1
|
Li L, Ren L, Zhao Q, Xu K, Wu Q, Su Q, Li X, Lü X, Wang L. Gallic acid-grafted chitosan photothermal hydrogels functionalized with mineralized copper-sericin nanoparticles for MRSA-infected wound management. Carbohydr Polym 2025; 352:123179. [PMID: 39843083 DOI: 10.1016/j.carbpol.2024.123179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
The management of wounds infected with drug-resistant bacteria represents a significant challenge to public health globally. Nanotechnology-functionalized photothermal hydrogel with good thermal stability, biocompatibility and tissue adhesion exhibits great potential in treating these infected wounds. Herein, a novel photothermal hydrogel (mCS-Cu-Ser1) was prepared through in situ mineralization in the hydrogel networks and ion cross-linking driven by copper ions (∼3 mM). Self-assembling polyphosphate sericin nanoparticles (Ser NPs) formed by an ultrasound-assisted anti-solvent method were as mineralization templates and gallic acid-grafted chitosan (mCS) was prepared as the sole matrix. Grafting of polyphenols and cross-linking of copper ions endowed mCS-Cu-Ser1 with injectable, skin-adhesive and self-healing characteristics. Due to the nonradiative relaxation of Cu2+ electron-hole pairs of copper phosphate on the surface of Ser NPs and the molecular thermo-vibrational effect of the mCS-Cu complex, mCS-Cu-Ser1 rapidly warmed up to 50 °C within one minute under near-infrared (NIR) irradiation. Integrating such excellent photothermal properties with antimicrobial activity and intracellular reactive oxygen species scavenging from mCS, mCS-Cu-Ser1 + NIR effectively accelerated methicillin-resistant Staphylococcus aureus (MRSA) infected wound healing. This work develops a novel dressing for the treatment of MRSA-infected wounds and provides some reference for the preparation of multifunctional acid-free chitosan hydrogels.
Collapse
Affiliation(s)
- Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiuhan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiushuang Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qianru Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China.
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Huang Y, Yang Y, Peng C, Li Y, Feng W. High Strength, Strain, and Resilience of Gold Nanoparticle Reinforced Eutectogels for Multifunctional Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416318. [PMID: 39973805 DOI: 10.1002/advs.202416318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/02/2025] [Indexed: 02/21/2025]
Abstract
Eutectogels with inherent ionic conductivity, mechanical flexibility, environment resistance, and cost-effectiveness have garnered considerable attention for the development of wearable devices. However, existing eutectogels rarely achieve a balance between strength, strain, and resilience, which are critical indicators of reliability in flexible electronics. Herein, poly(sodium styrenesulfonate) (PSS)-modified gold nanoparticles (AuNPs) in eutectic solvents are synthesized, and PSS-AuNP reinforced polyacrylic acid/polyvinylpyrrolidone (SAu-PAA/PVP) eutectogel is successfully prepared. Through the coordination between AuNPs and the PAA/PVP polymer chains, the SAu-PAA/PVP eutectogel exhibits significantly enhanced tensile strain (946%), mechanical strength (3.50 MPa), and resilience (85.3%). The high-performance eutectogel was demonstrated as a flexible sensor sensitive to strain and temperature, and the AuNPs provided near-infrared sensing capabilities. Furthermore, SAu-PAA/PVP eutectogel inherits the benefits of ES, including anti-drying and anti-freezing properties (-77 °C). Moreover, the eutectogel is microstructured using a simple molding method, and the resulting hierarchical pyramid microstructured eutectogel functions as ionic dielectric layer in a pressure sensor. This sensor exhibits high sensitivity (37.11 kPa-1), low detection limit (1 Pa), a fast response rate (36/54 ms), and excellent reproducibility over 5000 cycles, making them reliable and durable for detecting small vibrations, with potential applications in precision machinery, aerospace, and buildings.
Collapse
Affiliation(s)
- Yingxiang Huang
- Institute of Advanced Technology and Equipment, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Cong Peng
- Institute of Advanced Technology and Equipment, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Li
- Institute of Advanced Technology and Equipment, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Feng
- Institute of Advanced Technology and Equipment, Beijing University of Chemical Technology, Beijing, 100029, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
3
|
Zhang C, Li X, Wu X, Yan M, Lian H. Polymerizable deep eutectic solvent-gels synthesized in situ under molecular engineering control exhibit excellent adhesion, freeze resistance, as well as stretching and humidity sensing capabilities. J Colloid Interface Sci 2025; 679:245-253. [PMID: 39454256 DOI: 10.1016/j.jcis.2024.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Hydrogels generally do not adhere well to different substrates and freeze at sub-zero temperatures, limiting their application. In this study, the strategy of replacing water in hydrogels with deep eutectic solvents (DES) was used to address these challenges. Specifically, choline chloride (ChCl) as hydrogen bond acceptor, acrylic acid (AA) and itaconic acid (IA) as hydrogen bond donors and polymerizable monomers constitute PDES. Afterwards, PDES-gel (PG) was obtained by adding a thermal initiator to polymerize AA and IA in PDES. PG has the following characteristics, because PG is almost water-free, it has remarkable low-temperature tolerance without any phase change at -60 °C to 20 °C. Thanks to the carboxyl groups and chloride ions contained in PG, it can form non-covalent interactions such as hydrogen bonding and ionic interactions with different substrates, so PG can adhere to various substrate surfaces. Furthermore, the breaking elongation of the novelty PG was up to ca. 960 %, tensile strength ca. 1 MPa, outstanding transparency with an average light transmittance of about 95 % in the visible-light range. Ultimately, the novel PG exhibited certain capabilities for moisture detection and deformation sensing. The new PDES-gel material developed using PDES is expected to provide new ideas for the advancement of wearable devices.
Collapse
Affiliation(s)
- Changhang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China
| | - Xiaoyu Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China
| | - Xinyu Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China
| | - Mingkai Yan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China
| | - Hailan Lian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
4
|
Huang Z, Wu Z, Li C, Li X, Yang X, Qiu X, Wang Y, Miao Y, Zhang X. Self-Healing Yet Strong Actuator Materials with Muscle-Like Diastole and Contraction via Multilevel Relaxations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413194. [PMID: 39659125 DOI: 10.1002/adma.202413194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Skeletal muscles represent a role model in soft robotics featuring agile locomotion and incredible mechanical robustness. However, existing actuators lack an optimal combination of actuation parameters (including actuation modes, work capacity, mechanical strength, and damage repair) to rival biological tissues. Here, a biomimetic structural design strategy via multilevel relaxations (α/β/γ/δ-relaxation) modulation is proposed for mechanical robust and healable actuator materials with muscle-like diastole and contraction abilities by orientational alignment of dendritic polyphenol-modified nano-assembles in eutectogels. The anisotropic hierarchical micro-nanostructures assembled by supramolecular interaction mimic the relative slippage of actin filaments and myosin in muscles, ensuring bistable actuation through rapid thermal α-relaxation and expansion. Furthermore, kinetically active secondary β/γ/δ-relaxation at reconfigurable interfaces can conquer the limited self-healing ability of fixed-orientation polymeric chains. The obtained artificial muscle exhibits high output actuation, robust mechanical properties (tensile strength of 33.5 MPa), and desired functional, mechanical self-healing efficiency (89.7%), exceeding typical natural muscles in living systems. The bionic micro-nano design strategy achieves bottom-up cooperative relaxation modulation to integrate all-round performance of natural muscles, which paves the way for substantial advancements in next-generation intelligent robotics.
Collapse
Affiliation(s)
- Zhuo Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhibo Wu
- Shaanxi Key Laboratory of Impact Dynamics and its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China
- National Key Laboratory of Strength and Structural Integrity, Xi'an, 710072, China
| | - Changchun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yuyan Wang
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Yinggang Miao
- Shaanxi Key Laboratory of Impact Dynamics and its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China
- National Key Laboratory of Strength and Structural Integrity, Xi'an, 710072, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Zeng F, Wu J, Hua Z, Liu G. Complementary Nucleobase-Containing Double-Network Elastomers with High Energy Dissipation and Room-Temperature Fast Recovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411446. [PMID: 39670704 DOI: 10.1002/smll.202411446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 12/14/2024]
Abstract
Elastomers have been widely employed in various industrial products such as tires, actuators, dampers, and sealants. While various methods have been developed to strengthen elastomers, achieving continuously high energy dissipation with fast room-temperature recovery remains challenging, prompting the need for further structural optimization. Herein, high energy dissipated and fast recoverable double-network (DN) elastomers are fabricated, in which the supramolecular polymers of complementary adenine and thymine serve as the first network and the covalently cross-linked soft polymer as the second network. Both networks are efficiently prepared via photopolymerization. The resulting DN elastomer displays high energy dissipation and room temperature fast recovery, which can be attributed to the good independence of supramolecular and covalent networks. Furthermore, it is demonstrated that the DN elastomer can be exploited as excellent cushioning materials under continuous impacts. This work presents a feasible avenue for fabricating DN elastomers with high energy dissipation and fast recovery based on the multiple hydrogen bonds of complementary nucleobases.
Collapse
Affiliation(s)
- Fanxuan Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Si P, Zou J, Dou Y, Zeng Q, Wu Y, Long Z, Cai Y, Hu J, Wu X, Huang G, Li H, Zhang D. Ionic aggregates induced room temperature autonomous self-healing elastic tape for reducing ankle sprain. J Colloid Interface Sci 2025; 678:819-828. [PMID: 39312870 DOI: 10.1016/j.jcis.2024.09.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Traditional kinesiology tape (KT) is an elastic fabric tape that clinicians and sports trainers widely use for managing ankle sprains. However, inadequate mechanical properties, adhesive strength, water resistance, and micro-damage generation could affect the longevity of the tape on the skin during physical activity and sweating. Therefore, autonomous room-temperature self-healing elastomers with robust mechanical properties and adequate adhesion to the skin are highly desirable to replace traditional KT. Ionic aggregates were introduced into the polymer matrix via electrostatic attraction between polymer colloid and polyelectrolyte to achieve such elastic tape. These ionic aggregates act as physical crosslink points to enhance mechanical properties and dissociate at room temperature to provide self-healing functions. The obtained elastic tape possesses a tensile strength of 3.7 MPa, elongation of 940 %, toughness of 16.6 MJ∙m-3, and self-healing efficiency of 90 % for 2 h at room temperature. It also exhibits adequate reversible adhesion on the skin via van der Waals force and electrostatic interaction in both dry and wet conditions. The new elastic tapes have great potential in biomedical engineering for preventing and rehabilitating ankle sprain.
Collapse
Affiliation(s)
- Pengxiang Si
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China.
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Yefan Dou
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Yun Wu
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China
| | - Zhu Long
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China
| | - Yuxin Cai
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Xuan Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China.
| | - Haoxuan Li
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China.
| | - Dan Zhang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China.
| |
Collapse
|
7
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
8
|
Xiao G, Guo J, Zheng M, Zhang J, Chen L, Dai M, Afewerki S, Chen X, Zhang X. Tea/Coffee Sustainable Nanoarchitectures Purify Wastewater. NANO LETTERS 2024; 24:15509-15516. [PMID: 39601212 DOI: 10.1021/acs.nanolett.4c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transforming spent coffee grounds and tea residues into valuable hierarchical porous materials presents a sustainable solution for environmental remediation due to the low cost, extensive availability, and versatile functionalized interface. Here, we systematically investigated tea polyphenol-mediated morphological transformation of spent coffee grounds to the synthesis of three-dimensional (3D) mesoporous metal-organic framework (MOF)-derived nanoarchitectured carbon composites. We adopted the sustainable cost-effective tea-coffee derivative to remove typical marine micropollutants, such as antibiotic wastewater, radioactive pollutants, and microplastics. This innovative adsorbent shows remarkable efficiency in antibiotic adsorption, achieving up to 99.62% removal of tetracycline (TC), with an impressive maximum adsorption capacity of 373.1 mg/g. It also demonstrates a remarkable ability to remove marine microplastics and radioactive pollutants with immediate nuclear threats and global sanitation and health crisis posed by Fukushima nuclear waste toward the world. The innovative strategy of treating waste with waste highlights economic potential in wastewater treatment.
Collapse
Affiliation(s)
- Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Tcchnology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junling Guo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mingzhu Zheng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
| | - Jun Zhang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
| | - Liyin Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Manna Dai
- Computing & Intelligence Department, Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 138632, Singapore
| | - Samson Afewerki
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Tcchnology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xing Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Cai C, Yao G, Zhang Y, Zhang S, Li F, Tan Z, Dong S. Optically transparent and mechanically tough glass with impact resistance and flame retardancy enabled by covalent/supramolecular interactions. MATERIALS HORIZONS 2024; 11:5732-5739. [PMID: 39252527 DOI: 10.1039/d4mh00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Exploring glass materials beyond inorganic components represents a new direction in the development of artificial transparent materials. Inspired by the successes of polymeric and supramolecular glasses, we shifted our attention to the preparation of a transparent glass through the polymerization of low-molecular-weight monomers that are naturally tailored with noncovalent recognition motifs. In this work, an imidazolium unit bearing a vinyl group and a tetrafluoroborate counter anion was selected to construct an artificial glass. Experimental and theoretical investigations revealed that the cross-linking behavior of anions effectively transformed linear polymeric chains into three-dimensional networks. The polymeric-supramolecular glass exhibits a tough tensile strength (61.31 MPa), high Young's modulus (1.17 GPa), and good optical transparency (>90%), which are comparable to those of polymethyl methacrylate. Moreover, the obtained glass maintains excellent mechanical toughness and optical transparency over a wide temperature range (from -150 to 150 °C). The material shows a superior impact resistance (18.34 kJ m-2) and flame retardancy (V0 rating), which are barely achieved by supramolecular materials.
Collapse
Affiliation(s)
- Changyong Cai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, P. R. China.
| | - Guohong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, P. R. China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| |
Collapse
|
10
|
Qiu X, Liu J, Li X, Wang Y, Zhang X. Click dechlorination of halogen-containing hazardous plastics towards recyclable vitrimers. Nat Commun 2024; 15:9759. [PMID: 39528540 PMCID: PMC11555219 DOI: 10.1038/s41467-024-53984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Amid the ongoing Global Plastics Treaty, high-quality circulation of halogen-containing plastics in an environmentally sound manner is a globally pressing issue. Current chemical dechlorination methods are limited by their inability to recycle PVC at the long-chain carbon level and the persistence of eco-toxic organochlorine byproducts. Herein, we propose a click dechlorination strategy for transforming waste PVC into valuable vitrimers via a one-step cascade thiol-ene click reaction and dynamic polymerization. Thermal activation of C-Cl bonds initiates β-elimination dechlorination, while disulfide bonds synchronously undergo homolytic cleavage, generating sulfur-centered radicals that drive precise sulfur-chlorine substitution and the formation of disulfide dynamic networks. This strategy achieves nearly complete chlorine extraction (93.88%) and produces vitrimers with tailorable mechanical and reprocessing properties, spanning from soft elastomers with 784% elongation to rigid plastics with a yield strength of 34 MPa. The significant advantage of this strategy is backbone protective precise dechlorination, enabling ecosystem toxicity reduced by 99.51% compared with widely adopted pyrolysis methods. This work introduces a sustainable pathway for upcycling PVC into valuable materials, marking significant progress in chlorinated plastic recycling.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - Yuyan Wang
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Lin X, Li CY, Liang LX, Guo QY, Zhang Y, Fu SR, Zhang Q, Chen F, Han D, Fu Q. Organic-inorganic covalent-ionic network enabled all-in-one multifunctional coating for flexible displays. Nat Commun 2024; 15:9680. [PMID: 39516461 PMCID: PMC11549396 DOI: 10.1038/s41467-024-54083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Touch displays are ubiquitous in modern technologies. However, current protective methods for emerging flexible displays against static, scratches, bending, and smudge rely on multilayer materials that impede progress towards flexible, lightweight, and multifunctional designs. Developing a single coating layer integrating all these functions remains challenging yet highly anticipated. Herein, we introduce an organic-inorganic covalent-ionic hybrid network that leverages the reorganizing interaction between siloxanes (i.e., trifluoropropyl-funtionalized polyhedral oligomeric silsesquioxane and cyclotrisiloxane) and fluoride ions. This nanoscale organic-inorganic covalent-ionic hybridized crosslinked network, combined with a low surface energy trifluoropropyl group, offers a monolithic layer coating with excellent optical, antistatic, anti-smudge properties, flexibility, scratch resistance, and recyclability. Compared with existing protective materials, this all-in-one coating demonstrates comprehensive multifunctionality and closed-loop recyclability, making it ideal for future flexible displays and contributing to ecological sustainability in consumer electronics.
Collapse
Affiliation(s)
- Xiong Lin
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Chen-Yu Li
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Lu-Xuan Liang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Qing-Yun Guo
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Yongzheng Zhang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Si-Rui Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Qin Zhang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Feng Chen
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Di Han
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.
| | - Qiang Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
12
|
Lyu X, Zhang H, Shen S, Gong Y, Zhou P, Zou Z. Multi-Modal Sensing Ionogels with Tunable Mechanical Properties and Environmental Stability for Aquatic and Atmospheric Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410572. [PMID: 39292213 DOI: 10.1002/adma.202410572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Ionogels have garnered significant interest due to their great potential in flexible iontronic devices. However, their limited mechanical tunability and environmental intolerance have posed significant challenges for their integration into next-generation flexible electronics in different scenarios. Herein, the synergistic effect of cation-oxygen coordination interaction and hydrogen bonding is leveraged to construct a 3D supramolecular network, resulting in ionogels with tunable modulus, stretchability, and strength, achieving an unprecedented elongation at break of 10 800%. Moreover, the supramolecular network endows the ionogels with extremely high fracture energy, crack insensitivity, and high elasticity. Meanwhile, the high environmental stability and hydrophobic network of the ionogels further shield them from the unfavorable effects of temperature variations and water molecules, enabling them to operate within a broad temperature range and exhibit robust underwater adhesion. Then, the ionogel is assembled into a wearable sensor, demonstrating its great potential in flexible sensing (temperature, pressure, and strain) and underwater signal transmission. This work can inspire the applications of ionogels in multifunctional sensing and wearable fields.
Collapse
Affiliation(s)
- Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Haoqi Zhang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shengtao Shen
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yue Gong
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Piaopiao Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Zhigang Zou
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
13
|
Lv Y, Li C, Yang Z, Gan M, Wang Y, Lu M, Zhang X, Min L. Monomer Trapping Synthesis Toward Dynamic Nanoconfinement Self-healing Eutectogels for Strain Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410446. [PMID: 39279471 PMCID: PMC11558160 DOI: 10.1002/advs.202410446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 09/18/2024]
Abstract
The rapid advancement in attractive platforms such as biomedicine and human-machine interaction has generated urgent demands for intelligent materials with high strength, flexibility, and self-healing capabilities. However, existing self-healing ability materials are challenged by a trade-off between high strength, low elastic modulus, and healing ability due to the inherent low strength of noncovalent bonding. Here, drawing inspiration from human fibroblasts, a monomer trapping synthesis strategy is presented based on the dissociation and reconfiguration in amphiphilic ionic restrictors (7000-times volume monomer trapping) to develop a eutectogel. Benefiting from the nanoconfinement and dynamic interfacial interactions, the molecular chain backbone of the formed confined domains is mechanically reinforced while preserving soft movement capabilities. The resulting eutectogels demonstrate superior mechanical properties (1799% and 2753% higher tensile strength and toughness than pure polymerized deep eutectic solvent), excellent self-healing efficiency (>90%), low tangential modulus (0.367 MPa during the working stage), and the ability to sensitively monitor human activities. This strategy is poised to offer a new perspective for developing high strength, low modulus, and self-healing wearable electronics tailored to human body motion.
Collapse
Affiliation(s)
- Yuesong Lv
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Changchun Li
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Zhangqin Yang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Mingxi Gan
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Yuyan Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Minxun Lu
- Orthopedic Research InstituteDepartment of OrthopedicsWest China Hospital of Sichuan UniversityChengdu610065China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan provinceWest China HospitalSichuan Universitychengdu610065China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Li Min
- Orthopedic Research InstituteDepartment of OrthopedicsWest China Hospital of Sichuan UniversityChengdu610065China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan provinceWest China HospitalSichuan Universitychengdu610065China
| |
Collapse
|
14
|
Liang Y, Lin L, Liang H, Zhong Z. Longevous ionogels with high strength, conductivity, adhesion and thermoplasticity. CHEMICAL ENGINEERING JOURNAL 2024; 497:155047. [DOI: 10.1016/j.cej.2024.155047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
|
15
|
Han R, Zeng F, Xia Q, Pang X, Wu X. Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments. Carbohydr Polym 2024; 340:122271. [PMID: 38858021 DOI: 10.1016/j.carbpol.2024.122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m-3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m-1), even when subjected to -40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields.
Collapse
Affiliation(s)
- Ruiheng Han
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fan Zeng
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qingqing Xia
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangchao Pang
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xianzhang Wu
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Yang Z, Wang Y, Lan L, Wang Y, Zhang X. Bioinspired H-Bonding Connected Gradient Nanostructure Actuators Based on Cellulose Nanofibrils and Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401580. [PMID: 38708893 DOI: 10.1002/smll.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Indexed: 05/07/2024]
Abstract
The construction of flexible actuators with ultra-fast actuation and robust mechanical properties is crucial for soft robotics and smart devices, but still remains a challenge. Inspired by the unique mechanism of pinecones dispersing seeds in nature, a hygroscopic actuator with interlayer network-bonding connected gradient structure is fabricated. Unlike most conventional bilayer actuator designs, the strategy leverages biobased polyphenols to construct strong interfacial H-bonding networks between 1D cellulose nanofibers and 2D graphene oxide, endowing the materials with high tensile strength (172 MPa) and excellent toughness (6.64 MJ m-3). Furthermore, the significant difference in hydrophilicity between GO and rGO, along with the dense interlayer H-bonding, enables ultra-fast water exchange during water absorption and desorption processes. The resulted actuator exhibits ultra-fast driving speed (154° s-1), excellent pressure-resistant and cyclic stability. Taking advantages of these benefits, the actuator can be fabricated into smart devices (such as smart grippers, humidity control switches) with significant potential for practical applications. The presented approach to constructing interlayer H-bonding in gradient structures is instructive for achieving high performance and functionalization of biomass nanomaterials and the complex of 1D/2D nanomaterials.
Collapse
Affiliation(s)
- Zhangqin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yuting Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Lidan Lan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yuyan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
17
|
Chen J, Chen A, Zou C, Chen C. Synthesis of Photoresponsive Fast Self-healing Polyolefin Composites by Nickel-Catalyzed Copolymerization of Ethylene and Lignin Cluster Monomers. Angew Chem Int Ed Engl 2024; 63:e202404603. [PMID: 38764411 DOI: 10.1002/anie.202404603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/21/2024]
Abstract
Polymers may suffer from sudden mechanical damages during long-term use under various harsh operating environments. Rapid and real-time self-healing will extend their service life, which is particularly attractive in the context of circular economy. In this work, a lignin cluster polymerization strategy (LCPS) was designed to prepare a series of lignin functionalized polyolefin composites with excellent mechanical properties through nickel catalyzed copolymerization of ethylene and lignin cluster monomers. These composites can achieve rapid self-healing within 30 seconds under a variety of extreme usage environments (underwater, seawater, extremely low temperatures as low as -60 °C, organic solvents, acid/alkali solvents, etc.), which is of great significance for real-time self-healing of sudden mechanical damage. More importantly, the dynamic cross-linking network within these composites enable great re-processability and amazing sealing performances.
Collapse
Affiliation(s)
- Jiawei Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ao Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Zou
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Wu X, Li M, Li H, Gao H, Wang Z, Wang Z. Autonomous Underwater Self-Healable Adhesive Elastomers Enabled by Dynamical Hydrophobic Phase-Separated Microdomains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311131. [PMID: 38644339 DOI: 10.1002/smll.202311131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/01/2024] [Indexed: 04/23/2024]
Abstract
High-efficient underwater self-healing materials with reliable mechanical attributes hold great promise for applications in ocean explorations and diverse underwater operations. Nevertheless, achieving these functions in aquatic environments is challenging because the recombination of dynamic interactions will suffer from resistance to interfacial water molecules. Herein, an ultra-robust and all-environment stable self-healable polyurethane-amide supramolecular elastomer is developed through rational engineering of hydrophobic domains and multistrength hydrogen bonding interactions to provide mechanical and healing compatibility as well as efficient suppression of water ingress. The coupling of hydrophobic chains and hierarchical hydrogen bonds within a multiphase matrix self-assemble to generate dynamical hydrophobic hard-phase microdomains, which synergistically realize high stretchability (1601%), extreme toughness (87.1 MJ m-3), and outstanding capability to autonomous self-healing in various harsh aqueous conditions with an efficiency of 58% and healed strength of 12.7 MPa underwater. Furthermore, the self-aggregation of hydrophobic clusters with sufficient dynamic interactions endows the resultant elastomer with effective instantaneous adhesion (6.2 MPa, 941.9 N m-1) in extremely harsh aqueous conditions. It is revealed that the dynamical hydrophobic hard-phase microdomain composed of hydrophobic barriers and cooperative reversible interactions allows for regulating its mechanical enhancement and underwater self-healing efficiency, enabling the elastomers as intelligent sealing devices in marine applications.
Collapse
Affiliation(s)
- Xiankun Wu
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Min Li
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Haonan Li
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Huihui Gao
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhong Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
19
|
Lu Z, Wang J, He L, Song J, Yang Z, Hammad FA. High-Performance Multidirectional Flexible Strain Sensor for Human Motion and Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39074313 DOI: 10.1021/acsami.4c04583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Multidirectional strain sensors are pivotal for wearable electronic devices and human-computer interaction. In this investigation, we translocate carbon/graphene (CB/Gr) conductive nanocomposites onto an Ecoflex flexible substrate via a facile technique encompassing reverse molding and spraying, culminating in the fabrication of a 45° strain rosette-shaped multidirectional flexible strain sensor. The sensor distinguishes itself with extraordinary performance characteristics, including high sensitivity (boasting a gauge factor of 35), an extensive strain range from 0 to 100%, exceptional linearity, a rapid response time of merely 200 ms, remarkable stability, and outstanding durability, effortlessly withstanding over 5000 stretch-release cycles. The sensor exhibits its exceptional capability to discern intricate movements, particularly in detecting human hand and neck motions. The sensor's remarkable comprehensive performance and strain direction recognition ability underscore its significant potential for diverse applications, notably in human-computer interaction, human motion monitoring, and health monitoring.
Collapse
Affiliation(s)
- Zhilai Lu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jiang Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Lei He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jianan Song
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zhen Yang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300054, China
| | - Farid A Hammad
- Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta 31521, Egypt
| |
Collapse
|
20
|
Zhou B, Yang X, Liu J, Lan L, Lu H, Wang Y, Wei Z, Zhang X. Jellyfish-Inspired Self-Healing Luminescent Elastomers Based on Borate Nanoassemblies for Dual-Model Encryption. NANO LETTERS 2024; 24:8198-8207. [PMID: 38904269 DOI: 10.1021/acs.nanolett.4c02512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Responsive luminescent materials that reversibly react to external stimuli have emerged as prospective platforms for information encryption applications. Despite brilliant achievements, the existing fluorescent materials usually have low information density and experience inevitable information loss when subjected to mechanical damage. Here, inspired by the hierarchical nanostructure of fluorescent proteins in jellyfish, we propose a self-healable, photoresponsive luminescent elastomer based on dynamic interface-anchored borate nanoassemblies for smart dual-model encryption. The rigid cyclodextrin molecule restricts the movement of the guest fluorescent molecules, enabling long room-temperature phosphorescence (0.37 s) and excitation wavelength-responsive fluorescence. The building of reversible interfacial bonding between nanoassemblies and polymer matrix together with their nanoconfinement effect endows the nanocomposites with excellent mechanical performances (tensile strength of 15.8 MPa) and superior mechanical and functional recovery capacities after damage. Such supramolecular nanoassemblies with dynamic nanoconfinement and interfaces enable simultaneous material functionalization and self-healing, paving the way for the development of advanced functional materials.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Lidan Lan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Hao Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yuyan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Zhenbo Wei
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Yu C, Li X, Yang X, Qiu X, Zhang X, Chen Z, Luo Y. Dynamic Covalent Bonded Gradient Structured Actuators with Mechanical Robustness and Self-Healing Ability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311656. [PMID: 38308144 DOI: 10.1002/smll.202311656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Flexible actuators with excellent adaptability and interaction safety have a wide range of application prospects in many fields. However, current flexible actuators have problems such as fragility and poor actuating ability. Here, inspired by the features of nacre structure, a gradient structured flexible actuator is proposed with mechanical robustness and self-healing ability. By introducing dynamic boronic ester bonds at the interface between MXene nanosheets and epoxy natural rubber matrix, the resulting nanocomposites with ordered micro-nano structures exhibit excellent tensile strength (25.03 MPa) and satisfactory repair efficiency (81.2%). In addition, the gradient distribution structure of MXene nanosheets endows the actuator with stable photothermal conversion capability, which can quickly respond to near-infrared light stimulation. The interlayer dynamic covalent bond crosslinking enables good response speed after multiple bending and is capable of functional self-healing after damage. This work introduces gradient structure and dynamic covalent bonding into flexible actuators, which provides a reference for the fabrication of self-healing soft robots, wearable, and other healable functional materials.
Collapse
Affiliation(s)
- Chuansong Yu
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City, 542899, China
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin City, 541004, China
| | - Xinkai Li
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University, Chengdu City, 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University, Chengdu City, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University, Chengdu City, 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University, Chengdu City, 610065, China
| | - Zhenming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City, 542899, China
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin City, 541004, China
| | - Yanglin Luo
- Guangxi Lisheng Stone Co., Ltd., Hezhou University, Hezhou City, 542899, China
| |
Collapse
|
22
|
Kojima T, Noguchi Y, Terasaka K, Asakura K, Banno T. Engineering pH-Responsive, Self-Healing Vesicle-Type Artificial Tissues with Higher-Order Cooperative Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311255. [PMID: 38415816 DOI: 10.1002/smll.202311255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Indexed: 02/29/2024]
Abstract
Multicellular organisms demonstrate a hierarchical organization where multiple cells collectively form tissues, thereby enabling higher-order cooperative functionalities beyond the capabilities of individual cells. Drawing inspiration from this biological organization, assemblies of multiple protocells are developed to create novel functional materials with emergent higher-order cooperative functionalities. This paper presents new artificial tissues derived from multiple vesicles, which serve as protocellular models. These tissues are formed and manipulated through non-covalent interactions triggered by a salt bridge. Exhibiting pH-sensitive reversible formation and destruction under neutral conditions, these artificial vesicle tissues demonstrate three distinct higher-order cooperative functionalities: transportation of large cargoes, photo-induced contractions, and enhanced survivability against external threats. The rapid assembly and disassembly of these artificial tissues in response to pH variations enable controlled mechanical task performance. Additionally, the self-healing property of these artificial tissues indicates robustness against external mechanical damage. The research suggests that these vesicles can detect specific pH environments and spontaneously assemble into artificial tissues with advanced functionalities. This leads to the possibility of developing intelligent materials with high environmental specificity, particularly for applications in soft robotics.
Collapse
Affiliation(s)
- Tomoya Kojima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yutaro Noguchi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Koichi Terasaka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kouichi Asakura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
23
|
Li H, Xu F, Li Y, Sun J. Self-Healing Ionogel-Enabled Self-Healing and Wide-Temperature Flexible Zinc-Air Batteries with Ultra-Long Cycling Lives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402193. [PMID: 38569521 PMCID: PMC11220675 DOI: 10.1002/advs.202402193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Hydrogel-based zinc-air batteries (ZABs) are promising flexible rechargeable batteries. However, the practical application of hydrogel-based ZABs is limited by their short service life, narrow operating temperature range, and repair difficulty. Herein, a self-healing ionogel is synthesized by the photopolymerization of acrylamide and poly(ethylene glycol) monomethyl ether acrylate in 1-ethyl-3-methylimidazolium dicyanamide with zinc acetate dihydrate and first used as an electrolyte to fabricate self-healing ZABs. The obtained self-healing ionogel has a wide operating temperature range, good environmental and electrochemical stability, high ionic conductivity, satisfactory mechanical strength, repeatable and efficient self-healing properties enabled by the reversibility of hydrogen bonding, and the ability to inhibit the production of dendrites and by-products. Notably, the self-healing ionogel has the highest ionic conductivity and toughness compared to other reported self-healing ionogels. The prepared self-healing ionogel is used to assemble self-healing flexible ZABs with a wide operating temperature range. These ZABs have ultra-long cycling lives and excellent stability under harsh conditions. After being damaged, the ZABs can repeatedly self-heal to recover their battery performance, providing a long-lasting and reliable power supply for wearable devices. This work opens new opportunities for the development of electrolytes for ZABs.
Collapse
Affiliation(s)
- Hongli Li
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Fuchang Xu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
24
|
Gao Q, Chu X, Yang J, Guo Y, Guo H, Qian S, Yang Y, Wang B. An Antibiotic Nanobomb Constructed from pH-Responsive Chemical Bonds in Metal-Phenolic Network Nanoparticles for Biofilm Eradication and Corneal Ulcer Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309086. [PMID: 38488341 PMCID: PMC11165475 DOI: 10.1002/advs.202309086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/13/2024] [Indexed: 06/12/2024]
Abstract
In the treatment of refractory corneal ulcers caused by Pseudomonas aeruginosa, antibacterial drugs delivery faces the drawbacks of low permeability and short ocular surface retention time. Hence, novel positively-charged modular nanoparticles (NPs) are developed to load tobramycin (TOB) through a one-step self-assembly method based on metal-phenolic network and Schiff base reaction using 3,4,5-trihydroxybenzaldehyde (THBA), ε-poly-ʟ-lysine (EPL), and Cu2+ as matrix components. In vitro antibacterial test demonstrates that THBA-Cu-TOB NPs exhibit efficient instantaneous sterilization owing to the rapid pH responsiveness to bacterial infections. Notably, only 2.6 µg mL-1 TOP is needed to eradicate P. aeruginosa biofilm in the nano-formed THBA-Cu-TOB owing to the greatly enhanced penetration, which is only 1.6% the concentration of free TOB (160 µg mL-1). In animal experiments, THBA-Cu-TOB NPs show significant advantages in ocular surface retention, corneal permeability, rapid sterilization, and inflammation elimination. Based on molecular biology analysis, the toll-like receptor 4 and nuclear factor kappa B signaling pathways are greatly downregulated as well as the reduction of inflammatory cytokines secretions. Such a simple and modular strategy in constructing nano-drug delivery platform offers a new idea for toxicity reduction, physiological barrier penetration, and intelligent drug delivery.
Collapse
Affiliation(s)
- Qiang Gao
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual ScienceWenzhou Medical UniversityWenzhou325027P. R. China
| | - Xiaoying Chu
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Jie Yang
- School of Life SciencesJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Yishun Guo
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Hanwen Guo
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Siyuan Qian
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Ying‐Wei Yang
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Bailiang Wang
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual ScienceWenzhou Medical UniversityWenzhou325027P. R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic DiseasesWenzhou325027P. R. China
| |
Collapse
|
25
|
Yang X, Huang X, Qiu X, Guo Q, Zhang X. Supramolecular metallic foams with ultrahigh specific strength and sustainable recyclability. Nat Commun 2024; 15:4553. [PMID: 38811594 PMCID: PMC11137098 DOI: 10.1038/s41467-024-49091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Porous materials with ultrahigh specific strength are highly desirable for aerospace, automotive and construction applications. However, because of the harsh processing of metal foams and intrinsic low strength of polymer foams, both are difficult to meet the demand for scalable development of structural foams. Herein, we present a supramolecular metallic foam (SMF) enabled by core-shell nanostructured liquid metals connected with high-density metal-ligand coordination and hydrogen bonding interactions, which maintain fluid to avoid stress concentration during foam processing at subzero temperatures. The resulted SMFs exhibit ultrahigh specific strength of 489.68 kN m kg-1 (about 5 times and 56 times higher than aluminum foams and polyurethane foams) and specific modulus of 281.23 kN m kg-1 to withstand the repeated loading of a car, overturning the previous understanding of the difficulty to achieve ultrahigh mechanical properties in traditional polymeric or organic foams. More importantly, end-of-life SMFs can be reprocessed into value-added products (e.g., fibers and films) by facile water reprocessing due to the high-density interfacial supramolecular bonding. We envisage this work will not only pave the way for porous structural materials design but also show the sustainable solution to plastic environmental risks.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Quanquan Guo
- Max Planck Institute of Microstructure Physics, Halle (Saale), 06120, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
26
|
Zhou P, Wang Y, Zhang X. Supramolecularly Connected Armor-like Nanostructure Enables Mechanically Robust Radiative Cooling Materials. NANO LETTERS 2024; 24:6395-6402. [PMID: 38757657 DOI: 10.1021/acs.nanolett.4c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Passive daytime radiative cooling (PDRC) is a promising practice to realize sustainable thermal management with no energy and resources consumption. However, there remains a challenge of simultaneously integrating desired solar reflectivity, environmental durability, and mechanical robustness for polymeric composites with nanophotonic structures. Herein, inspired by a classical armor shell of a pangolin, we adopt a generic design strategy that harnesses supramolecular bonds between the TiO2-decorated mica microplates and cellulose nanofibers to collectively produce strong interfacial interactions for fabricating interlayer nanostructured PDRC materials. Owing to the strong light scattering excited by hierarchical nanophotonic structures, the bioinspired film demonstrates a desired reflectivity (92%) and emissivity (91%) and an excellent temperature drop of 10 °C under direct sunlight. Notably, the film guarantees high strength (41.7 MPa), toughness (10.4 MJ m-3), and excellent environmental durability. This strategy provides possibilities in designing polymeric PDRC materials, further establishing a blueprint for other functional applications like soft robots, wearable devices, etc.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yuyan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Zhang D, Li X, Li J, Wang Q, Dong X, Wu Y, Li Z, Xie X, Liu Z, Xiu F, Huang W, Liu J. Phase-Segregated Ductile Eutectogels with Ultrahigh Modulus and Toughness for Antidamaging Fabric Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306557. [PMID: 38063820 DOI: 10.1002/smll.202306557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/01/2023] [Indexed: 05/18/2024]
Abstract
Ionogels are extremely soft ionic materials that can undergo large deformation while maintaining their structural and functional integrity. Ductile ionogels can absorb energy and resist fracture under external load, making them an ideal candidate for wearable electronics, soft robotics, and protective gear. However, developing high-modulus ionogels with extreme toughness remains challenging. Here, a facile one-step photopolymerization approach to construct an acrylic acid (AA)-2-hydroxyethylacrylate (HEA)-choline chloride (ChCl) eutectogel (AHCE) with ultrahigh modulus and toughness is reported. With rich hydrogen bonding crosslinks and phase segregation, this gel has a 99.1 MPa Young's modulus and a 70.6 MJ m-3 toughness along with 511.4% elongation, which can lift 12 000 times its weight. These features provide extreme damage resistance and electrical healing ability, offering it a protective and strain-sensitive coating to innovate anticutting fabric with motion detection for human healthcare. The work provides an effective strategy to construct robust ionogel materials and smart wearable electronics for intelligent life.
Collapse
Affiliation(s)
- Dengfeng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Xiujuan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Junyue Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Qiye Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Xuemei Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Yueyue Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Zifan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Xinyi Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Fei Xiu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| |
Collapse
|
28
|
Lv Y, Wang Y, Zhang X. Construction of Mineralization Nanostructures in Polymers for Mechanical Enhancement and Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309313. [PMID: 38164816 DOI: 10.1002/smll.202309313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Mineralization capable of growing inorganic nanostructures efficiently, orderly, and spontaneously shows great potential for application in the construction of high-performance organic-inorganic composites. As a thermodynamically spontaneous solid-phase crystallization reaction involving dual organic and inorganic components, mineralization allows for the self-assembly of sophisticated and exclusive nanostructures within a polymer matrix. It results in a diversity of functions such as enhanced strength, toughness, electrical conductivity, selective permeability, and biocompatibility. While there are previous reviews discussing the progress of mineralization reactions, many of them overlook the significant benefits of interfacial regulation and functionalization that come from the incorporation of mineralized structures into polymers. Focusing on different means of assembly of mineralized nanostructures in polymer, the work analyzes their design principles and implementation strategies. Then, their different advantages and disadvantages are analyzed by combining nanostructures with organic substrates as well as involving the basis of different functionalizations. It is anticipated to provide insights and guidance for the future development of mineralized polymer composites and their application designs.
Collapse
Affiliation(s)
- Yuesong Lv
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yuyan Wang
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, D-78457, Konstanz, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
29
|
Jia L, Xiao J, Tan Y, Zhang K, Liu Y, Wang X. Supramolecular Ionogels for Use in Locating Damage to Underwater Infrastructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309231. [PMID: 38059870 DOI: 10.1002/smll.202309231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Indexed: 12/08/2023]
Abstract
The capacity to self-detect and locate damage to underwater infrastructure in emergencies is vital, as materials and technologies that securely facilitate energy and information transmission are crucial in several fields. Herein, the development of a multifunctional supramolecular ionogel (SIG) and SIG-based devices for use in detecting and locating damage to underwater infrastructure is reported. The SIG is fabricated via the single-step photoinitiated copolymerization of hydroxy and fluorinated monomers in a fluorinated ionic liquid. Hydrogen-bond/ion-dipole-interaction synergy ensures that the SIG is highly ionically conductive and extremely mechanically strong, with underwater self-healing and adhesion properties. It can be used as an underwater ionic cable to provide reporting signals via changes in strain; furthermore, SIG-based devices can be fixed to underwater infrastructure to locate damage via resistance monitoring. The SIG can also be attached to the human body for use in underwater communication, thereby safeguarding maintenance personnel while repairing underwater infrastructure. This study provides a novel pathway for developing supramolecular materials and devices.
Collapse
Affiliation(s)
- Liangying Jia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jing Xiao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Kaiqiang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
30
|
Chen S, Chen X, Luo K, Yang W, Yan X, Liu L. Thermo-growing ion clusters enabled healing strengthening and tough adhesion for highly reliable skin electronics. MATERIALS HORIZONS 2024; 11:1923-1933. [PMID: 38343364 DOI: 10.1039/d3mh01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Self-healing and self-adhesion capacities are essential for many modern applications such as skin-interfaced electronics for improving longevity and reliability. However, the self-healing efficiency and adhesive toughness of most synthetic polymers are limited to their original network, making reliability under dynamic deformation still challenging. Herein, inspired by the growth of living organisms, a highly stretchable supramolecular elastomer based on thermo-responsive ion clusters and a dynamic polysulfide backbone was developed. Attributed to the synergic growth of ion clusters and dynamic exchange of disulfide bonds, the elastomer exhibited unique healing strengthening (healing efficiency >200%) and thermo-enhanced tough adhesion (interfacial toughness >500 J m-2) performances. To prove its practical application in highly reliable skin electronics, we further composited the elastomer with a zwitterion to prepare a highly conductive ionic elastomer and applied it in wearable strain sensing and long-term electrophysiological detection. This work provides a new avenue to realize high reliability in skin interfaced electronics.
Collapse
Affiliation(s)
- Song Chen
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xinyu Chen
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Kaiying Luo
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Wenwei Yang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Xueling Yan
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Lan Liu
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| |
Collapse
|
31
|
Ma X, Lin X, Chang C, Duan B. Chitinous Bioplastic Enabled by Noncovalent Assembly. ACS NANO 2024; 18:8906-8918. [PMID: 38483090 DOI: 10.1021/acsnano.3c12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Natural polymeric-based bioplastics usually lack good mechanical or processing performance. It is still challenging to achieve simultaneous improvement for these two usual trade-off features. Here, we demonstrate a full noncovalent mediated self-assembly design for simultaneously improving the chitinous bioplastic processing and mechanical properties via plane hot-pressing. Tannic acid (TA) is chosen as the noncovalent mediator to (i) increase the noncovalent cross-link intensity for obtaining the tough noncovalent network and (ii) afford the dynamic noncovalent cross-links to enable the mobility of chitin molecular chains for benefiting chitinous bioplastic nanostructure rearrangement during the shaping procedure. The multiple noncovalent mediated network (chitin-TA and chitin-chitin cross-links) and the pressure-induced orientation nanofibers structure endow the chitinous bioplastics with robust mechanical properties. The relatively weak chitin-TA noncovalent interactions serve as water mediation switches to enhance the molecular mobility for endowing the chitin/TA bioplastic with hydroplastic processing properties, rendering them readily programmable into versatile 2D/3D shapes. Moreover, the fully natural resourced chitinous bioplastic exhibits superior weld, solvent resistance, and biodegradability, enabling the potential for diverse applications. The full physical cross-linking mechanism highlights an effective design concept for balancing the trade-off of the mechanical properties and processability for the polymeric materials.
Collapse
Affiliation(s)
- Xiao Ma
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Xinghuan Lin
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| |
Collapse
|
32
|
Li HN, Zhang C, Yang HC, Liang HQ, Wang Z, Xu ZK. Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. MATERIALS HORIZONS 2024; 11:1152-1176. [PMID: 38165799 DOI: 10.1039/d3mh01812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Soft ionic conductors have emerged as a powerful toolkit to engineer transparent flexible intelligent devices that go beyond their conventional counterparts. Particularly, due to their superior capacities of eliminating the evaporation, freezing and leakage issues of the liquid phase encountered with hydrogels, organohydrogels and ionogels, the emerging solid-state, liquid-free ion-conducting elastomers have been largely recognized as ideal candidates for intelligent flexible devices. However, despite their extensive development, a comprehensive and timely review in this emerging field is lacking, particularly from the perspective of design principles, advanced manufacturing, and distinctive applications. Herein, we present (1) the design principles and intriguing merits of solid-state, liquid-free ion-conducting elastomers; (2) the methods to manufacture solid-state, liquid-free ion-conducting elastomers with preferential architectures and functions using advanced technologies such as 3D printing; (3) how to leverage solid-state, liquid-free ion-conducting elastomers in exploiting advanced applications, especially in the fields of flexible wearable sensors, bioelectronics and energy harvesting; (4) what are the unsolved scientific and technical challenges and future opportunities in this multidisciplinary field. We envision that this review will provide a paradigm shift to trigger insightful thinking and innovation in the development of intelligent flexible devices and beyond.
Collapse
Affiliation(s)
- Hao-Nan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hao-Cheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hong-Qing Liang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
33
|
Hong S, Park T, Lee J, Ji Y, Walsh J, Yu T, Park JY, Lim J, Benito Alston C, Solorio L, Lee H, Kim YL, Kim DR, Lee CH. Rapid Self-Healing Hydrogel with Ultralow Electrical Hysteresis for Wearable Sensing. ACS Sens 2024; 9:662-673. [PMID: 38300847 DOI: 10.1021/acssensors.3c01835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Self-healing hydrogels are in high demand for wearable sensing applications due to their remarkable deformability, high ionic and electrical conductivity, self-adhesiveness to human skin, as well as resilience to both mechanical and electrical damage. However, these hydrogels face challenges such as delayed healing times and unavoidable electrical hysteresis, which limit their practical effectiveness. Here, we introduce a self-healing hydrogel that exhibits exceptionally rapid healing with a recovery time of less than 0.12 s and an ultralow electrical hysteresis of less than 0.64% under cyclic strains of up to 500%. This hydrogel strikes an ideal balance, without notable trade-offs, between properties such as softness, deformability, ionic and electrical conductivity, self-adhesiveness, response and recovery times, durability, overshoot behavior, and resistance to nonaxial deformations such as twisting, bending, and pressing. Owing to this unique combination of features, the hydrogel is highly suitable for long-term, durable use in wearable sensing applications, including monitoring body movements and electrophysiological activities on the skin.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Junsang Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yuhyun Ji
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Walsh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jae Young Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Claudia Benito Alston
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Qin R, Wang Z, Wei C, Zhou F, Tian Y, Chen Y, Mu T. Quantification of alkalinity of deep eutectic solvents based on (H -) and NMR. Phys Chem Chem Phys 2024; 26:7042-7048. [PMID: 38345537 DOI: 10.1039/d3cp05590f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Alkaline deep eutectic solvents (DESs) have been widely employed across diverse fields. A comprehensive understanding of the alkalinity data is imperative for the comprehension of their performance. However, the current range of techniques for quantifying alkalinity is constrained. In this investigation, we formulated a series of alkaline DESs and assessed their basicity properties through a comprehensive methodology of Hammett functions alongside 1H NMR analysis. A correlation was established between the composition, structure and alkalinity of solvents. Furthermore, a strong linear correlation was observed between the Hammett basicity (H-) of solvents and initial CO2 adsorption rate. Machine learning techniques were employed to predict the significant impact of alkaline functional components on alkalinity levels and CO2 capture capacity. This study offers valuable insights into the design, synthesis and structure-function relationship of alkaline DESs.
Collapse
Affiliation(s)
- Rui Qin
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Zeyu Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Chenyang Wei
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Fengyi Zhou
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Yurun Tian
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Yu Chen
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, P. R. China.
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
35
|
Yang S, Zhang H, Sun X, Bai J, Zhang J. 3D-Printed Liquid Metal-in-Hydrogel Solar Evaporator: Merging Spectrum-Manipulated Micro-Nano Architecture and Surface Engineering for Solar Desalination. ACS NANO 2024. [PMID: 38330088 DOI: 10.1021/acsnano.3c12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Solar desalination driven by interfacial heating is considered a promising technique to alleviate the freshwater shortage crisis. However, its further extension and application are confined by factors such as highlighted salt accumulation, inferior energy efficiency, and poor durability. Herein, a microsized eutectic gallium-indium (EGaIn) core-shell nanodroplet (denoted as LMTE) with photo-cross-linking and photothermal traits, stabilized by allyl glycidyl ether (AGE)-grafting tannic acid (TA), is explored as the solar absorber for broadband light absorbing and localized micro-nano heat channeling. The LMTE nanodroplets are formulated directly with highly hydrated polymers and photosensitive species to successfully develop a water-based photothermal ink suitable for digital light processing (DLP) 3D printing. As a demonstration, the LMTE composite hydrogel-forged milli-conical needle arrays with metal-phenolic network (MPN)-engineered wettability and photothermal enhancement can be printed by the digital light processing (DLP) technique and designed rationally via a bottom-up strategy. The 3D-printing hydrogel evaporator is composed of spectrum-tailored EGaIn nanodroplets for efficient photon harvesting and MPN-coated milli-cone arrays for water supplying with micro-nano channeling, which function cooperatively to bestow the 3D solar evaporator with superior solar-powered water evaporation (2.96 kg m-2 h-1, 96.93% energy efficiency) and excellent solar desalination (salt cycle and site-specific salt crystallization). Furthermore, a robust steam generating/collecting system of the 3D solar evaporator is demonstrated, providing valuable guidance for building a water-energy-agriculture nexus.
Collapse
Affiliation(s)
- Shengdu Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hao Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xin Sun
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Junwei Bai
- China Bluestar Chengrand Chemical Co. Ltd, Chengdu 610041, China
| | - Junhua Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
36
|
Yue D, Shi S, Chen H, Bai L, Wang W, Yang H, Yang L, Wei D. Fabrication of anti-freezing and self-healing nanocomposite hydrogels based on phytic acid and cellulose nanocrystals for high strain sensing applications. J Mater Chem B 2024; 12:762-771. [PMID: 38167689 DOI: 10.1039/d3tb02482b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
For hydrogel-based flexible sensors, it is a challenge to enhance the stability at sub-zero temperatures while maintaining good self-healing properties. Herein, an anti-freezing nanocomposite hydrogel with self-healing properties and conductivity was designed by introducing cellulose nanocrystals (CNCs) and phytic acid (PA). The CNCs were grafted with polypyrrole (PPy) by chemical oxidation, which were used as the nanoparticle reinforcement phase to reinforce the mechanical strength of hydrogels (851.8%). PA as a biomass material could form strong hydrogen bond interactions with H2O molecules, endowing hydrogels with prominent anti-freezing properties. Based on the non-covalent interactions, the self-healing rate of the hydrogels reached 92.9% at -15 °C as the content of PA was 40.0 wt%. Hydrogel-based strain sensors displayed high sensitivity (GF = 0.75), rapid response time (350 ms), good conductivity (3.1 S m-1) and stability at -15 °C. Various human movements could be detected by using them, including small (smile and frown) and large changes (elbow and knee bending). This work provides a promising method for the development of flexible wearable sensors that work stably in frigid environments.
Collapse
Affiliation(s)
- Dongqi Yue
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Shaoning Shi
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| |
Collapse
|
37
|
Lu D, Lian Q, Zhu M. Bioinspired Multistimuli-Induced Synergistic Changes in Color and Shape of Hydrogel and Actuator Based on Fluorescent Microgels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304776. [PMID: 38009474 PMCID: PMC10797463 DOI: 10.1002/advs.202304776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Indexed: 11/29/2023]
Abstract
Fluorescent hydrogels have emerged as one of the most promising candidates for developing biomimetic materials and artificial intelligence owing to their unique fluorescence and responsive properties. However, it is still challenging to fabricate hydrogel that exhibits synergistic changes in fluorescence color and shape in response to multistimulus via a simple method. Herein, blue- and orange-emitting fluorescent microgels (MGs) both are designed and synthesized with pH-, thermal-, and cationic-sensitivity via one-step polymerization, respectively. The two fluorescent MGs are incorporated into transparent doubly crosslinked microgel (DX MG) hydrogels with a preset ratio. The DX MG hydrogels can tune the fluorescent color accompanied by size variation via subjecting to external multistimulus. Thus, DX MG hydrogels can be exploited for multiresponsive fluorescent bilayer actuators. The actuators can undergo complex shape deformation and color changes. Inspired by natural organisms, an artificial morning glory with color and size changes are showcased in response to buffer solutions of different pH values. Besides, an intelligent skin hydrogel, imitating natural calotes versicolor, by assembling four layers of DX MG with different ratios of MGs, is tailored. This work serves as an inspiration for the design and fabrication of novel biomimetic smart materials with synergistic functions.
Collapse
Affiliation(s)
- Dongdong Lu
- School of Physical SciencesGreat Bay UniversityDongguan523808P. R. China
- Derpartment of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Qing Lian
- Derpartment of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Mingning Zhu
- School of Biomedical EngineeringGuangdong Medical UniversityDongguan523808P. R. China
| |
Collapse
|
38
|
Xu J, Cong Q, Zhao T. A Mesostructure Multivariant-Assembly Reinforced Ultratough Biomimicking Superglue. Macromol Rapid Commun 2024; 45:e2300484. [PMID: 37704216 DOI: 10.1002/marc.202300484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Indexed: 09/15/2023]
Abstract
The imitation of mussels and oysters to create high-performance adhesives is a cutting-edge field. The introduction of inorganic fillers is shown to significantly alter the adhesive's properties, yet the potential of mesoporous materials as fillers in adhesives is overlooked. In this study, the first report on the utilization of mesoporous materials in a biomimetic adhesive system is presented. Incorporating mesoporous silica nanoparticles (MSN) profoundly enhances the adhesion of pyrogallol (PG)-polyethylene imine (PEI) adhesive. As the MSN concentration increases, the adhesion strength to glass substrates undergoes an impressive fivefold improvement, reaching an outstanding 2.5 mPa. The adhesive forms an exceptionally strong bond, to the extent that the glass substrate fractures before joint failure. The comprehensive tests involving various polyphenols, polymers, and fillers reveal an intriguing phenomenon-the molecular structure of polyphenols significantly influences adhesive strength. Steric hindrance emerges as a crucial factor, regulating the balance between π-cation and charge interactions, which significantly impacts the multicomponent assembly of polyphenol-PEI-MSN and, consequently, adhesive strength. This groundbreaking research opens new avenues for the development of novel biomimetic materials.
Collapse
Affiliation(s)
- Jin Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Qian Cong
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Tiancong Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
39
|
Qiu X, Yang X, Guo Q, Liu J, Zhang X. Ln-HOF Nanofiber Organogels with Time-Resolved Luminescence for Programmable and Reliable Encryption. NANO LETTERS 2023; 23:11916-11924. [PMID: 38055678 DOI: 10.1021/acs.nanolett.3c04069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Developing tunable luminescent materials for high throughput information storage is highly desired following the explosive growth of global data. Although considerable success has been achieved, achieving programmable information encryption remains challenging due to current signal crosstalk problems. Here, we developed long-lived room-temperature phosphorescent organogels enabled by lanthanum-coordinated hydrogen-bonded organic framework nanofibers for time-resolved information programming. Via modulating coassembled lanthanum concentration and Förster resonance energy transfer efficiency, the lifetimes are prolonged and facilely manipulated (20-644 ms), realizing encoding space enlargement and multichannel data outputs. The aggregated strong interfacial supramolecular bonding endows organogels with excellent mechanical toughness (36.16 MJ m-2) and self-healing properties (95.7%), synergistically achieving photostability (97.6% lifetime retention in 10000 fatigue cycles) via suppressing nonradiative decays. This work presents a lifetime-gated information programmable strategy via lanthanum-coordination regulation that promisingly breaks through limitations of current responsive luminescent materials, opening unprecedented avenues for high-level information encryption and protection.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Quanquan Guo
- Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| | - Jize Liu
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
40
|
Cheng BX, Zhang JL, Jiang Y, Wang S, Zhao H. High Toughness, Multi-dynamic Self-Healing Polyurethane for Outstanding Energy Harvesting and Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58806-58814. [PMID: 38055035 DOI: 10.1021/acsami.3c12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Triboelectric nanogenerators (TENGs) are an emerging class of energy harvesting devices with considerable potential across diverse applications, including wearable electronic devices and self-powered sensors. However, sustained contact, friction, and incidental scratches during operation can lead to a deterioration in the electrical output performance of the TENG, thereby reducing its overall service life. To address this issue, we developed a self-healing elastomer by incorporating disulfide bonds and metal coordination bonds into the polyurethane (PU) chain. The resulting elastomer demonstrated exceptional toughness, with a high value of 85 kJ m-3 and an impressive self-healing efficiency of 85.5%. Specifically, the TENG based on that self-healing PU elastomer generated a short circuit current of 12 μA, an open circuit voltage of 120 V, and a transfer charge of 38.5 nC within a 2 cm × 2 cm area, operating in contact-separation mode. With an external resistance of 20 MΩ, the TENG achieved a power density of 2.1 W m-2. Notably, even after self-healing, the electrical output performance of the TENG was maintained at 95% of the undamaged device. Finally, the self-healing TENG was employed to construct a self-powered noncontact sensing system that can be applied to monitor human motion accurately. This research may expand the application prospects of PU materials in future human-computer interaction and self-powered sensing fields.
Collapse
Affiliation(s)
- Bing-Xu Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jia-Le Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yan Jiang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Science, Hubei University, Wuhan 430062, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
41
|
Yu N, An ZW, Zhang JL, Cheng BX, Ye K, Wang S, Wu W, Li RKY, Tan X, Zhao H. Recent Advances in Tailored Fabrication and Properties of Biobased Self-Healing Polyurethane. Biomacromolecules 2023; 24:4605-4621. [PMID: 37917193 DOI: 10.1021/acs.biomac.3c00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
With the emergence of challenges in the environmental degradation and resource scarcity fields, the research of biobased self-healing polyurethane (BSPU) has become a prevailing trend in the technology of the polyurethane industry and a promising direction for developing biomass resources. Here, the production of BSPU from lignocellulose, vegetable oil, chitosan, collagen, and coumarin is classified, and the principles of designing polyurethane based on compelling examples using the latest methods and current research are summarized. Moreover, the impact of biomass materials on self-healing and mechanical properties, as well as the tailored performance method, are presented in detail. Finally, the applications of BSPU in biomedicine, sensors, coatings, etc. are also summarized, and the possible challenges and development prospects are explored to helpfully make progress in the development of BSPU. These findings demonstrate valuable references and practical significance for future BSPU research.
Collapse
Affiliation(s)
- Ning Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ze-Wei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jia-Le Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Bing-Xu Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Kang Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wei Wu
- Jihua Laboratory, Foshan, 528200, China
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xuecai Tan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Science, Hubei University, Wuhan, 430062, China
| |
Collapse
|
42
|
Li C, Liu J, Qiu X, Yang X, Huang X, Zhang X. Photoswitchable and Reversible Fluorescent Eutectogels for Conformal Information Encryption. Angew Chem Int Ed Engl 2023; 62:e202313971. [PMID: 37792427 DOI: 10.1002/anie.202313971] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023]
Abstract
Smart fluorescent materials that can respond to environmental stimuli are of great importance in the fields of information encryption and anti-counterfeiting. However, traditional fluorescent materials usually face problems such as lack of tunable fluorescence and insufficient surface-adaptive adhesion, hindering their practical applications. Herein, inspired by the glowing sucker octopus, we present a novel strategy to fabricate a reversible fluorescent eutectogel with high transparency, adhesive and self-healing performance for conformal information encryption and anti-counterfeiting. Using anthracene as luminescent unit, the eutectogel exhibits photoswitchable fluorescence and can therefore be reversibly written/erased with patterns by non-contact stimulation. Additionally, different from mechanically irreversible adhesion via glue, the eutectogel can adhere to various irregular substrates over a wide temperature range (-20 to 65 °C) and conformally deform more than 1000 times without peeling off. Furthermore, by exploiting surface-adaptive adhesion, high transparency and good stretchability of the eutectogel, dual encryption can be achieved under UV and stretching conditions to further improve the security level. This study should provide a promising strategy for the future development of advanced intelligent anti-counterfeiting materials.
Collapse
Affiliation(s)
- Changchun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
43
|
Calderón-Villajos R, Sánchez M, Leones A, Peponi L, Manzano-Santamaría J, López AJ, Ureña A. An Analysis of the Self-Healing and Mechanical Properties as well as Shape Memory of 3D-Printed Surlyn ® Nanocomposites Reinforced with Multiwall Carbon Nanotubes. Polymers (Basel) 2023; 15:4326. [PMID: 37960006 PMCID: PMC10650841 DOI: 10.3390/polym15214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
This research work studies the self-healing ability, mechanical properties, and shape memory of the polymer Surlyn® 8940 with and without multiwall carbon nanotubes (MWCNTs) as a nanoreinforcement. This polymer comes from a partially neutralized poly(ethylene-co-methacrylic acid) (EMAA) ionomer copolymer. MWCNTs and the polymer went through a mixing process aimed at achieving an excellent dispersion. Later, an optimized extrusion method was used to produce a uniform reinforced filament, which was the input for the 3D-printing process that was used to create the final test samples. Various concentrations of MWCNTs (0.0, 0.1, 0.5, and 1.0 wt.%) were used to evaluate and compare the mechanical properties, self-healing ability, and shape memory of unreinforced and nanoreinforced materials. Results show an enhancement of the mechanical properties and self-healing ability through the addition of MWCNTs to the matrix of polymer, and the specimens showed shape memory events.
Collapse
Affiliation(s)
- Rocío Calderón-Villajos
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (J.M.-S.); (A.J.L.); (A.U.)
| | - María Sánchez
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (J.M.-S.); (A.J.L.); (A.U.)
| | - Adrián Leones
- Instituto de Ciencia y Tecnología de Polímeros, Calle Juan de la Cierva 3, ICTP-CSIC, 28006 Madrid, Spain (L.P.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, Calle Juan de la Cierva 3, ICTP-CSIC, 28006 Madrid, Spain (L.P.)
| | - Javier Manzano-Santamaría
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (J.M.-S.); (A.J.L.); (A.U.)
| | - Antonio Julio López
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (J.M.-S.); (A.J.L.); (A.U.)
| | - Alejandro Ureña
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (J.M.-S.); (A.J.L.); (A.U.)
| |
Collapse
|
44
|
Jin Y, Li J, Zhang M, He J, Ni P. Unexpected mechanically robust ionic conductive elastomer constructed from an itaconic acid-involved polymerizable DES. Chem Commun (Camb) 2023; 59:12998-13001. [PMID: 37830275 DOI: 10.1039/d3cc04161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
An ionic conductive elastomer with good comprehensive properties is constructed from a ternary polymerizable deep eutectic solvent (PDES) containing choline chloride, acrylic acid and itaconic acid (IA). The IA component is found to boost the synergetic hydrogen bonds and greatly improve the mechanical strength of elastomer.
Collapse
Affiliation(s)
- Yongtian Jin
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Jintao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
45
|
Lu Q, Li H, Tan Z. Zwitterionic Eutectogel-Based Wearable Strain Sensor with Superior Stretchability, Self-Healing, Self-Adhesion, and Wide Temperature Tolerance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37410953 DOI: 10.1021/acsami.3c05848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Ionic conductive eutectogels have great application prospects in wearable strain sensors owing to their temperature tolerance, simplicity, and low cost. Eutectogels prepared by cross-linking polymers have good tensile properties, strong self-healing capacities, and excellent surface-adaptive adhesion. Herein, we emphasize for the first time the potential of zwitterionic deep eutectic solvents (DESs), in which betaine is a hydrogen bond acceptor. Polymeric zwitterionic eutectogels were prepared by directly polymerizing acrylamide in zwitterionic DESs. The obtained eutectogels owned excellent ionic conductivity (0.23 mS cm-1), superior stretchability (approximately 1400% elongation), self-healing (82.01%), self-adhesion, and wide temperature tolerance. Accordingly, the zwitterionic eutectogel was successfully applied in wearable self-adhesive strain sensors, which can adhere to skins and monitor body motions with high sensitivity and excellent cyclic stability over a wide temperature range (-80 to 80 °C). Moreover, this strain sensor owned an appealing sensing function on bidirectional monitoring. The findings in this work can pave the way for the design of soft materials with versatility and environmental adaptation.
Collapse
Affiliation(s)
- Qianwen Lu
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Hengfeng Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, P. R. China
| |
Collapse
|
46
|
Yang X, Guo Y, Kong L, Lu J, Lin B, Xu C. Biobased epoxidized natural rubber/sodium carboxymethyl cellulose composites with enhanced strength and healing ability. Int J Biol Macromol 2023; 242:124681. [PMID: 37141968 DOI: 10.1016/j.ijbiomac.2023.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Conventional vulcanized rubbers cause a non-negligible waste of resources due to the formation of 3D irreversible covalently cross-linked networks. The introduction of reversible covalent bonds, such as reversible disulfide bonds, into the rubber network, is an available solution to the above problem. However, the mechanical properties of rubber with only reversible disulfide bonds cannot meet most practical applications. In this paper, a strengthened bio-based epoxidized natural rubber (ENR) composite reinforced by sodium carboxymethyl cellulose (SCMC) was prepared. SCMC forms a mass of hydrogen bonds between its hydroxyl groups and the hydrophilic groups of ENR chain, which gives the ENR/2,2'-Dithiodibenzoic acid (DTSA)/SCMC composites an enhanced mechanical performance. With 20 phr SCMC, the tensile strength of the composite increases from 3.0 to 10.4 MPa, which is almost 3.5 times that of the ENR/DTSA composite without SCMC. Simultaneously, DTSA covalently cross-linked ENR with the introduction of reversible disulfide bonds, which enables the cross-linked network to rearrange its topology at low temperatures and thus endows the ENR/DTSA/SCMC composites with healing properties. The ENR/DTSA/SCMC-10 composite has a considerable healing efficiency of about 96 % after healing at 80 °C for 12 h.
Collapse
Affiliation(s)
- Xueli Yang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Yuanming Guo
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Lingli Kong
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Junjie Lu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Baofeng Lin
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chuanhui Xu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China.
| |
Collapse
|
47
|
Sun W, Xu J, Song J, Chen Y, Lv Z, Cheng Y, Zhang L. Self-healing of electrical damage in insulating robust epoxy containing dynamic fluorine-substituted carbamate bonds for green dielectrics. MATERIALS HORIZONS 2023. [PMID: 37070696 DOI: 10.1039/d3mh00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Power systems and electrical grids are critical for the development of renewable energy. Electrical treeing is one of the major factors that lead to electrical damage in insulating dielectrics and decline in the reliability of power equipment and ultimately results in catastrophic failure. Here, we demonstrate that bulk epoxy damaged by electrical treeing is able to efficiently heal repeatedly to recover its original robust performance. The classical dilemma between the insulating properties and electrical-damage healability is overcome by dynamic fluorinated carbamate bonds. Moreover, the dynamic bond enables the epoxy to have admirable degradability, which is demonstrated to be used as an attractive green degradable insulation coating. When used as a matrix for fiber-reinforced composites, the reclaimed glass fibers after decomposing the epoxy maintained their original morphology and functionality. This design provides a novel approach for developing smart and green dielectrics to enhance the reliability, sustainability and lifespan of power equipment and electronics.
Collapse
Affiliation(s)
- Wenjie Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Jiazhu Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Jianhong Song
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Yue Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Zepeng Lv
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Lei Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
48
|
Yang L, Li L, Lu J, Lin B, Fu L, Xu C. Flexible Photothermal Materials with Controllable Accurate Healing and Reversible Adhesive Abilities. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Li Yang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Luji Li
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Junjie Lu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Baofeng Lin
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Lihua Fu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chuanhui Xu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| |
Collapse
|