1
|
Yao Q, Guo J, Guan F, Li J, Xu Y, Zhang X, Li Z, Zhang Y, Feng S. Alginate-derived biomass carbon‑molybdenum disulfide heterogeneous materials: Vertically grown/uniformly dispersed molybdenum disulfide nanosheets/nanoflowers for wastewater treatment. Int J Biol Macromol 2024; 279:135467. [PMID: 39270898 DOI: 10.1016/j.ijbiomac.2024.135467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
In order to improve the dispersion of molybdenum disulfide (MoS2) and enhance the performance of MoS2, two alginate-derived biomass carbon-MoS2 (BC-MoS2) composites: CMB/CMS, were prepared by introducing BC during the synthesis of MoS2 by hydrothermal. The effects of different gels, times and temperatures of the synthesized BC-MoS2 were investigated, and the adsorption capacity for methylene blue (MB), basic fuchsin (BF) and copper ions (Cu2+) was tested. The results indicated that the vertical growth of MoS2 on the BC surface could be realized when using xero-gel, while the BC and MoS2 were mixed uniformly when using wet-gel. Compared with MoS2, the hydrophilicity and water dispersibility of BC-MoS2 were greatly improved, and BC-MoS2 had better adsorption capacity for MB/BF/Cu2+ (99.61/86.83/60 mg/g). The adsorption mechanism exhibits that the adsorption force of BC-MoS2 on MB/BF is mainly based on the electrostatic force, and the adsorption on Cu2+ comes from the electrostatic force and the Lewis soft-soft interaction. This study dramatically enriches the application of transition metal chalcogenides and provides a meaningful reference for wastewater treatment.
Collapse
Affiliation(s)
- Qiang Yao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, PR China.
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China; Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, PR China.
| | - Jia Li
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| | - Yi Xu
- College of Textile and Clothing, Hunan Institute of Engineering, Xiangtan 411104, PR China
| | - Xin Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zheng Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yihang Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shi Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
2
|
Liu Y, Chen L, Li W, Pu J, Wang Z, He B, Yuan S, Xin J, Huang L, Luo Z, Xu J, Zhou X, Zhang H, Zhang Q, Wei L. Scalable Production of Functional Fibers with Nanoscale Features for Smart Textiles. ACS NANO 2024; 18:29394-29420. [PMID: 39428715 DOI: 10.1021/acsnano.4c10111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Functional fibers, retaining nanoscale characteristics or nanomaterial properties, represent a significant advance in nanotechnology. Notably, the combination of scalable manufacturing with cutting-edge nanotechnology further expands their utility across numerous disciplines. Manufacturing kilometer-scale functional fibers with nanoscale properties are critical to the evolution of smart textiles, wearable electronics, and beyond. This review discusses their design principles, manufacturing technologies, and key advancements in the mass production of such fibers. In addition, it summarizes the current applications and state of progress in scalable fiber technologies and provides guidance for future advances in multifunctional smart textiles, by highlighting the upcoming impending demands for evolving nanotechnology. Challenges and directions requiring sustained effort are also discussed, including material selection, device design, large-scale manufacturing, and multifunctional integration. With advances in functional fibers and nanotechnology in large-scale production, wearable electronics, and smart textiles could potentially enhance human-machine interaction and healthcare applications.
Collapse
Affiliation(s)
- Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Long Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Wulong Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jie Pu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Shixing Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jiwu Xin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Lei Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Ziwang Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jiaming Xu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
3
|
Jia G, Huang Z, Fan Y, Zhao L, Lai W, Dou SX, Wang X, Xiang H, Zhu M. Synergistic effects enabled efficient photocatalytic removal of ofloxacin antibiotic in wastewater by layered double hydroxides loaded lignin-derived carbon fibers. Int J Biol Macromol 2024; 282:136835. [PMID: 39447796 DOI: 10.1016/j.ijbiomac.2024.136835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The environmental problems caused by the abuse of antibiotics are raising serious attention, and the removal of antibiotics in wastewater is meaningful yet challenging. In this work, lignin-derived carbon fibers loaded layered double hydroxides (LDH@LCF) has been prepared for the removal of ofloxacin (OFX) from wastewater via photocatalysis, which exhibit a high degradation efficiency of 96 % under visible light and maintained 90 % after five reuses. The effects of Zn2+/Fe3+ in the samples and other parameters affecting the photocatalytic efficiency of OFX have been systematically investigated. Results demonstrated that the enhanced photocatalytic efficiency is derived from the synergistic effect of the Zn2+ and Fe3+ in the LDH with a reduced band gap of the catalyst, higher number of oxygen and metal unsaturated coordination sites, and rapid removal of photogenerated electrons. The working mechanism and degradation pathways for OFX by LDH@LCF are also elucidated in detail.
Collapse
Affiliation(s)
- Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zhiwei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yameng Fan
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia.
| | - Weihong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Shi Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia; Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Zhao Y, Zhou Y, Tan G, Ju Y, Chen Y, Huo Y, Li H, Zhou T, Song J, Fan Z, Liu T, Huang L, Chen F, Tang Y. Scalable and Sustainable Zinc (II) Ions-Glue-Assisted Conversion of Biomass Waste Bits into Carbon Aerogels for Efficient Uranium Extraction. Angew Chem Int Ed Engl 2024; 63:e202409629. [PMID: 39058372 DOI: 10.1002/anie.202409629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Carbon aerogels (CAs) have garnered significant attention due to their multifunctional applications. Biomass waste, abundantly generated by agriculture and industry, serves as a primary carbon source. However, developing a facile, sustainable, and efficient method to produce CAs from biomass waste remains challenging. In this study, a one-step Zn2+ ion-glue-assisted carbonization technique was developed to produce large-scale, high-performance CAs. Various biomass materials (wood bits, peanut shells, bamboo bits, and straw waste) were treated in a molten salt system (ZnCl2/KCl) at 300 °C for 2 h to obtain large-block CAs derived from biomass bits. Zn2+ ions cleave cellulose hydrogen bonds in natural biomass, facilitating the dehydration crosslinking reaction among cellulose, hemicellulose, and lignin, thus reconstructing the entire block structure. The resulting CAs exhibited high porosity (95 %) and low density (0.078 g/cm3). Numerous hydroxyl and carbonyl groups were preserved during the low-temperature treatment, facilitating chemical modification for diverse applications. For instance, amidoxime functionalized CAs were utilized as filters for selective and highly efficient extraction of U(VI) from wastewater. The adsorption capacity and extraction efficiency reached 801.2 mg/g and 95 % with a flux rate of 6.1×103 L/m2 ⋅ h.
Collapse
Affiliation(s)
- Yan Zhao
- MOE Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yun Zhou
- Frontier Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guoying Tan
- MOE Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yujun Ju
- MOE Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ying Chen
- MOE Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yong Huo
- Frontier Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hua Li
- MOE Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tong Zhou
- MOE Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiaxin Song
- MOE Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zimeng Fan
- MOE Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tonghuan Liu
- Frontier Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fengjuan Chen
- MOE Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Tang
- MOE Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
5
|
Feng B, Zhao W, Zhang M, Fan X, He T, Luo Q, Yan J, Sun J. Lignin-Based Carbon Nanomaterials for Biochemical Sensing Applications. Chem Asian J 2024; 19:e202400611. [PMID: 38995858 DOI: 10.1002/asia.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Lignin-based carbon nanomaterials offer several advantages, including biodegradability, biocompatibility, high specific surface area, ease of functionalization, low toxicity, and cost-effectiveness. These materials show promise in biochemical sensing applications, particularly in the detection of metal ions, organic compounds, and human biosignals. Various methods can be employed to synthesize carbon nanomaterials with different dimensions ranging from 0D-3D, resulting in diverse structures and physicochemical properties. This study provides an overview of the preparation techniques and characteristics of multidimensional (0-3D) lignin-based carbon nanomaterials, such as carbon dots (CDs), carbon nanotubes (CNTs), graphene, and carbon aerogels (CAs). Additionally, the sensing capabilities of these materials are compared and summarized, followed by a discussion on the potential challenges and future prospects in sensor development.
Collapse
Affiliation(s)
- Baofang Feng
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063015, P.R. China
| | - Min Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xu Fan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Ting He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Qizhen Luo
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jipeng Yan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Beijing Engineering Research Center of Cellulose and Its Derivatives, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
6
|
Deng D, Wei N, Wu S, Wang Z, Li H, Xu L, Li H. Deep Eutectic Solvent and Molten Salt-Assisted Construction of Wheat Straw-Derived N/O Co-Doped Porous Carbon for Flexible Zinc-Air Batteries. CHEMSUSCHEM 2024:e202401223. [PMID: 39297426 DOI: 10.1002/cssc.202401223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/26/2024] [Indexed: 11/05/2024]
Abstract
As a common biomass resource, wheat straw is gradually being derived as carbon materials for oxygen reduction reaction (ORR) in zinc-air batteries (ZABs). Herein, the wheat straw-derived carbon was prepared by ball milling and pyrolysis using deep eutectic solvent (DES) as the medium, which avoided the cumbersome procedures. The hydrogen bond of DES was utilized to reconstructed into a hydrogen bond network structure between DES and lignin/cellulose/hemicellulose of wheat straw. The hydrogen bond network structure was converted into N/O co-doped porous carbon (N/O-WSPC) with abundant N/O co-doped sites after high-temperature pyrolysis. Meanwhile, KHCO3 was employed to further generate hierarchical pore structures and increase the specific surface area of the N/O-WSPC. The N/O co-doped sites provided intrinsic ORR activity, while the porous structure facilitates the mass transfer effect. Therefore, the N/O-WSPC exhibited a half-wave potential of 0.87 V (vs. RHE) and a limiting current density of 5.98 mA cm-2 for ORR. The N/O-WSPC-based flexible ZAB displayed an energy density of 652.23 Wh kg-1 and a charging-discharging cycle duration for over 19 h. The DES-assisted strategy facilitates the sustainable and efficient application of wheat straw-derived carbon materials in energy storage and conversion devices.
Collapse
Affiliation(s)
- Daijie Deng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| | - Nan Wei
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| | - Suqin Wu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| | - Zehui Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| | - Henan Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| |
Collapse
|
7
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Li T, Liu Y, Huang Y, Zhang L, Chen Z, Yang W, Shi G, Zhou J, Zou R, Gan J, Zhong L, Peng X. Carbon Fiber Film with Multi-Hollow Channels to Expedite Oxygen Electrocatalytic Reaction Kinetics for Flexible Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311675. [PMID: 38441359 DOI: 10.1002/smll.202311675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/18/2024] [Indexed: 08/02/2024]
Abstract
The high oxygen electrocatalytic overpotential of flexible cathodes due to sluggish reaction kinetics result in low energy conversion efficiency of wearable zinc-air batteries (ZABs). Herein, lignin, as a 3D flexible carbon-rich macromolecule, is employed for partial replacement of polyacrylonitrile and constructing flexible freestanding air electrodes (FFAEs) with large amount of mesopores and multi-hollow channels via electrospinning combined with annealing strategy. The presence of lignin with disordered structure decreases the graphitization of carbon fibers, increases the structural defects, and optimizes the pore structure, facilitating the enhancement of electron-transfer kinetics. This unique structure effectively improves the accessibility of graphitic-N/pyridinic-N with oxygen reduction reaction (ORR) activity and pyridinic-N with oxygen evolution reaction (OER) activity for FFAEs, accelerating the mass transfer process of oxygen-active species. The resulting N-doped hollow carbon fiber films (NHCFs) exhibit superior bifunctional ORR/OER performance with a low potential difference of only 0.60 V. The rechargeable ZABs with NHCFs as metal-free cathodes possess a long-term cycling stability. Furthermore, the NHCFs can be used as FFAEs for flexible ZABs which have a high specific capacity and good cycling stability under different bending states. This work paves the way to design and produce highly active metal-free bifunctional FFAEs for electrochemical energy devices.
Collapse
Affiliation(s)
- Tingzhen Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yijun Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Yongfa Huang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lei Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zehong Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wu Yang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ge Shi
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiawei Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ren Zou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jianyun Gan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
9
|
He Z, Lin H, Sui J, Wang K, Wang H, Cao L. Seafood waste derived carbon nanomaterials for removal and detection of food safety hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172332. [PMID: 38615776 DOI: 10.1016/j.scitotenv.2024.172332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Huiying Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
10
|
Hu Z, Sun X, Zhang X, Jia X, Feng X, Cui M, Gao E, Qian L, Gao X, Zhang J. Kinetic Modulation of Carbon Nanotube Growth in Direct Spinning for High-Strength Carbon Nanotube Fibers. J Am Chem Soc 2024. [PMID: 38600631 DOI: 10.1021/jacs.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With impressive individual properties, carbon nanotubes (CNTs) show great potential in constructing high-performance fibers. However, the tensile strength of as-prepared carbon nanotube fibers (CNTFs) by floating catalyst chemical vapor deposition (FCCVD) is plagued by the weak intertube interaction between the essential CNTs. Here, we developed a chlorine (Cl)/water (H2O)-assisted length furtherance FCCVD (CALF-FCCVD) method to modulate the intertube interaction of CNTs and enhance the mechanical strength of macroscopic fibers. The CNTs acquired by the CALF-FCCVD method show an improvement of 731% in length compared to that by the conventional iron-based FCCVD system. Moreover, CNTFs prepared by CALF-FCCVD spinning exhibit a high tensile strength of 5.27 ± 0.27 GPa (4.62 ± 0.24 N/tex) and reach up to 5.61 GPa (4.92 N/tex), which outperforms most previously reported results. Experimental measurements and density functional theory calculations show that Cl and H2O play a crucial role in the furtherance of CNT growth. Cl released from the decomposition of methylene dichloride greatly accelerates the growth of the CNTs; H2O can remove amorphous carbon on the floating catalysts to extend their lifetime, which further modulates the growth kinetics and improves the purity of the as-prepared fibers. Our design of the CALF-FCCVD platform offers a powerful way to tune CNT growth kinetics in direct spinning toward high-strength CNTFs.
Collapse
Affiliation(s)
- Zuncheng Hu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiucai Sun
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xinshi Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xiangzheng Jia
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xueting Feng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingwei Cui
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Enlai Gao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Liu Qian
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xin Gao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
11
|
Fu X, Liu Z, Jiao C, Chen P, Long Z, Ye D. Aesthetic Cellulose Filaments with Water-Triggered Switchable Internal Stress and Customizable Polarized Iridescence Toward Green Fashion Innovation. ACS NANO 2024; 18:7496-7503. [PMID: 38422388 DOI: 10.1021/acsnano.3c11845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Healthy, convenient, and aesthetic hair dyeing and styling are essential to fashion trends and personal-social interactions. Herein, we fabricate green, scalable, and aesthetic regenerated cellulose filaments (ACFs) with customizable iridescent colors, outstanding mechanical properties, and water-triggered moldability for convenient and fashionable artificial hairdressing. The fabrication of ACFs involves cellulose dissolution, cross-linking, wet-spinning, and nanostructured orientation. Notably, the cross-linking strategy endows the ACFs with significantly weakened internal stress, confirmed by monitoring the offset of the C-O-C group in the cellulose molecular chain with Raman imaging, which ensures a tailorable orientation of the nanostructure during wet stretching and tunable iridescent polarization colors. Interestingly, ACFs can be tailored for three-dimensional shaping through a facile water-triggered adjustable internal stress: temporary shaping with low-level internal stress in the wet state and permanent shaping with high-level internal stress in the dry state. The health, convenience, and green aesthetic filaments show great potential in personal wearables.
Collapse
Affiliation(s)
- Xiaotong Fu
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
- Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zirong Liu
- Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chenlu Jiao
- Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pan Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhu Long
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongdong Ye
- Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
12
|
Chen S, Jiang Y, Zhu Z, Zhang Q, Zhang C, Zhang Q, Qian W, Zhang S, Wei F. Fluidization and Application of Carbon Nano Agglomerations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306355. [PMID: 38115551 PMCID: PMC10885674 DOI: 10.1002/advs.202306355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Carbon nanomaterials are unique with excellent functionality and diverse structures. However, agglomerated structures are commonly formed because of small-size effects and surface effects. Their hierarchical assembly into micro particles enables carbon nanomaterials to break the boundaries of classical Geldart particle classification before stable fluidization under gas-solid interactions. Currently, there are few systematic reports regarding the structural evolution and fluidization mechanism of carbon nano agglomerations. Based on existing research on carbon nanomaterials, this article reviews the fluidized structure control and fluidization principles of prototypical carbon nanotubes (CNTs) as well as their nanocomposites. The controlled agglomerate fluidization technology leads to the successful mass production of agglomerated and aligned CNTs. In addition, the self-similar agglomeration of individual ultralong CNTs and nanocomposites with silicon as model systems further exemplify the important role of surface structure and particle-fluid interactions. These emerging nano agglomerations have endowed classical fluidization technology with more innovations in advanced applications like energy storage, biomedical, and electronics. This review aims to provide insights into the connections between fluidization and carbon nanomaterials by highlighting their hierarchical structural evolution and the principle of agglomerated fluidization, expecting to showcase the vitality and connotation of fluidization science and technology in the new era.
Collapse
Affiliation(s)
- Sibo Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yaxin Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenxing Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qi Zhang
- Beijing Research Institute of Chemical Industry, SINOPEC, Beijing, 100013, China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Ordos Laboratory, Inner Mongolia, 017000, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Weizhong Qian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Ordos Laboratory, Inner Mongolia, 017000, China
| | - Shijun Zhang
- Beijing Research Institute of Chemical Industry, SINOPEC, Beijing, 100013, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Taher MA, Wang X, Faridul Hasan KM, Miah MR, Zhu J, Chen J. Lignin Modification for Enhanced Performance of Polymer Composites. ACS APPLIED BIO MATERIALS 2023; 6:5169-5192. [PMID: 38036466 DOI: 10.1021/acsabm.3c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The biopolymer lignin, which is heterogeneous and abundant, is usually present in plant cell walls and gives them rigidity and strength. As a byproduct of the wood, paper, and pulp manufacturing industry, lignin ranks as the second most prevalent biopolymer worldwide, following cellulose. This review paper explores the extraction, modification, and prospective applications of lignin in various industries, including the enhancement of thermosetting and thermoplastic polymers, biomedical applications such as vanillin production, fuel development, carbon fiber composites, and the creation of nanomaterials for food packaging and drug delivery. The structural characteristics of lignin remain undefined due to its origin, separation, and fragmentation processes. This comprehensive overview encompasses state-of-the-art techniques, potential applications, diverse extraction methods, chemical modifications, carbon fiber utilization, and the extraction of vanillin. Moreover, the review focuses on the utilization of lignin-modified polymer blends across multiple manufacturing sectors, providing insights into the advantages and limitations of this innovative approach for the development of environmentally friendly materials.
Collapse
Affiliation(s)
- Muhammad Abu Taher
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaolin Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | | | - Mohammad Raza Miah
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
14
|
Thalakkale Veettil U, Moreno A, Huertas-Alonso AJ, Morsali M, Pylypchuk IV, Liu LY, Sipponen MH. Mechanically recyclable melt-spun fibers from lignin esters and iron oxide nanoparticles: towards circular lignin materials. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:10424-10435. [PMID: 38089756 PMCID: PMC10711735 DOI: 10.1039/d3gc02381h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/12/2023] [Indexed: 10/16/2024]
Abstract
The inferior thermoplastic properties have limited production of melt-spun fibers from lignin. Here we report on the controlled esterification of softwood kraft lignin (SKL) to enable scalable, solvent-free melt spinning of microfibers using a cotton candy machine. We found that it is crucial to control the esterification process as melt-spun fibers could be produced from lignin oleate and lignin stearate precursors with degrees of esterification (DE) ranging from 20-50%, but not outside this range. To fabricate a functional hybrid material, we incorporated magnetite nanoparticles (MNPs) into the lignin oleate fibers by melt blending and subsequent melt spinning. Thermogravimetric analysis and X-ray diffraction studies revealed that increasing the weight fraction of MNPs led to improved thermal stability of the fibers. Finally, we demonstrated adsorption of organic dyes, magnetic recovery, and recycling via melt spinning of the regular and magnetic fibers with 95% and 83% retention of the respective adsorption capacities over three adsorption cycles. The mechanical recyclability of the microfibers represents a new paradigm in lignin-based circular materials.
Collapse
Affiliation(s)
- Unnimaya Thalakkale Veettil
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Adrian Moreno
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Alberto J Huertas-Alonso
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Mohammad Morsali
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University SE-10691 Stockholm Sweden
| | - Ievgen V Pylypchuk
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Li-Yang Liu
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University SE-10691 Stockholm Sweden
| |
Collapse
|
15
|
Atinafu DG, Kim YU, Kim S, Kang Y, Kim S. Advances in Biocarbon and Soft Material Assembly for Enthalpy Storage: Fundamentals, Mechanisms, and Multimodal Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305418. [PMID: 37967349 DOI: 10.1002/smll.202305418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Indexed: 11/17/2023]
Abstract
High-value-added biomass materials like biocarbon are being actively pursued integrating them with soft materials in a broad range of advanced renewable energy technologies owing to their advantages, such as lightweight, relatively low-cost, diverse structural engineering applications, and high energy storage potential. Consequently, the hybrid integration of soft and biomass-derived materials shall store energy to mitigate intermittency issues, primarily through enthalpy storage during phase change. This paper introduces the recent advances in the development of natural biomaterial-derived carbon materials in soft material assembly and its applications in multidirectional renewable energy storage. Various emerging biocarbon materials (biochar, carbon fiber, graphene, nanoporous carbon nanosheets (2D), and carbon aerogel) with intrinsic structures and engineered designs for enhanced enthalpy storage and multimodal applications are discussed. The fundamental design approaches, working mechanisms, and feature applications, such as including thermal management and electromagnetic interference shielding, sensors, flexible electronics and transparent nanopaper, and environmental applications of biocarbon-based soft material composites are highlighted. Furthermore, the challenges and potential opportunities of biocarbon-based composites are identified, and prospects in biomaterial-based soft materials composites are presented.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungeun Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
16
|
Guan X, Tan S, Wang L, Zhao Y, Ji G. Electronic Modulation Strategy for Mass-Producible Ultrastrong Multifunctional Biomass-Based Fiber Aerogel Devices: Interfacial Bridging. ACS NANO 2023; 17:20525-20536. [PMID: 37815393 DOI: 10.1021/acsnano.3c07300] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The emergence of green flexible aerogel electronics based on natural materials is expected to solve part of the global environmental and energy crisis. However, it is still challenging to achieve large-scale production and multifunctional stable applications of natural biomass fiber aerogel (BFA) materials. Herein, we exploit the interfacial bridging between the flower-type titanium dioxide nanoarray (FTNA) and natural fiber substrates to modulate the electronic structure and loss mechanism to achieve multifunctional properties. Specifically, the fibrous substrate with wrinkled features induces lattice strain in titania through precise interfacial bridging, effectively improving the intrinsic properties of the BFA materials. This interfacial bridging regulation strategy is also confirmed by X-ray absorption fine structure spectroscopy (XAS). More importantly, the construction of BFA products for different macroscopic and multifunctional applications through simple processing methods will facilitate the transition from natural materials to multifunctional flexible electronics. Therefore, the as-prepared blanket-type BFA (TCBFA) has good mechanical properties, electromagnetic protection properties, thermal stealth properties, high-temperature flame retardancy, and UV resistance. Meanwhile, the membrane-type (TCBFAM) multifunctional wearable fiber aerogel device exhibits superior flexibility, efficient Joule heating performance, and a smart response. This regulation strategy provides another concept for the design and innovation of green multifunctional fiber-integrated aerogels.
Collapse
Affiliation(s)
- Xiaomeng Guan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Shujuan Tan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yue Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
17
|
Wang Q, Chen Z, Luo Q, Li H, Li J, Yang W. Capillary Evaporation on High-Dense Conductive Ramie Carbon for Assisting Highly Volumetric-Performance Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303349. [PMID: 37312646 DOI: 10.1002/smll.202303349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Conductive biomass carbon possesses unique properties of excellent conductivity and outstanding thermal stability, which can be widely used as conductive additive. However, building the high-dense conductive biomass carbon with highly graphitized microcrystals at a lower carbonization temperature is still a major challenge because of structural disorder and low crystallinity of source material. Herein, a simple capillary evaporation method to efficiently build the high-dense conductive ramie carbon (hd-CRC) with the higher tap density of 0.47 cm3 g-1 than commercialized Super-C45 (0.16 cm3 g-1 ) is reported. Such highly graphitized microcrystals of hd-CRC can achieve the high electrical conductivity of 94.55 S cm-1 at the yield strength of 92.04 MPa , which is higher than commercialized Super-C45 (83.92 S cm-1 at 92.04 MPa). As a demonstration, hd-CRC based symmetrical supercapacitors possess a highly volumetric energy density of 9.01 Wh L-1 at 25.87 kW L-1 , much more than those of commercialized Super-C45 (5.06 Wh L-1 and 19.30 kW L-1 ). Remarkably, the flexible package supercapacitor remarkably presents a low leakage current of 10.27 mA and low equivalent series resistance of 3.93 mΩ. Evidently, this work is a meaningful step toward high-dense conductive biomass carbon from traditional biomass graphite carbon, greatly promoting the highly-volumetric-performance supercapacitors.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhenyu Chen
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qitian Luo
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haijian Li
- Jinshi Technology Co. Ltd., 289 Longquanyi District, Chengdu, 610100, China
| | - Jie Li
- Jinshi Technology Co. Ltd., 289 Longquanyi District, Chengdu, 610100, China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Jinshi Technology Co. Ltd., 289 Longquanyi District, Chengdu, 610100, China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
18
|
Gao Z, Xu L, Jiao X, Li X, He C, Wang HZ, Sun C, Hou PX, Liu C, Cheng HM. Strong Connection of Single-Wall Carbon Nanotube Fibers with a Copper Substrate Using an Intermediate Nickel Layer. ACS NANO 2023; 17:18290-18298. [PMID: 37706683 DOI: 10.1021/acsnano.3c05374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Lightweight carbon nanotube fibers (CNTFs) with high electrical conductivity and high tensile strength are considered to be an ideal wiring medium for a wide range of applications. However, connecting CNTFs with metals by soldering is extremely difficult due to the nonreactive nature and poor wettability of CNTs. Here we report a strong connection between single-wall CNTFs (SWCNTFs) and a Cu matrix by introducing an intermediate Ni layer, which enables the formation of mechanically strong and electrically conductive joints between SWCNTFs and a eutectic Sn-37Pb alloy. The electrical resistance change rate (ΔR/R0) of Ni-SWCNTF/solder-Cu interconnects only decreases ∼29.8% after 450 thermal shock cycles between temperatures of -196 and 150 °C, which is 8.2 times lower than that without the Ni layer. First-principles calculations indicate that the introduction of the Ni layer significantly improves the heterogeneous interfacial bond strength of the Ni-SWCNTF/solder-Cu connections.
Collapse
Affiliation(s)
- Zhaoqing Gao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Lele Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Xinyu Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Xin Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chengjian He
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Hao-Zike Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chunyang Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
19
|
He H, Zhang R, Zhang P, Wang P, Chen N, Qian B, Zhang L, Yu J, Dai B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205557. [PMID: 36988448 PMCID: PMC10238227 DOI: 10.1002/advs.202205557] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Biomass is considered as a promising source to fabricate functional carbon materials for its sustainability, low cost, and high carbon content. Biomass-derived-carbon materials (BCMs) have been a thriving research field. Novel structures, diverse synthesis methods, and versatile applications of BCMs have been reported. However, there has been no recent review of the numerous studies of different aspects of BCMs-related research. Therefore, this paper presents a comprehensive review that summarizes the progress of BCMs related research. Herein, typical types of biomass used to prepare BCMs are introduced. Variable structures of BCMs are summarized as the performance and properties of BCMs are closely related to their structures. Representative synthesis strategies, including both their merits and drawbacks are reviewed comprehensively. Moreover, the influence of synthetic conditions on the structure of as-prepared carbon products is discussed, providing important information for the rational design of the fabrication process of BCMs. Recent progress in versatile applications of BCMs based on their morphologies and physicochemical properties is reported. Finally, the remaining challenges of BCMs, are highlighted. Overall, this review provides a valuable overview of current knowledge and recent progress of BCMs, and it outlines directions for future research development of BCMs.
Collapse
Affiliation(s)
- Hongzhe He
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ruoqun Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Pengcheng Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ping Wang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials ScienceState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Binbin Qian
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Lian Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Jianglong Yu
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Baiqian Dai
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| |
Collapse
|
20
|
Du X, Lin Z, Zhang Y, Li P. Microstructural tailoring of porous few-layer graphene-like biochar from kitchen waste hydrolysis residue in molten carbonate medium: Structural evolution and conductive additive-free supercapacitor application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162045. [PMID: 36754327 DOI: 10.1016/j.scitotenv.2023.162045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Biomass-derived graphene-like material is a promising candidate for supercapacitor electrodes, while it is critical to controllably convert biomass into structure-tunable graphene. Herein, few-layer graphene-like biochar (FLGBS) was successfully fabricated from waste biomass in molten carbonate medium. Molten carbonate acted as the effective catalyst for graphitizing and the liquid medium for microcrystal relinking to achieve the rearrangement of carbon structure. It was found that the stacking of graphene layer and formation of porous structure were influenced by the volume of reaction medium and biomass pre‑carbonation. Namely, increasing the dosage of molten K2CO3 was in favor to form few layer-type graphene structure, but excess dosage could destroy the nanopore structure to expand the aperture. In addition, pre‑carbonation at high temperature impeded the exfoliation of graphene layers. When FLGBSs were applied to fabricate conductive additive-free electrode, they displayed a superior supercapacitor performance (up to 237.4 F g-1 at 0.5 Ag-1). This excellent performance should be attributed to the large specific surface area, hierarchical pore structure and graphene-like structure. In short, this work could help to get insights into the structural evolution of biomass carbon to graphene-like biochar in molten carbonate medium and achieve the tailoring of microstructure for further application in energy storage.
Collapse
Affiliation(s)
- Xinhang Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zhiwen Lin
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
21
|
Zhou L, You X, Wang L, Qi S, Wang R, Uraki Y, Zhang H. Fabrication of Graphitized Carbon Fibers from Fusible Lignin and Their Application in Supercapacitors. Polymers (Basel) 2023; 15:1947. [PMID: 37112094 PMCID: PMC10142849 DOI: 10.3390/polym15081947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Lignin-based carbon fibers (LCFs) with graphitized structures decorated on their surfaces were successfully prepared using the simultaneous catalyst loading and chemical stabilization of melt-spun lignin fibers, followed by quick carbonization functionalized as catalytic graphitization. This technique not only enables surficial graphitized LCF preparation at a relatively low temperature of 1200 °C but also avoids additional treatments used in conventional carbon fiber production. The LCFs were then used as electrode materials in a supercapacitor assembly. Electrochemical measurements confirmed that LCF-0.4, a sample with a relatively low specific surface area of 89.9 m2 g-1, exhibited the best electrochemical properties. The supercapacitor with LCF-0.4 had a specific capacitance of 10.7 F g-1 at 0.5 A g-1, a power density of 869.5 W kg-1, an energy density of 15.7 Wh kg-1, and a capacitance retention of 100% after 1500 cycles, even without activation.
Collapse
Affiliation(s)
- Linfei Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| | - Xiangyu You
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| | - Lingjie Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| | - Shijie Qi
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| | - Ruichen Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| | - Yasumitsu Uraki
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Huijie Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| |
Collapse
|
22
|
Zhai G, Zhou J, Xie M, Jia C, Hu Z, Xiang H, Zhu M. Improved photocatalytic property of lignin-derived carbon nanofibers through catalyst synergy. Int J Biol Macromol 2023; 233:123588. [PMID: 36764341 DOI: 10.1016/j.ijbiomac.2023.123588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Converting lignin into high value-added products is essential to reduce our dependence on petroleum resources and protect our environment. In this work, TiO2 and g-C3N4 are loaded in the lignin-derived carbon nanofibers (LCNFs) and an efficient LCNFs-based photocatalytic material (TiO2/g-C3N4@LCNFs) is developed. The spinnability of lignin solution, the chemical structure and morphology of the LCNFs, and the catalytic degradation property of the TiO2/g-C3N4@LCNFs for Rhodamine B (RhB) are systematically investigated. The TiO2/g-C3N4@LCNFs achieve a 92.76 % degradation rate of RhB under UV-vis irradiation, which is close to or higher than most reported carbon fiber-based photocatalysts. The excellent degradation property of the photocatalysts can be ascribed to the synergy of TiO2 and g-C3N4, which improves the excitation efficiency of electron and hole, and prolongs the lifetime of electron-hole pairs. We envision that our work will provide some guidance for the development of efficient photocatalysts based on biomass-derived fiber materials.
Collapse
Affiliation(s)
- Gongxun Zhai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jialiang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Jiangsu Gem Advanced Fiber Materials Research Institute Co., Ltd., Nantong 226000, China
| | - Min Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
23
|
Zhang Z, Zhou J, Yu S, Wei L, Hu Z, Xiang H, Zhu M. Melt-spun bio-based PLA-co-PET copolyester fibers with tunable properties: Synergistic effects of chemical structure and drawing process. Int J Biol Macromol 2023; 226:670-678. [PMID: 36521703 DOI: 10.1016/j.ijbiomac.2022.12.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The fabrication of bio-based copolyester fiber with adjustable crystallization, orientation structure and mechanical property still remains a great challenge. In this study, a series of copolyester fibers based on terephthalic acid (PTA), ethylene glycol (EG) and l-Lactide (L-LA) were prepared via melt copolymerization and spinning. The resultant PLA-co-PET (PETLA) fibers exhibited tunable structure and property due to the synergistic effects of chemical structure and drawing process. The chemical structure of PETLA was confirmed by NMR, FTIR and XRD, which suggested that the random degree of copolymer increased with LA content and the viscosity decreased with the increase of LA content. The crystallization behavior, melting characteristic, thermal stability and rheological property were investigated by DSC, TGA and rheometer, the results indicated that all the PETLA exhibited the crystallization capacity, melting temperature and thermal stability were slightly affected by LA segment. The synergistic effects of LA segment and spinning process on PETLA structure and property were analyzed by WAXD and SAXS. The breaking strength of PETLA fibers dropped from 5.3 cN/dtex of PET to 2.8 cN/dtex of PET85LA15, which still met the requirements of most textile applications. Therefore, our work presented a feasible approach to prepare bio-based polyester fibers with tunable property.
Collapse
Affiliation(s)
- Zhihao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jialiang Zhou
- Jiangsu Gem Advanced Fiber Materials Research Institute Co., Ltd., Nantong 226000, China
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lifei Wei
- Shanghai Different Advanced Material Co., Ltd., Shanghai 201502, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
24
|
Jia G, Innocent MT, Yu Y, Hu Z, Wang X, Xiang H, Zhu M. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization. Int J Biol Macromol 2023; 226:646-659. [PMID: 36521701 DOI: 10.1016/j.ijbiomac.2022.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lignin remains the second abundant source of renewable carbon with an aromatic structure. However, most of the lignin is burnt directly for power generation, with an effective utilization rate of <2 %, making value addition on lignin an urgent requirement. From this perspective, preparation of lignin-based carbon fibers has been widely studied as an effective way to increase value addition on lignin. However, lignin species are diverse and complex in structure, and the pathway that enables changes in lignin structure during pretreatment, fiber formation, stabilization, and carbonization is still uncertain. In this review, we condense the common structural evolution route from the previous studies, which can serve as a guide towards engineered lignin carbon fibers with high performance properties.
Collapse
Affiliation(s)
- Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mugaanire Tendo Innocent
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|