1
|
Feng J, Zhong X, Huang X, Li Z, Zhang X, Zhong W, Yang X, Zhou G, Zhang T, Chen S. Rice Stripe Mosaic Virus Encoded P6 Interacts with Heading Protein OsHAPL1 to Promote Viral Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39718463 DOI: 10.1021/acs.jafc.4c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Rice stripe mosaic virus (RSMV) is the sole cytoplasmic rhabdovirus documented in naturally infected rice plants. It encodes P6, which induces delayed heading and reduces yield in infected rice plants. P6 of RSMV interacts with OsHAPL1, facilitating the interaction between OsHAPL1 and DTH8, resulting in delayed rice heading under long day conditions. Additionally, OsHAPL1 plays a dual role in RSMV infection by positively influencing viral infection while negatively regulating the expression of defense signal genes. These findings elucidate a novel molecular mechanism through which a virus manipulates the host defense system to enhance viral infection and transmission, shedding new light on the crosstalk between rice heading and disease resistance pathways.
Collapse
Affiliation(s)
- Jialin Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xinyi Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiuqin Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ziying Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xishan Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weihua Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Siping Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Zhang J, Lin Q, Wang X, Shao J, Ren Y, Liu X, Feng M, Li S, Sun Q, Luo S, Liu B, Xing X, Chang Y, Cheng Z, Wan J. The DENSE AND ERECT PANICLE1-GRAIN NUMBER ASSOCIATED module enhances rice yield by repressing CYTOKININ OXIDASE 2 expression. THE PLANT CELL 2024; 37:koae309. [PMID: 39660553 DOI: 10.1093/plcell/koae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
The phytohormone cytokinin (CK) positively regulates the activity of the inflorescence meristem (IM). Cytokinin oxidase 2/Grain number 1a (OsCKX2/Gn1a)-mediated degradation of CK in rice (Oryza sativa L.) negatively regulates panicle grain number, whereas DENSE AND ERECT PANICLE 1 (DEP1) positively regulates grain number per panicle (GNP). However, the detailed regulatory mechanism between DEP1 and OsCKX2 remains elusive. Here, we report the GRAS (GIBBERELLIN ACID INSENSITIVE, REPRESSOR OF GA1, and SCARECROW) transcription factor GRAIN NUMBER ASSOCIATED (GNA), previously thought to be involved in the Brassinosteroids (BRs) signaling pathway, directly inhibits OsCKX2 expression in the IM through a DEP1-GNA regulatory module. Overexpressing GNA leads to increased CK levels and consequently higher branch number, GNP, and yield. Both DEP1 and dep1 enhance the inhibitory effect of GNA on OsCKX2 expression through interacting with GNA. GNA promotes the translocation of DEP1 to the nucleus, while the gain-of-function mutant dep1 translocates into the nucleus in the absence of GNA. Our findings provide insight into the regulatory mechanism underlying OsCKX2 and a strategy to improve rice yield.
Collapse
Affiliation(s)
- Jinhui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Jiale Shao
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Xin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Shuai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Qi Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Bojuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Xinxin Xing
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Yanqi Chang
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
- Chinese Academy of Agricultural Sciences, Nanfan Research Institute, Sanya 572025, China
| | - Jianmin Wan
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| |
Collapse
|
3
|
Yang Z, Li G, Zhang Y, Li F, Zhou T, Ye J, Wang X, Zhang X, Sun Z, Tao X, Wu M, Wu J, Li Y. Crop antiviral defense: Past and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2617-2634. [PMID: 39190125 DOI: 10.1007/s11427-024-2680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Wang G, Hu B, Yao X, Wei Z, Chen J, Sun Z. A Stinkbug Salivary Protein Is Indispensable for Insect Feeding and Activates Plant Immunity. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39593264 DOI: 10.1111/pce.15308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
Salivary proteins secreted by phytophagous insects play pivotal roles in plant-insect interactions. A salivary protein RpSP27, from the stinkbug Riptortus pedestris, a devastating pest on soybean, was selected for studying due to its ability to induce cell death and activate immune responses in plants. RpSP27 localized to the endoplasmic reticulum and triggered reactive oxygen species burst. Virus-induced gene silencing assays showed RAR1 plays an essential role in RpSP27-induced cell death in Nicotiana benthamiana. Expression analyses revealed that RpSP27 is predominantly expressed in R. pedestris salivary glands. RNA interference-mediated silencing of RpSP27 in R. pedestris significantly reduced insect survival rates and altered feeding behavior by decreasing the formation of salivary sheaths on soybeans and reducing probing and feeding duration. Furthermore, the silencing of RpSP27 in R. pedestris mitigated the staygreen syndrome in soybeans, characterized by delayed senescence and pod abnormalities. This study elucidated the role of RpSP27 in the interaction between R. pedestris and soybean, presenting a potential target for pest management strategies to protect soybean crops from the detrimental effects of R. pedestris feeding.
Collapse
Affiliation(s)
- Guoyi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Biao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Li L, Chen J, Sun Z. Exploring the shared pathogenic strategies of independently evolved effectors across distinct plant viruses. Trends Microbiol 2024; 32:1021-1033. [PMID: 38521726 DOI: 10.1016/j.tim.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
Plants have developed very diverse strategies to defend themselves against viral pathogens, among which plant hormones play pivotal roles. In response, some viruses have also deployed multifunctional viral effectors that effectively hijack key component hubs to counter or evade plant immune surveillance. Although significant progress has been made toward understanding counter-defense strategies that manipulate plant hormone regulatory molecules, these efforts have often been limited to an individual virus or specific host target/pathway. This review provides new insights into broad-spectrum antiviral responses in rice triggered by key components of phytohormone signaling, and highlights the common features of counter-defense strategies employed by distinct rice-infecting RNA viruses. These strategies involve the secretion of multifunctional virulence effectors that target the sophisticated phytohormone system, dampening immune responses by engaging with the same host targets. Additionally, the review provides an in-depth exploration of various viral effectors, emphasizing tertiary structure-based research and shared host targets. Understanding these conserved characteristics in detail may pave the way for molecular drug design, opening new opportunities to enhance broad-spectrum antiviral trials through precise engineering.
Collapse
Affiliation(s)
- Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Chen S, Zhong X, Wang Z, Chen B, Huang X, Xu S, Yang X, Zhou G, Zhang T. Rice stripe mosaic virus hijacks rice heading-related gene to promote the overwintering of its insect vector. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2000-2016. [PMID: 38923382 DOI: 10.1111/jipb.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Rice stripe mosaic virus (RSMV) is an emerging pathogen which significantly reduces rice yields in the southern region of China. It is transmitted by the leafhopper Recilia dorsalis, which overwinters in rice fields. Our field investigations revealed that RSMV infection causes delayed rice heading, resulting in a large number of green diseased plants remaining in winter rice fields. This creates a favorable environment for leafhoppers and viruses to overwinter, potentially contributing to the rapid spread and epidemic of the disease. Next, we explored the mechanism by which RSMV manipulates the developmental processes of the rice plant. A rice heading-related E3 ubiquitin ligase, Heading date Associated Factor 1 (HAF1), was found to be hijacked by the RSMV-encoded P6. The impairment of HAF1 function affects the ubiquitination and degradation of downstream proteins, HEADING DATE 1 and EARLY FLOWERING3, leading to a delay in rice heading. Our results provide new insights into the development regulation-based molecular interactions between virus and plant, and highlights the importance of understanding virus-vector-plant tripartite interactions for effective disease management strategies.
Collapse
Affiliation(s)
- Siping Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyi Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyi Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuqin Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sipei Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
7
|
Cao C, Hu B, Li H, Wei Z, Li L, Zhang H, Chen J, Sun Z, Xu Z, Li Y. Metatranscriptome and small RNA sequencing revealed a mixed infection of newly identified bymovirus and bean yellow mosaic virus on peas. Virology 2024; 596:110116. [PMID: 38788336 DOI: 10.1016/j.virol.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Peas (Pisum sativum L.) are widely cultivated in temperate regions and are susceptible hosts for various viruses across different families. The discovery and identification of new viruses in peas has significant implications for field disease management. Here, we identified a mixed infection of two viruses from field-collected peas exhibiting virus-like symptoms using metatranscriptome and small RNA sequencing techniques. Upon identification, one of the viruses was determined to be a newly isolated and discovered bymovirus from peas, named "pea bymovirus 1 (PBV1)". The other was identified as a novel variant of bean yellow mosaic virus (BYMV-HZ1). Subsequently, mechanical inoculation and RT-PCR assays confirmed that both viruses could be inoculated back onto peas and tobaccos, showing mixed infection by PBV1 and BYMV-HZ1. To our knowledge, this is the first isolation of a bymovirus from pea and the first documented case of mixed infection of peas by PBV1 and BYMV-HZ1 in China.
Collapse
Affiliation(s)
- Chen Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Biao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Huajuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
8
|
Tan X, Wang G, Cao C, Yang Z, Zhang H, Li Y, Wei Z, Chen J, Sun Z. Two different viral proteins suppress NUCLEAR FACTOR-YC-mediated antiviral immunity during infection in rice. PLANT PHYSIOLOGY 2024; 195:850-864. [PMID: 38330080 DOI: 10.1093/plphys/kiae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs.
Collapse
Affiliation(s)
- Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guoda Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chen Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Lu H, Wang M, Zhou S, Chen K, Wang L, Yi Z, Bai L, Zhang Y. Chitosan Oligosaccharides Mitigate Flooding Stress Damage in Rice by Affecting Antioxidants, Osmoregulation, and Hormones. Antioxidants (Basel) 2024; 13:521. [PMID: 38790626 PMCID: PMC11117766 DOI: 10.3390/antiox13050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops worldwide. However, during direct seeding, rice is extremely vulnerable to flooding stress, which impairs rice's emergence and seedling growth and results in a significant yield loss. According to our research, chitosan oligosaccharides have the potential to be a chemical seed-soaking agent that greatly increases rice's resistance to flooding. Chitosan oligosaccharides were able to enhance seed energy supply, osmoregulation, and antioxidant capacity, according to physiological index assessments. Using transcriptome and metabolomic analysis, we discovered that important differential metabolites and genes were involved in the signaling pathway for hormone synthesis and antioxidant capacity. Exogenous chitosan oligosaccharides specifically and significantly inhibit genes linked to auxin, jasmonic acid, and abscisic acid. This suggested that applying chitosan oligosaccharides could stabilize seedling growth and development by controlling associated hormones and reducing flooding stress by enhancing membrane stability and antioxidant capacity. Finally, we verified the effectiveness of exogenous chitosan oligosaccharides imbibed in seeds by field validation, demonstrating that they can enhance rice seedling emergence and growth under flooding stress.
Collapse
Affiliation(s)
- Haoyu Lu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Mei Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Shangfeng Zhou
- Hunan Agricultural Biotechnology Research Institute, Changsha 410125, China;
| | - Ke Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Lianyang Bai
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- Hunan Agricultural Biotechnology Research Institute, Changsha 410125, China;
| | - Yuzhu Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| |
Collapse
|
10
|
Yang Z, Du J, Tan X, Zhang H, Li L, Li Y, Wei Z, Xu Z, Lu Y, Chen J, Sun Z. Histone deacetylase OsHDA706 orchestrates rice broad-spectrum antiviral immunity and is impeded by a viral effector. Cell Rep 2024; 43:113838. [PMID: 38386554 DOI: 10.1016/j.celrep.2024.113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Lysine acetylation is a dynamic post-translational modification of proteins. Extensive studies have revealed that the acetylation modulated by histone acetyltransferases and histone deacetylases (HDACs) plays a crucial role in regulating protein function. However, there has been limited focus on how HDACs regulate jasmonic acid (JA) biosynthesis in plants. Here, we uncover that the protein stability of OsLOX14, a critical enzyme involved in JA biosynthesis, is regulated by a histone deacetylase, OsHDA706, and is hindered by a viral protein. Our results show that OsHDA706 deacetylates OsLOX14 and enhances the stability of OsLOX14, leading to JA accumulation and an improved broad-spectrum rice antiviral defense. Furthermore, we found that the viral protein P2, encoded by the destructive rice stripe virus, disrupts the association of OsHDA706-OsLOX14, promoting viral infection. Overall, our findings reveal how HDAC manipulates the interplay of deacetylation and protein stability of a JA biosynthetic enzyme to enhance plant antiviral responses.
Collapse
Affiliation(s)
- Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Juan Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Lu L, Chen X, Tan Q, Li W, Sun Y, Zhang Z, Song Y, Zeng R. Gibberellin-Mediated Sensitivity of Rice Roots to Aluminum Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:543. [PMID: 38498546 PMCID: PMC10892994 DOI: 10.3390/plants13040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Aluminum toxicity poses a significant constraint on crop production in acidic soils. While phytohormones are recognized for their pivotal role in mediating plant responses to aluminum stress, the specific involvement of gibberellin (GA) in regulating aluminum tolerance remains unexplored. In this study, we demonstrate that external GA exacerbates the inhibitory impact of aluminum stress on root growth of rice seedlings, concurrently promoting reactive oxygen species (ROS) accumulation. Furthermore, rice plants overexpressing the GA synthesis gene SD1 exhibit enhanced sensitivity to aluminum stress. In contrast, the slr1 gain-of-function mutant, characterized by impeded GA signaling, displays enhanced tolerance to aluminum stress, suggesting the negative regulatory role of GA in rice resistance to aluminum-induced toxicity. We also reveal that GA application suppresses the expression of crucial aluminum tolerance genes in rice, including Al resistance transcription factor 1 (ART1), Nramp aluminum transporter 1 (OsNramp4), and Sensitive to Aluminum 1 (SAL1). Conversely, the slr1 mutant exhibits up-regulated expression of these genes compared to the wild type. In summary, our results shed light on the inhibitory effect of GA in rice resistance to aluminum stress, contributing to a theoretical foundation for unraveling the intricate mechanisms of plant hormones in regulating aluminum tolerance.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinyan Tan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Wenqian Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Liao Z, Zhang Y, Yu Q, Fang W, Chen M, Li T, Liu Y, Liu Z, Chen L, Yu S, Xia H, Xue HW, Yu H, Luo L. Coordination of growth and drought responses by GA-ABA signaling in rice. THE NEW PHYTOLOGIST 2023; 240:1149-1161. [PMID: 37602953 DOI: 10.1111/nph.19209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
The drought caused by global warming seriously affects the crop growth and agricultural production. Plants have evolved distinct strategies to cope with the drought environment. Under drought stress, energy and resources should be diverted from growth toward stress management. However, the molecular mechanism underlying coordination of growth and drought response remains largely elusive. Here, we discovered that most of the gibberellin (GA) metabolic genes were regulated by water scarcity in rice, leading to the lower GA contents and hence inhibited plant growth. Low GA contents resulted in the accumulation of more GA signaling negative regulator SLENDER RICE 1, which inhibited the degradation of abscisic acid (ABA) receptor PYL10 by competitively binding to the co-activator of anaphase-promoting complex TAD1, resulting in the enhanced ABA response and drought tolerance. These results elucidate the synergistic regulation of crop growth inhibition and promotion of drought tolerance and survival, and provide useful genetic resource in breeding improvement of crop drought resistance.
Collapse
Affiliation(s)
- Zhigang Liao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Yunchao Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Qing Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weicong Fang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meiyao Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianfei Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Yi Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Zaochang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Liang Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Shunwu Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Hui Xia
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijun Luo
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| |
Collapse
|
14
|
Zeng H, Xu H, Tan M, Zhang B, Shi H. LESION SIMULATING DISEASE 3 regulates disease resistance via fine-tuning histone acetylation in cassava. PLANT PHYSIOLOGY 2023; 193:2232-2247. [PMID: 37534747 DOI: 10.1093/plphys/kiad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| | - Haoran Xu
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Mengting Tan
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Bowen Zhang
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Haitao Shi
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| |
Collapse
|
15
|
Wang YZ, Ye YX, Lu JB, Wang X, Lu HB, Zhang ZL, Ye ZX, Lu YW, Sun ZT, Chen JP, Li JM, Zhang CX, Huang HJ. Horizontally Transferred Salivary Protein Promotes Insect Feeding by Suppressing Ferredoxin-Mediated Plant Defenses. Mol Biol Evol 2023; 40:msad221. [PMID: 37804524 PMCID: PMC10583550 DOI: 10.1093/molbev/msad221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.
Collapse
Affiliation(s)
- Yi-Zhe Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Xuan Ye
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Bin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ze-Long Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Wen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Wu Z, Luo D, Zhang S, Zhang C, Zhang Y, Chen M, Li X. A systematic review of southern rice black-streaked dwarf virus in the age of omics. PEST MANAGEMENT SCIENCE 2023; 79:3397-3407. [PMID: 37291065 DOI: 10.1002/ps.7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is one of the most damaging rice viruses. The virus decreases rice quality and yield, and poses a serious threat to food security. From this perspective, this review performed a survey of published studies in recent years to understand the current status of SRBSDV and white-backed planthopper (WBPH, Sogatella furcifera) transmission processes in rice. Recent studies have shown that the interactions between viral virulence proteins and rice susceptibility factors shape the transmission of SRBSDV. Moreover, the transmission of SRBSDV is influenced by the interactions between viral virulence proteins and S. furcifera susceptibility factors. This review focused on the molecular mechanisms of key genes or proteins associated with SRBSDV infection in rice via the S. furcifera vector, and the host defense response mechanisms against viral infection. A sustainable control strategy using RNAi was summarized to address this pest. Finally, we also present a model for screening anti-SRBSDV inhibitors using viral proteins as targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zilin Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chun Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Zhou Z, Liu J, Meng W, Sun Z, Tan Y, Liu Y, Tan M, Wang B, Yang J. Integrated Analysis of Transcriptome and Metabolome Reveals Molecular Mechanisms of Rice with Different Salinity Tolerances. PLANTS (BASEL, SWITZERLAND) 2023; 12:3359. [PMID: 37836098 PMCID: PMC10574619 DOI: 10.3390/plants12193359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Rice is a crucial global food crop, but it lacks a natural tolerance to high salt levels, resulting in significant yield reductions. To gain a comprehensive understanding of the molecular mechanisms underlying rice's salt tolerance, further research is required. In this study, the transcriptomic and metabolomic differences between the salt-tolerant rice variety Lianjian5 (TLJIAN) and the salt-sensitive rice variety Huajing5 (HJING) were examined. Transcriptome analysis revealed 1518 differentially expressed genes (DEGs), including 46 previously reported salt-tolerance-related genes. Notably, most of the differentially expressed transcription factors, such as NAC, WRKY, MYB, and EREBP, were upregulated in the salt-tolerant rice. Metabolome analysis identified 42 differentially accumulated metabolites (DAMs) that were upregulated in TLJIAN, including flavonoids, pyrocatechol, lignans, lipids, and trehalose-6-phosphate, whereas the majority of organic acids were downregulated in TLJIAN. The interaction network of 29 differentially expressed transporter genes and 19 upregulated metabolites showed a positive correlation between the upregulated calcium/cation exchange protein genes (OsCCX2 and CCX5_Ath) and ABC transporter gene AB2E_Ath with multiple upregulated DAMs in the salt-tolerant rice variety. Similarly, in the interaction network of differentially expressed transcription factors and 19 upregulated metabolites in TLJIAN, 6 NACs, 13 AP2/ERFs, and the upregulated WRKY transcription factors were positively correlated with 3 flavonoids, 3 lignans, and the lipid oleamide. These results suggested that the combined effects of differentially expressed transcription factors, transporter genes, and DAMs contribute to the enhancement of salt tolerance in TLJIAN. Moreover, this study provides a valuable gene-metabolite network reference for understanding the salt tolerance mechanism in rice.
Collapse
Affiliation(s)
- Zhenling Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China;
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Juan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (W.M.); (M.T.)
| | - Wenna Meng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (W.M.); (M.T.)
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Yiluo Tan
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Yan Liu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (W.M.); (M.T.)
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
18
|
Zhang H, Wang F, Song W, Yang Z, Li L, Ma Q, Tan X, Wei Z, Li Y, Li J, Yan F, Chen J, Sun Z. Different viral effectors suppress hormone-mediated antiviral immunity of rice coordinated by OsNPR1. Nat Commun 2023; 14:3011. [PMID: 37230965 PMCID: PMC10213043 DOI: 10.1038/s41467-023-38805-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
Salicylic acid (SA) and jasmonic acid (JA) are plant hormones that typically act antagonistically in dicotyledonous plants and SA and JA signaling is often manipulated by pathogens. However, in monocotyledonous plants, the detailed SA-JA interplay in response to pathogen invasion remains elusive. Here, we show that different types of viral pathogen can disrupt synergistic antiviral immunity mediated by SA and JA via OsNPR1 in the monocot rice. The P2 protein of rice stripe virus, a negative-stranded RNA virus in the genus Tenuivirus, promotes OsNPR1 degradation by enhancing the association of OsNPR1 and OsCUL3a. OsNPR1 activates JA signaling by disrupting the OsJAZ-OsMYC complex and boosting the transcriptional activation activity of OsMYC2 to cooperatively modulate rice antiviral immunity. Unrelated viral proteins from different rice viruses also interfere with the OsNPR1-mediated SA-JA interplay to facilitate viral pathogenicity, suggesting that this may be a more general strategy in monocot plants. Overall, our findings highlight that distinct viral proteins convergently obstruct JA-SA crosstalk to facilitate viral infection in monocot rice.
Collapse
Affiliation(s)
- Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fengmin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Weiqi Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qiang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
19
|
Wang F, Song W, Huang C, Wei Z, Li Y, Chen J, Zhang H, Sun Z. A Rice Receptor-like Protein Negatively Regulates Rice Resistance to Southern Rice Black-Streaked Dwarf Virus Infection. Viruses 2023; 15:v15040973. [PMID: 37112953 PMCID: PMC10141149 DOI: 10.3390/v15040973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Plants rely on various receptor-like proteins and receptor-like kinases to recognize and defend against invading pathogens. However, research on the role of receptor-like proteins in plant antiviral defense, particularly in rice-virus interactions, is limited. In this study, we identified a receptor-like gene, OsBAP1, which was significantly induced upon infection with southern rice black-streaked dwarf virus (SRBSDV) infection. A viral inoculation assay showed that the OsBAP1 knockout mutant exhibited enhanced resistance to SRBSDV infection, indicating that OsBAP1 plays a negatively regulated role in rice resistance to viral infection. Transcriptome analysis revealed that the genes involved in plant-pathogen interactions, plant hormone signal transduction, oxidation-reduction reactions, and protein phosphorylation pathways were significantly enriched in OsBAP1 mutant plants (osbap1-cas). Quantitative real-time PCR (RT-qPCR) analysis further demonstrated that some defense-related genes were significantly induced during SRBSDV infection in osbap1-cas mutants. Our findings provide new insights into the role of receptor-like proteins in plant immune signaling pathways, and demonstrate that OsBAP1 negatively regulates rice resistance to SRBSDV infection.
Collapse
Affiliation(s)
- Fengmin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Weiqi Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chaorui Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
20
|
Shi J, An G, Weber APM, Zhang D. Prospects for rice in 2050. PLANT, CELL & ENVIRONMENT 2023; 46:1037-1045. [PMID: 36805595 DOI: 10.1111/pce.14565] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A key to achieve the goals put forward in the UN's 2030 Agenda for Sustainable Development, it will need transformative change to our agrifood systems. We must mount to the global challenge to achieve food security in a sustainable manner in the context of climate change, population growth, urbanization, and depletion of natural resources. Rice is one of the major staple cereal crops that has contributed, is contributing, and will still contribute to the global food security. To date, rice yield has held pace with increasing demands, due to advances in both fundamental and biological studies, as well as genomic and molecular breeding practices. However, future rice production depends largely on the planting of resilient cultivars that can acclimate and adapt to changing environmental conditions. This Special Issue highlight with reviews and original research articles the exciting and growing field of rice-environment interactions that could benefit future rice breeding. We also outline open questions and propose future directions of 2050 rice research, calling for more attentions to develop environment-resilient rice especially hybrid rice, upland rice and perennial rice.
Collapse
Affiliation(s)
- Jianxin Shi
- Department of Genetic and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Gynheung An
- Department of Genetic Engineering, Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Andreas P M Weber
- Department of Plant Biochemistry, Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Dabing Zhang
- Department of Genetic and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
- Department of Agricultural Science, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, Australia
| |
Collapse
|
21
|
Ma Q, Wang F, Song W, Huang C, Xie K, Wei Z, Li Y, Chen J, Zhang H, Sun Z. Transcriptome analysis of auxin transcription factor OsARF17-mediated rice stripe mosaic virus response in rice. Front Microbiol 2023; 14:1131212. [PMID: 36970706 PMCID: PMC10033593 DOI: 10.3389/fmicb.2023.1131212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionPlant auxin response factors (ARFs) play an irreplaceable role in regulating the expression of auxin response genes. Our previous studies have indicated that auxin response factor OsARF17 plays a crucial role in plant defense against diverse rice viruses.MethodsUtilizing a comparative transcriptome analysis of Rice stripe mosaic virus (RSMV)-inoculated OsARF17 mutant rice plants, to further elucidate the molecular mechanism of OsARF17 in antiviral defense pathway.ResultsKEGG enrichment analyses showed that the down-regulated differentially expressed genes (DEGs) belonged to plant-pathogen interaction and plant hormone signal transduction pathways were markedly enriched in OsARF17 mutants under RSMV inoculation. Furthermore, Gene ontology (GO) analyses revealed that these genes were enriched in a variety of hormone biosynthetic process, including jasmonic acid (JA), auxin, and abscisic acid (ABA). RT-qPCR assays showed that the induction of plant defense-related genes, such as WRKY transcription factors, OsAHT2 and OsDR8, and JA-related genes, were significantly suppressed in OsARF17 mutants in response to RSMV.DiscussionOur study reveals that OsARF17-mediated antiviral immunity may be achieved through affecting the interaction between different phytohormones and regulating defense gene expression in rice. This study provides new insights into the molecular mechanisms of auxin signaling in the rice-virus interaction.
Collapse
|