1
|
Yang H, Xie Y, Li S, Bao C, Wang J, Li C, Nie J, Quan Y. Immunogenicity of intranasal vaccine based on SARS-CoV-2 spike protein during primary and booster immunizations in mice. Hum Vaccin Immunother 2024; 20:2364519. [PMID: 38880868 PMCID: PMC11181929 DOI: 10.1080/21645515.2024.2364519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Mucosal immunity plays a crucial role in combating and controlling the spread of highly mutated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recombinant subunit vaccines have shown safety and efficacy in clinical trials, but further investigation is necessary to evaluate their feasibility as mucosal vaccines. This study developed a SARS-CoV-2 mucosal vaccine using spike (S) proteins from a prototype strain and the omicron variant, along with a cationic chitosan adjuvant, and systematically evaluated its immunogenicity after both primary and booster immunization in mice. Primary immunization through intraperitoneal and intranasal administration of the S protein elicited cross-reactive antibodies against prototype strains, as well as delta and omicron variants, with particularly strong effects observed after mucosal vaccination. In the context of booster immunization following primary immunization with inactivated vaccines, the omicron-based S protein mucosal vaccine resulted in a broader and more robust neutralizing antibody response in both serum and respiratory mucosa compared to the prototype vaccine, enhancing protection against different variants. These findings indicate that mucosal vaccination with the S protein has the potential to trigger a broader and stronger antibody response during primary and booster immunization, making it a promising strategy against respiratory pathogens.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Administration, Intranasal
- Mice
- Immunization, Secondary/methods
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Mice, Inbred BALB C
- Female
- Immunity, Mucosal
- Immunogenicity, Vaccine
- Cross Reactions/immunology
- Chitosan/immunology
- Chitosan/administration & dosage
- Adjuvants, Vaccine/administration & dosage
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
Collapse
Affiliation(s)
- Huijie Yang
- Division of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Ying Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Shuyan Li
- Division of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Chunting Bao
- Changchun Institute of Biological Products, Changchun, China
| | - Jiahao Wang
- Sinovac Life Sciences Co., Ltd., Beijing, China
| | - Changgui Li
- Division of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Jiaojiao Nie
- Department of R&D, Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Yaru Quan
- Division of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Reguzova A, Müller M, Pagallies F, Burri D, Salomon F, Rziha HJ, Bittner-Schrader Z, Verstrepen BE, Böszörményi KP, Verschoor EJ, Gerhauser I, Elbers K, Esen M, Manenti A, Monti M, Rammensee HG, Derouazi M, Löffler MW, Amann R. A multiantigenic Orf virus-based vaccine efficiently protects hamsters and nonhuman primates against SARS-CoV-2. NPJ Vaccines 2024; 9:191. [PMID: 39414789 PMCID: PMC11484955 DOI: 10.1038/s41541-024-00981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Among the common strategies to design next-generation COVID-19 vaccines is broadening the antigenic repertoire thereby aiming to increase efficacy against emerging variants of concern (VoC). This study describes a new Orf virus-based vector (ORFV) platform to design a multiantigenic vaccine targeting SARS-CoV-2 spike and nucleocapsid antigens. Vaccine candidates were engineered, either expressing spike protein (ORFV-S) alone or co-expressing nucleocapsid protein (ORFV-S/N). Mono- and multiantigenic vaccines elicited comparable levels of spike-specific antibodies and virus neutralization in mice. Results from a SARS-CoV-2 challenge model in hamsters suggest cross-protective properties of the multiantigenic vaccine against VoC, indicating improved viral clearance with ORFV-S/N, as compared to equal doses of ORFV-S. In a nonhuman primate challenge model, vaccination with the ORFV-S/N vaccine resulted in long-term protection against SARS-CoV-2 infection. These results demonstrate the potential of the ORFV platform for prophylactic vaccination and represent a preclinical development program supporting first-in-man studies with the multiantigenic ORFV vaccine.
Collapse
Affiliation(s)
- Alena Reguzova
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Melanie Müller
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Felix Pagallies
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Dominique Burri
- Speransa Therapeutics, Bethmannstrasse 8, 60311, Frankfurt am Main, Germany
| | - Ferdinand Salomon
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Zsofia Bittner-Schrader
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Babs E Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kinga P Böszörményi
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Knut Elbers
- Boehringer Ingelheim International GmbH, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany
- ViraTherapeutics GmbH, Bundesstraße 27, 6063, Rum, Austria
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen; Cluster of Excellence (EXC2124) "Controlling Microbes to Fight Infection", Tübingen, Germany
| | - Alessandro Manenti
- VisMederi Srl., Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Martina Monti
- VisMederi Srl., Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Hans-Georg Rammensee
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Madiha Derouazi
- Speransa Therapeutics, Bethmannstrasse 8, 60311, Frankfurt am Main, Germany
| | - Markus W Löffler
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany.
- Centre for Clinical Transfusion Medicine, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany.
| | - Ralf Amann
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Wang W, Bhushan G, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Pollett SD, Mitre E, Katzelnick LC, Weiss CD. Human and hamster sera correlate well in identifying antigenic drift among SARS-CoV-2 variants, including JN.1. J Virol 2024:e0094824. [PMID: 39365051 DOI: 10.1128/jvi.00948-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024] Open
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with fivefold to sixfold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a fivefold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.IMPORTANCEUpdates to COVID-19 vaccine antigens depend on assessing how much vaccine antigens differ antigenically from newer SARS-CoV-2 variants. Human sera from single variant infections are ideal for discriminating antigenic differences among variants, but such primary infection sera are now rare due to high population immunity. It remains unclear whether sera from experimentally infected animals could substitute for human sera for antigenic assessments. This report shows that neutralization titers of variant-matched human and hamster primary infection sera correlate well and recognize variants similarly, indicating that hamster sera can be a proxy for human sera for antigenic assessments. We further show that human sera following an XBB.1.5 booster vaccine broadly neutralized XBB sub-lineage variants but titers were fivefold lower against the more recent JN.1 variant. These findings support updating the current COVID-19 vaccine variant composition and developing a framework for assessing antigenic differences in future variants using hamster primary infection sera.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhuanand Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Kimberly A Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Tony T Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Lui WY, Ong CP, Cheung PHH, Ye ZW, Chan CP, To KKW, Yuen KS, Jin DY. Nsp1 facilitates SARS-CoV-2 replication through calcineurin-NFAT signaling. mBio 2024; 15:e0039224. [PMID: 38411085 PMCID: PMC11005343 DOI: 10.1128/mbio.00392-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.
Collapse
Affiliation(s)
- Wai-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chon Phin Ong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Zi-Wei Ye
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kelvin Kai-Wang To
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- School of Nursing, Tung Wah College, Kowloon, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
5
|
Wang W, Bhushan GL, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Mitre E, Pollett SD, Katzelnick LC, Weiss CD. Antigenic cartography using hamster sera identifies SARS-CoV-2 JN.1 evasion seen in human XBB.1.5 booster sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588359. [PMID: 38712124 PMCID: PMC11071293 DOI: 10.1101/2024.04.05.588359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali L. Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B. Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhu Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
| | - Kimberly A. Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A. Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J. Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K. Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Tony T. Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D. Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Khalil AM, Nogales A, Martínez-Sobrido L, Mostafa A. Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1. Front Cell Infect Microbiol 2024; 14:1357866. [PMID: 38375361 PMCID: PMC10875036 DOI: 10.3389/fcimb.2024.1357866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid, Spain
| | - Luis Martínez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
7
|
Cai HL, Huang YW. Reverse genetics systems for SARS-CoV-2: Development and applications. Virol Sin 2023; 38:837-850. [PMID: 37832720 PMCID: PMC10786661 DOI: 10.1016/j.virs.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused serious harm to human health and struck a blow to global economic development. Research on SARS-CoV-2 has greatly benefited from the use of reverse genetics systems, which have been established to artificially manipulate the viral genome, generating recombinant and reporter infectious viruses or biosafety level 2 (BSL-2)-adapted non-infectious replicons with desired modifications. These tools have been instrumental in studying the molecular biological characteristics of the virus, investigating antiviral therapeutics, and facilitating the development of attenuated vaccine candidates. Here, we review the construction strategies, development, and applications of reverse genetics systems for SARS-CoV-2, which may be applied to other CoVs as well.
Collapse
Affiliation(s)
- Hou-Li Cai
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Stauft CB, Selvaraj P, D'Agnillo F, Meseda CA, Liu S, Pedro CL, Sangare K, Lien CZ, Weir JP, Starost MF, Wang TT. Intranasal or airborne transmission-mediated delivery of an attenuated SARS-CoV-2 protects Syrian hamsters against new variants. Nat Commun 2023; 14:3393. [PMID: 37296125 PMCID: PMC10250859 DOI: 10.1038/s41467-023-39090-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Detection of secretory antibodies in the airway is highly desirable when evaluating mucosal protection by vaccines against a respiratory virus, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that intranasal delivery of an attenuated SARS-CoV-2 (Nsp1-K164A/H165A) induces both mucosal and systemic IgA and IgG in male Syrian hamsters. Interestingly, either direct intranasal immunization or airborne transmission-mediated delivery of Nsp1-K164A/H165A in Syrian hamsters offers protection against heterologous challenge with variants of concern (VOCs) including Delta, Omicron BA.1, BA.2.12.1 and BA.5. Vaccinated animals show significant reduction in both tissue viral loads and lung inflammation. Similarly attenuated viruses bearing BA.1 and BA.5 spike boost variant-specific neutralizing antibodies in male mice that were first vaccinated with modified vaccinia virus Ankara vectors (MVA) expressing full-length WA1/2020 Spike protein. Together, these results demonstrate that our attenuated virus may be a promising nasal vaccine candidate for boosting mucosal immunity against future SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Charles B Stauft
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Prabhuanand Selvaraj
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Felice D'Agnillo
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Clement A Meseda
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shufeng Liu
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Cyntia L Pedro
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kotou Sangare
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Christopher Z Lien
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jerry P Weir
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Matthew F Starost
- Division of Veterinary Resources, Diagnostic and Research Services Branch, National Institutes of Health, Rockville Pike, MD, USA
| | - Tony T Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
9
|
Tang Z, Yu P, Guo Q, Chen M, Lei Y, Zhou L, Mai W, Chen L, Deng M, Kong W, Niu C, Xiong X, Li W, Chen C, Lai C, Wang Q, Li B, Ji T. Clinical characteristics and host immunity responses of SARS-CoV-2 Omicron variant BA.2 with deletion of ORF7a, ORF7b and ORF8. Virol J 2023; 20:106. [PMID: 37248496 DOI: 10.1186/s12985-023-02066-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The pathogenicity and virulence of the Omicron strain have weakened significantly pathogenesis of Omicron variants. Accumulating data indicated accessory proteins play crucial roles in host immune evasion and virus pathogenesis of SARS-CoV-2. Therefore, the impact of simultaneous deletion of accessory protein ORF7a, ORF7b and ORF8 on the clinical characteristics and specific immunity in Omicron breakthrough infected patients (BIPs) need to be verified. METHODS Herein, plasma cytokines were identified using a commercial Multi-cytokine detection kit. Enzyme-linked immunosorbent assay and pseudovirus neutralization assays were utilized to determine the titers of SARS-CoV-2 specific binding antibodies and neutralizing antibodies, respectively. In addition, an enzyme-linked immunospot assay was used to quantify SARS-CoV-2 specific T cells and memory B cells. RESULTS A local COVID-19 outbreak was caused by the Omicron BA.2 variant, which featured a deletion of 871 base pairs (∆871 BA.2), resulting in the removal of ORF7a, ORF7b, and ORF8. We found that hospitalized patients with ∆871 BA.2 had significantly shorter hospital stays than those with wild-type (WT) BA.2. Plasma cytokine levels in both ∆871 BA.2 and WT BA.2 patients were within the normal range of reference, and there was no notable difference in the titers of SARS-CoV-2 ancestor or Omicron-specific binding IgG antibodies, neutralizing antibody titers, effector T cells, and memory B cells frequencies between ∆871 BA.2 and WT BA.2 infected adult patients. However, antibody titers in ∆871 BA.2 infected adolescents were higher than in adults. CONCLUSIONS The simultaneous deletion of ORF7a, ORF7b, and ORF8 facilitates the rapid clearance of the BA.2 variant, without impacting cytokine levels or affecting SARS-CoV-2 specific humoral and cellular immunity in Omicron-infected individuals.
Collapse
Affiliation(s)
- Zhizhong Tang
- Urology Surgery Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Pei Yu
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Qianfang Guo
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, 511430, People's Republic of China
| | - Mingxiao Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yu Lei
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Lei Zhou
- Department Of Pathology Laboratory, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Weikang Mai
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Lu Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Min Deng
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Chuanying Niu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, People's Republic of China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, People's Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, 510005, People's Republic of China
| | - Wenrui Li
- Clinical Laboratory Medicine Department, Dongguan Ninth People's Hospital, Dongguan, 523016, People's Republic of China
| | - Chunbo Chen
- Intensive Care Unit Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China.
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
| | - Baisheng Li
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, 511430, People's Republic of China.
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511495, People's Republic of China.
| |
Collapse
|
10
|
Pacheco-García U, Serafín-López J. Indirect Dispersion of SARS-CoV-2 Live-Attenuated Vaccine and Its Contribution to Herd Immunity. Vaccines (Basel) 2023; 11:655. [PMID: 36992239 PMCID: PMC10055900 DOI: 10.3390/vaccines11030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
It has been 34 months since the beginning of the SARS-CoV-2 coronavirus pandemic, which causes the COVID-19 disease. In several countries, immunization has reached a proportion near what is required to reach herd immunity. Nevertheless, infections and re-infections have been observed even in vaccinated persons. That is because protection conferred by vaccines is not entirely effective against new virus variants. It is unknown how often booster vaccines will be necessary to maintain a good level of protective immunity. Furthermore, many individuals refuse vaccination, and in developing countries, a large proportion of the population has not yet been vaccinated. Some live-attenuated vaccines against SARS-CoV-2 are being developed. Here, we analyze the indirect dispersion of a live-attenuated virus from vaccinated individuals to their contacts and the contribution that this phenomenon could have to reaching Herd Immunity.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico
| |
Collapse
|