1
|
Huang J, Pan X, Yan N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol 2024; 25:904-925. [PMID: 39103479 DOI: 10.1038/s41580-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure-function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| | - Nieng Yan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Hou P, Zhao L, Zhong L, Shi J, Wang HZ, Gao J, Liu H, Zuckerman J, Cohen IS, Cui J. The fully activated open state of KCNQ1 controls the cardiac "fight-or-flight" response. PNAS NEXUS 2024; 3:pgae452. [PMID: 39434867 PMCID: PMC11492796 DOI: 10.1093/pnasnexus/pgae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
The cardiac KCNQ1 + KCNE1 (IKs) channel regulates heart rhythm under both normal and stress conditions. Under stress, the β-adrenergic stimulation elevates the intracellular cyclic adenosine monophosphate (cAMP) level, leading to KCNQ1 phosphorylation by protein kinase A and increased IKs, which shortens action potentials to adapt to accelerated heart rate. An impaired response to the β-adrenergic stimulation due to KCNQ1 mutations is associated with the occurrence of a lethal congenital long QT syndrome (type 1, also known as LQT1). However, the underlying mechanism of β-adrenergic stimulation of IKs remains unclear, impeding the development of new therapeutics. Here, we find that the unique properties of KCNQ1 channel gating with two distinct open states are key to this mechanism. KCNQ1's fully activated open (AO) state is more sensitive to cAMP than its intermediate open state. By enhancing the AO state occupancy, the small molecules ML277 and C28 are found to effectively enhance the cAMP sensitivity of the KCNQ1 channel, independent of KCNE1 association. This finding of enhancing AO state occupancy leads to a potential novel strategy to rescue the response of IKs to β-adrenergic stimulation in LQT1 mutants. The success of this approach is demonstrated in cardiac myocytes and also in a high-risk LQT1 mutation. In conclusion, the present study not only uncovers the key role of the AO state in IKs channel phosphorylation, but also provides a target for antiarrhythmic strategy.
Collapse
Affiliation(s)
- Panpan Hou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Washington University, St. Louis, MO 63130, USA
| | - Lu Zhao
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Washington University, St. Louis, MO 63130, USA
| | - Ling Zhong
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Washington University, St. Louis, MO 63130, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Washington University, St. Louis, MO 63130, USA
| | - Hong Zhan Wang
- Department of Physiology and Biophysics, Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Junyuan Gao
- Department of Physiology and Biophysics, Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Huilin Liu
- Department of Physiology and Biophysics, Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joan Zuckerman
- Department of Physiology and Biophysics, Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ira S Cohen
- Department of Physiology and Biophysics, Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Zhong L, Yan Z, Jiang D, Weng KC, Ouyang Y, Zhang H, Lin X, Xiao C, Yang H, Yao J, Kang X, Wang C, Huang C, Shen B, Chung SK, Jiang ZH, Zhu W, Neher E, Silva JR, Hou P. Targeting the I Ks Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants. Circ Res 2024; 135:722-738. [PMID: 39166328 PMCID: PMC11392204 DOI: 10.1161/circresaha.124.325009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which β-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.
Collapse
Affiliation(s)
- Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Dexiang Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Kuo-Chan Weng
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO (K.-C.W., J.R.S.)
| | - Yue Ouyang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Hangyu Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Xiaoqing Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Chenxin Xiao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University (H.Y.)
| | - Jing Yao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, China (J.Y.)
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (X.K.)
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China (X.K.)
- College of Life Sciences, Liaocheng University, China (X.K.)
| | - Changhe Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Department of Neurology, First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, China (C.W.)
| | - Chen Huang
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Zhi-Hong Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (W.Z.)
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Jonathan R Silva
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO (K.-C.W., J.R.S.)
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| |
Collapse
|
4
|
Zhou Z, Gong M, Pande A, Margineanu A, Lisewski U, Purfürst B, Zhu H, Liang L, Jia S, Froehler S, Zeng C, Kühnen P, Khodaverdi S, Krill W, Röpke T, Chen W, Raile K, Sander M, Izsvák Z. Atypical KCNQ1/Kv7 channel function in a neonatal diabetes patient: Hypersecretion preceded the failure of pancreatic β-cells. iScience 2024; 27:110291. [PMID: 39055936 PMCID: PMC11269803 DOI: 10.1016/j.isci.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
KCNQ1/Kv7, a low-voltage-gated K+ channel, regulates cardiac rhythm and glucose homeostasis. While KCNQ1 mutations are associated with long-QT syndrome and type2 diabetes, its function in human pancreatic cells remains controversial. We identified a homozygous KCNQ1 mutation (R397W) in an individual with permanent neonatal diabetes melitus (PNDM) without cardiovascular symptoms. To decipher the potential mechanism(s), we introduced the mutation into human embryonic stem cells and generated islet-like organoids (SC-islets) using CRISPR-mediated homology-repair. The mutation did not affect pancreatic differentiation, but affected channel function by increasing spike frequency and Ca2+ flux, leading to insulin hypersecretion. With prolonged culturing, the mutant islets decreased their secretion and gradually deteriorated, modeling a diabetic state, which accelerated by high glucose levels. The molecular basis was the downregulated expression of voltage-activated Ca2+ channels and oxidative phosphorylation. Our study provides a better understanding of the role of KCNQ1 in regulating insulin secretion and β-cell survival in hereditary diabetes pathology.
Collapse
Affiliation(s)
- Zhimin Zhou
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Maolian Gong
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Amit Pande
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anca Margineanu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Ulrike Lisewski
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, 13125 Berlin, Germany
| | - Bettina Purfürst
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Han Zhu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92037, USA
| | - Lei Liang
- Department of Pediatrics, Anhui Provincial Children’s Hospital, Hefei 23000, China
| | - Shiqi Jia
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Sebastian Froehler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Chun Zeng
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92037, USA
| | - Peter Kühnen
- Charité, Universitätsmedizin Berlin, Virchow-Klinikum, 13125 Berlin, Germany
| | | | - Winfried Krill
- Department of Pediatrics, Klinikum Hanau, 63450 Hanau, Germany
| | - Torsten Röpke
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, 13125 Berlin, Germany
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518000, China
| | - Klemens Raile
- Charité, Universitätsmedizin Berlin, Virchow-Klinikum, 13125 Berlin, Germany
| | - Maike Sander
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92037, USA
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| |
Collapse
|
5
|
Hou P, Zhao L, Zhong L, Shi J, Wang HZ, Gao J, Liu H, Zuckerman J, Cohen IS, Cui J. The fully activated open state of KCNQ1 controls the cardiac "fight-or-flight" response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601749. [PMID: 39005479 PMCID: PMC11244952 DOI: 10.1101/2024.07.02.601749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The cardiac KCNQ1+KCNE1 (I Ks ) channel regulates heart rhythm in both normal and stress conditions. Under stress, the β-adrenergic stimulation elevates the intracellular cAMP level, leading to KCNQ1 phosphorylation by protein kinase A and increased I Ks , which shortens action potentials to adapt to accelerated heart rate. An impaired response to the β-adrenergic stimulation due to KCNQ1 mutations is associated with the occurrence of a lethal congenital long QT syndrome (type 1, also known as LQT1). However, the underlying mechanism of β-adrenergic stimulation of I Ks remains unclear, impeding the development of new therapeutics. Here we find that the unique properties of KCNQ1 channel gating with two distinct open states are key to this mechanism. KCNQ1's fully activated open (AO) state is more sensitive to cAMP than its' intermediate open (IO) state. By enhancing the AO state occupancy, the small molecules ML277 and C28 are found to effectively enhance the cAMP sensitivity of the KCNQ1 channel, independent of KCNE1 association. This finding of enhancing AO state occupancy leads to a potential novel strategy to rescue the response of I Ks to β-adrenergic stimulation in LQT1 mutants. The success of this approach is demonstrated in cardiac myocytes and also in a high-risk LQT1 mutation. In conclusion the present study not only uncovers the key role of the AO state in I Ks channel phosphorylation, but also provides a new target for anti-arrhythmic strategy. Significance statement The increase of I Ks potassium currents with adrenalin stimulation is important for "fight-or-flight" responses. Mutations of the IKs channel reducing adrenalin responses are associated with more lethal form of the type-1 long-QT syndrome (LQT). The alpha subunit of the IKs channel, KCNQ1 opens in two distinct open states, the intermediate-open (IO) and activated-open (AO) states, following a two-step voltage sensing domain (VSD) activation process. We found that the AO state, but not the IO state, is responsible for the adrenalin response. Modulators that specifically enhance the AO state occupancy can enhance adrenalin responses of the WT and LQT-associated mutant channels. These results reveal a mechanism of state dependent modulation of ion channels and provide an anti-arrhythmic strategy.
Collapse
|
6
|
Li B, Karlova M, Zhang H, Pustovit OB, Mai L, Novoseletsky V, Podolyak D, Zaklyazminskaya EV, Abramochkin DV, Sokolova OS. A mutation in the cardiac KV7.1 channel possibly disrupts interaction with Yotiao protein. Biochem Biophys Res Commun 2024; 714:149947. [PMID: 38657442 DOI: 10.1016/j.bbrc.2024.149947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biology, MSU-BIT University, Shenzhen, Guangdong Province, China
| | - Maria Karlova
- Department of Biology, Moscow Lomonosov University, Moscow, Russia
| | - Han Zhang
- Department of Biology, MSU-BIT University, Shenzhen, Guangdong Province, China
| | | | - Lisha Mai
- Department of Biology, MSU-BIT University, Shenzhen, Guangdong Province, China
| | - Valery Novoseletsky
- Department of Biology, MSU-BIT University, Shenzhen, Guangdong Province, China
| | - Dmitry Podolyak
- Petrovsky Russian Scientific Center for Surgery, Moscow, Russia
| | | | | | - Olga S Sokolova
- Department of Biology, MSU-BIT University, Shenzhen, Guangdong Province, China; Department of Biology, Moscow Lomonosov University, Moscow, Russia.
| |
Collapse
|
7
|
Danačíková Š, Straka B, Daněk J, Kořínek V, Otáhal J. In vitro human cell culture models in a bench-to-bedside approach to epilepsy. Epilepsia Open 2024; 9:865-890. [PMID: 38637998 PMCID: PMC11145627 DOI: 10.1002/epi4.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.
Collapse
Affiliation(s)
- Šárka Danačíková
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Barbora Straka
- Neurogenetics Laboratory of the Department of Paediatric Neurology, Second Faculty of MedicineCharles University and Motol University Hospital, Full Member of the ERN EpiCAREPragueCzech Republic
| | - Jan Daněk
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jakub Otáhal
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
8
|
Fedida D, Sastre D, Dou Y, Westhoff M, Eldstrom J. Evaluating sequential and allosteric activation models in IKs channels with mutated voltage sensors. J Gen Physiol 2024; 156:e202313465. [PMID: 38294435 PMCID: PMC10829594 DOI: 10.1085/jgp.202313465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
The ion-conducting IKs channel complex, important in cardiac repolarization and arrhythmias, comprises tetramers of KCNQ1 α-subunits along with 1-4 KCNE1 accessory subunits and calmodulin regulatory molecules. The E160R mutation in individual KCNQ1 subunits was used to prevent activation of voltage sensors and allow direct determination of transition rate data from complexes opening with a fixed number of 1, 2, or 4 activatable voltage sensors. Markov models were used to test the suitability of sequential versus allosteric models of IKs activation by comparing simulations with experimental steady-state and transient activation kinetics, voltage-sensor fluorescence from channels with two or four activatable domains, and limiting slope currents at negative potentials. Sequential Hodgkin-Huxley-type models approximately describe IKs currents but cannot explain an activation delay in channels with only one activatable subunit or the hyperpolarizing shift in the conductance-voltage relationship with more activatable voltage sensors. Incorporating two voltage sensor activation steps in sequential models and a concerted step in opening via rates derived from fluorescence measurements improves models but does not resolve fundamental differences with experimental data. Limiting slope current data that show the opening of channels at negative potentials and very low open probability are better simulated using allosteric models of activation with one transition per voltage sensor, which implies that movement of all four sensors is not required for IKs conductance. Tiered allosteric models with two activating transitions per voltage sensor can fully account for IKs current and fluorescence activation kinetics in constructs with different numbers of activatable voltage sensors.
Collapse
Affiliation(s)
- David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Daniel Sastre
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Ying Dou
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Maartje Westhoff
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Huang Y, Ma D, Yang Z, Zhao Y, Guo J. Voltage-gated potassium channels KCNQs: Structures, mechanisms, and modulations. Biochem Biophys Res Commun 2023; 689:149218. [PMID: 37976835 DOI: 10.1016/j.bbrc.2023.149218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
KCNQ (Kv7) channels are voltage-gated, phosphatidylinositol 4,5-bisphosphate- (PIP2-) modulated potassium channels that play essential roles in regulating the activity of neurons and cardiac myocytes. Hundreds of mutations in KCNQ channels are closely related to various cardiac and neurological disorders, such as long QT syndrome, epilepsy, and deafness, which makes KCNQ channels important drug targets. During the past several years, the application of single-particle cryo-electron microscopy (cryo-EM) technique in the structure determination of KCNQ channels has greatly advanced our understanding of their molecular mechanisms. In this review, we summarize the currently available structures of KCNQ channels, analyze their special voltage gating mechanism, and discuss their activation mechanisms by both the endogenous membrane lipid and the exogenous synthetic ligands. These structural studies of KCNQ channels will guide the development of drugs targeting KCNQ channels.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiwen Zhao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Pökl M, Sridhar A, Frampton DJA, Linhart VA, Delemotte L, Liin SI. Subtype-specific modulation of human K V 7 channels by the anticonvulsant cannabidiol through a lipid-exposed pore-domain site. Br J Pharmacol 2023; 180:2956-2972. [PMID: 37377025 DOI: 10.1111/bph.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabidiol (CBD) is used clinically as an anticonvulsant. Its precise mechanism of action has remained unclear. CBD was recently demonstrated to enhance the activity of the neuronal KV 7.2/7.3 channel, which may be one important contributor to CBD anticonvulsant effect. Curiously, CBD inhibits the closely related cardiac KV 7.1/KCNE1 channel. Whether and how CBD affects other KV 7 subtypes remains uninvestigated and the CBD interaction sites mediating these diverse effects remain unknown. EXPERIMENTAL APPROACH Here, we used electrophysiology, molecular dynamics simulations, molecular docking and site-directed mutagenesis to address these questions. KEY RESULTS We found that CBD modulates the activity of all human KV 7 subtypes and that the effects are subtype dependent. CBD enhanced the activity of KV 7.2-7.5 subtypes, seen as a V50 shift towards more negative voltages or increased maximum conductance. In contrast, CBD inhibited the KV 7.1 and KV 7.1/KCNE1 channels, seen as a V50 shift towards more positive voltages and reduced conductance. In KV 7.2 and KV 7.4, we propose a CBD interaction site at the subunit interface in the pore domain that overlaps with the interaction site of other compounds, notably the anticonvulsant retigabine. However, CBD relies on other residues for its effects than the conserved tryptophan that is critical for retigabine effects. We propose a similar, though not identical CBD site in KV 7.1, with a non-conserved phenylalanine being important. CONCLUSIONS AND IMPLICATIONS We identify novel targets of CBD, contributing to a better understanding of CBD clinical effects and provide mechanistic insights into how CBD modulates different KV 7 subtypes.
Collapse
Affiliation(s)
- Michael Pökl
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Akshay Sridhar
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Damon J A Frampton
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Veronika A Linhart
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Ma D, Zheng Y, Li X, Zhou X, Yang Z, Zhang Y, Wang L, Zhang W, Fang J, Zhao G, Hou P, Nan F, Yang W, Su N, Gao Z, Guo J. Ligand activation mechanisms of human KCNQ2 channel. Nat Commun 2023; 14:6632. [PMID: 37857637 PMCID: PMC10587151 DOI: 10.1038/s41467-023-42416-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
The human voltage-gated potassium channel KCNQ2/KCNQ3 carries the neuronal M-current, which helps to stabilize the membrane potential. KCNQ2 can be activated by analgesics and antiepileptic drugs but their activation mechanisms remain unclear. Here we report cryo-electron microscopy (cryo-EM) structures of human KCNQ2-CaM in complex with three activators, namely the antiepileptic drug cannabidiol (CBD), the lipid phosphatidylinositol 4,5-bisphosphate (PIP2), and HN37 (pynegabine), an antiepileptic drug in the clinical trial, in an either closed or open conformation. The activator-bound structures, along with electrophysiology analyses, reveal the binding modes of two CBD, one PIP2, and two HN37 molecules in each KCNQ2 subunit, and elucidate their activation mechanisms on the KCNQ2 channel. These structures may guide the development of antiepileptic drugs and analgesics that target KCNQ2.
Collapse
Affiliation(s)
- Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Yueming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xiaoxiao Li
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Xiaoyu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Yan Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Long Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenbo Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiajia Fang
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Guohua Zhao
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Nannan Su
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528437, China.
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
12
|
Chan M, Sahakyan H, Eldstrom J, Sastre D, Wang Y, Dou Y, Pourrier M, Vardanyan V, Fedida D. A generic binding pocket for small molecule IKs activators at the extracellular inter-subunit interface of KCNQ1 and KCNE1 channel complexes. eLife 2023; 12:RP87038. [PMID: 37707495 PMCID: PMC10501768 DOI: 10.7554/elife.87038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The cardiac IKs ion channel comprises KCNQ1, calmodulin, and KCNE1 in a dodecameric complex which provides a repolarizing current reserve at higher heart rates and protects from arrhythmia syndromes that cause fainting and sudden death. Pharmacological activators of IKs are therefore of interest both scientifically and therapeutically for treatment of IKs loss-of-function disorders. One group of chemical activators are only active in the presence of the accessory KCNE1 subunit and here we investigate this phenomenon using molecular modeling techniques and mutagenesis scanning in mammalian cells. A generalized activator binding pocket is formed extracellularly by KCNE1, the domain-swapped S1 helices of one KCNQ1 subunit and the pore/turret region made up of two other KCNQ1 subunits. A few residues, including K41, A44 and Y46 in KCNE1, W323 in the KCNQ1 pore, and Y148 in the KCNQ1 S1 domain, appear critical for the binding of structurally diverse molecules, but in addition, molecular modeling studies suggest that induced fit by structurally different molecules underlies the generalized nature of the binding pocket. Activation of IKs is enhanced by stabilization of the KCNQ1-S1/KCNE1/pore complex, which ultimately slows deactivation of the current, and promotes outward current summation at higher pulse rates. Our results provide a mechanistic explanation of enhanced IKs currents by these activator compounds and provide a map for future design of more potent therapeutically useful molecules.
Collapse
Affiliation(s)
- Magnus Chan
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular BiologyYerevanArmenia
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Daniel Sastre
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Yundi Wang
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Ying Dou
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Marc Pourrier
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular BiologyYerevanArmenia
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| |
Collapse
|
13
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
14
|
Brennan S, Alnaimi AIM, McGuinness LR, Abdelaziz MIM, McKenzie RA, Draycott S, Whitmore J, Sharma P, Rainbow RD. Slowly activating voltage-gated potassium current potentiation by ML277 is a novel cardioprotective intervention. PNAS NEXUS 2023; 2:pgad156. [PMID: 37234204 PMCID: PMC10208113 DOI: 10.1093/pnasnexus/pgad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
Cardiovascular disease is thought to account for nearly a third of deaths worldwide, with ischemic heart disease, including acute coronary syndromes such as myocardial infarction, accounting for 1.7 million deaths per year. There is a clear need for interventions to impart cardioprotection against ischemia. Here, we show that the slowly activating voltage-gated potassium current (IKs) potentiator ML277 imparts cardioprotection against ischemia in cellular and whole-heart models by modulating the action potential duration. In three different metabolic inhibition and reperfusion models, an increased contractile recovery and cell survival was observed with ML277, indicative of protection. Finally, ML277 reduced infarct size in an ex vivo Langendorff coronary ligation model, including if only applied on reperfusion. In conclusion, potentiation of the IKs with ML277 imparted a cardioprotection that was equivalent to the protection reported previously by ischemic preconditioning. These data suggest that IKs potentiation may be therapeutically useful in acute coronary syndromes.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Abrar I M Alnaimi
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Lauren R McGuinness
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Muhammad I M Abdelaziz
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Robert A McKenzie
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, LE1 7RH, L7 8TX, UK
| | - Sophie Draycott
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, LE1 7RH, L7 8TX, UK
| | - Jacob Whitmore
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Richard D Rainbow
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| |
Collapse
|
15
|
Younes S, Mourad N, Salla M, Rahal M, Hammoudi Halat D. Potassium Ion Channels in Glioma: From Basic Knowledge into Therapeutic Applications. MEMBRANES 2023; 13:434. [PMID: 37103862 PMCID: PMC10144598 DOI: 10.3390/membranes13040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Ion channels, specifically those controlling the flux of potassium across cell membranes, have recently been shown to exhibit an important role in the pathophysiology of glioma, the most common primary central nervous system tumor with a poor prognosis. Potassium channels are grouped into four subfamilies differing by their domain structure, gating mechanisms, and functions. Pertinent literature indicates the vital functions of potassium channels in many aspects of glioma carcinogenesis, including proliferation, migration, and apoptosis. The dysfunction of potassium channels can result in pro-proliferative signals that are highly related to calcium signaling as well. Moreover, this dysfunction can feed into migration and metastasis, most likely by increasing the osmotic pressure of cells allowing the cells to initiate the "escape" and "invasion" of capillaries. Reducing the expression or channel blockage has shown efficacy in reducing the proliferation and infiltration of glioma cells as well as inducing apoptosis, priming several approaches to target potassium channels in gliomas pharmacologically. This review summarizes the current knowledge on potassium channels, their contribution to oncogenic transformations in glioma, and the existing perspectives on utilizing them as potential targets for therapy.
Collapse
Affiliation(s)
- Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
| | - Nisreen Mourad
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa 146404, Lebanon;
| | - Mohamad Rahal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
- Academic Quality Department, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
16
|
van Bavel JJA, Beekman HDM, Smoczyńska A, van der Heyden MAG, Vos MA. I Ks Activator ML277 Mildly Affects Repolarization and Arrhythmic Outcome in the CAVB Dog Model. Biomedicines 2023; 11:biomedicines11041147. [PMID: 37189765 DOI: 10.3390/biomedicines11041147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Long QT syndrome type 1 with affected IKs is associated with a high risk for developing Torsade de Pointes (TdP) arrhythmias and eventually sudden cardiac death. Therefore, it is of high interest to explore drugs that target IKs as antiarrhythmics. We examined the antiarrhythmic effect of IKs channel activator ML277 in the chronic atrioventricular block (CAVB) dog model. TdP arrhythmia sensitivity was tested in anesthetized mongrel dogs (n = 7) with CAVB in series: (1) induction experiment at 4 ± 2 weeks CAVB: TdP arrhythmias were induced with our standardized protocol using dofetilide (0.025 mg/kg), and (2) prevention experiment at 10 ± 2 weeks CAVB: the antiarrhythmic effect of ML277 (0.6-1.0 mg/kg) was tested by infusion for 5 min preceding dofetilide. ML277: (1) temporarily prevented repolarization prolongation induced by dofetilide (QTc: 538 ± 65 ms at induction vs. 393 ± 18 ms at prevention, p < 0.05), (2) delayed the occurrence of the first arrhythmic event upon dofetilide (from 129 ± 28 s to 180 ± 51 s, p < 0.05), and (3) decreased the arrhythmic outcome with a significant reduction in the number of TdP arrhythmias, TdP score, arrhythmia score and total arrhythmic events (from 669 ± 132 to 401 ± 228, p < 0.05). IKs channel activation by ML277 temporarily suppressed QT interval prolongation, delayed the occurrence of the first arrhythmic event and reduced the arrhythmic outcome in the CAVB dog model.
Collapse
Affiliation(s)
- Joanne J A van Bavel
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Henriëtte D M Beekman
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Agnieszka Smoczyńska
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
17
|
Hiniesto-Iñigo I, Castro-Gonzalez LM, Corradi V, Skarsfeldt MA, Yazdi S, Lundholm S, Nikesjö J, Noskov SY, Bentzen BH, Tieleman DP, Liin SI. Endocannabinoids enhance hK V7.1/KCNE1 channel function and shorten the cardiac action potential and QT interval. EBioMedicine 2023; 89:104459. [PMID: 36796231 PMCID: PMC9958262 DOI: 10.1016/j.ebiom.2023.104459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Genotype-positive patients who suffer from the cardiac channelopathy Long QT Syndrome (LQTS) may display a spectrum of clinical phenotypes, with often unknown causes. Therefore, there is a need to identify factors influencing disease severity to move towards an individualized clinical management of LQTS. One possible factor influencing the disease phenotype is the endocannabinoid system, which has emerged as a modulator of cardiovascular function. In this study, we aim to elucidate whether endocannabinoids target the cardiac voltage-gated potassium channel KV7.1/KCNE1, which is the most frequently mutated ion channel in LQTS. METHODS We used two-electrode voltage clamp, molecular dynamics simulations and the E4031 drug-induced LQT2 model of ex-vivo guinea pig hearts. FINDINGS We found a set of endocannabinoids that facilitate channel activation, seen as a shifted voltage-dependence of channel opening and increased overall current amplitude and conductance. We propose that negatively charged endocannabinoids interact with known lipid binding sites at positively charged amino acids on the channel, providing structural insights into why only specific endocannabinoids modulate KV7.1/KCNE1. Using the endocannabinoid ARA-S as a prototype, we show that the effect is not dependent on the KCNE1 subunit or the phosphorylation state of the channel. In guinea pig hearts, ARA-S was found to reverse the E4031-prolonged action potential duration and QT interval. INTERPRETATION We consider the endocannabinoids as an interesting class of hKV7.1/KCNE1 channel modulators with putative protective effects in LQTS contexts. FUNDING ERC (No. 850622), Canadian Institutes of Health Research, Canada Research Chairs and Compute Canada, Swedish National Infrastructure for Computing.
Collapse
Affiliation(s)
- Irene Hiniesto-Iñigo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Laura M Castro-Gonzalez
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Mark A Skarsfeldt
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samira Yazdi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Siri Lundholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nikesjö
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sergei Yu Noskov
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
18
|
Estacion M, Liu S, Cheng X, Dib-Hajj S, Waxman SG. Kv7-specific activators hyperpolarize resting membrane potential and modulate human iPSC-derived sensory neuron excitability. Front Pharmacol 2023; 14:1138556. [PMID: 36923357 PMCID: PMC10008904 DOI: 10.3389/fphar.2023.1138556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Chronic pain is highly prevalent and remains a significant unmet global medical need. As part of a search for modulatory genes that confer pain resilience, we have studied two family cohorts where one individual reported much less pain than other family members that share the same pathogenic gain-of-function Nav1.7 mutation that confers hyperexcitability on pain-signaling dorsal root ganglion (DRG) neurons. In each of these kindreds, the pain-resilient individual carried a gain-of-function variant in Kv7.2 or Kv7.3, two potassium channels that stabilize membrane potential and reduce excitability. Our observation in this molecular genetic study that these gain-of-function Kv7.2 and 7.3 variants reduce DRG neuron excitability suggests that agents that activate or open Kv7 channels should attenuate sensory neuron firing. In the present study, we assess the effects on sensory neuron excitability of three Kv7 modulators-retigabine (Kv7.2 thru Kv7.5 activator), ICA-110381 (Kv7.2/Kv7.3 specific activator), and as a comparator ML277 (Kv7.1 specific activator)-in a "human-pain-in-a-dish" model (human iPSC-derived sensory neurons, iPSC-SN). Multi-electrode-array (MEA) recordings demonstrated inhibition of firing with retigabine and ICA-110381 (but not with ML277), with the concentration-response curve indicating that retigabine can achieve a 50% reduction of firing with sub-micromolar concentrations. Current-clamp recording demonstrated that retigabine hyperpolarized iPSC-SN resting potential and increased threshold. This study implicates Kv7.2/Kv7.3 channels as effective modulators of sensory neuron excitability, and suggest that compounds that specifically target Kv7.2/Kv7.3 currents in sensory neurons, including human sensory neurons, might provide an effective approach toward pain relief.
Collapse
Affiliation(s)
- Mark Estacion
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Xiaoyang Cheng
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Sulayman Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
19
|
Zou X, Wu X, Sampson KJ, Colecraft HM, Larsson HP, Kass RS. Pharmacological rescue of specific long QT variants of KCNQ1/KCNE1 channels. Front Physiol 2022; 13:902224. [PMID: 36505078 PMCID: PMC9726718 DOI: 10.3389/fphys.2022.902224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
The congenital Long QT Syndrome (LQTS) is an inherited disorder in which cardiac ventricular repolarization is delayed and predisposes patients to cardiac arrhythmias and sudden cardiac death. LQT1 and LQT5 are LQTS variants caused by mutations in KCNQ1 or KCNE1 genes respectively. KCNQ1 and KCNE1 co-assemble to form critical IKS potassium channels. Beta-blockers are the standard of care for the treatment of LQT1, however, doing so based on mechanisms other than correcting the loss-of-function of K+ channels. ML277 and R-L3 are compounds that enhance IKS channels and slow channel deactivation in a manner that is dependent on the stoichiometry of KCNE1 subunits in the assembled channels. In this paper, we used expression of IKS channels in Chinese hamster ovary (CHO) cells and Xenopus oocytes to study the potential of these two drugs (ML277 and R-L3) for the rescue of LQT1 and LQT5 mutant channels. We focused on the LQT1 mutation KCNQ1-S546L, and two LQT5 mutations, KCNE1-L51H and KCNE1-G52R. We found ML277 and R-L3 potentiated homozygote LQTS mutations in the IKS complexes-KCNE1-G52R and KCNE1-L51H and in heterogeneous IKS channel complexes which mimic heterogeneous expression of mutations in patients. ML277 and R-L3 increased the mutant IKS current amplitude and slowed current deactivation, but not in wild type (WT) IKS. We obtained similar results in the LQT1 mutant (KCNQ1 S546L/KCNE1) with ML277 and R-L3. ML277 and R-L3 had a similar effect on the LQT1 and LQT5 mutants, however, ML277 was more effective than R-L3 in this modulation. Importantly we found that not all LQT5 mutants expressed with KCNQ1 resulted in channels that are potentiated by these drugs as the KCNE1 mutant D76N inhibited drug action when expressed with KCNQ1. Thus, our work shows that by directly studying the treatment of LQT1 and LQT5 mutations with ML277 and R-L3, we will understand the potential utility of these activators as options in specific LQTS therapeutics.
Collapse
Affiliation(s)
- Xinle Zou
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Kevin J. Sampson
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Henry M. Colecraft
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - H. Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Robert S. Kass
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States,*Correspondence: Robert S. Kass,
| |
Collapse
|
20
|
Structural mechanisms for the activation of human cardiac KCNQ1 channel by electro-mechanical coupling enhancers. Proc Natl Acad Sci U S A 2022; 119:e2207067119. [PMID: 36763058 PMCID: PMC9661191 DOI: 10.1073/pnas.2207067119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac KCNQ1 potassium channel carries the important IKs current and controls the heart rhythm. Hundreds of mutations in KCNQ1 can cause life-threatening cardiac arrhythmia. Although KCNQ1 structures have been recently resolved, the structural basis for the dynamic electro-mechanical coupling, also known as the voltage sensor domain-pore domain (VSD-PD) coupling, remains largely unknown. In this study, utilizing two VSD-PD coupling enhancers, namely, the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and a small-molecule ML277, we determined 2.5-3.5 Å resolution cryo-electron microscopy structures of full-length human KCNQ1-calmodulin (CaM) complex in the apo closed, ML277-bound open, and ML277-PIP2-bound open states. ML277 binds at the "elbow" pocket above the S4-S5 linker and directly induces an upward movement of the S4-S5 linker and the opening of the activation gate without affecting the C-terminal domain (CTD) of KCNQ1. PIP2 binds at the cleft between the VSD and the PD and brings a large structural rearrangement of the CTD together with the CaM to activate the PD. These findings not only elucidate the structural basis for the dynamic VSD-PD coupling process during KCNQ1 gating but also pave the way to develop new therapeutics for anti-arrhythmia.
Collapse
|