1
|
Torres-Martínez JA, Mahlknecht J, Kumar M, Loge FJ, Kaown D. Advancing groundwater quality predictions: Machine learning challenges and solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174973. [PMID: 39053524 DOI: 10.1016/j.scitotenv.2024.174973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/22/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Machine learning (ML) is revolutionizing groundwater quality research by enhancing predictive accuracy and management strategies for contamination. This comprehensive review explores the evolution of ML technologies and their integration into environmental science, assessing 230 papers to understand the advancements and challenges in groundwater quality research. It reveals that a substantial portion of the research neglects critical preprocessing steps, crucial for model accuracy, with 83 % of the studies overlooking this phase. Furthermore, while model optimization is more commonly addressed, being implemented in 65 % of the papers, there is a noticeable gap in model interpretability, with only 15 % of the research providing explanations for model outcomes. Comparative evaluation of ML algorithms and careful selection of evaluation metrics are deemed essential for determining model fitness and reliability. The review underscores the need for interdisciplinary collaboration, methodological rigor, and continuous innovation to advance ML in groundwater management. By addressing these challenges and implementing solutions, the full potential of ML can be harnessed to tackle complex environmental issues and ensure sustainable groundwater management. This comprehensive and critical review paper can serve as a guiding framework to establish minimum standards for developing ML in groundwater quality studies.
Collapse
Affiliation(s)
- Juan Antonio Torres-Martínez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico.
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Frank J Loge
- Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Wu SF, Ga Y, Ma DY, Hou SL, Hui QY, Hao ZH. The Role of Ferroptosis in Environmental Pollution-Induced Male Reproductive System Toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125118. [PMID: 39414070 DOI: 10.1016/j.envpol.2024.125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the toxic effects of environmental pollution on the male reproductive system, with a particular emphasis on ferroptosis, a form of programmed cell death. Research has shown that environmental pollutants, such as heavy metals, pesticide residues, and plastic additives, can disrupt oxidative stress, increasing the production of reactive oxygen species (ROS) in germ cells. This disruption damages cellular lipids, proteins, and DNA, culminating in cell dysfunction or death. Ferroptosis, a cell death pathway closely linked to oxidative stress, is characterized by the accumulation of intracellular iron ions and elevated levels of lipid ROS. This review also explores the role of ferroptosis in male reproductive disorders, including its contributions to reduced sperm count, decreased motility, and abnormal morphology. Environmental pollutants, particularly heavy metals, can induce ferroptosis by interfering with intracellular antioxidant systems, notably the NRF2, GSH, and GPX4 pathways, accumulating toxic lipid peroxides. Furthermore, the article examines the potential interplay between ferroptosis and other forms of cell death, such as apoptosis, autophagy, pyroptosis, and necrosis, in the context of male reproductive health. The review underscores the critical need for further research into the link between environmental pollutants and male fertility, particularly focusing on ferroptosis. It advocates for targeted research efforts to mitigate the adverse effects of ferroptosis and protect reproductive health, emphasizing that a deeper understanding of these mechanisms could lead to innovative preventive strategies against environmental threats to fertility.
Collapse
Affiliation(s)
- Shao-Feng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yu Ga
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Dan-Yang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Si-Lu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Qiao-Yue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Zhi-Hui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China.
| |
Collapse
|
3
|
Saha R, Wankhede T, Majumdar R, Das IC. Pan India fluoride hazard assessment in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135543. [PMID: 39173389 DOI: 10.1016/j.jhazmat.2024.135543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Fluoride (F¯) contamination in groundwater in India has gained global attention due to human health hazards. India's hydrogeological heterogeneity, spatio-temporal variability of F¯, and health hazards due to geogenic and geo-environmental control pose unique challenges. Addressing these with only a single region-specific study is not possible. Therefore, this study provides an in-depth, holistic analysis of pan India F¯ contamination, controlling factors, and health hazards using a coupled advanced geostatistical and geospatial approach. Alarming F¯ contaminations are identified in Rajasthan, Telangana, Western Andhra Pradesh, Eastern Karnataka, Parts of Haryana, Gujarat, Madhya Pradesh, Tamil Nadu, Uttar Pradesh, Jharkhand, Bihar, and Chhattisgarh. Probabilistic health-risk evaluation using hot-spot, showed similar spatio-temporal distribution of F¯ contamination. The hazard quotient (HQ) for high F¯ shows more adversity to children than adults. Nationally, 8.65 % and 7.10 % of pre- and post-monsoon sites exceed the recommended safe limit of 1.50 mg/L. The highest average F¯ concentration is in Rajasthan. Very high-risk skeletal fluorosis is possible at around ≤ 2 %, whereas dental caries due to deficiency in F¯ concentration is approximately 40 %. A decisive hierarchy of lithology, geomorphology, soils, and lineaments control are identified on F¯ contamination. Climatic conditions are pivotal in governing all these controlling variables. Thus, in arid/semi-arid dry western regions, F¯ contamination is much higher than in the humid areas. Integration of strengths, weaknesses, opportunities, and threats (SWOT) analysis with the results can aid policymakers and government authorities in achieving sustainable remedial measures for future adaptability.
Collapse
Affiliation(s)
- Rajarshi Saha
- Scientist, Geosciences Group, National Remote Sensing Centre, ISRO, Hyderabad, India.
| | - Tushar Wankhede
- Scientist, Geosciences Group, National Remote Sensing Centre, ISRO, Hyderabad, India
| | - Ritwik Majumdar
- Scientist, Geosciences Group, National Remote Sensing Centre, ISRO, Hyderabad, India.
| | - Iswar Chandra Das
- Scientist, Geosciences Group, National Remote Sensing Centre, ISRO, Hyderabad, India
| |
Collapse
|
4
|
Li B, Zhang L, Cheng M, Chen L, Fang W, Liu S, Zhou T, Zhao Y, Cen Q, Qian W, Mei X, Liu Z. Evaluation of fluoride emissions and pollution from an electrolytic aluminum plant located in Yunnan province. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135500. [PMID: 39141941 DOI: 10.1016/j.jhazmat.2024.135500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
The monitoring and evaluation of fluoride pollution are essentially important to make sure that concentrations do not exceed threshold limit, especially for surrounding atmosphere and soil, which are located close to the emission source. This study aimed to describe the atmospheric HF and edaphic fluoride distribution from an electrolytic aluminum plant located in Yunnan province, on which the effects of meteorological conditions, time, and topography were explored. Meanwhile, six types of solid waste genereted from different electrolytic aluminum process nodes were characterized to analyze the fluoride content and formation characteristics. The results showed that fluoride in solid waste mainly existed in the form of Na3AlF6, AlF3, CaF2, and SiF4. Spent electrolytes, carbon residue, and workshop dust are critical contributors to fluoride emissions in the primary aluminum production process, and the fluorine content is 17.14 %, 33.30 %, and 31.34 %, respectively. Unorganized emissions from electrolytic aluminum plants and solid waste generation are the primary sources of fluoride in the environment, among which the edaphic fluoride content increases most at the sampling sites S1 and S7. In addition, the atmospheric HF concentration showed significant correlations with wind speed, varying wildly from March to September, with daily average and hourly maximum HF concentrations of 4.32 μg/m3 and 9.0 μg/m3, respectively. The results of the study are crucial for mitigating fluorine pollution in the electrolytic aluminum industry.
Collapse
Affiliation(s)
- Bin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingqian Cheng
- Yunnan Land Resources Vocational College, Kunming 652501, China
| | - Ling Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Fang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuai Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Appraisal Center for Ecological and Environmental Engineering, Kunming 650228, China
| | - Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qihong Cen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenmin Qian
- Yunnan Appraisal Center for Ecological and Environmental Engineering, Kunming 650228, China
| | - Xiangyang Mei
- Yunnan Appraisal Center for Ecological and Environmental Engineering, Kunming 650228, China.
| | - Zewei Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Land Resources Vocational College, Kunming 652501, China; The State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Robledo-Peralta A, Valle-Cervantes S, Torres-Castañón LA, Reynoso-Cuevas L. Fixed-bed column adsorption modeling using Zr biocomposites for fluoride removal. ENVIRONMENTAL TECHNOLOGY 2024; 45:4965-4978. [PMID: 37960898 DOI: 10.1080/09593330.2023.2283783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 11/15/2023]
Abstract
This research involved conducting continuous adsorption experiments to assess fluoride elimination from drinking water achieved by utilizing biocomposites created from the peels of oranges and apples, which were impregnated with zirconium (Zr), to form BOP-Zr and BAP-Zr, respectively. The findings from the experimental data indicate that BOP-Zr and BAP-Zr are effective biosorbents with a solid ability to remove fluoride selectively. Additionally, these biosorbents were found to be stable, as they do not release Zr into the treated water. Notably, these environmentally friendly biosorbents are derived from renewable sources and enhance the value of waste materials. The study employed various empirical models, including Bohart-Adamas, Thomas, Yoon-Nelson, BDST, Clark, Yan, and Woolborska, to elucidate the mechanisms and crucial parameters involved in fluoride adsorption within packed bed columns. The Yan model demonstrated the highest correlation among these models, indicating a chemical adsorption process with kinetics following a pseudo-second-order pattern. BOP-Zr and BAP-Zr exhibited a maximum adsorption capacity of 59.3 and 47.5 mg/g, respectively, under a flow rate of 4 mL/min and an inlet fluoride concentration of 25 mg/L. The analysis of mass transfer coefficients revealed that the primary step governing the adsorption procedure was diffusion through pores. Consequently, the study conclusively establishes that BOP-Zr and BAP-Zr biocomposites, originating from lignocellulosic biomass remains, present a practical and competitive choice for eliminating fluoride from water. These materials surpass waste materials in performance and rival more expensive options in efficiency and performance.
Collapse
|
6
|
Bibi S, Kerbiriou C, Uzma, Mckirdy S, Kostrytsia A, Rasheed H, Eqani SAMAS, Gerasimidis K, Nurulain SM, Ijaz UZ. Gut microbiome and function are altered for individuals living in high fluoride concentration areas in Pakistan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116959. [PMID: 39232295 DOI: 10.1016/j.ecoenv.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Endemic fluorosis refers to the condition when individuals are exposed to excessive amounts of fluoride ion due to living in a region characterized by elevated levels of fluorine in the drinking water, food, and/or air. In Pakistan, a substantial proportion of the population is thereby affected, posing a public health concern. OBJECTIVES Assessing how the gut microbiota and its metabolic profiles are impacted by chronic exposure to fluoride in drinking water (that caused Dental Fluorosis) as well as to perceive how this microbiota is connected to adverse health outcomes prevailing with fluoride exposure. METHODS Drinking water (n=27) and biological samples (n=100) of blood, urine and feces were collected from 70 high fluoride exposed (with Dental Fluorosis) and 30 healthy control (without Dental Fluorosis) subjects. Water and urinary fluoride concentrations were determined. Serum/plasma biochemical testing was performed. Fecal DNA extraction, 16S rRNA analysis of microbial taxa, their predicted metabolic function and fecal short chain fatty acids (SCFAs) quantification were carried out. RESULTS The study revealed that microbiota taxonomic shifts and their metabolic characterization had been linked to certain host clinical parameters under the chronic fluoride exposure. Some sets of genera showed strong specificity to water and urine fluoride concentrations, Relative Fat Mass index and SCFAs. The SCFAs response in fluoride-exposed samples was observed to be correlated with bacterial taxa that could contribute to adverse health effects. CONCLUSIONS Microbial dysbiosis as a result of endemic fluorosis exhibits a structure that is associated with risk of metabolic deregulation and is implicated in various diseases. Our results may form the development of novel interventions and may have utility in diagnosis and monitoring.
Collapse
Affiliation(s)
- Sara Bibi
- Department of Biosciences, COMSATS University Islamabad, 45550, Pakistan; Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Caroline Kerbiriou
- School of Medicine, Dentistry & Nursing, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Uzma
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Shona Mckirdy
- School of Medicine, Dentistry & Nursing, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Anastasiia Kostrytsia
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Hifza Rasheed
- National Water Quality Laboratory, Pakistan Council of Research in Water Resources (PCRWR), Islamabad, Pakistan
| | | | | | | | - Umer Zeeshan Ijaz
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7BE, UK; National University of Ireland, University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
7
|
Liu X, Yue FJ, Wong WW, Guo TL, Li SL. Unravelling nitrate transformation mechanisms in karst catchments through the coupling of high-frequency sensor data and machine learning. WATER RESEARCH 2024; 267:122507. [PMID: 39342713 DOI: 10.1016/j.watres.2024.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/25/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Nitrate dynamics within a catchment are critical to the earth's system process, yet the intricate details of its transport and transformation at high resolutions remain elusive. Hydrological effects on nitrate dynamics in particular have not been thoroughly assessed previously and this knowledge gap hampers our understanding and effective management of nitrogen cycling in watersheds. Here, machine learning (ML) models were employed to reconstruct the annual variation trend in nitrate dynamics and isotopes within a typical karst catchment. Random forest model demonstrates promising potential in predicting nitrate concentration and its isotopes, surpassing other ML models (including Long Short-term Memory, Convolutional Neural Network, and Support Vector Machine) in performance. The ML-modeled NO3--N concentrations, δ15N-NO3-, and δ18O-NO3- values were in close agreement with field data (NSE values of 0.95, 0.80, and 0.53, respectively), which are notably challenging to achieve for process models. During the transition from dry to wet period, approximately 23.0 % of the annual precipitation (∼269.1 mm) was identified as the threshold for triggering a rapid response in the wet period. The modeled nitrate isotope values were significantly supported by the field data, suggesting seasonal variations of nitrogen sources, with precipitation as the primary driving force for fertilizer sources. Mixing of multiple sources appeared to be the main control of the transport and transformation of nitrate during the rising limb in the wet period, whereas process control (denitrification) took precedence during the falling limb, and the fate of nitrate was controlled by biogeochemical processes during the dry period.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Water Studies, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Wei Wen Wong
- Water Studies, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Tian-Li Guo
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Yuan L, Sun H, Li Y, Xing Z, Yin S, Xie F, Zhou J, Li S, Wu L, Huang W, Wang T, Gao Y, Zhao L, Sun D. Fluoride Exposure from Drinking Water Increases the Risk of Stroke: An Ecological Study in Changwu Town, China. TOXICS 2024; 12:679. [PMID: 39330607 PMCID: PMC11436047 DOI: 10.3390/toxics12090679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Stroke is a major cause of death globally and the leading cause in China. Excessive fluoride exposure has been linked to cardiovascular conditions related to stroke risk factors such as hypertension, atherosclerosis, dyslipidemia, and cardiomyopathy. However, evidence supporting the association between fluoride exposure and stroke risk is limited. METHODS We constructed an ecological study in Changwu Town, Heilongjiang Province, China, a typical endemic fluorosis area caused by excessive fluoride exposure from drinking water. We collected demographic data, stroke prevalence, and mortality information from 2017 to 2021. Fluoride exposure data were obtained from the national monitoring project on endemic fluorosis. Water fluoride concentrations were measured using the standardized methods. Trend changes in stroke rates were assessed using annual percentage change (APC). Differences in stroke rates among fluoride exposure groups were analyzed using chi-square tests. RESULTS From 2017 to 2021, the all-ages and age-standardized stroke prevalence rates of permanent residents in Changwu Town increased year by year, while the all-ages and age-standardized mortality rates did not change significantly. The prevalence rates of stroke were significantly higher in endemic fluorosis areas compared to non-endemic areas (p < 0.001). Stratifying the population into tertile groups based on the water fluoride cumulative exposure index (WFCEI) revealed statistically significant differences in stroke prevalence rates (p < 0.001), showing a dose-response relationship with the WFCEI. However, the all-ages and age-standardized mortality rates of stroke were not found to be related to fluoride exposure. CONCLUSIONS Long-term excessive fluoride exposure from drinking water may increase the risk of stroke prevalence, indicating fluoride overexposure as a potential risk factor for stroke.
Collapse
Affiliation(s)
- Lin Yuan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Hongna Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Yue Li
- Zhaodong City Center for Disease Control and Prevention, Zhaodong 151100, China
| | - Zhifeng Xing
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| | - Shihui Yin
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| | - Fengyu Xie
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Jing Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Shuang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Liaowei Wu
- Shaanxi Provincial People's Hospital, Xi'an 712038, China
| | - Wei Huang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400707, China
| | - Teng Wang
- Beilun District People's Hospital, Ningbo 315800, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Lijun Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| |
Collapse
|
9
|
Patial B, Khan I, Thakur R, Fishta A. Effects of fluoride toxicity on the male reproductive system: A review. J Trace Elem Med Biol 2024; 86:127522. [PMID: 39276446 DOI: 10.1016/j.jtemb.2024.127522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/27/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Fluoride toxicity and fluorosis is an emerging global problem. Fluoride has long been added to water for dental caries prevention; however, it has a variety of damaging consequences on human bodies. The aim of this paper is to analyse all the literature available on the effects of fluoride toxicity on male reproductive system. METHODS Research papers were collected using various methods of data collection like Pubmed, Scopus, and Google Scholar from 1980 to 2024, and then reviewed thoroughly. RESULTS Fluoride is known to cause various histopathological and biochemical alterations in the male reproductive system. It also affects fertility, semen quality, sperm number and quality,the process of spermatogenesis and spermiogenesis. Key changes caused by fluoride in male reproductive system include structural defects in the flagellum, acrosome, and nucleus of spermatids and epididymal spermatozoa. Degenerative changes in Leydig cells result in reduced testosterone production, causing regression of seminiferous tubules and structural damage to the epididymis, ultimately terminating spermatogenesis which leads to infertility. Decrease in levels of testosterone and activities of various antioxidant enzymes resulting in greater oxidative stress was also seen. CONCLUSIONS Fluoride has various detrimental effects on male reproductive system and overall reproductive health. This type of study is important for understanding the effects of fluoride toxicity so that health officials can guide public about safe fluoride exposure limits and the damages it can cause in higher concentrations. Studies using various natural and synthetic ameliorative substances mentioned in the text later can prove to be helpful for development of various therapeutic approaches to mitigate the effects of fluoride toxicity.
Collapse
Affiliation(s)
- Bhavna Patial
- Zoology Laboratory II, School of Biological and Environmental Sciences, Shoolini University, Solan, India.
| | - Imtiaza Khan
- Department of Zoology, Khalsa College, Patiala, India.
| | - Ruhi Thakur
- Zoology Laboratory II, School of Biological and Environmental Sciences, Shoolini University, Solan, India.
| | - Aditi Fishta
- Zoology Laboratory II, School of Biological and Environmental Sciences, Shoolini University, Solan, India.
| |
Collapse
|
10
|
Qiao Y, Cui Y, Tan Y, Zhuang C, Li X, Yong Y, Zhang X, Ren X, Cai M, Yang J, Lang Y, Wang J, Liang C, Zhang J. Fluoride induces immunotoxicity by regulating riboflavin transport and metabolism partly through IL-17A in the spleen. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135085. [PMID: 38968825 DOI: 10.1016/j.jhazmat.2024.135085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The impairment of the immune system by fluoride is a public health concern worldwide, yet the underlying mechanism is unclear. Both riboflavin and IL-17A are closely related to immune function and regulate the testicular toxicity of fluoride. However, whether riboflavin or IL-17A is involved in fluoride-induced immunotoxicity is unknown. Here, we first established a male ICR mouse model by treating mice with sodium fluoride (NaF) (100 mg/L) via the drinking water for 91 days. The results showed that fluoride increased the expression of the proinflammatory factors IL-1β and IL-17A, which led to splenic inflammation and morphological injury. Moreover, the expression levels of the riboflavin transporters SLC52A2 and SLC52A3; the transformation-related enzymes RFK and FLAD1; and the key mitochondrial functional determinants SDH, COX, and ATP in the spleen were measured via real-time PCR, Western blotting, and ELISA. The results revealed that fluoride disrupted riboflavin transport, transformation, metabolism, and mitochondrial function. Furthermore, wild-type (WT) and IL-17A knockout (IL-17A-/-) C57BL/6 J male mice of the same age were treated with NaF (24 mg/kg·bw, equivalent to 100 mg/L) and/or riboflavin sodium phosphate (5 mg/kg·bw) via gavage for 91 days. Similar parameters were evaluated as above. The results confirmed that fluoride increased riboflavin metabolism through RFK but not through FLAD1. Fluoride also affected mitochondrial function and activated neutrophils (marked with Ly6g) and macrophages (marked with CD68) in the spleen. Interestingly, IL-17A partly mediated fluoride-induced riboflavin metabolism disorder and immunotoxicity in the spleen. This work not only reveals a novel toxic mechanism for fluoride but also provides new clues for exploring the physiological function of riboflavin and for diagnosing and treating the toxic effects of fluoride in the environment.
Collapse
Affiliation(s)
- Yurou Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yukun Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yanjia Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yufei Yong
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xinying Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xuting Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Miaomiao Cai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yilin Lang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
11
|
Mesfin BT, Asgedom AG, Zekarias MT, Gebretsadik TT, Tesfay AH, Van der Bruggen B. Is the Tigray region, Ethiopia also affected by fluoride in drinking water affecting public health? JOURNAL OF WATER AND HEALTH 2024; 22:1650-1662. [PMID: 39340378 DOI: 10.2166/wh.2024.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/30/2024] [Indexed: 09/30/2024]
Abstract
The purpose of this study was to assess the levels of fluoride in drinking water and its health impact in Semema, Tigray, Ethiopia. Water samples were collected in February, March and April from three potential spring water sources, namely May Atkaru, May Sensela and May Liham. Each sample was analyzed for a variety of physicochemical parameters including fluoride using standard APHA procedures through double beam UV-Visible spectrophotometer, atomic absorption spectrophotometer and titrimetric methods. All the measured physicochemical parameters except hardness (345.78-368.35 mg/L) and alkalinity (231.3-354.6 mg/L) were recorded below the WHO permissible limit set for drinking water. The amount of fluoride in May Atkaru (4.00 mg/L) and May Sensela (3.89 mg/L) was significantly greater than the WHO permissible limit set for drinking water, 1.5 mg/L. Moreover, HQ > 1 from May Atkaru and May Sensela revealed the possibility of dental and skeletal fluorosis over extended exposure to fluoride irrespective of age and sex variations. This confirmed people in the area with mottled teeth are vulnerable to the excessive consumption of fluoride, which poses health risks. Therefore, it needs immediate interventions to minimize the debilitating effect of fluoride in drinking water by creating awareness among the community and policymakers to introduce low-cost defluoridation methods.
Collapse
Affiliation(s)
| | - Abraha Gebrekidan Asgedom
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia; Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Leuven, Belgium E-mail: ;
| | - Mekonen Tirfu Zekarias
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
| | - Tesfamariam Teklu Gebretsadik
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
| | - Amanual Hadera Tesfay
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
| | - Bart Van der Bruggen
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Bahekar T, Meenakshi S, Narapaka PK, Kumar N, Prakash V, Murti K. Development and Psychometric Validation of Population-Based Knowledge Attitudes and Practices-Questionnaire on Fluoride (PBKAP-QF). Biol Trace Elem Res 2024:10.1007/s12011-024-04334-x. [PMID: 39162919 DOI: 10.1007/s12011-024-04334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Fluoride exposure is a global public health concern. Understanding the knowledge, attitudes, and practices (KAP) of affected populations is essential for effective community management. This study aimed to develop and validate a KAP questionnaire to assess fluoride and its risk in general population. An extensive literature review and focus group discussions were conducted to construct the questionnaire. Content validity was assessed using the Content Validity Index (CVI) based on expert feedback. Factor analysis was performed for final tool validation, and item characteristics were analyzed using IBM SPSS v. 27 and IBM AMOS v. 26. A total of 300 responses were collected. Initially, 41 items were included in the questionnaire, which were reduced to 25 after expert review. The final version included 19 items, with an I-CVI ranging from 0.80 to 1.00, indicating no issues with item difficulty or discrimination. Cronbach's alpha ranged from 0.88 to 0.90, demonstrating good internal consistency. The Kaiser-Meyer-Olkin (KMO) value was 0.848, and Bartlett's test (χ2 = 6860.978, df = 156, p < 0.01) confirmed data suitability for factor analysis. Three constructs were extracted with factor loadings greater than 0.5. Confirmatory factor analysis demonstrated a good model fit. This study developed and validated a robust 19-item KAP questionnaire for assessing knowledge, attitudes, and practices related to fluoride exposure. The tool demonstrated excellent reliability, validity, and internal consistency, supporting its use in guiding effective community-level management and public health interventions in fluoride-endemic areas.
Collapse
Affiliation(s)
- Triveni Bahekar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, 844102, Bihar, India
| | - Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, 844102, Bihar, India
| | - Pavan Kumar Narapaka
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali-844102, Bihar, India
| | - Ved Prakash
- Department of Endocrinology, Indira Gandhi Institute of Medical Sciences (IGIMS), Bailey Road, Sheikhpura, Patna, 800014, India.
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
13
|
Liang C, Zhuang C, Cheng C, Bai J, Wu Y, Li X, Yang J, Li B, Fu W, Zhu Q, Lv J, Tan Y, Kumar Manthari R, Zhao Y, Wang J, Zhang J. Fluoride induces hepatointestinal damage and vitamin B 2 mitigation by regulating IL-17A and Bifidobacterium in ileum. J Adv Res 2024:S2090-1232(24)00317-5. [PMID: 39097090 DOI: 10.1016/j.jare.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
INTRODUCTION Fluorosis is a global public health disease affecting more than 50 countries and 500 million people. Excessive fluoride damages the liver and intestines, yet the mechanisms and therapeutic approaches remain unclear. OBJECTIVES To explore the mechanisms by which fluoride-induced intestinal-hepatic damage and vitamin B2 alleviation. METHODS Fluoride and/or vitamin B2-treated IL-17A knockout and wild-type mouse models were established, the morphological and functional changes of liver and gut, total bile acid biosynthesis, metabolism, transport, and regulation of FXR-FGF15 signaling pathways were evaluated, the ileal microbiome was further analyzed by 16S rDNA sequence. Finally, Bifidobacterium supplementation mouse model was designed and re-examined the above indicators. RESULTS The results demonstrated that fluoride induced hepatointestinal injury and enterohepatic circulation disorder by altering the synthesis, transporters, and FXR-FGF15 pathway regulation of total bile acid. Importantly, the ileum was found to be the most sensitive and fluoride changed ileal microbiome particularly by reducing abundance of Bifidobacterium. While vitamin B2 supplementation attenuated fluoride-induced enterohepatic circulation dysfunction through IL-17A and ileal microbiome, Bifidobacterium supplementation also reversed fluoride-induced hepatointestinal injury. CONCLUSION Fluoride induces morphological and functional impairment of liver and gut tissues, as well as enterohepatic circulation disorder by altering total bile acid (TBA) synthesis, transporters, and FXR-FGF15 signaling regulation. Vitamin B2 attenuated fluoride-induced enterohepatic circulation disorder through IL-17A knockout and ileal microbiome regulation. The ileum was found to be the most sensitive to fluoride, leading to changes in ileal microbiome, particularly the reduction of Bifidobacterium. Furthermore, Bifidobacterium supplementation reversed fluoride-induced hepatointestinal injury. This study not only elucidates a novel mechanism by which fluoride causes hepatointestinal toxicity, but also provides a new physiological function of vitamin B2, which will be useful in the therapy of fluorosis and other hepatoenterological diseases.
Collapse
Affiliation(s)
- Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Chenkai Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jian Bai
- College of Life Science, Lv Liang University, Lishi, Shanxi 033001, PR China
| | - Yue Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Bohui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Weixiang Fu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Qianlong Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jiawei Lv
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yanjia Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam 530045, Andhra Pradesh, India
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
14
|
Cao W, Zhang Z, Fu Y, Zhao L, Ren Y, Nan T, Guo H. Prediction of arsenic and fluoride in groundwater of the North China Plain using enhanced stacking ensemble learning. WATER RESEARCH 2024; 259:121848. [PMID: 38824797 DOI: 10.1016/j.watres.2024.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Chronic exposure to elevated geogenic arsenic (As) and fluoride (F-) concentrations in groundwater poses a significant global health risk. In regions around the world where regular groundwater quality assessments are limited, the presence of harmful levels of As and F- in shallow groundwater extracted from specific wells remains uncertain. This study utilized an enhanced stacking ensemble learning model to predict the distributions of As and F- in shallow groundwater based on 4,393 available datasets of observed concentrations and forty relevant environmental factors. The enhanced model was obtained by fusing well-suited Extreme Gradient Boosting, Random Forest, and Support Vector Machine as the base learners and a structurally simple Linear Discriminant Analysis as the meta-learner. The model precisely captured the patchy distributions of groundwater As and F- with an AUC value of 0.836 and 0.853, respectively. The findings revealed that 9.0% of the study area was characterized by a high As risk in shallow groundwater, while 21.2% was at high F- risk identified as having a high risk of fluoride contamination. About 0.2% of the study area shows elevated levels of both of them. The affected populations are estimated at approximately 7.61 million, 34.1 million, and 0.2 million, respectively. Furthermore, sedimentary environment exerted the greatest influence on distribution of groundwater As, with human activities and climate following closely behind at 29.5%, 28.1%, and 21.9%, respectively. Likewise, sedimentary environment was the primary factor affecting groundwater F- distribution, followed by hydrogeology and soil physicochemical properties, contributing 27.8%, 24.0%, and 23.3%, respectively. This study contributed to the identification of health risks associated with shallow groundwater As and F-, and provided insights into evaluating health risks in regions with limited samples.
Collapse
Affiliation(s)
- Wengeng Cao
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Zhuo Zhang
- Tianjin Center (North China Center for Geoscience Innovation), China Geological Survey, Tianjin 300170, China.
| | - Yu Fu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Lihua Zhao
- Hebei Provincial academy of water resources, Shijiazhuang 050057, China
| | - Yu Ren
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Tian Nan
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
15
|
Banerjee A, Chatterjee A, Singh A, Pasupuleti S, Uddameri V. A risk assessment framework utilizing bivariate copula for contaminate monitoring in groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49744-49756. [PMID: 39080173 DOI: 10.1007/s11356-024-34417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
Regular groundwater quality monitoring in resource-constrained regions present formidable challenges in terms of funding, testing facilities and manpower; necessitating the development of easily implementable monitoring techniques. This study proposes a copula-based risk assessment model utilizing easily measurable indicators (e.g., turbidity, alkalinity, pH, total dissolved solids (TDS), conductivity), to monitor the contaminates in groundwater which are otherwise difficult to measure (i.e., iron, nitrate, sulfate, fluoride, etc.). Preliminary correlation between the indicators and the target contaminates were identified using Pearson coefficient. Best representative univariate distributions for these pairs were selected using the Akaike Information Criterion (AIC), which were used in the formulation of the copula model. Validation against observed data showcased the model's high accuracy, supported by consistent Kendall Tau correlation coefficients. Through this model, conditional probabilities of the contaminants not exceeding the permissible limits set by the Bureau of Indian Standards (BIS) were calculated using indicator concentration. Notably, an inverse correlation between iron concentration and conductivity was noted, with the likelihood of iron exceeding BIS limits decreasing from 90 to 50% as conductivity rose from 500 to 2000 micromhos/cm. TDS emerged as a pivotal indicator for nitrate and sulfate concentrations, with the probability of sulfate surpassing 10 mg/l decreasing from 75 to 25% as TDS increased from 250 to 750 mg/l. Likewise, the probability of nitrate exceeding 1 mg/l decreased from 90 to 60% with TDS levels reaching 1500 mg/l. Furthermore, a 63% probability of fluoride concentrations remaining below 1 mg/l was observed at turbidity levels of 0-10 NTU. These findings hold significant implications for policymakers and researchers since the model can provide crucial insights into the risks associated with the contaminates exceeding the permissible limit, facilitating the development of an efficient monitoring and management strategies to ensure safe drinking water access for vulnerable populations.
Collapse
Affiliation(s)
- Ashes Banerjee
- Department of Civil Engineering, Swami Vivekananda University, Barrackpore, Kolkata, 721006, West Bengal, India
| | - Ayan Chatterjee
- Department of Mathematics, The Neotia University, Sarisha, 743368, West Bengal, India
| | - Ashwin Singh
- Department of Environmental Science and Engineering, Indian School of Mines), Indian Institute of Technology, Dhanbad, 826004, Jharkhand, India
| | - Srinivas Pasupuleti
- Department of Civil Engineering, Indian School of Mines), Indian Institute of Technology, Dhanbad, 826004, Jharkhand, India.
| | - Venkatesh Uddameri
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX, 77710, USA
| |
Collapse
|
16
|
Singh G, Mehta S. Prediction of geogenic source of groundwater fluoride contamination in Indian states: A comparative study of different supervised machine learning algorithms. JOURNAL OF WATER AND HEALTH 2024; 22:1387-1408. [PMID: 39212277 DOI: 10.2166/wh.2024.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
India has been dealing with fluoride contamination of groundwater for the past few decades. Long-term exposure of fluoride can cause skeletal and dental fluorosis. Therefore, an in-depth exploration of fluoride concentrations in different parts of India is desirable. This work employs machine learning algorithms to analyze the fluoride concentrations in five major affected Indian states (Andhra Pradesh, Rajasthan, Tamil Nadu, Telangana and West Bengal). A correlation matrix was used to identify appropriate predictor variables for fluoride prediction. The various algorithms used for predictions included K-nearest neighbor (KNN), logistic regression (LR), random forest (RF), support vector classifier (SVC), Gaussian NB, MLP classifier, decision tree classifier, gradient boosting classifier, voting classifier soft and voting classifier hard. The performance of these models is assessed over accuracy, precision, recall and error rate and receiver operating curve. As the dataset was skewed, the performance of models was evaluated before and after resampling. Analysis of results indicates that the RF model is the best model for predicting fluoride contamination in groundwater in Indian states.
Collapse
|
17
|
Meenakshi S, Bahekar T, Narapaka PK, Pal B, Prakash V, Dhingra S, Kumar N, Murti K. Impact of fluorosis on molecular predictors in pathogenesis of type 2 diabetes associated microvascular complications. J Trace Elem Med Biol 2024; 86:127506. [PMID: 39128255 DOI: 10.1016/j.jtemb.2024.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
AIM This review presents specific insights on the molecular underpinnings of the connection between fluorosis, type 2 diabetes, and microvascular complications, along with the novel biomarkers that are available for early detection. SUMMARY Fluoride is an essential trace element for the mineralization of teeth and bones in humans. Exposure to higher concentrations of fluoride has harmful effects that significantly outweigh its advantageous ones. Dental fluorosis and skeletal fluorosis are the common side effects of exposure to fluoride, which affect millions of individuals globally. Alongside, it also causes non-skeletal fluorosis, which affects the population suffering from non-communicable diseases like diabetes by impacting the soft tissues and causing diabetic microvascular complications. Previous studies reported the prevalence range of these diabetic complications of neuropathy (3-65 %), nephropathy (1-63 %), and retinopathy (2-33 %). Fluoride contributes to the development of these complications by causing oxidative stress, cellular damage, degrading the functioning capability of mitochondria, and thickening the retinal vein basement. CONCLUSION Early diagnosis is a prompt way of prevention, and for that, biomarkers have emerged as an innovative and useful technique. This allows healthcare practitioners and policymakers in endemic areas to comprehend the molecular complexities involved in the advancement of diabetic microvascular problems in the context of high fluoride exposure.
Collapse
Affiliation(s)
- Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Triveni Bahekar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Pavan Kumar Narapaka
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Biplab Pal
- Department of Pharmacology, Lovely Professional University, Phagwara, Punjab 144402 India.
| | - Ved Prakash
- Department of Endocrinology, Indira Gandhi institute of medical sciences (IGIMS), Bailey Road, Sheikhpura, Patna, Bihar 800014, India.
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| |
Collapse
|
18
|
Aravinthasamy P, Karunanidhi D, Jayasena HC, Subramani T. Assessment of groundwater fluoride and human health effects in a hard rock province of south India: Implications from Pollution Index Model (PIM) and Geographical Information System (GIS) techniques. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:326. [PMID: 39012514 DOI: 10.1007/s10653-024-02111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
This research examines whether the groundwater in the Sivakasi Region of South India is suitable for consumption, and assesses the possible health hazards for various age demographics including infants, children, teenagers, and adults. A total of 77 groundwater samples were gathered, covering a total area of 580 km2 and analyzed for major and minor ions. The hydrogen ion concentration (pH) of the samples indicates neutral to marginally alkaline. The total dissolved solids (TDS) fluctuate from 255 to 2701 mg/l and electrical conductivity varies from 364 to 3540 µS/cm. A wide range of fluoride concentration was detected (0.1 to 3.2 mg/l) with nearly 38% groundwater samples surpassing the proposed limit (1.5 mg/l) suggested by the World Health Organization in 2017. Gibbs plot analysis suggested that most of the samples were influenced by geogenic factors, primarily rock weathering in this region. Correlation analysis showed that most of the samples were impacted by both natural and human sources. The pollution index of groundwater (PIG) fluctuated from 0.67 to 2.60 with approximately 30% and 53% of samples falling into insignificant and low pollution categories, respectively. Furthermore, 10% and 5% of total samples were characterized as moderate and high pollution levels, and 2% as very high pollution category. Spatial analysis using GIS revealed that 440.63 km2 were within safe fluoride levels according to the WHO standards, while 139.32 km2 were identified as risk zone. The principal component analysis (PCA1) showed strong positive loadings on EC (0.994), TDS (0.905), Mg2+ (0.910), Cl- (0.903) and HCO3- (0.923) indicating rock water interaction. PCA2 accounts the high positive factor loading on HCO3- (0.864) indicating ion exchange and mineral leaching. The PCA1 and PCA2 indicated that variables such as mineral leaching and rock water interaction are the major mechanisms contributing to the chemical signatures in groundwater, which may support for the elevated fluoride levels in certain areas. Risk assessments, including Hazard Quotient results showed that 71%, 61% 38%, and 34% of groundwater samples exceeded the permissible THI limit (THI > 1) for infants, children, teenagers, and adults, respectively. The study recommends implementing measures such as denitrification, defluorination, rainwater harvesting, and improved sanitation infrastructure to enhance the health conditions in the study region. Additionally, it suggests introducing educational programs in rural areas to create awareness about the health dangers due to consumption of water with high fluoride levels.
Collapse
Affiliation(s)
- P Aravinthasamy
- Department of Civil Engineering, Hindusthan College of Engineering and Technology (Autonomous), Coimbatore, 641032, India
| | - D Karunanidhi
- Department of Civil Engineering, Hindusthan College of Engineering and Technology (Autonomous), Coimbatore, 641032, India.
| | - H Chandra Jayasena
- Department of Geology, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - T Subramani
- Department of Geology and Department of Mining Engineering, College of Engineering Guindy, Anna University, Chennai, 600025, India
| |
Collapse
|
19
|
Mushahary B, Biswakarma N, Thakuria R, Das R, Mahanta SP. In Situ Ni(II) Complexation Induced Deprotonation of Bis-Thiourea-Based Tweezers in DMSO-Water Medium: An Approach toward Recognition of Fluoride Ions in Water with Organic Probe Molecules. ACS OMEGA 2024; 9:29300-29309. [PMID: 39005788 PMCID: PMC11238301 DOI: 10.1021/acsomega.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 07/16/2024]
Abstract
Recognition of fluoride in water through the fluoride-induced Brönsted acid-base deprotonation reaction of an organic probe molecule is still a challenging task owing to the lower basicity of fluoride ions and the instability of the conjugate base of the probe molecules in aqueous medium. Herein, we report a complementary strategy in which the conjugate base of the studied bis-thiourea molecule in dimethyl sulfoxide (DMSO) medium is simultaneously stabilized through chelation of the Ni(II) ion, which eventually facilitates the recognition of the fluoride ion in water samples. The recognition methodology is validated colorimetrically and electrochemically, and finally, the applicability of the approach is explored with water samples collected from fluoride-affected areas. The limit of detection value for the fluoride ion in water medium was found to be 0.2 and 0.3 ppm with UV-visible spectroscopy and differential pulse voltammetry measurements, respectively. The methodology is also demonstrated on a paper strip for the detection of the fluoride ion with the naked eye and a smartphone-based RGB sensor. The scheme has been shown to be effective in enhancing the aqueous fluoride recognition ability of the organic probe molecules with acidic hydrogen prone to deprotonation by the fluoride ion.
Collapse
Affiliation(s)
| | - Nishant Biswakarma
- Department
of Chemical Sciences, Tezpur University, Tezpur, Assam 784028, India
| | - Ranjit Thakuria
- Department
of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| | - Rituraj Das
- Department
of Chemistry, Morigaon College, Morigaon, Assam 782105, India
| | | |
Collapse
|
20
|
Koch J, Kim H, Tirado-Conde J, Hansen B, Møller I, Thorling L, Troldborg L, Voutchkova D, Højberg AL. Modeling groundwater redox conditions at national scale through integration of sediment color and water chemistry in a machine learning framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174533. [PMID: 38972412 DOI: 10.1016/j.scitotenv.2024.174533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Redox conditions play a crucial role in determining the fate of many contaminants in groundwater, impacting ecosystem services vital for both the aquatic environment and human water supply. Geospatial machine learning has previously successfully modelled large-scale redox conditions. This study is the first to consolidate the complementary information provided by sediment color and water chemistry to enhance our understanding of redox conditions in Denmark. In the first step, the depth to the first redox interface is modelled using sediment color from 27,042 boreholes. In the second step, the depth of the first redox interface is compared against water chemistry data at 22,198 wells to classify redox complexity. The absence of nitrate containing water below the first redox interface is referred to as continuous redox conditions. In contrast, discontinuous redox conditions are identified by the presence of nitrate below the first redox interface. Both models are built using 20 covariate maps, encompassing diverse hydrologically relevant information. The first redox interface is modelled with a mean error of 0.0 m and a root-mean-squared error of 8.0 m. The redox complexity model attains an accuracy of 69.8 %. Results indicate a mean depth to the first redox interface of 8.6 m and a standard deviation of 6.5 m. 60 % of Denmark is classified as discontinuous, indicating complex redox conditions, predominantly collocated in clay rich glacial landscapes. Both maps, i.e., first redox interface and redox complexity are largely driven by the water table and hydrogeology. The developed maps contribute to our understanding of subsurface redox processes, supporting national-scale land-use and water management.
Collapse
Affiliation(s)
- Julian Koch
- Geological Survey of Denmark and Greenland, Department of Hydrology, Copenhagen, Denmark.
| | - Hyojin Kim
- Geological Survey of Denmark and Greenland, Department of Geochemistry, Copenhagen, Denmark
| | - Joel Tirado-Conde
- Geological Survey of Denmark and Greenland, Department of Hydrology, Copenhagen, Denmark
| | - Birgitte Hansen
- Geological Survey of Denmark and Greenland, Department of Geochemistry, Copenhagen, Denmark
| | - Ingelise Møller
- Geological Survey of Denmark and Greenland, Department of Near Surface Land and Marine Geology, Århus, Denmark
| | - Lærke Thorling
- Geological Survey of Denmark and Greenland, Department of Geochemistry, Copenhagen, Denmark
| | - Lars Troldborg
- Geological Survey of Denmark and Greenland, Department of Hydrology, Copenhagen, Denmark
| | - Denitza Voutchkova
- Geological Survey of Denmark and Greenland, Department of Geochemistry, Copenhagen, Denmark
| | - Anker Lajer Højberg
- Geological Survey of Denmark and Greenland, Department of Hydrology, Copenhagen, Denmark
| |
Collapse
|
21
|
Demir Yetiş A, İlhan N, Kara H. Integrating deep learning and regression models for accurate prediction of groundwater fluoride contamination in old city in Bitlis province, Eastern Anatolia Region, Türkiye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47201-47219. [PMID: 38990257 PMCID: PMC11296968 DOI: 10.1007/s11356-024-34194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Groundwater resources in Bitlis province and its surroundings in Türkiye's Eastern Anatolia Region are pivotal for drinking water, yet they face a significant threat from fluoride contamination, compounded by the region's volcanic rock structure. To address this concern, fluoride levels were meticulously measured at 30 points in June 2019 dry period and September 2019 rainy period. Despite the accuracy of present measurement techniques, their time-consuming nature renders them economically unviable. Therefore, this study aims to assess the distribution of probable geogenic contamination of groundwater and develop a robust prediction model by analyzing the relationship between predictive variables and target contaminants. In this pursuit, various machine learning techniques and regression models, including Linear Regression, Random Forest, Decision Tree, K-Neighbors, and XGBoost, as well as deep learning models such as ANN, DNN, CNN, and LSTM, were employed. Elements such as aluminum (Al), boron (B), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), phosphorus (Pb), lead (Pb), and zinc (Zn) were utilized as features to predict fluoride levels. The SelectKbest feature selection method was used to improve the accuracy of the prediction model. This method identifies important features in the dataset for different values of k and increases model efficiency. The models were able to produce more accurate predictions by selecting the most important variables. The findings highlight the superior performance of the XGBoost regressor and CNN in predicting groundwater quality, with XGBoost consistently outperforming other models, exhibiting the lowest values for evaluation metrics like mean squared error (MSE), mean absolute error (MAE), and root mean squared error (RMSE) across different k values. For instance, when considering all features, XGBoost attained an MSE of 0.07, an MAE of 0.22, an RMSE of 0.27, a MAPE of 9.25%, and an NSE of 0.75. Conversely, the Decision Tree regressor consistently displayed inferior performance, with its maximum MSE reaching 0.11 (k = 5) and maximum RMSE of 0.33 (k = 5). Furthermore, feature selection analysis revealed the consistent significance of boron (B) and cadmium (Cd) across all datasets, underscoring their pivotal roles in groundwater contamination. Notably, in the machine learning framework evaluation, the XGBoost regressor excelled in modeling both the "all" and "rainy season" datasets, while the convolutional neural network (CNN) outperformed in the "dry season" dataset. This study emphasizes the potential of XGBoost regressor and CNN for accurate groundwater quality prediction and recommends their utilization, while acknowledging the limitations of the Decision Tree Regressor.
Collapse
Affiliation(s)
- Ayşegül Demir Yetiş
- Medical Services and Techniques Department, Bitlis Eren University, 13000, Bitlis, Türkiye.
| | - Nagehan İlhan
- Department of Computer Engineering, Harran University, 63050, Şanlıurfa, Türkiye
| | - Hatice Kara
- GAP Agriculture Research Institute, 63100, Şanlıurfa, Türkiye
| |
Collapse
|
22
|
El Messaoudi N, Franco DSP, Gubernat S, Georgin J, Şenol ZM, Ciğeroğlu Z, Allouss D, El Hajam M. Advances and future perspectives of water defluoridation by adsorption technology: A review. ENVIRONMENTAL RESEARCH 2024; 252:118857. [PMID: 38569334 DOI: 10.1016/j.envres.2024.118857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Fluoride contamination in water sources poses a significant challenge to human health and the environment. In recent years, adsorption technology has emerged as a promising approach for water defluoridation due to its efficiency and cost-effectiveness. This review article comprehensively explores the advances in water defluoridation through adsorption processes. Various adsorbents, including natural and synthetic materials, have been investigated for their efficacy in removing fluoride ions from water. The mechanisms underlying adsorption interactions are elucidated, shedding light on the factors influencing defluoridation efficiency. Moreover, the review outlines the current state of technology, highlighting successful case studies and field applications. Future perspectives in the field of water defluoridation by adsorption are discussed, emphasizing the need for sustainable and scalable solutions. The integration of novel materials, process optimization, and the development of hybrid technologies are proposed as pathways to address existing challenges and enhance the overall efficacy of water defluoridation. This comprehensive assessment of the advances and future directions in adsorption-based water defluoridation provides valuable insights for researchers, policymakers, and practitioners working towards ensuring safe and accessible drinking water for all.
Collapse
Affiliation(s)
- Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, 80000, Morocco.
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Sylwia Gubernat
- Inżynieria Rzeszów S.A., ul. Podkarpacka 59A, 35-082, Rzeszów, Poland
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140, Sivas, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Usak University, Usak, 64300, Turkey
| | - Dalia Allouss
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, FSTM, Hassan II University, Casablanca, Morocco
| | - Maryam El Hajam
- Advanced Structures and Composites Center, University of Maine, Orono, 04469, United States
| |
Collapse
|
23
|
Wang R, Gong W, Jiang Y, Yin Q, Wang Z, Wu J, Zhang M, Li M, Liu Y, Wang J, Chen Y, Ji Y. Fluoride exposure during puberty induces testicular impairment via ER stress-triggered apoptosis in mice. Food Chem Toxicol 2024; 189:114773. [PMID: 38823497 DOI: 10.1016/j.fct.2024.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Fluoride, a ubiquitous environmental compound, carries significant health risks at excessive levels. This study investigated the reproductive toxicity of fluoride exposure during puberty in mice, focusing on its impact on testicular development, spermatogenesis, and underlying mechanisms. The results showed that fluoride exposure during puberty impaired testicular structure, induced germ cell apoptosis, and reduced sperm counts in mice. Additionally, the SOD activity and GSH content were significantly decreased, while MDA content was significantly elevated in the NaF group. Immunohistochemistry showed an increase in the number of cells positive for GRP78, a key ER stress marker. Moreover, qRT-PCR and Western blot analyses confirmed the upregulation of both Grp78 mRNA and protein expression, as well as increased mRNA expression of other ER stress-associated genes (Grp94, chop, Atf6, Atf4, and Xbp1) and enhanced protein expression of phosphorylated PERK, IRE1α, eIF2α, JNK, XBP-1, ATF-6α, ATF-4, and CHOP. In conclusion, our findings demonstrate that fluoride exposure during puberty impairs testicular structure, induces germ cell apoptosis, and reduces sperm counts in mice. ER stress may participate in testicular cell apoptosis, and contribute to the testicular damage and decreased sperm counts induced by fluoride.
Collapse
Affiliation(s)
- Rong Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenjing Gong
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yumeng Jiang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qizi Yin
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jie Wu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mengyuan Li
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Yuanhua Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Yanli Ji
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei Anhui, China.
| |
Collapse
|
24
|
Guerrero-Arroyo J, Jiménez-Córdova MI, Aztatzi-Aguilar OG, Del Razo LM. Impact of Fluoride Exposure on Rat Placenta: Foetal/Placental Morphometric Alterations and Decreased Placental Vascular Density. Biol Trace Elem Res 2024; 202:3237-3247. [PMID: 37882978 DOI: 10.1007/s12011-023-03916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Inorganic fluoride is a geogenic and anthropogenic contaminant widely distributed in the environment and commonly identified in contaminated groundwater. There is limited information on the effect of fluoride exposure on pregnancy. The aim of this study was to evaluate possible placental alterations of fluoride exposure in a rat model simulating preconception and pregnancy exposure conditions in endemic areas. Fluoride exposure was administered orally to foetuses of dams exposed to 2.5 and 5 mg fluoride/kg/d. Foetal weight, height, foetal/placental weight ratio, placental zone thickness, levels of malondialdehyde (MDA) and vascular endothelial growth factor-A (VEGF-A) and vascular density in placental tissue were evaluated. The results showed a nonlinear relationship between these outcomes and the dose of fluoride exposure. In addition, a significant increase in the fluoride concentration in placental tissue was observed. The group that was exposed to 2.5 mg fluoride/kg/d had a greater increase in both MDA levels and VEGF-A levels than the higher dose group. A significant increase in the thickness of the placental zones and a decrease in the vascular density of the labyrinth zone area were also observed in the fluoride-exposed groups. In conclusion, the data obtained demonstrate that fluoride exposure results in morpho-structural alterations in the placenta and that non-monotonic changes in MDA, VEGF-A levels and placental foetal weight ratio were at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Jonathan Guerrero-Arroyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, México City, México
| | - Mónica I Jiménez-Córdova
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, México City, México
| | - Octavio G Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, México City, México
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, México City, México.
| |
Collapse
|
25
|
Padilla-Reyes DA, Dueñas-Moreno J, Mahlknecht J, Mora A, Kumar M, Ornelas-Soto N, Mejía-Avendaño S, Navarro-Gómez CJ, Bhattacharya P. Arsenic and fluoride in groundwater triggering a high risk: Probabilistic results using Monte Carlo simulation and species sensitivity distribution. CHEMOSPHERE 2024; 359:142305. [PMID: 38740338 DOI: 10.1016/j.chemosphere.2024.142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The widespread presence of arsenic (As) and fluoride (F-) in groundwater poses substantial risks to human health on a global scale. These elements have been identified as the most prevalent geogenic contaminants in groundwater in northern Mexico. Consequently, this study aimed to evaluate the human health and ecological risks associated with the content of As and F- in the Meoqui-Delicias aquifer, which is in one of Mexico's most emblematic irrigation districts. Concentrations of As and F- were measured in 38 groundwater samples using ICP-MS and ion chromatography, respectively. Overall, these elements showed a similar trend across the aquifer, revealing a positive correlation between them and pH. The concentration of As and F- in the groundwater ranged from 5.3 μg/L to 303 μg/L and from 0.5 mg/L to 8.8 mg/L, respectively. Additionally, the levels of As and F- surpassed the established national standards for safe drinking water in 92% and 97% of samples, respectively. Given that groundwater is used for both agricultural purposes and human activities, this study also assessed the associated human health and ecological risks posed by these elements using Monte Carlo simulation and Species Sensitivity Distribution. The findings disclosed a significant noncarcinogenic health risk associated with exposure to As and F-, as well as an unacceptable carcinogenic health risk to As through water consumption for both adults and children. Furthermore, a high ecological risk to aquatic species was identified for F- and high to medium risks for As in the sampling sites. Therefore, the findings in this study provide valuable information for Mexican authorities and international organizations (e.g., WHO) about the adverse effects that any exposure without treatment to groundwater from this region represents for human health.
Collapse
Affiliation(s)
- Diego A Padilla-Reyes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India
| | - Nancy Ornelas-Soto
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Sandra Mejía-Avendaño
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Carmen J Navarro-Gómez
- Faculty of Engineering, Autonomous University of Chihuahua, Circuito Universitario, 31109, Campus Uach II, Chihuahua, Chih, C.P. 31125, Mexico
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-114 28, Stockholm, Sweden
| |
Collapse
|
26
|
He YQ, McDonough LK, Zainab SM, Guo ZF, Chen C, Xu YY. Microplastic accumulation in groundwater: Data-scaled insights and future research. WATER RESEARCH 2024; 258:121808. [PMID: 38796912 DOI: 10.1016/j.watres.2024.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Given that microplastics (MPs) in groundwater have been concerned for risks to humans and ecosystems with increased publications, a Contrasting Analysis of Scales (CAS) approach is developed by this study to synthesize all existing data into a hierarchical understanding of MP accumulation in groundwater. Within the full data of 386 compiled samples, the median abundance of MPs in Open Groundwater (OG) and Closed Groundwater (CG) were 4.4 and 2.5 items/L respectively, with OG exhibiting a greater diversity of MP colors and larger particle sizes. The different pathways of MP entry (i.e., surface runoff and rock interstices) into OG and CG led to this difference. At the regional scale, median MP abundance in nature reserves and landfills were 17.5 and 13.4 items/L, respectively, all the sampling points showed high pollution load risk. MPs in agricultural areas exhibited a high coefficient of variation (716.7%), and a median abundance of 1.0 items/L. Anthropogenic activities at the regional scale are the drivers behind the differentiation in the morphological characteristics of MPs, where groundwater in residential areas with highly toxic polymers (e.g., polyvinylchloride) deserves prolonged attention. At the local scale, the transport of MPs is controlled by groundwater flow paths, with a higher abundance of MP particles downstream than upstream, and MPs with regular surfaces and lower resistance (e.g., pellets) are more likely to be transported over long distances. From the data-scaled insight this study provides on the accumulation of MPs, future research should be directed towards network-based observation for groundwater-rich regions covered with landfills, residences, and agricultural land.
Collapse
Affiliation(s)
- Yu-Qin He
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liza K McDonough
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Syeda Maria Zainab
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhao-Feng Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
27
|
Lombarte M, Fina BL, García VI, Lupo M, Rigalli A. Effect of training on bone quality in rats with insulin resistance induce by fluoride consumption. REVISTA DE LA FACULTAD DE CIENCIAS MÉDICAS 2024; 81:270-284. [PMID: 38941224 PMCID: PMC11370880 DOI: 10.31053/1853.0605.v81.n2.42505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/02/2024] [Indexed: 06/30/2024] Open
Abstract
When large amounts of Fluoride are consumed produces insulin resistance, but exercise can reverse insulin resistance in rats, because of a high fluoride uptake by bone tissue. However, bone quality has not been studied in those experiments. Therefore, the aim of this work was to evaluate bone quality in rats treated with fluoride when performing exercise. Sprague-Dawley rats were divided into 3 groups (n=6 per group): Control (drinking water without fluoride), Fluoride (drinking water with fluoride 15 mg/L for 30 days) and Exercise (daily running on a treadmill and drinking water with fluoride 15 mg/L for 30 days). Then, bone mineral density, mechanical and histological properties and bone fluoride level were measured. No effect of treatment on any bone parameters were observed. These results indicate that exercise normalizes glucose metabolism in insulin-resistant rats by bone fluoride uptake; however, this increase in bone fluoride does not manifest in bone deterioration.
Collapse
Affiliation(s)
- Mercedes Lombarte
- Laboratorio de Biología Ósea-Facultad de Cs Médicas-Universidad Nacional de Rosario.
| | - Brenda Lorena Fina
- Grupo de Descargas Eléctricas, Universidad Tecnologica Nacional Facultad Regional de Venado Tuerto.
| | | | - Maela Lupo
- University Centre for Environmental Studies, School of Medicine, Rosario National University.
| | - Alfredo Rigalli
- University Centre for Environmental Studies, School of Medicine, Rosario National University.
| |
Collapse
|
28
|
Li YS, Yang RR, Li XY, Liu WW, Zhao YM, Zu MM, Gao YH, Huo MQ, Jiang YT, Li BY. Fluoride impairs vascular smooth muscle A7R5 cell lines via disrupting amino acids metabolism. J Transl Med 2024; 22:528. [PMID: 38824544 PMCID: PMC11143695 DOI: 10.1186/s12967-024-05350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 μmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Fluorides/pharmacology
- Rats, Sprague-Dawley
- Cell Line
- Amino Acids/metabolism
- Cell Proliferation/drug effects
- Rats
- Cell Movement/drug effects
- Male
- Aorta/pathology
- Aorta/drug effects
- Aorta/metabolism
- Metabolomics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Gene Regulatory Networks/drug effects
Collapse
Affiliation(s)
- Yan-Shu Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Ru-Ru Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Xin-Ying Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Wei-Wei Liu
- Weihai Municipal Hospital, Weihai, 264299, Shandong Province, China
| | - Yi-Ming Zhao
- Xinyi Center for Disease Control and Prevention, Xinyi, China
| | - Ming-Man Zu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Yi-Hong Gao
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Min-Qi Huo
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Yu-Ting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Bing-Yun Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China.
| |
Collapse
|
29
|
Cao H, Xie X, Xiao Z, Liu W. Transferability of Machine Learning Models for Geogenic Contaminated Groundwaters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8783-8791. [PMID: 38718173 DOI: 10.1021/acs.est.4c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Machine learning models show promise in identifying geogenic contaminated groundwaters. Modeling in regions with no or limited samples is challenging due to the need for large training sets. One potential solution is transferring existing models to such regions. This study explores the transferability of high fluoride groundwater models between basins in the Shanxi Rift System, considering six factors, including modeling methods, predictor types, data size, sample/predictor ratio (SPR), predictor range, and data informing. Results show that transferability is achieved only when model predictors are based on hydrochemical parameters rather than surface parameters. Data informing, i.e., adding samples from challenging regions to the training set, further enhances the transferability. Stepwise regression shows that hydrochemical predictors and data informing significantly improve transferability, while data size, SPR, and predictor range have no significant effects. Additionally, despite their stronger nonlinear capabilities, random forests and artificial neural networks do not necessarily surpass logistic regression in transferability. Lastly, we utilize the t-SNE algorithm to generate low-dimensional representations of data from different basins and compare these representations to elucidate the critical role of predictor types in transferability.
Collapse
Affiliation(s)
- Hailong Cao
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Ziyi Xiao
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Wenjing Liu
- School of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
30
|
Xu P, Xing H, Ma Y, Ding X, Li T, Zhang Y, Liu L, Ma J, Niu Q. Fluoride Induces Neurocytotoxicity by Disrupting Lysosomal Iron Metabolism and Membrane Permeability. Biol Trace Elem Res 2024:10.1007/s12011-024-04226-0. [PMID: 38760610 DOI: 10.1007/s12011-024-04226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
The detrimental effects of fluoride on neurotoxicity have been widely recorded, yet the detailed mechanisms underlying these effects remain unclear. This study explores lysosomal iron metabolism in fluoride-related neurotoxicity, with a focus on the Steap3/TRPML1 axis. Utilizing sodium fluoride (NaF)-treated human neuroblastoma (SH-SY5Y) and mouse hippocampal neuron (HT22) cell lines, our research demonstrates that NaF enhances the accumulation of ferrous ions (Fe2+) in these cells, disrupting lysosomal iron metabolism through the Steap3/TRPML1 axis. Notably, NaF exposure upregulated ACSL4 and downregulated GPX4, accompanied by reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) levels. These changes indicate increased vulnerability to ferroptosis within neuronal cells. The iron chelator deferoxamine (DFO) mitigates this disruption. DFO binds to lysosomal Fe2+ and inhibits the Steap3/TRPML1 axis, restoring normal lysosomal iron metabolism, preventing lysosomal membrane permeabilization (LMP), and reducing neuronal cell ferroptosis. Our findings suggest that interference in lysosomal iron metabolism may mitigate fluoride-induced neurotoxicity, underscoring the critical role of the Steap3/TRPML1 axis in this pathological process.
Collapse
Affiliation(s)
- Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xueman Ding
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tingting Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yue Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li Liu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiaolong Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China.
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China.
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
31
|
Rashid A, Ayub M, Gao X, Khattak SA, Ali L, Li C, Ahmad A, Khan S, Rinklebe J, Ahmad P. Hydrogeochemical characteristics, stable isotopes, positive matrix factorization, source apportionment, and health risk of high fluoride groundwater in semiarid region. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134023. [PMID: 38492393 DOI: 10.1016/j.jhazmat.2024.134023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Chronic exposure to high fluoride (F-) levels in groundwater causes community fluorosis and non-carcinogenic health concerns in local people. This study described occurrence, dental fluorosis, and origin of high F-groundwater using δ2H and δ18O isotopes at semiarid Gilgit, Pakistan. Therefore, groundwater (n = 85) was collected and analyzed for F- concentrations using ion-chromatography. The lowest F- concentration was 0.4 mg/L and the highest 6.8 mg/L. F- enrichment is linked with higher pH, NaHCO3, NaCl, δ18O, Na+, HCO3-, and depleted Ca+2 aquifers. The depleted δ2H and δ18O values indicated precipitation and higher values represented the evaporation effect. Thermodynamic considerations of fluorite minerals showed undersaturation, revealing that other F-bearing minerals viz. biotite and muscovite were essential in F- enrichment in groundwater. Positive matrix factorization (PMF) and principal component analysis multilinear regression (PCAMLR) models were used to determine four-factor solutions for groundwater contamination. The PMF model results were accurate and reliable compared with those of the PCAMLR model, which compiled the overlapping results. Therefore, 28.3% exceeded the WHO permissible limit of 1.5 mg/L F-. Photomicrographs of granite rocks showed enriched F-bearing minerals that trigger F- in groundwater. The community fluorosis index values were recorded at > 0.6, revealing community fluorosis and unsuitability of groundwater for drinking.
Collapse
Affiliation(s)
- Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan.
| | - Muhammad Ayub
- Department of Botany Hazara University, Mansehra PO 21300 Pakistan
| | - Xubo Gao
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Seema Anjum Khattak
- National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan
| | - Liaqat Ali
- National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan
| | - Chengcheng Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, PO 25120, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India
| |
Collapse
|
32
|
Li Y, Yang F, Liu J, Jiang M, Yu Y, Zhou Q, Sun L, Zhang Z, Zhou L. Protective effects of sodium butyrate on fluorosis in rats by regulating bone homeostasis and serum metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116284. [PMID: 38581912 DOI: 10.1016/j.ecoenv.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Fluorosis due to high fluoride levels in drinking water profoundly affects the development of human skeletal and dental structures. Sodium butyrate (NaB) has been found to regulate overall bone mass and prevent pathological bone loss. However, the mechanism of NaB action on fluorosis remains unclear. In this study, a rat model of fluorosis induced by 100 mg/L sodium fluoride was used to investigate the impact of NaB on bone homeostasis and serum metabolomics. It was found that NaB significantly reduced the levels of bone resorption markers CTX-Ⅰ and TRACP-5B in fluorosis rats. Moreover, NaB increased calcium and magnesium levels in bone, while decreasing phosphorus levels. In addition, NaB improved various bone microstructure parameters, including bone mineral density (BMD), trabecular thickness (Tb. Th), trabecular bone separation (Tb. SP), and structural model index (SMI) in the femur. Notably, NaB intervention also enhanced the antioxidant capacity of plasma in fluorosis rats. Furthermore, a comprehensive analysis of serum metabolomics by LC-MS revealed a significant reversal trend of seven biomarkers after the intervention of NaB. Finally, pathway enrichment analysis based on differential metabolites indicated that NaB exerted protective effects on fluorosis by modulating arginine and proline metabolic pathways. These findings suggest that NaB has a beneficial effect on fluorosis and can regulate bone homeostasis by ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Ying Li
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Fengmei Yang
- School of Public Health, Shenyang Medical College, Shenyang 110034, China; Yulin Center for Disease Control and Prevention, Yulin Municipal Health Committee, Yulin 719100, China
| | - Jie Liu
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Mengqi Jiang
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Ye Yu
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Qingyi Zhou
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Lu Sun
- Radiation Health Center, Liaoning Provincial Center for Disease Control and Prevention, Shenyang 110015, China.
| | - Zhuo Zhang
- School of Public Health, Shenyang Medical College, Shenyang 110034, China.
| | - Lin Zhou
- School of Public Health, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
33
|
Das K, Sukul U, Chen JS, Sharma RK, Banerjee P, Dey G, Taharia M, Wijaya CJ, Lee CI, Wang SL, Nuong NHK, Chen CY. Transformative and sustainable insights of agricultural waste-based adsorbents for water defluoridation: Biosorption dynamics, economic viability, and spent adsorbent management. Heliyon 2024; 10:e29747. [PMID: 38681598 PMCID: PMC11046213 DOI: 10.1016/j.heliyon.2024.e29747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
With the progression of civilization, the harmony within nature has been disrupted, giving rise to various ecocidal activities that are evident in every spheres of the earth. These activities have had a profound and far-reaching impact on global health. One significant example of this is the presence of fluoride in groundwater exceeding acceptable limits, resulting in the widespread occurrence of "Fluorosis" worldwide. It is imperative to mitigate the concentration of fluoride in drinking water to meet safety standards. While various defluoridation techniques exist, they often have drawbacks. Biosorption, being a simple, affordable and eco-friendly method, has gained preference for defluoridation. However, its limited commercialization underscores the pressing need for further research in this domain. This comprehensive review article offers a thorough examination of the defluoridation potential of agro-based adsorbents, encompassing their specific chemical compositions and preparation methods. The review presents an in-depth discussion of the factors influencing fluoride biosorption and conducts a detailed exploration of adsorption isotherm and adsorption kinetic models to gain a comprehensive understanding of the nature of the adsorption process. Furthermore, it evaluates the commercial viability through an assessment of regeneration potential and a cost analysis of these agro-adsorbents, with the aim of facilitating the scalability of the defluoridation process. The elucidation of the adsorption mechanism and recommendations for overcoming challenges in large-scale implementation offer a comprehensive outlook on this eco-friendly and sustainable approach to fluoride removal. In summary, this review article equips readers with a lucid understanding of agro-adsorbents, elucidates their ideal conditions for improved performance, offers a more profound insight into the fluoride biosorption mechanism, and introduces the concept of effective spent adsorbent management.
Collapse
Affiliation(s)
- Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Uttara Sukul
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, 82445, Taiwan
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Md. Taharia
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Christian J. Wijaya
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surbaya, 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Kalijudan 37, Surabaya, 60114, Indonesia
| | - Cheng-I Lee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan
| | - Nguyen Hoang Kim Nuong
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| |
Collapse
|
34
|
Wu A, Hillesheim PC, Nelson PN, Zeller M, Carignan G, Li J, Ki DW. New type of tin(IV) complex based turn-on fluorescent chemosensor for fluoride ion recognition: elucidating the effect of molecular structure on sensing property. Dalton Trans 2024; 53:6932-6940. [PMID: 38567414 DOI: 10.1039/d4dt00461b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A novel type of chemosensor based on tin(IV) complexes incorporating hydroxyquinoline derivatives has been designed and investigated for selectively detecting fluoride ions. Sn(meq)2Cl2 (meq = 2-methyl-8-quinolinol) (complex 1) exhibits a significant enhancement in luminescence upon the introduction of fluoride ions. This enhancement greatly surpasses that observed with Snq2Cl2 and Sn(dmqo)2Cl2 (q = 8-hydroxyquinnoline; dmqo = 5,7-dimethyl-8-quinolinol). Furthermore, complex 1 displays excellent sensitivity and selectivity for fluoride detection in comparison to halides and other anions. As a result, complex 1 serves as an outstanding turn-on fluorescent chemosensor, effectively sensing fluoride ions. The Benesi-Hilderbrand method and Job's plot confirmed that complex 1 associates with F- in a 1 : 2 binding stoichiometry. Also, complex 1 exhibited a large binding constant (pKb = 10.4 M-2) and a low detection limit (100 nM). To gain a deeper insight into the photophysical properties and the underlying mechanism governing the formation of the tin(IV) fluoride complex via halide exchange, we successfully synthesized partially fluorinated Sn(meq)2F0.67Cl1.33 (2) and fully fluorinated Sn(meq)2F2 (3), all of which were characterized through computational studies, thereby elucidating their photophysical properties. DFT studies reveal that converting Sn(meq)2Cl2 to Sn(meq)2F2, an endergonic process, leads to greater stability due to reducing steric hindrance about the metal center. Furthermore, the fluorinated complex significantly increases dipole moment, resulting in high affinity toward the F- ion.
Collapse
Affiliation(s)
- Andrew Wu
- School of Natural Sciences and Mathematics, Stockton University, Galloway, New Jersey 08205, USA.
| | - Patrick C Hillesheim
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida, 34142, USA
| | - Peter N Nelson
- Department of Chemistry, The University of the West Indies Mona, Jamaica
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Gia Carignan
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Daniel W Ki
- School of Natural Sciences and Mathematics, Stockton University, Galloway, New Jersey 08205, USA.
| |
Collapse
|
35
|
Xu L, Zhao J. Bromine atom introduction improves the F - sensing ability of an indolo[3,2- b]carbazole-salicylaldehyde-based fluorescence turn-on sensor. Chem Commun (Camb) 2024; 60:3830-3833. [PMID: 38497214 DOI: 10.1039/d3cc05991j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The heavy-atom effect usually quenches fluorescence, but scarcely enhances it. Herein, fluorescence turn-on sensors without or with a bromine atom for F- detection are presented, achieving fast response time within 1 min, and the LODs of 1.9 × 10-7 and 8.5 × 10-8 M, reflecting that halogen atom introduction is beneficial for F- detection ability improvement. The sensing mechanism of -OH unit deprotonation is confirmed based on the results of a 1 : 2 stoichiometric ratio, 1H NMR titration and TD-DFT calculation. The water environment F- detection and spiked recovery experiments demonstrate their potential for real sample detection.
Collapse
Affiliation(s)
- Lihua Xu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China.
| | - Jiang Zhao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
36
|
Ashong GW, Ababio BA, Kwaansa-Ansah EE, Koranteng SK, Muktar GDH. Investigation of fluoride concentrations, water quality, and non-carcinogenic health risks of borehole water in bongo district, northern Ghana. Heliyon 2024; 10:e27554. [PMID: 38524565 PMCID: PMC10958223 DOI: 10.1016/j.heliyon.2024.e27554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/08/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
Access to potable water is a significant concern due to the increasing global threat posed by fluoride contamination in groundwater sources. This study investigated the concentrations of fluoride (F-), the suitability of groundwater for human consumption, the physicochemical characteristics affecting the water quality, and non-carcinogenic adverse health risks to both children and adults in the Bongo district in Northern Ghana. The findings revealed that the groundwater had a mean pH, salinity, TDS, conductivity, and turbidity below the WHO guideline values with a mean fluoride concentration of 1.76 mg/L above the guideline limit of 1.5 mg/L. The study also found that there was no strong relationship between fluoride and the measured water parameters, which may be attributed to poor control of distribution, transport mechanisms, and sources. The WQI scores ranged from 42.62% to 70.72%, indicating that all borehole water samples were of good and excellent quality. The average chronic daily intake showed that children are often more exposed to the harmful impact of fluoride than adults. The average HQ > 1 indicates the probability of dental and skeletal fluorosis after continuous exposure over time in adults and children. The study recommends taking immediate action to mitigate high groundwater fluoride concentrations, implementing appropriate water management strategies, and raising public awareness of the health risks. These measures can guide future groundwater management practices and help policymakers address contamination and protect local communities.
Collapse
Affiliation(s)
| | - Boansi Adu Ababio
- Department of Chemistry, Kwame Nkrumah University of Science and Technology. Kumasi, Ghana
| | | | - Simon Konadu Koranteng
- Department of Chemistry, Kwame Nkrumah University of Science and Technology. Kumasi, Ghana
| | | |
Collapse
|
37
|
Li X, Yang J, Luo H, Qiao Y, Zhao L, Cheng C, Fu W, Tan Y, Wang J, Liang C, Zhang J. Riboflavin Attenuates Fluoride-Induced Testicular Injury via Interleukin 17A-Mediated Classical Pyroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6143-6154. [PMID: 38475697 DOI: 10.1021/acs.jafc.3c09071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Male reproductive toxicity of fluoride is of great concern worldwide, yet the underlying mechanism is unclear. Pyroptosis is a novel mode of inflammatory cell death, and riboflavin with anti-inflammatory properties has the potential to protect against fluoride damage. However, it is unknown whether pyroptosis is involved in fluoride-induced testicular injury and riboflavin intervention. Here, we first found that riboflavin could alleviate fluoride-caused lower sperm quality and damaged testicular morphology by reducing pyroptosis based on a model of ICR mice treated with NaF (100 mg/L) and/or riboflavin supplementation (40 mg/L) via drinking water for 13 weeks. And then, together with the results of in vitro Leydig cell modelsm it was confirmed that the pyroptosis occurs predominantly through classical NLRP3/Caspase-1/GSDMD pathway. Furthermore, our results reveal that interleukin-17A mediates the process of pyroptosis in testes induced by fluoride and riboflavin attenuation according to the results of our established models of riboflavin- and/or fluoride-treated IL-17A knockout mice. The results not only declare a new mechanism by which fluoride induces testicular injury via interleukin 17A-mediated classical pyroptosis but also provide evidence for the potential clinical application of riboflavin as an effective therapy for fluoride toxicity.
Collapse
Affiliation(s)
- Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Yurou Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Liying Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Chenkai Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Weixiang Fu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Yanjia Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| |
Collapse
|
38
|
Wu Y, Cheng A, Wang Y, Zhu Q, Ren X, Lu Y, Shi E, Zhuang C, Wang J, Liang C, Zhang J. Bifidobacterium Relieved Fluoride-Induced Hepatic and Ileal Toxicity via Inflammatory Response and Bile Acid Transporters in Mice. Foods 2024; 13:1011. [PMID: 38611317 PMCID: PMC11012040 DOI: 10.3390/foods13071011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Fluoride is a pervasive environmental contaminant. Prolonged excessive fluoride intake can inflict severe damage on the liver and intestines. Previous 16S rDNA sequencing revealed a decrease in ileal Bifidobacterium abundance during fluoride-induced hepatointestinal injury. Hence, this work aimed to investigate the possible mitigating function of Bifidobacterium on hepatointestinal injury caused by fluoride. Thirty-six 6-week-old C57BL/6J mice (equally divided between males and females) were allotted randomly to three groups: Ctrl group (distilled water), NaF group, and NaF + Ba group (100 mg/L NaF distilled water). After 10 weeks, the mice were given 1 × 109 CFU/mL Bifidobacterium solution (0.2 mL/day) intragastrically in the NaF + Ba group for 8 weeks, and the mice in other groups were given the same amount of distilled water. Dental damage, bone fluoride content, blood routine, liver and intestinal microstructure and function, inflammatory factors, and regulatory cholic acid transporters were examined. Our results showed that fluoride increased glutamic-oxalacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) activities, and the levels of lipopolysaccharide (LPS), IL-1β, IL-6, TNF-α, and IL-10 levels in serum, liver, and ileum. However, Bifidobacterium intervention alleviated fluoride-induced changes in the above indicators. In addition, Bifidobacterium reduced the mRNA expression levels of bile acid transporters ASBT, IBABP, OST-α, and OST-β in the ileum. In summary, Bifidobacterium supplementation relieved fluoride-induced hepatic and ileal toxicity via an inflammatory response and bile acid transporters in the liver and ileum of mice.
Collapse
Affiliation(s)
- Yue Wu
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Ao Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhehot 010018, China
| | - Qianlong Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Xuting Ren
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Yiguang Lu
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Erbao Shi
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| |
Collapse
|
39
|
Zhi W, Appling AP, Golden HE, Podgorski J, Li L. Deep learning for water quality. NATURE WATER 2024; 2:228-241. [PMID: 38846520 PMCID: PMC11151732 DOI: 10.1038/s44221-024-00202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/10/2024] [Indexed: 06/09/2024]
Abstract
Understanding and predicting the quality of inland waters are challenging, particularly in the context of intensifying climate extremes expected in the future. These challenges arise partly due to complex processes that regulate water quality, and arduous and expensive data collection that exacerbate the issue of data scarcity. Traditional process-based and statistical models often fall short in predicting water quality. In this Review, we posit that deep learning represents an underutilized yet promising approach that can unravel intricate structures and relationships in high-dimensional data. We demonstrate that deep learning methods can help address data scarcity by filling temporal and spatial gaps and aid in formulating and testing hypotheses via identifying influential drivers of water quality. This Review highlights the strengths and limitations of deep learning methods relative to traditional approaches, and underscores its potential as an emerging and indispensable approach in overcoming challenges and discovering new knowledge in water-quality sciences.
Collapse
Affiliation(s)
- Wei Zhi
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, Hohai University, Nanjing, China
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| | | | - Heather E Golden
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Joel Podgorski
- Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Li Li
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
40
|
Yang Y, Zhang R, Deji Y, Li Y. Hotspot mapping and risk prediction of fluoride in natural waters across the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133510. [PMID: 38219577 DOI: 10.1016/j.jhazmat.2024.133510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Intake of high fluoride concentrations through water affects up to 1 billion people worldwide, and the Tibetan Plateau (TP) is one of the most severely affected areas. Knowledge regarding the high fluoride risk areas, the driving factors, and at-risk populations on the TP remains fragmented. We collected 1581 natural water samples from the TP to model surface water and groundwater fluoride hazard maps using machine learning. The geomean concentrations of surface water and groundwater were 0.26 mg/L and 0.92 mg/L, respectively. Surface water fluoride hazard hotspots were concentrated in the north-central region; high fluoride risk areas of groundwater were mainly concentrated in the southern TP. Hazard maps showed a maximum estimate of 15% of the total population in the TP (approximately 1.47 million people) at risk, and 500,000 people considered the most reasonable estimate. Critical environment driving factors were identified, in which climate condition was taken for the vital one. Under the moderate climate change scenario (SSP2.45) for 2089-2099, the high fluoride risk change rate differed inside the TP (surface water -24%-55% and groundwater -56%-50%), and the overall risk increased in natural waters throughout the TP, particularly in the southeastern TP.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangzong Deji
- Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa 850030, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
41
|
Kumar P, Kumar M, Barnawi AB, Maurya P, Singh S, Shah D, Yadav VK, Kumar A, Kumar R, Yadav KK, Gacem A, Ahmad A, Patel A, Alreshidi MA, Singh V, Yaseen ZM, Cabral-Pinto MMS, Vinayak V, Wanale SG. A review on fluoride contamination in groundwater and human health implications and its remediation: A sustainable approaches. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104356. [PMID: 38158029 DOI: 10.1016/j.etap.2023.104356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Contamination of drinking water due to fluoride (F-) is a major concern worldwide. Although fluoride is an essential trace element required for humans, it has severe human health implications if levels exceed 1.5 mg. L-1 in groundwater. Several treatment technologies have been adopted to remove fluoride and reduce the exposure risk. The present article highlights the source, geochemistry, spatial distribution, and health implications of high fluoride in groundwater. Also, it discusses the underlying mechanisms and controlling factors of fluoride contamination. The problem of fluoride-contaminated water is more severe in India's arid and semiarid regions than in other Asian countries. Treatment technologies like adsorption, ion exchange, precipitation, electrolysis, electrocoagulation, nanofiltration, coagulation-precipitation, and bioremediation have been summarized along with case studies to look for suitable technology for fluoride exposure reduction. Although present technologies are efficient enough to remove fluoride, they have specific limitations regarding cost, labour intensity, and regeneration requirements.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India.
| | - Manoj Kumar
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Abdulwasa Bakr Barnawi
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Parul Maurya
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Snigdha Singh
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Deepankshi Shah
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | - Anand Kumar
- School of Management Studies, Nalanda University, Rajgir, Bihar 803116, India
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, Madhya Pradesh 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | | | - Vipin Singh
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282005, India
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory, School of Applied Science, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Shivraj Gangadhar Wanale
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra 431606, India
| |
Collapse
|
42
|
Saha NC, Banerjee P, Chatterjee A, Bhattacharya R, Saha S, Pastorino P. Haematological, biochemical, enzymological changes and mitochondrial dysfunction of liver in freshwater climbing perch Anabas testudineus during their acute and chronic exposure to sodium fluoride. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104360. [PMID: 38176602 DOI: 10.1016/j.etap.2023.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Anthropogenic activities are increasing fluoride concentration in watercourses. The present study focuses on the sublethal toxicity of sodium fluoride during sub-chronic and chronic time periods in the freshwater fish Anabas testudineus. The 96-hour LC50 value for fluoride was found to be 616.50 mg/L. Excessive mucous production and hyper excitability, followed by loss of balance, were seen in fish under acute fluoride exposure. Significant reduction in yield and specific growth rate of fish were assessed at 15, 30 and 45-days exposure intervals. Different bio-indicators like Hepatosomatic-index, Gonadosomatic-index and fecundity were reduced significantly in fish exposed to 10% (61.6 mg/L) and 20% (123.2 mg/L) of 96 h of LC50 values of fluoride in comparison to control. Toxicant concentrations directly correlated with parameter lowering. Fluoride exposure increased plasma glucose, creatinine, AST, and ALT and reduced total RBC, haemoglobin content, Hct (%), plasma protein, and cholesterol. Moreover, fluoride exposure significantly reduces the mitochondrial membrane potential in liver. This may result in metabolic depression, haematological, biochemical, and enzymological stress. The in-silico structural analysis predicts that fluoride may impede cytochrome c oxidase of the electron transport system, hence inhibiting mitochondrial functionality. These findings collectively highlight the urgent need for stringent regulation and monitoring of fluoride levels in freshwater ecosystems, as the subchronic and chronic effects observed in A. testudineus may have broader implications for aquatic ecosystems.
Collapse
Affiliation(s)
- Nimai Chandra Saha
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India; Department of Zoology, Bidhannagar College, Bidhannagar, Kolkata, West Bengal 700064, India.
| | - Priyajit Banerjee
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Arnab Chatterjee
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Ritwick Bhattacharya
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Shubhajit Saha
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| |
Collapse
|
43
|
Li X, Yang J, Shi E, Lu Y, Song X, Luo H, Wang J, Liang C, Zhang J. Riboflavin alleviates fluoride-induced ferroptosis by IL-17A-independent system Xc -/GPX4 pathway and iron metabolism in testicular Leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123332. [PMID: 38199481 DOI: 10.1016/j.envpol.2024.123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Fluoride is widely found in groundwater, soil, animal and plant organisms. Excessive fluoride exposure can cause reproductive dysfunction by activating IL-17A signaling pathway. However, the adverse effects of fluoride on male reproductive system and the mechanisms remain elusive. In this study, the wild type and IL-17A knockout C57BL/6J mouse were treated with 24 mg/kg·bw·d sodium fluoride and/or 5 mg/kg·bw·d riboflavin-5'-phosphate sodium for 91 days. Results showed that fluoride caused dental fluorosis, increased the levels of ROS in testicular Leydig cells and GSSG in testicular tissue, and did not affect the iron and serum hepcidin levels in testicular tissue. Riboflavin alleviated above adverse changes, whereas IL-17A does not participate in the oxidative stress-mediated reproductive toxicity of fluoride. Based on this, TM3 cells were used to verify the injury of fluoride on Leydig cells. Results showed that fluoride increased mRNA levels of ferroptosis marker SLC3A2, VDAC3, TFRC, and SLC40A1 and decreased Nrf2 mRNA levels in TM3 cells. The ferroptosis inhibitor Lip-1 and DFO were used to further investigate the relationship between male reproductive toxicity and ferroptosis induced by fluoride. We found that the fluoride-induced decrease in cell viability, increase in xCT, TFRC, and FTH protein expression, and decrease in GPX4 protein expression, can all be rescued by Lip-1 and DFO. Similar results were also observed in the riboflavin treatment group. Moreover, riboflavin mitigated fluoride-induced increases in ROS levels and SLC3A2 protein levels. In all, our work revealed that riboflavin inhibited ferroptosis in testicular Leydig cells and improved the declined male reproductive function caused by fluoride. This study provides new perspectives for revealing new male reproductive toxicity mechanisms and mitigating fluoride toxicity damage.
Collapse
Affiliation(s)
- Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Erbao Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Yiguang Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Xiaochao Song
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China.
| |
Collapse
|
44
|
Liu Y, Lu J, Liu T, Shi Z, Ren H, Mi J. Analysis of the distribution across media, migration, and related driving factors of fluoride in cold and arid lakes during the freezing period. ENVIRONMENTAL RESEARCH 2024; 244:117899. [PMID: 38109953 DOI: 10.1016/j.envres.2023.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Fluoride pollution in water has become a global challenge. This challenge especially affects China as a country experiencing serious fluoride pollution. While the have been past studies on the spatial distribution of fluoride, there has been less attention on different forms of fluoride. This study collected 176 samples (60, 40, and 76 ice, water, and sediment samples, respectively) from Lake Ulansuhai during the freezing period. The occurrence and spatial distribution characteristics of fluoride in lake ice-water-sediment were explored using Kriging interpolation, Piper three-line diagram, and Gibbs diagram analysis methods. The migration and transformation of fluoride during the freezing period were revealed and the factors influencing fluoride concentration in the water body were discussed considering the hydrochemical characteristics of lake surface water. The results showed that the average fluoride concentrations in the upper ice, middle ice and lower ice were 0.18, 0.09, and 0.12 mg/L, respectively, decreasing from north to south in the lake. The average concentrations of fluoride in surface water and bottom water were 0.63 and 0.83 mg/L, respectively. The concentrations of fluoride in ice and water were within the World Health Organisation drinking water threshold of 1.50 mg/L and the Class III Chinese surface water standard (GB3838-2002). The average sediment total fluorine was 1344.38 ± 200 mg/kg, significantly exceeding the global average (321 mg/kg) and decreasing with depth. The contents of water soluble, exchangeable, Fe/Mn bound, organic bound, and residual fluorides were 40.22-47.18, 13.24-43.23, 49.52-160.48, and 71.59-173.03 mg/kg, respectively. There was a significant positive correlation between fluoride concentration in ice and that in water. The change in fluoride concentration in water was mainly due to specific climatic and geographical conditions, pH, hydrochemical characteristics and ice sealing. This study is of great significance for the management of high-fluorine lakes in arid and semi-arid areas.
Collapse
Affiliation(s)
- Yinghui Liu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot, 010018, China.
| | - Tingxi Liu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot, 010018, China.
| | - Zhenyu Shi
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Huifang Ren
- Hohhot Sub Station of the General Environmental Monitoring Station of Inner Mongolia Autonomous Region, Hohhot, 010030, Inner Mongolia, China
| | - Jiahui Mi
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
45
|
Zhu C, Fryar AE, Apps J. Inorganic Hydrogeochemistry in the 21st Century. GROUND WATER 2024; 62:174-183. [PMID: 37482948 DOI: 10.1111/gwat.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Chemical and isotopic processes occur in every segment of the hydrological cycle. Hydrogeochemistry-the subdiscipline that studies these processes-has seen a transformation from "witch's brew" to credible science since 2000. Going forward, hydrogeochemical research and applications are critical to meeting urgent societal needs of climate change mitigation and clean energy, such as (1) removing CO2 from the atmosphere and storing gigatons of CO2 in soils and aquifers to achieve net-zero emissions, (2) securing critical minerals in support of the transition from fossil fuels to renewable energies, and (3) protecting water resources by adapting to a warming climate. In the last two decades, we have seen extensive activity and progress in four research areas of hydrogeochemistry related to water-rock interactions: arsenic contamination of groundwater; the use of isotopic and chemical tracers to quantify groundwater recharge and submarine groundwater discharge; the kinetics of chemical reactions and the mineral-water interface's control of contaminant fate and transport; and the transformation of geochemical modeling from an expert-only exercise to a widely accessible tool. In the future, embracing technological advances in machine learning, cyberinfrastructure, and isotope analytical tools will allow breakthrough research and expand the role of hydrogeochemistry in meeting society's needs for climate change mitigation and the transition from fossil fuels to renewable energies.
Collapse
Affiliation(s)
| | - Alan E Fryar
- Department of Earth and Environmental Sciences, University of Kentucky, 101 Slone Bldg., Lexington, KY, 40506-0053, USA
| | - John Apps
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94705, USA
| |
Collapse
|
46
|
Lai X, Zhou P, Kong Y, Wu B, Zhang Q, Cui X. A machine learning and experimental-based model for prediction of soil sorption capacity toward phenanthrene. ENVIRONMENTAL RESEARCH 2024; 244:117898. [PMID: 38092242 DOI: 10.1016/j.envres.2023.117898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Sorption by soil is the fundamental basis for environment fate of hydrophobic organic contaminants (HOCs), which varies significantly depending on diverse properties of soils. Therefore, a generalized approach to predict HOC sorption by soils is required. In this study, 488 data points were extracted from references and adopted to develop models for estimating the sorption capacities of phenanthrene in soils using six different machine learning (ML) approaches. The extreme gradient boosting (XGBT) model demonstrated the most favorable performance, achieving a coefficient of determination of 0.91 and root-mean-square errors of 0.24 for the testing dataset. The XGBT model's performance was further demonstrated by comparing with experimental data from batch sorption tests conducted on 20 soil samples collected from 17 provinces of China. The differences between the predicted values and the experimental values were statistically equal to zero (p = 0.14). Leveraging the XBGT model together with soil properties from the Harmonized World Soil Database, the distribution of sorption capacities in Chinese soils was successfully depicted on a national scale. This research is expected to contribute to a deeper understanding of the migration of persistent organic pollutants in terrestrial system. Furthermore, the established model holds implications for more precise and scientific soil environmental management.
Collapse
Affiliation(s)
- Xinyi Lai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Pengfei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qian Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xinyi Cui
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
47
|
Wagassa AN, Bansiwal A, Shifa TA, Zereffa EA. Ce 4+-Substituted Ni-Al mixed oxide: fluoride adsorption performance and reusability. RSC Adv 2024; 14:1229-1238. [PMID: 38174266 PMCID: PMC10762292 DOI: 10.1039/d3ra07690c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, Ce4+-doped Ni-Al mixed oxides (NACO) were synthesized and comprehensively characterized for their potential application in fluoride adsorption. NACOs were examined using Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM), revealing a sheet-like morphology with a nodular appearance. X-ray diffraction (XRD) analysis confirmed the formation of mixed oxides of cubic crystal structure, with characteristic planes (111), (200), and (220) at 2θ values of 37.63°, 43.61°, and 63.64°, respectively. Further investigations using X-ray Photoelectron Spectroscopy (XPS) identified the presence of elements such as Ni, Al, Ce, and O with oxidation states +2, +3, +4, and -2, respectively. The Brunauer-Emmett-Teller (BET) analysis indicated that NACO followed a type IV physisorption isotherm, suggesting favorable surface adsorption characteristics. The adsorption kinetics was studied, and the experimental data exhibited a good suit to both pseudo-first order and pseudo-second order, as indicated by high R2 values. Moreover, the Freundlich isotherm model demonstrated a good fit to the experimental data. The result also revealed that NACO has a maximum capacity for adsorption (qmax) of 132 mg g-1. Thermodynamic studies showed that fluoride adsorption onto NACO was feasible and spontaneous. Additionally, NACO exhibited excellent regeneration capabilities, as evidenced by a remarkable 75.71% removal efficiency at the sixth regeneration stage, indicating sustained adsorption capacity even after multiple regeneration cycles. Overall, NACOs displayed promising characteristics for fluoride adsorption, making them potential candidates for efficient and sustainable water treatment technologies.
Collapse
Affiliation(s)
- Ararso Nagari Wagassa
- CSIR-National Environmental Engineering Institute Nehru Marg Nagpur 440020 India
- Department of Applied Chemistry, Adama Science and Technology University, Adama P.O. Box 1888 Ethiopia
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Institute Nehru Marg Nagpur 440020 India
| | - Tofik Ahmed Shifa
- Department of Molecular Science and Nanosystem, Ca' Foscari University Venice Via Torino 155 30172 Venezia Mestre Italy
| | - Enyew Amare Zereffa
- Department of Applied Chemistry, Adama Science and Technology University, Adama P.O. Box 1888 Ethiopia
| |
Collapse
|
48
|
Li Y, Zhang M, Mi W, Ji L, He Q, Xie S, Xiao C, Bi Y. Spatial distribution of groundwater fluoride and arsenic and its related disease in typical drinking endemic regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167716. [PMID: 37820791 DOI: 10.1016/j.scitotenv.2023.167716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
c exposure to geogenic fluoride and arsenic iChronic exposure to geogenic fluoride and arsenic in groundwater has a deleterious influence on the health of billions of people globally. The health status of residents impacted by connected diseases is urgently needed. A twelve-year study was carried out to identify the spatial distribution pattern of high fluoride/arsenic groundwater in an arid/semi-arid area and to estimate the population exposed to related disease. A geostatistical interpolation method and a disease inversion model were used. The results indicated that fluoride/arsenic-rich groundwater primarily accumulated in basins of Shanxi Province. Groundwater fluoride exposure provided a health concern to 3.16 million persons (9.08 % of the population), including 2.50 million children at risk of dental caries. Exposure to groundwater arsenic caused a health risk to 4.38 million inhabitants (12.58 % of total), with 1.92 million at risk of lung cancer, 1.87 million at risk of bladder cancer, and 0.29 million at risk of skin cancer, respectively. The pollution and impact of groundwater fluoride and arsenic vary greatly among residents in different environments, and accurate assessment of the affected population is of great significance for residents' health and water quality management. Our research study complements the critical data on the disease risks associated with geogenic-contaminated groundwater and provides scientific basis of water quality management for policy makers.
Collapse
Affiliation(s)
- Yuan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Minghua Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Ji
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Qiusheng He
- Institute of Intelligent Low Carbon and Control Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; Shanxi Polytechnic College, Taiyuan 030006, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Chen Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
49
|
Nowicki S, Birhanu B, Tanui F, Sule MN, Charles K, Olago D, Kebede S. Water chemistry poses health risks as reliance on groundwater increases: A systematic review of hydrogeochemistry research from Ethiopia and Kenya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166929. [PMID: 37689199 DOI: 10.1016/j.scitotenv.2023.166929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Reliance on groundwater is increasing in Sub-Saharan Africa as development programmes work towards improving water access and strengthening resilience to climate change. In lower-income areas, groundwater supplies are typically installed without water quality treatment infrastructure or services. This practice is underpinned by an assumption that untreated groundwater is typically suitable for drinking due to the relative microbiological safety of groundwater compared to surface water; however, chemistry risks are largely disregarded. This article systematically reviews groundwater chemistry results from 160 studies to evaluate potential health risk in two case countries: Ethiopia and Kenya. Most studies evaluated drinking water suitability, focusing on priority parameters (fluoride, arsenic, nitrate, or salinity; 18 %), pollution impacts (10 %), or overall suitability (45 %). The remainder characterised general hydrogeochemistry (13 %), flow dynamics (10 %), or water quality suitability for irrigation (3 %). Only six studies (4 %) reported no exceedance of drinking water quality thresholds. Thus, chemical contaminants occur widely in groundwaters that are used for drinking but are not regularly monitored: 78 % of studies reported exceedance of contaminants that have direct health consequences ranging from hypertension to disrupted cognitive development and degenerative disease, and 81 % reported exceedance of aesthetic parameters that have indirect health impacts by influencing perception and use of groundwater versus surface water. Nevertheless, the spatiotemporal coverage of sampling has substantial gaps and data availability bias is driven by a) the tendency for research to concentrate in areas with known water quality problems, and b) analytical capacity limitations. Improved in-country analytical capacity could bolster more efficient assessment and prioritisation of water chemistry risks. Overall, this review demonstrates that universal and equitable access to safe drinking water (Sustainable Development Goal target 6.1) will not be achieved without wider implementation of groundwater treatment, thus a shift is required in how water systems are designed and managed.
Collapse
Affiliation(s)
- Saskia Nowicki
- School of Geography and the Environment, University of Oxford, South Parks Road, OX1 3QY Oxford, United Kingdom.
| | - Behailu Birhanu
- School of Earth Sciences, Addis Ababa University, Arat Killo Campus, NBH1 King George VI St, Addis Ababa, Ethiopia
| | - Florence Tanui
- Department of Earth and Climate Sciences, University of Nairobi, P.O. Box 29053, Nairobi, Kenya; Institute for Climate Change and Adaptation, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - May N Sule
- Cranfield Water Science Institute, School of Water, Energy and Environment, Cranfield University, College Road, MK43 0AL Cranfield, United Kingdom
| | - Katrina Charles
- School of Geography and the Environment, University of Oxford, South Parks Road, OX1 3QY Oxford, United Kingdom
| | - Daniel Olago
- Department of Earth and Climate Sciences, University of Nairobi, P.O. Box 29053, Nairobi, Kenya; Institute for Climate Change and Adaptation, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Seifu Kebede
- School of Earth Sciences, Addis Ababa University, Arat Killo Campus, NBH1 King George VI St, Addis Ababa, Ethiopia; Centre for Water Resources Research, University of KwaZulu Natal, Pietermaritzburg Private Bag X01, Scottsville, South Africa
| |
Collapse
|
50
|
Veneri F, Iamandii I, Vinceti M, Birnbaum LS, Generali L, Consolo U, Filippini T. Fluoride Exposure and Skeletal Fluorosis: a Systematic Review and Dose-response Meta-analysis. Curr Environ Health Rep 2023; 10:417-441. [PMID: 37861949 DOI: 10.1007/s40572-023-00412-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW We performed a systematic review and meta-analysis on the relation between fluoride exposure and skeletal fluorosis (SF) using a novel statistical methodology for dose-response modeling. RECENT FINDINGS Skeletal fluorosis, a major health issue that is endemic in some regions, affects millions of people worldwide. However, data regarding the dose-response relation between fluoride exposure and SF are limited and outdated. We included twenty-three studies in the meta-analysis. When comparing the highest versus the lowest fluoride category, the summary risk ratio (RR) for SF prevalence was 2.05 (95% CI 1.60; 2.64), with a value of 2.73 (95% CI 1.92; 3.90) for drinking water and 1.40 (95% CI 0.90; 2.17) for urinary fluoride. The RR by the risk of bias (RoB) was 2.37 (95% CI 1.56; 3.58) and 1.78 (95% CI 1.34; 2.36) for moderate and high RoB studies, respectively. The dose-response curve based on a one-stage cubic spline regression model showed an almost linear positive relation between exposure and SF occurrence starting from relatively low concentrations up to 5 mg/L and 2.5 mg/L, respectively, for water and urinary fluoride, with no substantial increase above this threshold. The RR for developing moderate-severe forms increases at 5.00 mg/L and 2.5 mg/L of water and urinary fluoride, respectively. Better-quality studies are needed to confirm these results, but greater attention should be given to water fluoride levels to prevent SF, in addition to the other potential adverse effects of fluoride exposure.
Collapse
Affiliation(s)
- Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Inga Iamandii
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02215, USA.
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|