CO2 is challenging due to the ultralow concentration of CO2 (0.04 %) and the low energy of infrared light. Herein, we develop a metallic nickel-based metal-organic framework loaded with Pt (Pt/Ni-MOF), which shows excellent activity for thermal-photocatalytic conversion of atmospheric CO2 with H2 even under infrared light irradiation. The open Ni sites are beneficial to capture and activate atmospheric CO2 , while the photogenerated electrons dominate H2 dissociation on the Pt sites. Simultaneously, thermal energy results in spilling of the dissociated H2 to Ni sites, where the adsorbed CO2 is thermally reduced to CO and CH4 . The synergistic interplay of dual-active-sites renders Pt/Ni-MOF a record efficiency of 9.57 % at 940 nm for converting atmospheric CO2 , enables the procurement of CO2 to be independent of the emission sources, and improves the energy efficiency for trace CO2 conversion by eliminating the capture media regeneration and molecular CO2 release.
Collapse
Affiliation(s)
- Weimin Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Jingxue Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shunyu Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yutao Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Gang Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guodong Fan
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Yingxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
47
|
Wang Y, Hong G, Zhang Y, Liu Y, Cen W, Wang L, Wu Z. Photocatalytic Oxidative Coupling of Methane over Au 1 Ag Single-Atom Alloy Modified ZnO with Oxygen and Water Vapor: Synergy of Gold and Silver. Angew Chem Int Ed Engl 2023; 62:e202310525. [PMID: 37653523 DOI: 10.1002/anie.202310525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
C-H dissociation and C-C coupling are two key steps in converting CH4 into multi-carbon compounds. Here we report a synergy of Au and Ag to greatly promote C2 H6 formation over Au1 Ag single-atom alloy nanoparticles (Au1 Ag NPs)-modified ZnO catalyst via photocatalytic oxidative coupling of methane (POCM) with O2 and H2 O. Atomically dispersed Au in Au1 Ag NPs effectively promotes the dissociation of O2 and H2 O into *OOH, promoting C-H activation of CH4 on the photogenerated O- to form *CH3 . Electron-deficient Au single atoms, as hopping ladders, also facilitate the migration of electron donor *CH3 from ZnO to Au1 Ag NPs. Finally, *CH3 coupling can readily occur on Ag atoms of Au1 Ag NPs. An excellent C2 H6 yield of 14.0 mmol g-1 h-1 with a selectivity of 79 % and an apparent quantum yield of 14.6 % at 350 nm is obtained via POCM with O2 and H2 O, which is at least two times that of the photocatalytic system. The bimetallic synergistic strategy offers guidance for future catalyst design for POCM with O2 and H2 O.
Collapse
Affiliation(s)
- Yuxiong Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guang Hong
- Institute of New Energy and Low-Carbon Technology, National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, 610207, China
| | - Yaoyu Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yue Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China
| | - Wanglai Cen
- Institute of New Energy and Low-Carbon Technology, National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, 610207, China
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China
| |
Collapse
|
48
|
Tang Z, Ma D, Yang J, Chen J, Lin Z, Liang Q, Jiao Y, Qu W, Xia D. Solar-driven strongly coupled plasmonic Au nanoarrays on mesoporous silica nanodisks enable selective fungal and bacterial inactivation in well water. WATER RESEARCH 2023; 245:120612. [PMID: 37729695 DOI: 10.1016/j.watres.2023.120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/13/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Well water is an important water source in isolated rural areas but easily suffers from microbial contamination. Herein, we anchored periodic Au nanoarrays on mesoporous silica nanodisks (Au-MSN) to fabricate a solar-driven nano-stove for well water disinfection. The solar/Au-MSN process completely inactivated 3.98, 6.55, 7.11 log10 cfu/mL, and 3.37 log10 pfu/mL of Aspergillus niger spores, Escherichia coli, chlorine-resistant Spingopyxis sp. BM1-1, and bacteriophage MS2 within 5 min, respectively. Moreover, the complete inactivation of various microorganisms (even at a viable but nonculturable state) was achieved in the flow-through reactor under natural solar light in real well water matrixes. Thorough characterizations and theoretical simulations verified that the densely anchoring strategy of Au-MSN's nanoarray worked on broadband absorption via the photon confinement effect, and trace amounts of Au can induce strong electromagnetic fields and collective localized heating. The resulting surge of 1O2 and heat synergically destroyed membranes, dysfunction cellular self-defense and metabolic system, induced intracellular oxidative stress, and ultimately inactivated microorganisms. Additionally, the 1O2-dominated oxidation and cell adhesion facilitated the selective disinfection in real well water matrixes. This study provides a cost-effective and practical solution for efficient well water disinfection, which assists isolated rural areas in getting safe drinking water.
Collapse
Affiliation(s)
- Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dingren Ma
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingling Yang
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinjuan Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuohang Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiwen Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yimu Jiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
49
|
Mishra RP, Mrinalini M, Kumar N, Bastia S, Chaudhary YS. Efficient Photocatalytic CO 2 Reduction with High Selectivity for Ethanol by Synergistically Coupled MXene-Ceria and the Charge Carrier Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14189-14203. [PMID: 37776277 DOI: 10.1021/acs.langmuir.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The primary factors that govern the selectivity and efficacy of CO2 photoreduction are the degree of activation of CO2 on the active surface sites of photocatalysts and charge separation/transfer kinetics. In this context, the rational synthesis of heterostructured MXene-coupled CeO2-based photocatalysts with different loading concentrations of Ti3C2MXene via a one-step hydrothermal approach has been undertaken. These photocatalysts exhibit a shift in X-ray diffraction peaks to higher 2θ values and changes in stretching vibrations of 5 wt % Ti3C2MXene/CeO2(5-TC/Ce) that indicate interaction between Ti3C2MXene and CeO2. Moreover, XPS analysis confirms the presence of the Ce3+/Ce4+ states. A sharp band at 2335 cm-1 observed during the CO2 photoreduction process corresponds to bidentate b-CO32-, which facilitates the adsorption of CO2 at the surface of the catalyst as revealed by the TPD analysis. Furthermore, the Schryvers test and NMR analysis were undertaken to confirm the formaldehyde intermediate formation during CO2 photoreduction to C2H5OH. The decrease in emission intensity, reduced lifetimes (2.68 ns), and lower interfacial resistance, as revealed by PL, TR-PL, and EIS analysis, imply an efficient charge separation and charge transfer in the case of the Ti3C2MXene/CeO2 heterojunction. The decrease in the intensity of peaks in the EPR spectrum in the case of 5-TC/Ce further confirms efficient charge transfer kinetics across the interface. The optimized 5-TC/Ce shows CO2 reduction with a drastically enhanced yield of ethanol on the order of 6127 μmol g-1 at 5 h with 98% selectivity and 7.54% apparent quantum efficiency, which is 6-fold higher than that of ethanol produced by bare CeO2. Herein, CeO2 that acts as a redox couple (Ce3+/Ce4+) when coupled with MXene having a metallic nature that reduces the electron transfer resistance is in unison, enabling an enhanced mobilization of electrons. Thereby, the synergistic coupling of Ti3C2MXene with CeO2 leads to an efficient photoreduction of CO2 under visible light illumination.
Collapse
Affiliation(s)
- Rajashree P Mishra
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Madoori Mrinalini
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
| | - Niharika Kumar
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sweta Bastia
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Yatendra S Chaudhary
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
50
|
Qi MY, Xu YJ. Efficient and Direct Functionalization of Allylic sp 3 C-H Bonds with Concomitant CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202311731. [PMID: 37632151 DOI: 10.1002/anie.202311731] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
Solar-driven CO2 reduction integrated with C-C/C-X bond-forming organic synthesis represents a substantially untapped opportunity to simultaneously tackle carbon neutrality and create an atom-/redox-economical chemical synthesis. Herein, we demonstrate the first cooperative photoredox catalysis of efficient and tunable CO2 reduction to syngas, paired with direct alkylation/arylation of unactivated allylic sp3 C-H bonds for accessing allylic C-C products, over SiO2 -supported single Ni atoms-decorated CdS quantum dots (QDs). Our protocol not only bypasses additional oxidant/reductant and pre-functionalization of organic substrates, affording a broad of allylic C-C products with moderate to excellent yields, but also produces syngas with tunable CO/H2 ratios (1 : 2-5 : 1). Such win-win coupling catalysis highlights the high atom-, step- and redox-economy, and good durability, illuminating the tantalizing possibility of a renewable sunlight-driven chemical feedstocks manufacturing industry.
Collapse
Affiliation(s)
- Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|