1
|
Yamashita T, Kaplan U, Chakraborty A, Marden G, Gritli S, Roh D, Bujor A, Trojanowski M, Ligresti G, Browning JL, Trojanowska M. ERG Regulates Lymphatic Vessel Specification Genes and Its Deficiency Impairs Wound Healing-Associated Lymphangiogenesis. Arthritis Rheumatol 2024; 76:1645-1657. [PMID: 38965683 PMCID: PMC11521767 DOI: 10.1002/art.42944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE Rarefaction of blood and lymphatic vessels in the skin has been reported in systemic sclerosis (SSc) (scleroderma). E26 transformation-specific-related factor (ERG) and Friend leukemia virus-induced erythroleukemia 1 (FLI-1) are important regulators of angiogenesis, but their role in lymphatic vasculature is lesser known. The goal of this study was to determine the role of ERG and FLI-1 in postnatal lymphangiogenesis and SSc lymphatic system defects. METHODS Immunofluorescence was used to detect ERG and FLI-1 in skin biopsy samples from patients with SSc and healthy controls. Transcriptional analysis of ERG or FLI-1-silenced human dermal lymphatic endothelial cells (LECs) was performed using microarrays. Effects of ERG and FLI-1 deficiency on in vitro tubulogenesis in human dermal LECs were examined using a Matrigel assay. ERG and FLI-1 endothelial-specific knockouts and ERG lymphatic-specific knockouts were generated to examine vessel regeneration in mice. RESULTS ERG and FLI-1 protein levels were reduced in the blood and lymphatic vasculature in SSc skin biopsy samples. ERG levels were shown to regulate genes involved in lymphatic vessel specification, including vascular endothelial growth factor receptor 3/FLT-4, lymphatic vessel endothelial hyaluronan receptor 1, SOX-18, and prospero homeobox 1 (PROX-1), whereas FLI-1 enhanced the function of ERG. The ERG-FLT-4 pathway regulated in vitro tubulogenesis in human LECs. Deficiency of ERG or FLI-1 similarly impaired the function of blood vessels in mice. However, only ERG deficiency affected the regeneration of lymphatic vessels during wound healing. CONCLUSION ERG and FLI-1 are essential regulators of blood and lymphatic vessel regeneration. Deficiency of ERG and FLI-1 in SSc endothelial cells may contribute to the impairment of blood and lymphatic vasculature in patients with SSc.
Collapse
Affiliation(s)
- Takashi Yamashita
- Arthritis and Autoimmune Diseases Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| | - Ulas Kaplan
- Arthritis and Autoimmune Diseases Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| | - Adri Chakraborty
- Arthritis and Autoimmune Diseases Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| | - Grace Marden
- Arthritis and Autoimmune Diseases Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| | - Sami Gritli
- Department of Surgery, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| | - Daniel Roh
- Department of Surgery, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| | - Andreea Bujor
- Arthritis and Autoimmune Diseases Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| | - Marcin Trojanowski
- Arthritis and Autoimmune Diseases Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| | - Giovanni Ligresti
- Arthritis and Autoimmune Diseases Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| | - Jeffrey L Browning
- Arthritis and Autoimmune Diseases Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
- Department of Virology Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA
| |
Collapse
|
2
|
Spurgin S, Nguimtsop AM, Chaudhry FN, Michki SN, Salvador J, Iruela-Arispe ML, Zepp JA, Mukhopadhyay S, Cleaver O. Spatiotemporal dynamics of primary and motile cilia throughout lung development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620342. [PMID: 39484464 PMCID: PMC11527191 DOI: 10.1101/2024.10.25.620342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cilia are specialized structures found on a variety of mammalian cells, with variable roles in the transduction of mechanical and biological signals (by primary cilia, PC), as well as the generation of fluid flow (by motile cilia). Their critical role in the establishment of a left-right axis in early development is well described, as is the innate immune function of multiciliated upper airway epithelium. By contrast, the dynamics of ciliary status during organogenesis and postnatal development is largely unknown. In this study, we define the progression of ciliary status within the endothelium, epithelium, and mesenchyme of the lung. Remarkably, we find that endothelial cells (ECs) lack PC at all stages of development, except in low numbers in the most proximal portions of the pulmonary arteries. In the lung epithelium, a proximodistal ciliary gradient is established over time, as the uniformly mono-ciliated epithelium transitions into proximal, multiciliated cells, and the distal alveolar epithelium loses its cilia. Mesenchymal cells, interestingly, are uniformly ciliated in early development, but with restriction to PDGFRα+ fibroblasts in the adult alveoli. This dynamic process in multiple cellular populations both challenges prior assertions that PC are found on all cells, and highlights a need to understand their spatiotemporal functions.
Collapse
Affiliation(s)
- Stephen Spurgin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Ange Michelle Nguimtsop
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Fatima N. Chaudhry
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania USA 19104
| | - Sylvia N. Michki
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania USA 19104
| | - Jocelynda Salvador
- Department of Cell and Developmental Biology, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA 60611
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA 60611
| | - Jarod A. Zepp
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania USA 19104
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| |
Collapse
|
3
|
Gui B, Wang Q, Wang J, Li X, Wu Q, Chen H. Cross-species comparison of airway epithelium transcriptomics. Heliyon 2024; 10:e38259. [PMID: 39391497 PMCID: PMC11466595 DOI: 10.1016/j.heliyon.2024.e38259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Studies of lung transcriptomics across species are essential for understanding the complex biology and disease mechanisms of this vital organ. Single-cell RNA sequencing (scRNA-seq) has emerged as a key tool for understanding cell dynamics across various species. However, comprehensive cross-species comparisons are limited. Therefore, the aims of this study was to investigate the transcriptomic similarities and differences in lung cells across four species-humans, monkeys, mice, and rats-in healthy and asthma conditions using scRNA-seq. The results revealed significant transcriptomic similarities between monkeys and humans and significant cross-species conservation of cell-specific marker genes, transcription factors (TFs), and biological pathways. Additionally, we explored sex differences, identifying distinct sex-specific expression patterns that may influence disease susceptibility. These insights refine our understanding of the mechanism underlying airway cell biology across species and have important implications for studying lung diseases, particularly the mechanisms of mucus clearance in asthma.
Collapse
Affiliation(s)
- Biyu Gui
- Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Qi Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Department of Stomatology, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
| | - Qi Wu
- Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Huaiyong Chen
- Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
4
|
Wang W, Zhou K, Wang L, Qin Q, Liu H, Qin L, Yang M, Yuan L, Liu C. Aging in chronic lung disease: Will anti-aging therapy be the key to the cure? Eur J Pharmacol 2024; 980:176846. [PMID: 39067566 DOI: 10.1016/j.ejphar.2024.176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Chronic lung disease is the third leading cause of death globally, imposing huge burden of death, disability and healthcare costs. However, traditional pharmacotherapy has relatively limited effects in improving the cure rate and reducing the mortality of chronic lung disease. Thus, new treatments are urgently needed for the prevention and treatment of chronic lung disease. It is particularly noteworthy that, multiple aging-related phenotypes were involved in the occurrence and development of chronic lung disease, such as blocked proliferation, telomere attrition, mitochondrial dysfunction, epigenetic alterations, altered nutrient perception, stem cell exhaustion, chronic inflammation, etc. Consequently, senescent cells induce a series of pathological changes in the lung, such as immune dysfunction, airway remodeling, oxidative stress and regenerative dysfunction, which is a critical issue that needs special attention in chronic lung diseases. Therefore, anti-aging interventions may bring new insights into the treatment of chronic lung diseases. In this review, we elaborate the involvement of aging in chronic lung disease and further discuss the application and prospects of anti-aging therapy.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Kai Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Leyuan Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Qiuyan Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Huijun Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| |
Collapse
|
5
|
Selicean SE, Felli E, Wang C, Nulan Y, Lozano JJ, Guixé-Muntet S, Ștefănescu H, Bosch J, Berzigotti A, Gracia-Sancho J. Stiffness-induced modulation of ERG transcription factor in chronic liver disease. NPJ GUT AND LIVER 2024; 1:7. [PMID: 39381160 PMCID: PMC11459910 DOI: 10.1038/s44355-024-00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/19/2024] [Indexed: 10/10/2024]
Abstract
Chronic liver disease (CLD) is characterised by liver sinusoidal endothelial cells (LSECs) dysfunction. Mechanical forces and inflammation are among the leading factors. ETS-related gene (ERG) is an endothelial-specific transcription factor, involved in maintaining cell quiescence and homeostasis. Our study aimed to understand the expression and modulation of ERG in CLD. ERG expression was characterised and correlated to clinical data in human liver cirrhosis at different disease stages. ERG dynamics in response to stiffness and inflammation were investigated in primary healthy and cirrhotic rat LSEC and in human umbilical vein endothelial cells (HUVECs). ERG is markedly downregulated in cirrhosis independently of disease stage or aetiology and its expression is modulated by substrate stiffness in ECs. Inflammation downregulates ERG in cells on physiological stiffness, but not on high stiffness, suggesting a complementary role of inflammation and stiffness in suppressing ERG. This study outlines ERG as an LSEC inflammation and stiffness-responsive transcription factor in cirrhosis.
Collapse
Affiliation(s)
- Sonia-Emilia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Yeldos Nulan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Juan José Lozano
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Horia Ștefănescu
- Liver Unit, Regional Institute of Gastroenterology and Hepatology Octavian Fodor, Cluj-Napoca, Romania
| | - Jaime Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Fließer E, Jandl K, Lins T, Birnhuber A, Valzano F, Kolb D, Foris V, Heinemann A, Olschewski H, Evermann M, Hoetzenecker K, Kreuter M, Voelkel NF, Marsh LM, Wygrecka M, Kwapiszewska G. Lung Fibrosis Is Linked to Increased Endothelial Cell Activation and Dysfunctional Vascular Barrier Integrity. Am J Respir Cell Mol Biol 2024; 71:318-331. [PMID: 38843440 DOI: 10.1165/rcmb.2024-0046oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 08/31/2024] Open
Abstract
Pulmonary fibrosis (PF) can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analyzed using transmission electron microscopy, immunohistochemistry, and single-cell RNA sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells (ECs) in fibrotic lungs compared with donors. A more intense CD31 and von Willebrand Factor (vWF) and patchy vascular endothelial (VE)-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin, and VEGFR-2 (vascular endothelial growth factor receptor-2) and activation marker vWF gene expression was increased in different endothelial subpopulations (e.g., arterial, venous, general capillary, aerocytes) in PF. This was associated with a heightened sensitivity of fibrotic ECs to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in ECs from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, whereas VE-Cadherin, Thrombomodulin, and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of patients with PF 6 months after the initial diagnosis. Our data demonstrate highly abnormal ECs in PF. The vascular compartment is characterized by hyperactivation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Reestablishing EC homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology and
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis
- Gottfried Schatz Research Center, Cell Biology, Histology, and Embryology, and
| | - Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Matthias Evermann
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center, Mainz, Germany
- Department of Pulmonary, Critical Care, and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Norbert F Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, the Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany; and
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
7
|
Liu Q, Niu Y, Pei Z, Yang Y, Xie Y, Wang M, Wang J, Wu M, Zheng J, Yang P, Hao H, Pang Y, Bao L, Dai Y, Niu Y, Zhang R. Gas6-Axl signal promotes indoor VOCs exposure-induced pulmonary fibrosis via pulmonary microvascular endothelial cells-fibroblasts cross-talk. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134786. [PMID: 38824778 DOI: 10.1016/j.jhazmat.2024.134786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Volatile organic compounds (VOCs) as environmental pollutants were associated with respiratory diseases. Pulmonary fibrosis (PF) was characterized by an increase of extracellular matrix, leading to deterioration of lung function. The adverse effects on lung and the potential mechanism underlying VOCs induced PF had not been elucidated clearly. In this study, the indoor VOCs exposure mouse model along with an ex vivo biosensor assay was established. Based on scRNA-seq analysis, the adverse effects on lung and potential molecular mechanism were studied. Herein, the results showed that VOCs exposure from indoor decoration contributed to decreased lung function and facilitated pulmonary fibrosis in mice. Then, the whole lung cell atlas after VOCs exposure and the heterogeneity of fibroblasts were revealed. We explored the molecular interactions among various pulmonary cells, suggesting that endothelial cells contributed to fibroblasts activation in response to VOCs exposure. Mechanistically, pulmonary microvascular endothelial cells (MPVECs) secreted Gas6 after VOCs-induced PANoptosis phenotype, bound to the Axl in fibroblasts, and then activated fibroblasts. Moreover, Atf3 as the key gene negatively regulated PANoptosis phenotype to ameliorate fibrosis induced by VOCs exposure. These novel findings provided a new perspective about MPVECs could serve as the initiating factor of PF induced by VOCs exposure.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zijie Pei
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yizhe Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujia Xie
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jingyuan Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Zheng
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Peihao Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Haiyan Hao
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Province Center for Disease Control and Prevention, Shijiazhuang 050021, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lei Bao
- Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yujie Niu
- Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
8
|
Terriaca S, Scioli MG, Bertoldo F, Pisano C, Nardi P, Balistreri CR, Magro D, Belmonte B, Savino L, Ferlosio A, Orlandi A. miRNA-Driven Regulation of Endothelial-to-Mesenchymal Transition Differs among Thoracic Aortic Aneurysms. Cells 2024; 13:1252. [PMID: 39120283 PMCID: PMC11312012 DOI: 10.3390/cells13151252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Thoracic aortic aneurysms (TAAs) represent a serious health concern, as they are associated with early aortic dissection and rupture. TAA formation is triggered by genetic conditions, in particular Marfan syndrome (MFS) and bicuspid aortic valve (BAV). During the aneurysmatic process, aortic endothelial cells can undergo endothelial-to-mesenchymal transition (End-MT) with consequent phenotypic and functional alterations. We previously documented that MFS TAA is characterized by miR-632-driven End-MT exacerbation, whereas in BAV aortopathy, the occurrence of this process remains still controversial. We investigated the End-MT process and the underlined regulatory mechanisms in BAV, TAV and MFS TAA tissues. Gene expression and immunohistochemical analysis were performed in order to analyze some important miRNAs and genes characterizing End-MT. We documented that BAV endothelium maintains the expression of the endothelial homeostasis markers, such as ERG, CD31 and miR-126-5p, while it shows lower levels of miR-632 and mesenchymal markers compared with MFS. Interestingly, we also found higher levels of miR-632 in MFS patients' blood. Our findings definitively demonstrate that the End-MT process does not characterize BAV that, among the other TAAs, better maintains the endothelial features. In addition, our results suggest miR-632 as a promising diagnostic/prognostic factor in MFS aortopathy.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (S.T.); (L.S.)
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Paolo Nardi
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy; (C.R.B.); (D.M.)
| | - Daniele Magro
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy; (C.R.B.); (D.M.)
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy;
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Luca Savino
- Anatomic Pathology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (S.T.); (L.S.)
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1001 Tirana, Albania
| |
Collapse
|
9
|
Raslan AA, Pham TX, Lee J, Kontodimas K, Tilston-Lunel A, Schmottlach J, Hong J, Dinc T, Bujor AM, Caporarello N, Thiriot A, von Andrian UH, Huang SK, Nicosia RF, Trojanowska M, Varelas X, Ligresti G. Lung injury-induced activated endothelial cell states persist in aging-associated progressive fibrosis. Nat Commun 2024; 15:5449. [PMID: 38937456 PMCID: PMC11211333 DOI: 10.1038/s41467-024-49545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Progressive lung fibrosis is associated with poorly understood aging-related endothelial cell dysfunction. To gain insight into endothelial cell alterations in lung fibrosis we performed single cell RNA-sequencing of bleomycin-injured lungs from young and aged mice. Analysis reveals activated cell states enriched for hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ venous and TrkB+ capillary endothelial cells. Endothelial cell activation is prevalent in lungs of aged mice and can also be detected in human fibrotic lungs. Longitudinal single cell RNA-sequencing combined with lineage tracing demonstrate that endothelial activation resolves in young mouse lungs but persists in aged ones, indicating a failure of the aged vasculature to return to quiescence. Genes associated with activated lung endothelial cells states in vivo can be induced in vitro by activating YAP/TAZ. YAP/TAZ also cooperate with BDNF, a TrkB ligand that is reduced in fibrotic lungs, to promote capillary morphogenesis. These findings offer insights into aging-related lung endothelial cell dysfunction that may contribute to defective lung injury repair and persistent fibrosis.
Collapse
Affiliation(s)
- Ahmed A Raslan
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Tho X Pham
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jillian Schmottlach
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jeongmin Hong
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Taha Dinc
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andreea M Bujor
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Aude Thiriot
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roberto F Nicosia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| | - Giovanni Ligresti
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
10
|
Vellingiri V, Balaji Ragunathrao VA, Joshi JC, Akhter MZ, Anwar M, Banerjee S, Dudek S, Tsukasaki Y, Pinho S, Mehta D. Endothelial ERG programs neutrophil transcriptome for sustained anti-inflammatory vascular niche. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591799. [PMID: 38746216 PMCID: PMC11092576 DOI: 10.1101/2024.05.02.591799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Neutrophils (PMNs) reside as a marginated pool within the vasculature, ready for deployment during infection. However, how endothelial cells (ECs) control PMN extravasation and activation to strengthen tissue homeostasis remains ill-defined. Here, we found that the vascular ETS-related gene (ERG) is a generalized mechanism regulating PMN activity in preclinical tissue injury models and human patients. We show that ERG loss in ECs rewired PMN-transcriptome, enriched for genes associated with the CXCR2-CXCR4 signaling. Rewired PMNs compromise mice survival after pneumonia and induced lung vascular inflammatory injury following adoptive transfer into naïve mice, indicating their longevity and inflammatory activity memory. Mechanistically, EC-ERG restricted PMN extravasation and activation by upregulating the deubiquitinase A20 and downregulating the NFκB-IL8 cascade. Rescuing A20 in EC-Erg -/- endothelium or suppressing PMN-CXCR2 signaling rescued EC control of PMN activation. Findings deepen our understanding of EC control of PMN-mediated inflammation, offering potential avenues for targeting various inflammatory diseases. Highlights ERG regulates trans-endothelial neutrophil (PMN) extravasation, retention, and activationLoss of endothelial (EC) ERG rewires PMN-transcriptomeAdopted transfer of rewired PMNs causes inflammation in a naïve mouse ERG transcribes A20 and suppresses CXCR2 function to inactivate PMNs. In brief/blurb The authors investigated how vascular endothelial cells (EC) control polymorphonuclear neutrophil (PMN) extravasation, retention, and activation to strengthen tissue homeostasis. They showed that EC-ERG controls PMN transcriptome into an anti-adhesive and anti-inflammatory lineage by synthesizing A20 and suppressing PMNs-CXCR2 signaling, defining EC-ERG as a target for preventing neutrophilic inflammatory injury.
Collapse
|
11
|
Jia H, Chang Y, Chen Y, Chen X, Zhang H, Hua X, Xu M, Sheng Y, Zhang N, Cui H, Han L, Zhang J, Fu X, Song J. A single-cell atlas of lung homeostasis reveals dynamic changes during development and aging. Commun Biol 2024; 7:427. [PMID: 38589700 PMCID: PMC11001898 DOI: 10.1038/s42003-024-06111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Aging is a global challenge, marked in the lungs by function decline and structural disorders, which affects the health of the elderly population. To explore anti-aging strategies, we develop a dynamic atlas covering 45 cell types in human lungs, spanning from embryonic development to aging. We aim to apply the discoveries of lung's development to address aging-related issues. We observe that both epithelial and immune cells undergo a process of acquisition and loss of essential function as they transition from development to aging. During aging, we identify cellular phenotypic alternations that result in reduced pulmonary compliance and compromised immune homeostasis. Furthermore, we find a distinctive expression pattern of the ferritin light chain (FTL) gene, which increases during development but decreases in various types of lung cells during the aging process.
Collapse
Affiliation(s)
- Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengda Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixuan Sheng
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Yanan Hospital, Kunming Medical University, Kunming, China
| | - Jian Zhang
- Thoracic Surgery Department, the third affiliated hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| | - Xiaodong Fu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Reddy KD, Bizymi N, Schweikert A, Ananth S, Lim CX, Lodge KM, Joannes A, Ubags N, van der Does AM, Cloonan SM, Mailleux A, Mansouri N, Reynaert NL, Heijink IH, Cuevas-Ocaña S. ERS International Congress 2023: highlights from the Basic and Translational Sciences Assembly. ERJ Open Res 2024; 10:00875-2023. [PMID: 38686182 PMCID: PMC11057505 DOI: 10.1183/23120541.00875-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 05/02/2024] Open
Abstract
Early career members of Assembly 3 (Basic and Translational Sciences) of the European Respiratory Society (ERS) summarise the key messages discussed during six selected sessions that took place at the ERS International Congress 2023 in Milan, Italy. Aligned with the theme of the congress, the first session covered is "Micro- and macro-environments and respiratory health", which is followed by a summary of the "Scientific year in review" session. Next, recent advances in experimental methodologies and new technologies are discussed from the "Tissue modelling and remodelling" session and a summary provided of the translational science session, "What did you always want to know about omics analyses for clinical practice?", which was organised as part of the ERS Translational Science initiative's aims. The "Lost in translation: new insights into cell-to-cell crosstalk in lung disease" session highlighted how next-generation sequencing can be integrated with laboratory methods, and a final summary of studies is presented from the "From the transcriptome landscape to innovative preclinical models in lung diseases" session, which links the transcriptome landscape with innovative preclinical models. The wide range of topics covered in the selected sessions and the high quality of the research discussed demonstrate the strength of the basic and translational science being presented at the international respiratory conference organised by the ERS.
Collapse
Affiliation(s)
- Karosham Diren Reddy
- Epigenetics of Chronic Lung Disease Group, Forschungszentrum Borstel Leibniz Lungenzentrum, Borstel, Germany
- Division of Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- These authors contributed equally
| | - Nikoleta Bizymi
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, Heraklion, Greece
- These authors contributed equally
| | - Anja Schweikert
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- These authors contributed equally
| | - Sachin Ananth
- London North West University Healthcare NHS Trust, London, UK
- These authors contributed equally
| | - Clarice X. Lim
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Lung Health, Clinic Penzing, Vienna, Austria
- These authors contributed equally
| | - Katharine M. Lodge
- National Heart and Lung Institute, Imperial College London, London, UK
- These authors contributed equally
| | - Audrey Joannes
- Université de Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, Rennes, France
| | - Niki Ubags
- Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne M. Cloonan
- School of Medicine, Trinity Biosciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Arnaud Mailleux
- Université Paris Cité, Inserm, Physiopathologie et épidémiologie des maladies respiratoires, Paris, France
| | - Nahal Mansouri
- Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Niki L. Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Sara Cuevas-Ocaña
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Feng X, Gao P, Li Y, Hui H, Jiang J, Xie F, Tian J. First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung. Bioeng Transl Med 2024; 9:e10626. [PMID: 38435827 PMCID: PMC10905553 DOI: 10.1002/btm2.10626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 03/05/2024] Open
Abstract
Increased pulmonary vascular permeability is a characteristic feature of lung injury. However, there are no established methods that allow the three-dimensional visualization and quantification of pulmonary vascular permeability in vivo. Evans blue extravasation test and total protein test of bronchoalveolar lavage fluid (BALF) are permeability assays commonly used in research settings. However, they lack the ability to identify the spatial and temporal heterogeneity of endothelial barrier disruption, which is typical in lung injuries. Magnetic resonance (MR) and near-infrared (NIR) imaging have been proposed to image pulmonary permeability, but suffer from limited sensitivity and penetration depth, respectively. In this study, we report the first use of magnetic particle imaging (MPI) to assess pulmonary vascular leakage noninvasively in vivo in mice. A dextran-coated superparamagnetic iron oxide (SPIO), synomag®, was employed as the imaging tracer, and pulmonary SPIO extravasation was imaged and quantified to evaluate the vascular leakage. Animal models of acute lung injury and pulmonary fibrosis (PF) were used to validate the proposed method. MPI sensitively detected the SPIO extravasation in both acutely injured and fibrotic lungs in vivo, which was confirmed by ex vivo imaging and Prussian blue staining. Moreover, 3D MPI illustrated the spatial heterogeneity of vascular leakage, which correlated well with CT findings. Based on the in vivo 3D MPI images, we defined the SPIO extravasation index (SEI) to quantify the vascular leakage. A significant increase in SEI was observed in the injured lungs, in consistent with the results obtained via ex vivo permeability assays. Overall, our results demonstrate that 3D quantitative MPI serves as a useful tool to examine pulmonary vascular integrity in vivo, which shows promise for future clinical translation.
Collapse
Affiliation(s)
- Xin Feng
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial Intelligence, University of Chinese Academy of SciencesBeijingChina
| | - Pengli Gao
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang UniversityBeijingChina
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| | - Yabin Li
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial Intelligence, University of Chinese Academy of SciencesBeijingChina
| | - Jingying Jiang
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| | - Fei Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| |
Collapse
|
14
|
Sun DY, Wu WB, Wu JJ, Shi Y, Xu JJ, Ouyang SX, Chi C, Shi Y, Ji QX, Miao JH, Fu JT, Tong J, Zhang PP, Zhang JB, Li ZY, Qu LF, Shen FM, Li DJ, Wang P. Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence. Nat Commun 2024; 15:1429. [PMID: 38365899 PMCID: PMC10873425 DOI: 10.1038/s41467-024-45823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Senescence of vascular smooth muscle cells (VSMCs) contributes to aging-related cardiovascular diseases by promoting arterial remodelling and stiffness. Ferroptosis is a novel type of regulated cell death associated with lipid oxidation. Here, we show that pro-ferroptosis signaling drives VSMCs senescence to accelerate vascular NAD+ loss, remodelling and aging. Pro-ferroptotic signaling is triggered in senescent VSMCs and arteries of aged mice. Furthermore, the activation of pro-ferroptotic signaling in VSMCs not only induces NAD+ loss and senescence but also promotes the release of a pro-senescent secretome. Pharmacological or genetic inhibition of pro-ferroptosis signaling, ameliorates VSMCs senescence, reduces vascular stiffness and retards the progression of abdominal aortic aneurysm in mice. Mechanistically, we revealed that inhibition of pro-ferroptotic signaling facilitates the nuclear-cytoplasmic shuttling of proliferator-activated receptor-γ and, thereby impeding nuclear receptor coactivator 4-ferrtin complex-centric ferritinophagy. Finally, the activated pro-ferroptotic signaling correlates with arterial stiffness in a human proof-of-concept study. These findings have significant implications for future therapeutic strategies aiming to eliminate vascular ferroptosis in senescence- or aging-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Di-Yang Sun
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wen-Bin Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jian-Jin Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Yu Shi
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Jun Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Shen-Xi Ouyang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Chi
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Shanghai Key Laboratory of Organ Transplantation, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qing-Xin Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Hao Miao
- Department of Orthopedic Surgery/Spine Center, Changzheng Hospital Affiliated Hospital of Naval Medical University/Second Military Medical University, Shanghai, China
| | - Jiang-Tao Fu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping-Ping Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jia-Bao Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Zhi-Yong Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University/Second Military Medical University, Shanghai, China.
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China.
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China.
| |
Collapse
|
15
|
Chakraborty A, Kim A, AlAbdullatif S, Campbell JD, Alekseyev YO, Kaplan U, Dambal V, Ligresti G, Trojanowska M. Endothelial Erg Regulates Expression of Pulmonary Lymphatic Junctional and Inflammation Genes in Mouse Lungs Impacting Lymphatic Transport. RESEARCH SQUARE 2024:rs.3.rs-3808970. [PMID: 38343832 PMCID: PMC10854286 DOI: 10.21203/rs.3.rs-3808970/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The ETS transcription factor ERG is a master regulator of endothelial gene specificity and highly enriched in the capillary, vein, and arterial endothelial cells. ERG expression is critical for endothelial barrier function, permeability, and vascular inflammation. A dysfunctional vascular endothelial ERG has been shown to impair lung capillary homeostasis, contributing to pulmonary fibrosis as previously observed in IPF lungs. Our preliminary observations indicate that lymphatic endothelial cells (LEC) in the human IPF lung also lack ERG. To understand the role of ERG in pulmonary LECs, we developed LEC-specific inducible Erg-CKO and Erg-GFP-CKO conditional knockout (CKO) mice under Prox1 promoter. Whole lung microarray analysis, flow cytometry, and qPCR confirmed an inflammatory and pro-lymphvasculogenic predisposition in Erg-CKO lung. FITC-Dextran tracing analysis showed an increased pulmonary interstitial lymphatic fluid transport from the lung to the axial lymph node. Single-cell transcriptomics confirmed that genes associated with cell junction integrity were downregulated in Erg-CKO pre-collector and collector LECs. Integrating Single-cell transcriptomics and CellChatDB helped identify LEC specific communication pathways contributing to pulmonary inflammation, trans-endothelial migration, inflammation, and Endo-MT in Erg-CKO lung. Our findings suggest that downregulation of lymphatic Erg crucially affects LEC function, LEC permeability, pulmonary LEC communication pathways and lymphatic transcriptomics.
Collapse
Affiliation(s)
- Adri Chakraborty
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alex Kim
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Salam AlAbdullatif
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joshua D Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ulas Kaplan
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Vrinda Dambal
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maria Trojanowska
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
16
|
Adelus ML, Ding J, Tran BT, Conklin AC, Golebiewski AK, Stolze LK, Whalen MB, Cusanovich DA, Romanoski CE. Single cell 'omic profiles of human aortic endothelial cells in vitro and human atherosclerotic lesions ex vivo reveals heterogeneity of endothelial subtype and response to activating perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.03.535495. [PMID: 37066416 PMCID: PMC10104082 DOI: 10.1101/2023.04.03.535495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Objective Endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) are major cell types in atherosclerosis progression, and heterogeneity in EC sub-phenotypes are becoming increasingly appreciated. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Approach and Results To create an in vitro dataset to study human EC heterogeneity, multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs). To model pro-inflammatory and activating environments characteristic of the atherosclerotic microenvironment in vitro, HAECs from at least three donors were exposed to three distinct perturbations with their respective controls: transforming growth factor beta-2 (TGFB2), interleukin-1 beta (IL1B), and siRNA-mediated knock-down of the endothelial transcription factor ERG (siERG). To form a comprehensive in vivo/ex vivo dataset of human atherosclerotic cell types, meta-analysis of single cell transcriptomes across 17 human arterial specimens was performed. Two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and in vivo cell profiles. HAEC cultures were reproducibly populated by 4 major clusters with distinct pathway enrichment profiles: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Exposure to siERG, IL1B or TGFB2 elicited mostly distinct transcriptional and accessible chromatin responses. EC1 and EC2, the most canonically 'healthy' EC populations, were affected predominantly by siERG; the activated cluster EC3 was most responsive to IL1B; and the mesenchymal population EC4 was most affected by TGFB2. Quantitative comparisons between in vitro and in vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated SNPs from GWAS, suggesting these cell phenotypes harbor CAD-modulating mechanisms. Conclusion Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here, which have been reported by others to be involved in the pathogenesis of atherosclerosis as well as induce endothelial-to-mesenchymal transition (EndMT), only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and in vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.
Collapse
Affiliation(s)
- Maria L. Adelus
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
- The Clinical Translational Sciences Graduate Program, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jiacheng Ding
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
| | - Binh T. Tran
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
| | - Austin C. Conklin
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
| | - Anna K. Golebiewski
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
| | - Lindsey K. Stolze
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
| | - Michael B. Whalen
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
| | - Darren A. Cusanovich
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ, 85721, USA
| | - Casey E. Romanoski
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
- The Clinical Translational Sciences Graduate Program, The University of Arizona, Tucson, AZ, 85721, USA
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
17
|
Romano E, Rosa I, Fioretto BS, Manetti M. The contribution of endothelial cells to tissue fibrosis. Curr Opin Rheumatol 2024; 36:52-60. [PMID: 37582200 PMCID: PMC10715704 DOI: 10.1097/bor.0000000000000963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
PURPOSE OF REVIEW Tissue fibrosis is an increasingly prevalent condition associated with various diseases and heavily impacting on global morbidity and mortality rates. Growing evidence indicates that common cellular and molecular mechanisms may drive fibrosis of diverse cause and affecting different organs. The scope of this review is to highlight recent findings in support for an important role of vascular endothelial cells in the pathogenesis of fibrosis, with a special focus on systemic sclerosis as a prototypic multisystem fibrotic disorder. RECENT FINDINGS Although transition of fibroblasts to chronically activated myofibroblasts is widely considered the central profibrotic switch, the endothelial cell involvement in development and progression of fibrosis has been increasingly recognized over the last few years. Endothelial cells can contribute to the fibrotic process either directly by acting as source of myofibroblasts through endothelial-to-myofibroblast transition (EndMT) and concomitant microvascular rarefaction, or indirectly by becoming senescent and/or secreting a variety of profibrotic and proinflammatory mediators with consequent fibroblast activation and recruitment of inflammatory/immune cells that further promote fibrosis. SUMMARY An in-depth understanding of the mechanisms underlying EndMT or the acquisition of a profibrotic secretory phenotype by endothelial cells will provide the rationale for novel endothelial cell reprogramming-based therapeutic approaches to prevent and/or treat fibrosis.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | | |
Collapse
|
18
|
Zhang J, Zhang S, Xu S, Zhu Z, Li J, Wang Z, Wada Y, Gatt A, Liu J. Oxidative Stress Induces E-Selectin Expression through Repression of Endothelial Transcription Factor ERG. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1835-1843. [PMID: 37930129 PMCID: PMC10694031 DOI: 10.4049/jimmunol.2300043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Oxidative stress induces a prothrombotic state through enhancement of adhesion properties of the endothelium. E-selectin, an endothelial cell adhesion molecule, becomes a therapeutic target for venous thrombosis, whereas the regulatory mechanisms of its expression have not been fully understood. In the present study, we report that H2O2 treatment increases expression of E-selectin but decreases expression of the endothelial transcription factor ETS-related gene (ERG) in HUVECs in a dose- and time-dependent manner. In BALB/c mice treated with hypochlorous acid, E-selectin expression is increased and ERG expression is decreased in endothelial cells of the brain and lung. RNA interference of ERG upregulates E-selectin expression, whereas transfection of ERG-expressing plasmid downregulates E-selectin expression in HUVECs. Knockdown or overexpression of ERG comprises H2O2-induced E-selectin expression in HUVECs. Deletion of the Erg gene in mice results in embryonic lethality at embryonic days 10.5-12.5, and E-selectin expression is increased in the Erg-/- embryos. No chromatin loop was found on the E-selectin gene or its promoter region by capture high-throughput chromosome conformation capture. Chromatin immunoprecipitation and luciferase reporter assay determined that the -127 ERG binding motif mediates ERG-repressed E-selectin promoter activity. In addition, ERG decreases H2O2-induced monocyte adhesion. Together, ERG represses the E-selectin gene transcription and inhibits oxidative stress-induced endothelial cell adhesion.
Collapse
Affiliation(s)
- Jinjin Zhang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shuo Zhang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shanhu Xu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhiying Zhu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jiang Li
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zengjin Wang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Alex Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Msida, Malta
- Hematology Laboratory, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
19
|
Banerji R, Grifno GN, Shi L, Smolen D, LeBourdais R, Muhvich J, Eberman C, Hiller BE, Lee J, Regan K, Zheng S, Zhang S, Jiang J, Raslan AA, Breda JC, Pihl R, Traber K, Mazzilli S, Ligresti G, Mizgerd JP, Suki B, Nia HT. Crystal ribcage: a platform for probing real-time lung function at cellular resolution. Nat Methods 2023; 20:1790-1801. [PMID: 37710017 PMCID: PMC10860663 DOI: 10.1038/s41592-023-02004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Understanding the dynamic pathogenesis and treatment response in pulmonary diseases requires probing the lung at cellular resolution in real time. Despite advances in intravital imaging, optical imaging of the lung during active respiration and circulation has remained challenging. Here, we introduce the crystal ribcage: a transparent ribcage that allows multiscale optical imaging of the functioning lung from whole-organ to single-cell level. It enables the modulation of lung biophysics and immunity through intravascular, intrapulmonary, intraparenchymal and optogenetic interventions, and it preserves the three-dimensional architecture, air-liquid interface, cellular diversity and respiratory-circulatory functions of the lung. Utilizing these capabilities on murine models of pulmonary pathologies we probed remodeling of respiratory-circulatory functions at the single-alveolus and capillary levels during disease progression. The crystal ribcage and its broad applications presented here will facilitate further studies of nearly any pulmonary disease as well as lead to the identification of new targets for treatment strategies.
Collapse
Affiliation(s)
- Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gabrielle N Grifno
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Linzheng Shi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Dylan Smolen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rob LeBourdais
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Johnathan Muhvich
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cate Eberman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Bradley E Hiller
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Siyi Zheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ahmed A Raslan
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Julia C Breda
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Riley Pihl
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Katrina Traber
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah Mazzilli
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
20
|
Link PA, Meridew JA, Caporarello N, Gao AY, Peters V, Smith GB, Rojas M, Tschumperlin DJ. A redox-shifted fibroblast subpopulation emerges in the fibrotic lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559128. [PMID: 38014129 PMCID: PMC10680805 DOI: 10.1101/2023.09.23.559128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive and thus far incurable disease, characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis, and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)H high and NAD(P)H low sub-populations. NAD(P)H high fibroblasts exhibited elevated pro-fibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)H low fibroblasts. The NAD(P)H high population was present in healthy lungs but expanded with time after bleomycin injury suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)H high cells in freshly dissociated lungs of subjects with IPF relative to controls, and similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.
Collapse
|
21
|
May J, Mitchell JA, Jenkins RG. Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis. J Clin Invest 2023; 133:e172058. [PMID: 37712420 PMCID: PMC10503802 DOI: 10.1172/jci172058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix-secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.
Collapse
|
22
|
Borek I, Birnhuber A, Voelkel NF, Marsh LM, Kwapiszewska G. The vascular perspective on acute and chronic lung disease. J Clin Invest 2023; 133:e170502. [PMID: 37581311 PMCID: PMC10425217 DOI: 10.1172/jci170502] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
The pulmonary vasculature has been frequently overlooked in acute and chronic lung diseases, such as acute respiratory distress syndrome (ARDS), pulmonary fibrosis (PF), and chronic obstructive pulmonary disease (COPD). The primary emphasis in the management of these parenchymal disorders has largely revolved around the injury and aberrant repair of epithelial cells. However, there is increasing evidence that the vascular endothelium plays an active role in the development of acute and chronic lung diseases. The endothelial cell network in the capillary bed and the arterial and venous vessels provides a metabolically highly active barrier that controls the migration of immune cells, regulates vascular tone and permeability, and participates in the remodeling processes. Phenotypically and functionally altered endothelial cells, and remodeled vessels, can be found in acute and chronic lung diseases, although to different degrees, likely because of disease-specific mechanisms. Since vascular remodeling is associated with pulmonary hypertension, which worsens patient outcomes and survival, it is crucial to understand the underlying vascular alterations. In this Review, we describe the current knowledge regarding the role of the pulmonary vasculature in the development and progression of ARDS, PF, and COPD; we also outline future research directions with the hope of facilitating the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Izabela Borek
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Norbert F. Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, German Lung Center (DZL), Cardiopulmonary Institute, Giessen, Germany
| |
Collapse
|
23
|
Caporarello N, Ligresti G. Vascular Contribution to Lung Repair and Fibrosis. Am J Respir Cell Mol Biol 2023; 69:135-146. [PMID: 37126595 PMCID: PMC10399144 DOI: 10.1165/rcmb.2022-0431tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/01/2023] [Indexed: 05/03/2023] Open
Abstract
Lungs are constantly exposed to environmental perturbations and therefore have remarkable capacity to regenerate in response to injury. Sustained lung injuries, aging, and increased genomic instability, however, make lungs particularly susceptible to disrepair and fibrosis. Pulmonary fibrosis constitutes a major cause of morbidity and is often relentlessly progressive, leading to death from respiratory failure. The pulmonary vasculature, which is critical for gas exchanges and plays a key role during lung development, repair, and regeneration, becomes aberrantly remodeled in patients with progressive pulmonary fibrosis. Although capillary rarefaction and increased vascular permeability are recognized as distinctive features of fibrotic lungs, the role of vasculature dysfunction in the pathogenesis of pulmonary fibrosis has only recently emerged as an important contributor to the progression of this disease. This review summarizes current findings related to lung vascular repair and regeneration and provides recent insights into the vascular abnormalities associated with the development of persistent lung fibrosis.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois; and
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
24
|
Fließer E, Lins T, Berg JL, Kolb M, Kwapiszewska G. The endothelium in lung fibrosis: a core signaling hub in disease pathogenesis? Am J Physiol Cell Physiol 2023; 325:C2-C16. [PMID: 37184232 DOI: 10.1152/ajpcell.00097.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease characterized by excessive deposition of extracellular matrix (ECM) and structural destruction, associated with a severe 5-year mortality rate. The onset of the disease is thought to be triggered by chronic damage to the alveolar epithelium. Since the pulmonary endothelium is an important component of the alveolar-capillary niche, it is also affected by the initial injury. In addition to ensuring proper gas exchange, the endothelium has critical functional properties, including regulation of vascular tone, inflammatory responses, coagulation, and maintenance of vascular homeostasis and integrity. Recent single-cell analyses have shown that shifts in endothelial cell (EC) subtypes occur in PF. Furthermore, the increased vascular remodeling associated with PF leads to deteriorated outcomes for patients, underscoring the importance of the vascular bed in PF. To date, the causes and consequences of endothelial and vascular involvement in lung fibrosis are poorly understood. Therefore, it is of great importance to investigate the involvement of EC and the vascular system in the pathogenesis of the disease. In this review, we will outline the current knowledge on the role of the pulmonary vasculature in PF, in terms of abnormal cellular interactions, hyperinflammation, vascular barrier disorders, and an altered basement membrane composition. Finally, we will summarize recent advances in extensive therapeutic research and discuss the significant value of novel therapies targeting the endothelium.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Cardiopulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
25
|
Wang R, Yang YM. Identification of potential biomarkers for idiopathic pulmonary fibrosis and validation of TDO2 as a potential therapeutic target. World J Cardiol 2023; 15:293-308. [PMID: 37397828 PMCID: PMC10308271 DOI: 10.4330/wjc.v15.i6.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with a high mortality rate. On this basis, exploring potential therapeutic targets to meet the unmet needs of IPF patients is important.
AIM To explore novel hub genes for IPF therapy.
METHODS Here, we used public datasets to identify differentially expressed genes between IPF patients and healthy donors. Potential targets were considered based on multiple bioinformatics analyses, especially the correlation between hub genes and carbon monoxide diffusing capacity of carbon monoxide, forced vital capacity, and patient survival rate. The mRNA levels of the hub genes were determined through quantitative real-time polymerase chain reaction.
RESULTS We found that TDO2 was upregulated in IPF patients and predicted poor prognosis. Surprisingly, single-cell RNA sequencing data analysis revealed significant enrichment of TDO2 in alveolar fibroblasts, indicating that TDO2 may participate in the regulation of proliferation and survival. Therefore, we verified the upregulated expression of TDO2 in an experimental mouse model of transforming growth factor-β (TGF-β)-induced pulmonary fibrosis. Furthermore, the results showed that a TDO2 inhibitor effectively suppressed TGF-β-induced fibroblast activation. These findings suggest that TDO2 may be a potential target for IPF treatment. Based on transcription factors-microRNA prediction and scRNA-seq analysis, elevated TDO2 promoted the IPF proliferation of fibroblasts and may be involved in the P53 pathway and aggravate ageing and persistent pulmonary fibrosis.
CONCLUSION We provided new target genes prediction and proposed blocking TGF-β production as a potential treatment for IPF.
Collapse
Affiliation(s)
- Ru Wang
- Henan University of Chinese Medicine, Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases, Zhengzhou 450046, Henan Province, China
| | - Yan-Mei Yang
- Zhengzhou University, Research Centre of Basic Medicine, Academy of Medical Sciences, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
26
|
Fedorova OV, Shilova VY, Zernetkina V, Juhasz O, Wei W, Lakatta EG, Bagrov AY. Silencing of PKG1 Gene Mimics Effect of Aging and Sensitizes Rat Vascular Smooth Muscle Cells to Cardiotonic Steroids: Impact on Fibrosis and Salt Sensitivity. J Am Heart Assoc 2023; 12:e028768. [PMID: 37301747 PMCID: PMC10356040 DOI: 10.1161/jaha.122.028768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023]
Abstract
Background Marinobufagenin, NKA (Na/K-ATPase) inhibitor, causes vasoconstriction and induces fibrosis via inhibition of Fli1 (Friend leukemia integration-1), a negative regulator of collagen synthesis. In vascular smooth muscle cells (VSMC), ANP (atrial natriuretic peptide), via a cGMP/PKG1 (protein kinase G1)-dependent mechanism, reduces NKA sensitivity to marinobufagenin. We hypothesized that VSMC from old rats, due to downregulation of ANP/cGMP/PKG-dependent signaling, would exhibit heightened sensitivity to the profibrotic effect of marinobufagenin. Methods and Results Cultured VSMC from the young (3-month-old) and old (24-month-old) male Sprague-Dawley rats and young VSMC with silenced PKG1 gene were treated with 1 nmol/L ANP, or with 1 nmol/L marinobufagenin, or with a combination of ANP and marinobufagenin. Collagen-1, Fli1, and PKG1 levels were assessed by Western blotting analyses. Vascular PKG1 and Fli1 levels in the old rats were reduced compared with their young counterparts. ANP prevented inhibition of vascular NKA by marinobufagenin in young VSMC but not in old VSMC. In VSMC from the young rats, marinobufagenin induced downregulation of Fli1 and an increase in collagen-1 level, whereas ANP blocked this effect. Silencing of the PKG1 gene in young VSMC resulted in a reduction in levels of PKG1 and Fli1; marinobufagenin additionally reduced Fli1 and increased collagen-1 level, and ANP failed to oppose these marinobufagenin effects, similar to VSMC from the old rats with the age-associated reduction in PKG1. Conclusions Age-associated reduction in vascular PKG1 and the resultant decline in cGMP signaling lead to the loss of the ability of ANP to oppose marinobufagenin-induced inhibition of NKA and fibrosis development. Silencing of the PKG1 gene mimicked these effects of aging.
Collapse
Affiliation(s)
- Olga V. Fedorova
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
| | - Victoria Y. Shilova
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
- Present address:
Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
| | - Valentina Zernetkina
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
| | - Ondrej Juhasz
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
| | - Wen Wei
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
| | - Edward G. Lakatta
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
| | - Alexei Y. Bagrov
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
- Padakonn PharmaNarvaEstonia
| |
Collapse
|
27
|
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene 2023; 859:147142. [PMID: 36603696 PMCID: PMC10068350 DOI: 10.1016/j.gene.2022.147142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US.
| | - Ahmed A Raslan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Jeongmin Hong
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, US
| | - Marco Confalonieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, US
| |
Collapse
|
28
|
Schafer CM, Martin-Almedina S, Kurylowicz K, Dufton N, Osuna-Almagro L, Wu ML, Johnson CF, Shah AV, Haskard DO, Buxton A, Willis E, Wheeler K, Turner S, Chlebicz M, Scott RP, Kovats S, Cleuren A, Birdsey GM, Randi AM, Griffin CT. Cytokine-Mediated Degradation of the Transcription Factor ERG Impacts the Pulmonary Vascular Response to Systemic Inflammatory Challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527788. [PMID: 36798267 PMCID: PMC9934599 DOI: 10.1101/2023.02.08.527788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background During infectious diseases, pro-inflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. Methods Cytokine-dependent ubiquitination and proteasomal degradation of ERG was analyzed in cultured Human Umbilical Vein ECs (HUVECs). Systemic administration of TNFα or the bacterial cell wall component lipopolysaccharide (LPS) was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs ( Erg fl/fl ;Cdh5(PAC)Cre ERT2 ), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. Results In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or LPS resulted in a rapid and substantial degradation of ERG within lung ECs, but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Erg fl/fl ;Cdh5(PAC)-Cre ERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek , a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. Conclusions Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.
Collapse
|
29
|
Xin R, Feng X, Zhang H, Wang Y, Duan M, Xie T, Dong L, Yu Q, Huang L, Zhou F. Seven non-differentially expressed 'dark biomarkers' show transcriptional dysregulation in chronic lymphocytic leukemia. Per Med 2023. [PMID: 36705049 DOI: 10.2217/pme-2022-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aim: Transcriptional regulation is actively involved in the onset and progression of various diseases. This study used the feature-engineering approach model-based quantitative transcription regulation to quantitatively measure the correlation between mRNA and transcription factors in a reference dataset of chronic lymphocytic leukemia (CLL) transcriptomes. Methods: A comprehensive investigation of transcriptional regulation changes in CLL was conducted using 973 samples in six independent datasets. Results & conclusion: Seven mRNAs were detected to have significantly differential model-based quantitative transcription regulation values but no differential expression between CLL patients and controls. We called these genes 'dark biomarkers' because their original expression levels did not show differential changes in the CLL patients. The overlapping lncRNAs might have contributed their transcripts to the expression miscalculations of these dark biomarkers.
Collapse
Affiliation(s)
- Ruihao Xin
- College of Computer Science and Technology & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China.,College of Information & Control Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, China
| | - Xin Feng
- School of Science, Jilin Institute of Chemical Technology, Jilin,132000, China.,Department of Epidemiology & Biostatistics, School of Public Health, Jilin University, Changchun, 130012, China
| | - Hang Zhang
- College of Information & Control Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, China
| | - Yueying Wang
- College of Computer Science and Technology & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Meiyu Duan
- College of Computer Science and Technology & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Tunyang Xie
- Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Lin Dong
- Department of Epidemiology & Biostatistics, School of Public Health, Jilin University, Changchun, 130012, China
| | - Qiong Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Jilin University, Changchun, 130012, China
| | - Lan Huang
- College of Computer Science and Technology & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Fengfeng Zhou
- College of Computer Science and Technology & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
30
|
Raslan AA, Pham TX, Lee J, Hong J, Schmottlach J, Nicolas K, Dinc T, Bujor AM, Caporarello N, Thiriot A, von Andrian UH, Huang SK, Nicosia RF, Trojanowska M, Varelas X, Ligresti G. Single Cell Transcriptomics of Fibrotic Lungs Unveils Aging-associated Alterations in Endothelial and Epithelial Cell Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.523179. [PMID: 36712020 PMCID: PMC9882122 DOI: 10.1101/2023.01.17.523179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lung regeneration deteriorates with aging leading to increased susceptibility to pathologic conditions, including fibrosis. Here, we investigated bleomycin-induced lung injury responses in young and aged mice at single-cell resolution to gain insights into the cellular and molecular contributions of aging to fibrosis. Analysis of 52,542 cells in young (8 weeks) and aged (72 weeks) mice identified 15 cellular clusters, many of which exhibited distinct injury responses that associated with age. We identified Pdgfra + alveolar fibroblasts as a major source of collagen expression following bleomycin challenge, with those from aged lungs exhibiting a more persistent activation compared to young ones. We also observed age-associated transcriptional abnormalities affecting lung progenitor cells, including ATII pneumocytes and general capillary (gCap) endothelial cells (ECs). Transcriptional analysis combined with lineage tracing identified a sub-population of gCap ECs marked by the expression of Tropomyosin Receptor Kinase B (TrkB) that appeared in bleomycin-injured lungs and accumulated with aging. This newly emerged TrkB + EC population expressed common gCap EC markers but also exhibited a distinct gene expression signature associated with aberrant YAP/TAZ signaling, mitochondrial dysfunction, and hypoxia. Finally, we defined ACKR1 + venous ECs that exclusively emerged in injured lungs of aged animals and were closely associated with areas of collagen deposition and inflammation. Immunostaining and FACS analysis of human IPF lungs demonstrated that ACKR1 + venous ECs were dominant cells within the fibrotic regions and accumulated in areas of myofibroblast aggregation. Together, these data provide high-resolution insights into the impact of aging on lung cell adaptability to injury responses.
Collapse
|
31
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|