1
|
Ribeiro ARS, Neuper T, Horejs-Hoeck J. The Role of STING-Mediated Activation of Dendritic Cells in Cancer Immunotherapy. Int J Nanomedicine 2024; 19:10685-10697. [PMID: 39464674 PMCID: PMC11512692 DOI: 10.2147/ijn.s477320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
The signaling pathway that comprises cyclic guanosine monophosphate-adenosine monophosphate (cGAMP or GMP-AMP) synthase (cGAS) and Stimulator of Interferon Genes (STING) is emerging as a druggable target for immunotherapy, with tumor-resident dendritic cells (DC) playing a critical role in mediating its effects. The STING receptor is part of the DNA-sensing cellular machinery, that can trigger the secretion of pro-inflammatory mediators, priming effector T cells and initiating specific antitumor responses. Yet, recent studies have highlighted the dual role of STING activation in the context of cancer: STING can either promote antitumor responses or enhance tumor progression. This dichotomy often depends on the cell type in which cGAS-STING signaling is induced and the activation mode, namely acute versus chronic. Of note, STING activation at the DC level appears to be particularly important for tumor eradication. This review outlines the contribution of the different conventional and plasmacytoid DC subsets and describes the mechanisms underlying STING-mediated activation of DCs in cancer. We further highlight how the STING pathway plays an intricate role in modulating the function of DCs embedded in tumor tissue. Additionally, we discuss the strategies being employed to harness STING activation for cancer treatment, such as the development of synthetic agonists and nano-based delivery systems, spotlighting the current techniques used to prompt STING engagement specifically in DCs.
Collapse
Affiliation(s)
- Ana R S Ribeiro
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| |
Collapse
|
2
|
Dai SL, Pan JQ, Su ZR. Multi-omics features of immunogenic cell death in gastric cancer identified by combining single-cell sequencing analysis and machine learning. Sci Rep 2024; 14:21751. [PMID: 39294296 PMCID: PMC11410816 DOI: 10.1038/s41598-024-73071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy with high mortality rates. Immunogenic cell death (ICD) is a unique form of programmed cell death that is closely linked to antitumor immunity and plays a critical role in modulating the tumor microenvironment (TME). Nevertheless, elucidating the precise effect of ICD on GC remains a challenging endeavour. ICD-related genes were identified in single-cell sequencing datasets and bulk transcriptome sequencing datasets via the AddModuleScore function, weighted gene co-expression network (WGCNA), and differential expression analysis. A robust signature associated with ICD was constructed using a machine learning computational framework incorporating 101 algorithms. Furthermore, multiomics analysis, including single-cell sequencing analysis, bulk transcriptomic analysis, and proteomics analysis, was conducted to verify the correlation of these hub genes with the immune microenvironment features of GC and with GC invasion and metastasis. We screened 59 genes associated with ICD and developed a robust ICD-related gene signature (ICDRS) via a machine learning computational framework that integrates 101 different algorithms. Furthermore, we identified five key hub genes (SMAP2, TNFAIP8, LBH, TXNIP, and PIK3IP1) from the ICDRS. Through single-cell analysis of GC tumor s, we confirmed the strong correlations of the hub genes with immune microenvironment features. Among these five genes, LBH exhibited the most significant associations with a poor prognosis and with the invasion and metastasis of GC. Finally, our findings were validated through immunohistochemical staining of a large clinical sample set, and the results further supported that LBH promotes GC cell invasion by activating the epithelial-mesenchymal transition (EMT) pathway.
Collapse
Affiliation(s)
- Shu-Long Dai
- Department of General Surgery, Deqing People's Hospital, Deqing Campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 120 South Yingxi Road, Deqing, 313200, Zhejiang, P. R. China.
| | - Jian-Qiang Pan
- Department of Pathology, Deqing People's Hospital, Deqing Campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 120 South Yingxi Road, Deqing, 313200, Zhejiang, P. R. China
| | - Zhen-Rong Su
- Department of General Surgery, Deqing People's Hospital, Deqing Campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 120 South Yingxi Road, Deqing, 313200, Zhejiang, P. R. China
| |
Collapse
|
3
|
van Eijck CWF, Haddaoui HE, Kucukcelebi S, Vadgama D, Fellah A, Mustafa DAM, Aerts JGJV, van Eijck CHJ, Willemsen M. Rintatolimod in Advanced Pancreatic Cancer Enhances Antitumor Immunity through Dendritic Cell-Mediated T-Cell Responses. Clin Cancer Res 2024; 30:3447-3458. [PMID: 38488815 DOI: 10.1158/1078-0432.ccr-23-4085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Amid the need for new approaches to improve survival in pancreatic ductal adenocarcinoma (PDAC), immune-based therapies have garnered interest. Rintatolimod, a Toll-like receptor 3 (TLR-3) agonist, is a potential candidate due to its dual impact on restraining PDAC cell functions and boosting the antitumor immune response. This study investigates the effect of TLR-3 activation through rintatolimod on the peripheral immune landscape of patients with advanced PDAC. EXPERIMENTAL DESIGN Paired blood samples of 30 patients with advanced PDAC, collected at baseline and after 12 rintatolimod intravenous infusions, underwent comprehensive transcriptomic NanoString and proteomic flow cytometry profiling. The impact of rintatolimod and immunologic factors on survival outcomes was assessed through univariate Cox proportional hazards models. RESULTS Rintatolimod treatment enhances peripheral immune activity at the transcriptomic and proteomic levels, particularly involving type 1 conventional dendritic cells (cDC1) and T cells. Post-rintatolimod, the increased peripheral abundance of BTLA+ XCR1+ cDC1s and CD4+SELL+ T cells correlated with improved clinical outcomes. Patients with stable disease exhibited pronouncedDCand T-cell activation gene overexpression. Notably, the expression of immune checkpoints PD-L1 and PD-L2 decreased post-rintatolimod across all patients. However, those with progressive disease showed increased expression of genes encoding IDO1 and PD-1. CONCLUSIONS This study presents compelling evidence of the immune-stimulatory properties linked to TLR-3 activation through rintatolimod. Rintatolimod may break immunologic tolerance by enhancing antitumor immunity through DC-mediated Th-cell responses. Furthermore, our findings lay the groundwork for investigating the potential synergy between TLR-3 activation and immune checkpoint inhibitor therapy to improve therapeutic outcomes. See related commentary by Martínez-Riaño et al., p. 3355.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Hassana El Haddaoui
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Songul Kucukcelebi
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Disha Vadgama
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Amine Fellah
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Dana A M Mustafa
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Department of Clinical Bioinformatics, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Joachim G J V Aerts
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Marcella Willemsen
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
5
|
Kirkpatrick C, Lu YCW. Deciphering CD4 + T cell-mediated responses against cancer. Mol Carcinog 2024; 63:1209-1220. [PMID: 38725218 PMCID: PMC11166516 DOI: 10.1002/mc.23730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 05/15/2024]
Abstract
It's been long thought that CD8+ cytotoxic T cells play a major role in T cell-mediated antitumor responses, whereas CD4+ T cells merely provide some assistance to CD8+ T cells as the "helpers." In recent years, numerous studies support the notion that CD4+ T cells play an indispensable role in antitumor responses. Here, we summarize and discuss the current knowledge regarding the roles of CD4+ T cells in antitumor responses and immunotherapy, with a focus on the molecular and cellular mechanisms behind these observations. These new insights on CD4+ T cells may pave the way to further optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Catherine Kirkpatrick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yong-Chen William Lu
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
6
|
Wang Y, Meraz IM, Qudratullah M, Kotagiri S, Han Y, Xi Y, Wang J, Lissanu Y. SMARCA4 mutation induces tumor cell-intrinsic defects in enhancer landscape and resistance to immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599431. [PMID: 38948751 PMCID: PMC11212967 DOI: 10.1101/2024.06.18.599431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cancer genomic studies have identified frequent alterations in components of the SWI/SNF (SWItch/Sucrose Non- Fermenting) chromatin remodeling complex including SMARCA4 and ARID1A . Importantly, clinical reports indicate that SMARCA4 -mutant lung cancers respond poorly to immunotherapy and have dismal prognosis. However, the mechanistic basis of immunotherapy resistance is unknown. Here, we corroborated the clinical findings by using immune-humanized, syngeneic, and genetically engineered mouse models of lung cancer harboring SMARCA4 deficiency. Specifically, we show that SMARCA4 loss caused decreased response to anti-PD1 immunotherapy associated with significantly reduced infiltration of dendritic cells (DCs) and CD4+ T cells into the tumor microenvironment (TME). Mechanistically, we show that SMARCA4 loss in tumor cells led to profound downregulation of STING, IL1β and other components of the innate immune system as well as inflammatory cytokines that are required for efficient recruitment and activity of immune cells. We establish that this deregulation of gene expression is caused by cancer cell-intrinsic reprogramming of the enhancer landscape with marked loss of chromatin accessibility at enhancers of genes involved in innate immune response such as STING, IL1β, type I IFN and inflammatory cytokines. Interestingly, we observed that transcription factor NF-κB binding motif was highly enriched in enhancers that lose accessibility upon SMARCA4 deficiency. Finally, we confirmed that SMARCA4 and NF-κB co-occupy the same genomic loci on enhancers associated with STING and IL1β, indicating a functional interplay between SMARCA4 and NF-κB. Taken together, our findings provide the mechanistic basis for the poor response of SMARCA4 -mutant tumors to anti-PD1 immunotherapy and establish a functional link between SMARCA4 and NF-κB on innate immune and inflammatory gene expression regulation.
Collapse
|
7
|
Langguth M, Maranou E, Koskela SA, Elenius O, Kallionpää RE, Birkman EM, Pulkkinen OI, Sundvall M, Salmi M, Figueiredo CR. TIMP-1 is an activator of MHC-I expression in myeloid dendritic cells with implications for tumor immunogenicity. Genes Immun 2024; 25:188-200. [PMID: 38777826 PMCID: PMC11178497 DOI: 10.1038/s41435-024-00274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Immune checkpoint therapies (ICT) for advanced solid tumors mark a new milestone in cancer therapy. Yet their efficacy is often limited by poor immunogenicity, attributed to inadequate priming and generation of antitumor T cells by dendritic cells (DCs). Identifying biomarkers to enhance DC functions in such tumors is thus crucial. Tissue Inhibitor of Metalloproteinases-1 (TIMP-1), recognized for its influence on immune cells, has an underexplored relationship with DCs. Our research reveals a correlation between high TIMP1 levels in metastatic melanoma and increased CD8 + T cell infiltration and survival. Network studies indicate a functional connection with HLA genes. Spatial transcriptomic analysis of a national melanoma cohort revealed that TIMP1 expression in immune compartments associates with an HLA-A/MHC-I peptide loading signature in lymph nodes. Primary human and bone-marrow-derived DCs secrete TIMP-1, which notably increases MHC-I expression in classical type 1 dendritic cells (cDC1), especially under melanoma antigen exposure. TIMP-1 affects the immunoproteasome/TAP complex, as seen by upregulated PSMB8 and TAP-1 levels of myeloid DCs. This study uncovers the role of TIMP-1 in DC-mediated immunogenicity with insights into CD8 + T cell activation, providing a foundation for mechanistic exploration and highlighting its potential as a new target for combinatorial immunotherapy to enhance ICT effectiveness.
Collapse
Affiliation(s)
- Miriam Langguth
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Eleftheria Maranou
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Saara A Koskela
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Oskar Elenius
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Roosa E Kallionpää
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | - Eva-Maria Birkman
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Otto I Pulkkinen
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Maria Sundvall
- Cancer Research Unit, Institute of Biomedicine, and FICAN West Cancer Center Laboratory, University of Turku, and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland
- Department of Oncology, Turku University Hospital, Turku, Finland
| | - Marko Salmi
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- Cancer Research Unit, Institute of Biomedicine, and FICAN West Cancer Center Laboratory, University of Turku, and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland.
| |
Collapse
|
8
|
Zhang XJ, Yu Y, Zhao HP, Guo L, Dai K, Lv J. Mechanisms of tumor immunosuppressive microenvironment formation in esophageal cancer. World J Gastroenterol 2024; 30:2195-2208. [PMID: 38690024 PMCID: PMC11056912 DOI: 10.3748/wjg.v30.i16.2195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Kun Dai
- Department of Clinical Laboratory, Yanliang Railway Hospital of Xi’an, Xi’an 710089, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
9
|
Lei X, de Groot DC, Welters MJP, de Wit T, Schrama E, van Eenennaam H, Santegoets SJ, Oosenbrug T, van der Veen A, Vos JL, Zuur CL, de Miranda NFCC, Jacobs H, van der Burg SH, Borst J, Xiao Y. CD4 + T cells produce IFN-I to license cDC1s for induction of cytotoxic T-cell activity in human tumors. Cell Mol Immunol 2024; 21:374-392. [PMID: 38383773 PMCID: PMC10978876 DOI: 10.1038/s41423-024-01133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
CD4+ T cells can "help" or "license" conventional type 1 dendritic cells (cDC1s) to induce CD8+ cytotoxic T lymphocyte (CTL) anticancer responses, as proven in mouse models. We recently identified cDC1s with a transcriptomic imprint of CD4+ T-cell help, specifically in T-cell-infiltrated human cancers, and these cells were associated with a good prognosis and response to PD-1-targeting immunotherapy. Here, we delineate the mechanism of cDC1 licensing by CD4+ T cells in humans. Activated CD4+ T cells produce IFNβ via the STING pathway, which promotes MHC-I antigen (cross-)presentation by cDC1s and thereby improves their ability to induce CTL anticancer responses. In cooperation with CD40 ligand (L), IFNβ also optimizes the costimulatory and other functions of cDC1s required for CTL response induction. IFN-I-producing CD4+ T cells are present in diverse T-cell-infiltrated cancers and likely deliver "help" signals to CTLs locally, according to their transcriptomic profile and colocalization with "helped/licensed" cDCs and tumor-reactive CD8+ T cells. In agreement with this scenario, the presence of IFN-I-producing CD4+ T cells in the TME is associated with overall survival and the response to PD-1 checkpoint blockade in cancer patients.
Collapse
Affiliation(s)
- Xin Lei
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniël C de Groot
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom de Wit
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Schrama
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Saskia J Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Timo Oosenbrug
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Joris L Vos
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Charlotte L Zuur
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Otorhinolaryngology Leiden University Medical Center, Leiden, The Netherlands
| | | | - Heinz Jacobs
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd H van der Burg
- Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.
- Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| | - Yanling Xiao
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.
- Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
10
|
Chen JH, Nieman LT, Spurrell M, Jorgji V, Elmelech L, Richieri P, Xu KH, Madhu R, Parikh M, Zamora I, Mehta A, Nabel CS, Freeman SS, Pirl JD, Lu C, Meador CB, Barth JL, Sakhi M, Tang AL, Sarkizova S, Price C, Fernandez NF, Emanuel G, He J, Van Raay K, Reeves JW, Yizhak K, Hofree M, Shih A, Sade-Feldman M, Boland GM, Pelka K, Aryee MJ, Mino-Kenudson M, Gainor JF, Korsunsky I, Hacohen N. Human lung cancer harbors spatially organized stem-immunity hubs associated with response to immunotherapy. Nat Immunol 2024; 25:644-658. [PMID: 38503922 DOI: 10.1038/s41590-024-01792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens and found an association with beneficial response to PD-1 blockade. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcome. This hub is distinct from mature tertiary lymphoid structures and is enriched for stem-like TCF7+PD-1+CD8+ T cells, activated CCR7+LAMP3+ dendritic cells and CCL19+ fibroblasts as well as chemokines that organize these cells. Within the stem-immunity hub, we find preferential interactions between CXCL10+ macrophages and TCF7-CD8+ T cells as well as between mature regulatory dendritic cells and TCF7+CD4+ and regulatory T cells. These results provide a picture of the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.
Collapse
Affiliation(s)
- Jonathan H Chen
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.
- Department of Pathology, MGH, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Linda T Nieman
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maxwell Spurrell
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
- Department of Pathology, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Vjola Jorgji
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
- Department of Pathology, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Liad Elmelech
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
- Department of Pathology, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Peter Richieri
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
| | - Katherine H Xu
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
| | - Roopa Madhu
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Division of Genetics, Boston, MA, USA
| | - Milan Parikh
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Izabella Zamora
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Arnav Mehta
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher S Nabel
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
| | - Samuel S Freeman
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joshua D Pirl
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chenyue Lu
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
| | - Catherine B Meador
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Hematology/Oncology, MGH, HMS, Boston, MA, USA
| | | | | | - Alexander L Tang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Siranush Sarkizova
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | | - Keren Yizhak
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Matan Hofree
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Lautenberg Center for Immunology and Cancer Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Angela Shih
- Department of Pathology, MGH, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Moshe Sade-Feldman
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, MGH, Boston, MA, USA
| | - Karin Pelka
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Gladstone-UCSF Institute of Genomic Immunology, Gladstone Institutes, San Francisco, CA, USA
| | - Martin J Aryee
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
- Department of Pathology, MGH, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Justin F Gainor
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Center for Thoracic Cancers, MGH, Boston, MA, USA.
| | - Ilya Korsunsky
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Brigham and Women's Hospital, Division of Genetics, Boston, MA, USA.
| | - Nir Hacohen
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Heras-Murillo I, Adán-Barrientos I, Galán M, Wculek SK, Sancho D. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat Rev Clin Oncol 2024; 21:257-277. [PMID: 38326563 DOI: 10.1038/s41571-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting innate immune cells that regulate adaptive immunity, including against cancer. Therefore, understanding the precise activities of DCs in tumours and patients with cancer is important. The classification of DC subsets has historically been based on ontogeny; however, single-cell analyses are now additionally revealing a diversity of functional states of DCs in cancer. DCs can promote the activation of potent antitumour T cells and immune responses via numerous mechanisms, although they can also be hijacked by tumour-mediated factors to contribute to immune tolerance and cancer progression. Consequently, DC activities are often key determinants of the efficacy of immunotherapies, including immune-checkpoint inhibitors. Potentiating the antitumour functions of DCs or using them as tools to orchestrate short-term and long-term anticancer immunity has immense but as-yet underexploited therapeutic potential. In this Review, we outline the nature and emerging complexity of DC states as well as their functions in regulating adaptive immunity across different cancer types. We also describe how DCs are required for the success of current immunotherapies and explore the inherent potential of targeting DCs for cancer therapy. We focus on novel insights on DCs derived from patients with different cancers, single-cell studies of DCs and their relevance to therapeutic strategies.
Collapse
Affiliation(s)
- Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Irene Adán-Barrientos
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Galán
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
12
|
Bawden EG, Wagner T, Schröder J, Effern M, Hinze D, Newland L, Attrill GH, Lee AR, Engel S, Freestone D, de Lima Moreira M, Gressier E, McBain N, Bachem A, Haque A, Dong R, Ferguson AL, Edwards JJ, Ferguson PM, Scolyer RA, Wilmott JS, Jewell CM, Brooks AG, Gyorki DE, Palendira U, Bedoui S, Waithman J, Hochheiser K, Hölzel M, Gebhardt T. CD4 + T cell immunity against cutaneous melanoma encompasses multifaceted MHC II-dependent responses. Sci Immunol 2024; 9:eadi9517. [PMID: 38241401 DOI: 10.1126/sciimmunol.adi9517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Whereas CD4+ T cells conventionally mediate antitumor immunity by providing help to CD8+ T cells, recent clinical studies have implied an important role for cytotoxic CD4+ T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4+ T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4+ T cells with tumor debris-laden MHC II+ host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II+ melanoma cells alone could also promote CD4+ T cell control. CD4+ T cells stably suppressed or eradicated tumors even in the absence of other lymphocytes by using tumor necrosis factor-α and Fas ligand (FasL) but not perforin-mediated cytotoxicity. Interferon-γ was critical for protection, acting both directly on melanoma cells and via induction of nitric oxide synthase in myeloid cells. Our results illustrate multifaceted and context-specific aspects of MHC II-dependent CD4+ T cell immunity against cutaneous melanoma, emphasizing modulation of this axis as a potential avenue for immunotherapies.
Collapse
Affiliation(s)
- Emma G Bawden
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Teagan Wagner
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jan Schröder
- Computational Sciences Initiative, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Maike Effern
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Daniel Hinze
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Lewis Newland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Grace H Attrill
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Ariane R Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sven Engel
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David Freestone
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marcela de Lima Moreira
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Elise Gressier
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nathan McBain
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Annabell Bachem
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ruining Dong
- Computational Sciences Initiative, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Angela L Ferguson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Infection, Immunity and Inflammation theme, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jarem J Edwards
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David E Gyorki
- Division of Cancer Surgery, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre Melbourne, Melbourne, VIC, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jason Waithman
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Katharina Hochheiser
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre Melbourne, Melbourne, VIC, Australia
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Laureano RS, Vanmeerbeek I, Sprooten J, Govaerts J, Naulaerts S, Garg AD. The cell stress and immunity cycle in cancer: Toward next generation of cancer immunotherapy. Immunol Rev 2024; 321:71-93. [PMID: 37937803 DOI: 10.1111/imr.13287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
The cellular stress and immunity cycle is a cornerstone of organismal homeostasis. Stress activates intracellular and intercellular communications within a tissue or organ to initiate adaptive responses aiming to resolve the origin of this stress. If such local measures are unable to ameliorate this stress, then intercellular communications expand toward immune activation with the aim of recruiting immune cells to effectively resolve the situation while executing tissue repair to ameliorate any damage and facilitate homeostasis. This cellular stress-immunity cycle is severely dysregulated in diseased contexts like cancer. On one hand, cancer cells dysregulate the normal cellular stress responses to reorient them toward upholding growth at all costs, even at the expense of organismal integrity and homeostasis. On the other hand, the tumors severely dysregulate or inhibit various components of organismal immunity, for example, by facilitating immunosuppressive tumor landscape, lowering antigenicity, and increasing T-cell dysfunction. In this review we aim to comprehensively discuss the basis behind tumoral dysregulation of cellular stress-immunity cycle. We also offer insights into current understanding of the regulators and deregulators of this cycle and how they can be targeted for conceptualizing successful cancer immunotherapy regimen.
Collapse
Affiliation(s)
- Raquel S Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Zhang S, Chen W, Zhou Y, Zheng X, Fu Y, Liu H, Wan Z, Zhao Y. Intelligent Nanoplatform Integrating Macrophage and Cancer Cell Membrane for Synergistic Chemodynamic/Immunotherapy/Photothermal Therapy of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59117-59133. [PMID: 38091266 DOI: 10.1021/acsami.3c12560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell membrane-coated nanoplatforms for drug delivery have garnered significant attention due to their inherent cellular properties, such as immune evasion and homing abilities, making them a subject of widespread interest. The coating of mixed membranes from different cell types onto the surface of nanoparticles offers a way to harness natural cell functions, enhancing biocompatibility and improving therapeutic efficacy. In this study, we merged membranes from murine-derived 4T1 breast cancer cells with RAW264.7 (RAW) membranes, creating a hybrid biomimetic coating referred to as TRM. Subsequently, we fabricated hybrid TRM-coated Fe3O4 nanoparticles loaded with indocyanine green (ICG) and imiquimod (R837) for combination therapy in breast cancer. Comprehensive characterization of the RIFe@TRM nanoplatform revealed the inherent properties of both cell types. Compared to bare Fe3O4 nanoparticles, RIFe@TRM nanoparticles exhibited remarkable cell-specific self-recognition for 4T1 cells in vitro, leading to significantly prolonged circulation life span and enhanced in vivo targeting capabilities. Furthermore, the biomimetic RIFe@TRM nanoplatform induced tumor necrosis through the Fenton reaction and photothermal effects, while R837 facilitated enhanced uptake of tumor-associated antigens, further activating CD8+ cytotoxic T cells to strengthen antitumor immunotherapy. Hence, RIFe@TRM nanoplatform demonstrated outstanding synergy in chemodynamic/immunotherapy/photothermal therapies, displaying significant inhibition of breast tumor growth. In summary, this study presents a promising biomimetic nanoplatform for effective treatment of breast cancer.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Weibin Chen
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Yuanyuan Zhou
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Xiongwei Zheng
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Yu Fu
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - HongYi Liu
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Zheng Wan
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Yilin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen 361004, P. R. China
- Xiamen Key Laboratory of Cellular Intervention and Interventional Medical Materials, Xiamen 361004, P. R. China
| |
Collapse
|
15
|
Wang S, Zhang G, Cui Q, Yang Y, Wang D, Liu A, Xia Y, Li W, Liu Y, Yu J. The DC-T cell axis is an effective target for the treatment of non-small cell lung cancer. Immun Inflamm Dis 2023; 11:e1099. [PMID: 38018578 PMCID: PMC10681037 DOI: 10.1002/iid3.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The dendritic cell (DC)-T cell axis is a bridge that connects innate and adaptive immunities. The initial immune response against tumors is mainly induced by mature antigen-presenting DCs. Enhancing the crosstalk between DCs and T cells may be an effective approach to improve the immune response to non-small cell lung cancer (NSCLC). In this article, a review was made of the interaction between DCs and T cells in the treatment of NSCLC and how this interaction affects the treatment outcome.
Collapse
Affiliation(s)
- Shuangcui Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Guan Zhang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qian Cui
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yanjie Yang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Dong Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Aqing Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Xia
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wentao Li
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yunhe Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Jianchun Yu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
16
|
Noe P, Wang JH, Chung K, Cheng Z, Field JJ, Shen X, Cortesio CL, Pastuskovas CV, Phee H, Tarbell KV, Egen JG, Casbon AJ. Therapeutically targeting type I interferon directly to XCR1+ dendritic cells reveals the role of cDC1s in anti-drug antibodies. Front Immunol 2023; 14:1272055. [PMID: 37942313 PMCID: PMC10628189 DOI: 10.3389/fimmu.2023.1272055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Conventional type 1 dendritic cells (cDC1s) are superior in antigen cross-presentation and priming CD8+ T cell anti-tumor immunity and thus, are a target of high interest for cancer immunotherapy. Type I interferon (IFN) is a potent inducer of antigen cross-presentation, but, unfortunately, shows only modest results in the clinic given the short half-life and high toxicity of current type I IFN therapies, which limit IFN exposure in the tumor. CD8+ T cell immunity is dependent on IFN signaling in cDC1s and preclinical studies suggest targeting IFN directly to cDC1s may be sufficient to drive anti-tumor immunity. Here, we engineered an anti-XCR1 antibody (Ab) and IFN mutein (IFNmut) fusion protein (XCR1Ab-IFNmut) to determine whether systemic delivery could drive selective and sustained type I IFN signaling in cDC1s leading to anti-tumor activity and, in parallel, reduced systemic toxicity. We found that the XCR1Ab-IFNmut fusion specifically enhanced cDC1 activation in the tumor and spleen compared to an untargeted control IFN. However, multiple treatments with the XCR1Ab-IFNmut fusion resulted in robust anti-drug antibodies (ADA) and loss of drug exposure. Using other cDC1-targeting Ab-IFNmut fusions, we found that localizing IFN directly to cDC1s activates their ability to promote ADA responses, regardless of the cDC1 targeting antigen. The development of ADA remains a major hurdle in immunotherapy drug development and the cellular and molecular mechanisms governing the development of ADA responses in humans is not well understood. Our results reveal a role of cDC1s in ADA generation and highlight the potential ADA challenges with targeting immunostimulatory agents to this cellular compartment.
Collapse
Affiliation(s)
- Paul Noe
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Joy H. Wang
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Kyu Chung
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Zhiyong Cheng
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Jessica J. Field
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, United States
| | - Xiaomeng Shen
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, United States
| | - Christa L. Cortesio
- Therapeutics Discovery, Amgen Research, South San Francisco, CA, United States
| | - Cinthia V. Pastuskovas
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, United States
| | - Hyewon Phee
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Kristin V. Tarbell
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Jackson G. Egen
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Amy-Jo Casbon
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| |
Collapse
|
17
|
Miao B, Hu Z, Mezzadra R, Hoeijmakers L, Fauster A, Du S, Yang Z, Sator-Schmitt M, Engel H, Li X, Broderick C, Jin G, Gomez-Eerland R, Rozeman L, Lei X, Matsuo H, Yang C, Hofland I, Peters D, Broeks A, Laport E, Fitz A, Zhao X, Mahmoud MAA, Ma X, Sander S, Liu HK, Cui G, Gan Y, Wu W, Xiao Y, Heck AJR, Guan W, Lowe SW, Horlings HM, Wang C, Brummelkamp TR, Blank CU, Schumacher TNM, Sun C. CMTM6 shapes antitumor T cell response through modulating protein expression of CD58 and PD-L1. Cancer Cell 2023; 41:1817-1828.e9. [PMID: 37683639 PMCID: PMC11113010 DOI: 10.1016/j.ccell.2023.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
The dysregulated expression of immune checkpoint molecules enables cancer cells to evade immune destruction. While blockade of inhibitory immune checkpoints like PD-L1 forms the basis of current cancer immunotherapies, a deficiency in costimulatory signals can render these therapies futile. CD58, a costimulatory ligand, plays a crucial role in antitumor immune responses, but the mechanisms controlling its expression remain unclear. Using two systematic approaches, we reveal that CMTM6 positively regulates CD58 expression. Notably, CMTM6 interacts with both CD58 and PD-L1, maintaining the expression of these two immune checkpoint ligands with opposing functions. Functionally, the presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and response to PD-L1-PD-1 blockade. Collectively, these findings provide fundamental insights into CD58 regulation, uncover a shared regulator of stimulatory and inhibitory immune checkpoints, and highlight the importance of tumor-intrinsic CMTM6 and CD58 expression in antitumor immune responses.
Collapse
Affiliation(s)
- Beiping Miao
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoqing Hu
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Riccardo Mezzadra
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lotte Hoeijmakers
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Astrid Fauster
- Division of Biochemistry, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Shangce Du
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany
| | - Zhi Yang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Melanie Sator-Schmitt
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Helena Engel
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Xueshen Li
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Caroline Broderick
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Shanghai 200336, China
| | - Raquel Gomez-Eerland
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Lisette Rozeman
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Xin Lei
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Hitoshi Matsuo
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Chen Yang
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Elke Laport
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Annika Fitz
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Xiyue Zhao
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Mohamed A A Mahmoud
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Xiujian Ma
- Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ) Heidelberg, Division Molecular Neurogenetics, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sandrine Sander
- German Cancer Research Center (DKFZ) Heidelberg, Division Adaptive Immunity and Lymphoma , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hai-Kun Liu
- German Cancer Research Center (DKFZ) Heidelberg, Division Molecular Neurogenetics, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Guoliang Cui
- German Cancer Research Center (DKFZ) Heidelberg, Division T Cell Metabolism, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yu Gan
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Yanling Xiao
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hugo M Horlings
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Thijn R Brummelkamp
- Division of Biochemistry, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Christian U Blank
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Medical Oncology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Medical Oncology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands.
| | - Ton N M Schumacher
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| | - Chong Sun
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Hor JL, Germain RN. Spatiotemporal and cell-state control of antigen presentation during tolerance and immunity. Curr Opin Immunol 2023; 84:102357. [PMID: 37331219 DOI: 10.1016/j.coi.2023.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Effective adaptive immunity is rendered possible by highly organized tissue architecture and coordinated cellular crosstalk. While detailed spatiotemporal analyses of antigen presentation and adaptive immune activation in secondary lymphoid tissues have been a major focus of study, it is clear that antigen presentation in other tissues also plays a critical role in shaping the immune response. In this article, we concentrate on two opposing aspects of adaptive immunity: tolerance and antitumor immunity, to illustrate how a complex set of antigen presentation mechanisms contributes to maintaining a delicate balance between robust immunity and avoidance of autoimmune pathology. We emphasize the importance of how immune cell identity, state, and location collectively determine the nature of adaptive immune responses.
Collapse
Affiliation(s)
- Jyh Liang Hor
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| |
Collapse
|
19
|
Singh S, Barik D, Arukha AP, Prasad S, Mohapatra I, Singh A, Singh G. Small Molecule Targeting Immune Cells: A Novel Approach for Cancer Treatment. Biomedicines 2023; 11:2621. [PMID: 37892995 PMCID: PMC10604364 DOI: 10.3390/biomedicines11102621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Conventional and cancer immunotherapies encompass diverse strategies to address various cancer types and stages. However, combining these approaches often encounters limitations such as non-specific targeting, resistance development, and high toxicity, leading to suboptimal outcomes in many cancers. The tumor microenvironment (TME) is orchestrated by intricate interactions between immune and non-immune cells dictating tumor progression. An innovative avenue in cancer therapy involves leveraging small molecules to influence a spectrum of resistant cell populations within the TME. Recent discoveries have unveiled a phenotypically diverse cohort of innate-like T (ILT) cells and tumor hybrid cells (HCs) exhibiting novel characteristics, including augmented proliferation, migration, resistance to exhaustion, evasion of immunosurveillance, reduced apoptosis, drug resistance, and heightened metastasis frequency. Leveraging small-molecule immunomodulators to target these immune players presents an exciting frontier in developing novel tumor immunotherapies. Moreover, combining small molecule modulators with immunotherapy can synergistically enhance the inhibitory impact on tumor progression by empowering the immune system to meticulously fine-tune responses within the TME, bolstering its capacity to recognize and eliminate cancer cells. This review outlines strategies involving small molecules that modify immune cells within the TME, potentially revolutionizing therapeutic interventions and enhancing the anti-tumor response.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, Telangana, India
| | | | | | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota—Twin Cities, Saint Paul, MN 55108, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Huang T, Zhang Q, Yi J, Wang R, Zhang Z, Luo P, Zeng R, Wang Y, Tu M. PEG-Sheddable Nanodrug Remodels Tumor Microenvironment to Promote Effector T Cell Infiltration and Revise Their Exhaustion for Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301749. [PMID: 37211704 DOI: 10.1002/smll.202301749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Low infiltration of cytotoxic T lymphocytes and their exhaustion manifest the two concurrent main hurdles for achieving effective tumor immunotherapy of triple-negative breast cancer. It is found that Galectin-9 blockage can revise the exhaustion of effector T cells, meanwhile the repolarization of protumoral M2 tumor-associated macrophages (TAMs) into tumoricidal M1-like ones can recruit effector T cells infiltrating into tumor to boost immune responses. Herein, a sheddable PEG-decorated and M2-TAMs targeted nanodrug incorporating Signal Transducer and Activator of Transcription 6 inhibitor (AS) and anti-Galectin-9 antibody (aG-9) is prepared. The nanodrug responds to acidic tumor microenvironment (TME) with the shedding of PEG corona and the release of aG-9, exerting local blockade of PD-1/Galectin-9/TIM-3 interaction to augment effector T cells via exhaustion reversing. Synchronously, targeted repolarization of M2-TAMs into M1 phenotype by AS-loaded nanodrug is achieved, which promotes tumor infiltration of effector T cells and thus synergizes with aG-9 blockade to boost the therapeutic efficacy. Besides, the PEG-sheddable approach endows nanodrug with stealth ability to reduce immune-related adverse effects caused by AS and aG-9. This PEG sheddable nanodrug holds the potential to reverse the immunosuppressive TME and increase effector T cell infiltration, which dramatically enhances immunotherapy in highly malignant breast cancer.
Collapse
Affiliation(s)
- Tao Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jing Yi
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Rongze Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Zekun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Pin Luo
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Rong Zeng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
21
|
Lei X, Wang Y, Broens C, Borst J, Xiao Y. Immune checkpoints targeting dendritic cells for antibody-based modulation in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:145-179. [PMID: 38225102 DOI: 10.1016/bs.ircmb.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells which link innate to adaptive immunity. DC play a central role in regulating antitumor T-cell responses in both tumor-draining lymph nodes (TDLN) and the tumor microenvironment (TME). They modulate effector T-cell responses via immune checkpoint proteins (ICPs) that can be either stimulatory or inhibitory. Functions of DC are often impaired by the suppressive TME leading to tumor immune escape. Therefore, better understanding of the mechanisms of action of ICPs expressed by (tumor-infiltrating) DC will lead to potential new treatment strategies. Genetic manipulation and high-dimensional analyses have provided insight in the interactions between DC and T-cells in TDLN and the TME upon ICP targeting. In this review, we discuss (tumor-infiltrating) DC lineage cells and tumor tissue specific "mature" DC states and their gene signatures in relation to anti-tumor immunity. We also review a number of ICPs expressed by DC regarding their functions in phagocytosis, DC activation, or inhibition and outline position in, or promise for clinical trials in cancer immunotherapy. Collectively, we highlight the critical role of DC and their exact status in the TME for the induction and propagation of T-cell immunity to cancer.
Collapse
Affiliation(s)
- Xin Lei
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Yizhi Wang
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Chayenne Broens
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
22
|
Brightman SE, Becker A, Thota RR, Naradikian MS, Chihab L, Zavala KS, Ramamoorthy Premlal AL, Griswold RQ, Dolina JS, Cohen EEW, Miller AM, Peters B, Schoenberger SP. Neoantigen-specific stem cell memory-like CD4 + T cells mediate CD8 + T cell-dependent immunotherapy of MHC class II-negative solid tumors. Nat Immunol 2023; 24:1345-1357. [PMID: 37400675 PMCID: PMC10382322 DOI: 10.1038/s41590-023-01543-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023]
Abstract
CD4+ T cells play key roles in a range of immune responses, either as direct effectors or through accessory cells, including CD8+ T lymphocytes. In cancer, neoantigen (NeoAg)-specific CD8+ T cells capable of direct tumor recognition have been extensively studied, whereas the role of NeoAg-specific CD4+ T cells is less well understood. We have characterized the murine CD4+ T cell response against a validated NeoAg (CLTCH129>Q) expressed by the MHC-II-deficient squamous cell carcinoma tumor model (SCC VII) at the level of single T cell receptor (TCR) clonotypes and in the setting of adoptive immunotherapy. We find that the natural CLTCH129>Q-specific repertoire is diverse and contains TCRs with distinct avidities as measured by tetramer-binding assays and CD4 dependence. Despite these differences, CD4+ T cells expressing high or moderate avidity TCRs undergo comparable in vivo proliferation to cross-presented antigen from growing tumors and drive similar levels of therapeutic immunity that is dependent on CD8+ T cells and CD40L signaling. Adoptive cellular therapy (ACT) with NeoAg-specific CD4+ T cells is most effective when TCR-engineered cells are differentiated ex vivo with IL-7 and IL-15 rather than IL-2 and this was associated with both increased expansion as well as the acquisition and stable maintenance of a T stem cell memory (TSCM)-like phenotype in tumor-draining lymph nodes (tdLNs). ACT with TSCM-like CD4+ T cells results in lower PD-1 expression by CD8+ T cells in the tumor microenvironment and an increased frequency of PD-1+CD8+ T cells in tdLNs. These findings illuminate the role of NeoAg-specific CD4+ T cells in mediating antitumor immunity via providing help to CD8+ T cells and highlight their therapeutic potential in ACT.
Collapse
Affiliation(s)
- Spencer E Brightman
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Angelica Becker
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rukman R Thota
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Martin S Naradikian
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Leila Chihab
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Karla Soria Zavala
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Ryan Q Griswold
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph S Dolina
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ezra E W Cohen
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Aaron M Miller
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Bjoern Peters
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, UCSD, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Stephen P Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
23
|
Benoit A, Vogin G, Duhem C, Berchem G, Janji B. Lighting Up the Fire in the Microenvironment of Cold Tumors: A Major Challenge to Improve Cancer Immunotherapy. Cells 2023; 12:1787. [PMID: 37443821 PMCID: PMC10341162 DOI: 10.3390/cells12131787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Immunotherapy includes immune checkpoint inhibitors (ICI) such as antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or the programmed cell death protein/programmed death ligand 1 (PD-1/PD-L1) axis. Experimental and clinical evidence show that immunotherapy based on immune checkpoint inhibitors (ICI) provides long-term survival benefits to cancer patients in whom other conventional therapies have failed. However, only a minority of patients show high clinical benefits via the use of ICI alone. One of the major factors limiting the clinical benefits to ICI can be attributed to the lack of immune cell infiltration within the tumor microenvironment. Such tumors are classified as "cold/warm" or an immune "desert"; those displaying significant infiltration are considered "hot" or inflamed. This review will provide a brief summary of different tumor properties contributing to the establishment of cold tumors and describe major strategies that could reprogram non-inflamed cold tumors into inflamed hot tumors. More particularly, we will describe how targeting hypoxia can induce metabolic reprogramming that results in improving and extending the benefit of ICI.
Collapse
Affiliation(s)
- Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
| | - Guillaume Vogin
- Centre National de Radiothérapie François Baclesse, L-4005 Esch-sur-Alzette, Luxembourg;
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine—UMR 7365, 54505 Vandoeuvre-lès-Nancy, France
| | - Caroline Duhem
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, L-1210 Luxembourg, Luxembourg;
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, L-1210 Luxembourg, Luxembourg;
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
| |
Collapse
|
24
|
Sprooten J, Laureano RS, Vanmeerbeek I, Govaerts J, Naulaerts S, Borras DM, Kinget L, Fucíková J, Špíšek R, Jelínková LP, Kepp O, Kroemer G, Krysko DV, Coosemans A, Vaes RD, De Ruysscher D, De Vleeschouwer S, Wauters E, Smits E, Tejpar S, Beuselinck B, Hatse S, Wildiers H, Clement PM, Vandenabeele P, Zitvogel L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in oncology. Oncoimmunology 2023; 12:2219591. [PMID: 37284695 PMCID: PMC10240992 DOI: 10.1080/2162402x.2023.2219591] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M. Borras
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jitka Fucíková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Radek Špíšek
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Lenka Palová Jelínková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Institut du Cancer Paris CARPEM, Paris, France
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Insitute Ghent, Ghent University, Ghent, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rianne D.W. Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Steven De Vleeschouwer
- Department Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Department Neuroscience, Laboratory for Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (Breathe), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholiek Universiteit Leuven, Leuven, Belgium
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Benoit Beuselinck
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Paul M. Clement
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laurence Zitvogel
- Tumour Immunology and Immunotherapy of Cancer, European Academy of Tumor Immunology, Gustave Roussy Cancer Center, Inserm, Villejuif, France
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Bawden E, Gebhardt T. The multifaceted roles of CD4 + T cells and MHC class II in cancer surveillance. Curr Opin Immunol 2023; 83:102345. [PMID: 37245413 DOI: 10.1016/j.coi.2023.102345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
CD4+ T cells exhibit diverse functions in cancer surveillance. Concordantly, single-cell transcriptional analyses have revealed several distinct CD4+ T-cell differentiation states in tumours, including cytotoxic and regulatory subsets associated with favourable or unfavourable outcomes, respectively. These transcriptional states are determined and further shaped by dynamic interactions of CD4+ T cells with different types of immune cells, stromal cells and cancer cells. Therefore, we discuss the cellular networks in the tumour microenvironment (TME) that either promote or impede CD4+ T-cell cancer surveillance. We consider antigen/Major histocompatibility complexclass-II (MHC-II)-dependent interactions of CD4+ T cells with both professional antigen-presenting cells and cancer cells, the latter of which can directly express MHC-II, at least in some tumours. Additionally, we examine recent single-cell RNA sequencing studies that have shed light on the phenotype and functions of cancer-specific CD4+ T cells in human tumours.
Collapse
Affiliation(s)
- Emma Bawden
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Thomas Gebhardt
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Chen JH, Nieman LT, Spurrell M, Jorgji V, Richieri P, Xu KH, Madhu R, Parikh M, Zamora I, Mehta A, Nabel CS, Freeman SS, Pirl JD, Lu C, Meador CB, Barth JL, Sakhi M, Tang AL, Sarkizova S, Price C, Fernandez NF, Emanuel G, He J, Raay KV, Reeves JW, Yizhak K, Hofree M, Shih A, Sade-Feldman M, Boland GM, Pelka K, Aryee M, Korsunsky I, Mino-Kenudson M, Gainor JF, Hacohen N. Spatial analysis of human lung cancer reveals organized immune hubs enriched for stem-like CD8 T cells and associated with immunotherapy response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535379. [PMID: 37066412 PMCID: PMC10104028 DOI: 10.1101/2023.04.04.535379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially-localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens, and found that they were associated with beneficial responses to PD-1-blockade. Immunity hubs were enriched for many interferon-stimulated genes, T cells in multiple differentiation states, and CXCL9/10/11 + macrophages that preferentially interact with CD8 T cells. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcomes, distinct from mature tertiary lymphoid structures, and enriched for stem-like TCF7+PD-1+ CD8 T cells and activated CCR7 + LAMP3 + dendritic cells, as well as chemokines that organize these cells. These results elucidate the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.
Collapse
|