1
|
Zhang F, Li Z, Li Z, Liu X, Lei Z, Zhuo X, Yang X, Zhao J, Zhang Y, Lu B. Two outbreak cases involving ST65-KL2 and ST11-KL64 hypervirulent carbapenem-resistant Klebsiella pneumoniae: similarity and diversity analysis. Commun Biol 2024; 7:1602. [PMID: 39623086 PMCID: PMC11612158 DOI: 10.1038/s42003-024-07310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The rise of the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae has been increasingly reported in recent years, however, there are few outbreak cases for these producing NDM carbapenemase. In this study, ST65-KL2 and ST11-KL64 hypervirulent and carbapenem-resistant K. pneumoniae (hvCRKP) were identified from two different outbreak cases: (1) clonal spreading of ST65-KL2 in five patients within transplantation wards spanning three months; and (2) clonal transmission of ST11-KL64 in ten patients across 10 months. The representative strains of ST65-KL2 and ST11-KL64 hvCRKP, K22877 and K56649, produced carbapenemase NDM-5 and dual carbapenemases KPC-2 and NDM-13, respectively, and both exhibited high-level carbapenem resistance. Moreover, virulent analysis showed that K22877 and K56649 were hypervirulent and the former possessed stronger virulence. Evolutionary pathways suggested ST65-KL2 and ST11-KL64 hvCRKP could be classified as CR-hvKP (hvKP acquiring carbapenem resistance) and hv-CRKP (CRKP acquiring hypervirulence), respectively. Unexpectedly, ST65-KL2 CR-hvKP showed resistance to ciprofloxacin mediated by plasmid acquisition as its spread, and ST11-KL64 hv-CRKP developed into enhanced virulence and macrophage resistance. Furthermore, compared to the ST65-KL2 CR-hvKP, the ST11-KL64 hv-CRKP tends to cause occult and persistent infection. Global genome analysis revealed ST11-KL64 hv-CRKP and ST65-KL2 CR-hvKP mainly carried blaKPC-2 and had significant differences in Ompk35/36, ybt, resistance and virulence. Effective surveillance should be implemented and novel therapeutic strategies are urgently needed to deal with refractory infections.
Collapse
Affiliation(s)
- Feilong Zhang
- Peking Union Medical College, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhihua Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Ziyao Li
- Peking Union Medical College, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xinmeng Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zichen Lei
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
| | - Xianxia Zhuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China
| | - Xinrui Yang
- Peking Union Medical College, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiankang Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yulin Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Binghuai Lu
- Peking Union Medical College, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Huang J, Alhejaili AY, Alkherd UH, Milner M, Zhou G, Alzahrani D, Banzhaf M, Alzaidi AA, Rajeh AA, Al-Otaiby MA, Alabbad SS, Bukhari D, Aljurayan AN, Aljasham AT, Alzeyadi ZA, Alajel SM, Hong PY, Alghoribi M, Almutairi MM, Pain A, Salem WA, Moradigaravand D. The dissemination of multidrug-resistant and hypervirulent Klebsiella pneumoniae clones across the Kingdom of Saudi Arabia. Emerg Microbes Infect 2024; 13:2427793. [PMID: 39508718 PMCID: PMC11583321 DOI: 10.1080/22221751.2024.2427793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium associated with a wide range of community- and hospital-acquired infections. The emergence of clonal hypervirulent strains resistant to last-resort antimicrobial agents has become a global concern. The Kingdom of Saudi Arabia (KSA), with its diverse population and high tourism traffic, serves as a platform where the spread of multidrug-resistant (MDR) strains are facilitated. However, the knowledge of epidemiology and population diversity of MDR K. pneumoniae in KSA is scarce. We conducted a comprehensive genomic survey on 352 MDR K. pneumoniae isolates systematically collected from bloodstream and urinary tract infections in 34 hospitals across 15 major cities in KSA during 2022 and 2023. Whole-genome sequencing on the isolates was performed, followed by genomic epidemiology and phylodynamic analysis. Our study revealed a dynamic population characterized by the rapid expansion of several dominant clones, including, ST2096, ST147, and ST231, which were estimated to have emerged within the past decade. These clones exhibited widespread dissemination across hospitals and were genetically linked to global strains, particularly from the Middle East and South Asia. All major clones harboured plasmid-borne ESBLs and carbapenemase genes, with plasmidome analysis identifying multiple IncH, IncA/C and IncL plasmids underlying the MDR-hypervirulent phenotype. These plasmids were shared between major clones and became acquired on the same time scales as the expansion of the dominant clones. Our results report ST2096 as an emerging MDR-hypervirulent clone, emphasizing the need for monitoring of the circulating clones and their plasmid content in the KSA and broader West Asia.
Collapse
Affiliation(s)
- Jiayi Huang
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ahmed Yousef Alhejaili
- Ministry of Health, Riyadh, Kingdom of Saudi Arabia
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Mathew Milner
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ge Zhou
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Deema Alzahrani
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Manuel Banzhaf
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | - Doua Bukhari
- Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | | | - Alanoud T. Aljasham
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zeyad A. Alzeyadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqraa, Saudi Arabia
| | - Sulaiman M. Alajel
- Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Pei-Ying Hong
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, KAUST Center of Excellence for Smart Health and Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Jeddah Makkah, Saudi Arabia
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Danesh Moradigaravand
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Xu L, Li J, Wu W, Wu X, Ren J. Klebsiella pneumoniae capsular polysaccharide: Mechanism in regulation of synthesis, virulence, and pathogenicity. Virulence 2024; 15:2439509. [PMID: 39668724 DOI: 10.1080/21505594.2024.2439509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae exhibits strong pathogenicity and can cause severe invasive infections but is historically recognized as antibiotic-susceptible. In recent years, the escalating global prevalence of antibiotic-resistant hypervirulent K. pneumoniae has raised substantial concerns and created an urgent demand for effective treatment options. Capsular polysaccharide (CPS) is one of the main virulence determinants contributing to the hypervirulent phenotype. The structure of CPS varies widely among strains, and both the structure and composition of CPS can influence the virulence of K. pneumoniae. CPS possesses various immune evasion mechanisms that promote the survival of K. pneumoniae, as well as its colonization and dissemination. Given the proven viability of therapies that target the capsule, improving our understanding of the CPS structure is critical to effectively directing treatment strategies. In this review, the structure and typing of CPS are addressed as well as genes related to synthesis and regulation, relationships with virulence, and pathogenic mechanisms. We aim to provide a reference for research on the pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Li Xu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
| | - Jiayang Li
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Wu C, Huang Y, Zhou P, Gao H, Wang B, Zhao H, Zhang J, Wang L, Zhou Y, Yu F. Emergence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae from 2014 - 2021 in Central and Eastern China: a molecular, biological, and epidemiological study. BMC Microbiol 2024; 24:465. [PMID: 39528921 PMCID: PMC11552131 DOI: 10.1186/s12866-024-03614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In recent years, the hypervirulent and carbapenem-resistant Klebsiella pneumoniae has been increasingly reported worldwide. The objective of this study was to compare the antibiotic resistance and virulence profiles of carbapenem-resistant hypervirulent K.pneumoniae (CR-hvKP) and hypervirulent carbapenem-resistant K.pneumoniae (hv-CRKP) and identify the prevailing strain in clinical settings. METHODS In this study, hv-CRKP or CR-hvKP were identified based on the results of whole-genome analysis (WGS), multilocus sequence typing (MLST) and the antimicrobial susceptibility testing. We then compared antibiotic resistance and virulence profiles between CR-hvKP and hv-CRKP through the antimicrobial susceptibility testing and a series of virulence experiments including biofilm formation ability detection method, the resistance test against human serum, siderophore production test, neutrophil phagocytosis assay and Galleria mellonella infection model. Additionally, pathway enrichment analysis was conducted to assess the effect of SNPs on the phenotype. RESULTS In this study, we categorized 17.4% of hypervirulent and carbapenem-resistant K. pneumoniae strains as CR-hvKP and 82.6% as hv-CRKP. Among them, 84.2% (16/19) of CR-hvKP strains harboring carbapenemase genes exhibited lower imipenem and meropenem MIC values compared to hv-CRKP strains. The virulence potential of hv-CRKP and CR-hvKP was confirmed by using virulence experiments in vitro and in vivo, showing that virulence of the CR-hvKP strains was comparable to that of hv-CRKP strains. Notably, the 90 hv-CRKP strains were classified into 3 different ST types and 8 capsule types, each showing varying degrees of resistance and virulence. We observed that subclonal replacement was within the predominant hv-CRKP clone, with the ST11-KL64 strain, characterized by high-level resistance and virulence emerging as the currently prevailing subclone, replacing ST11-KL47. KEGG enrichment analysis showed that pathways associated with the citrate cycle (TCA cycle), glycolysis/gluconeogenesis, glutathione metabolism, two-component regulatory system, and folate metabolism were significantly enriched among the group expressing different levels of capsular polysaccharides. CONCLUSIONS The hv-CRKP strains exhibited a greater survival advantage in the hospital environment than CR-hvKP strains. Notably, the ST11-KL64 hv-CRKP strain which displayed a high level of resistance and hypervirulence, warrants the most clinical vigilance. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Chunyang Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Peiyao Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haojin Gao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Huilin Zhao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jiao Zhang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Fangyou Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Zhao F, Hou X, Sun G, Fu Y, Wang L, Yao B, Liu X, Weng R, Meng Y, Zhou J, Jiang Y, Yu Y, Shi Q. The prevalence of carbapenem-resistant Enterobacterales and the emergence of novel ST11-KL30 carbapenem-resistant Klebsiella pneumoniae in Xinjiang, China. J Glob Antimicrob Resist 2024; 39:189-195. [PMID: 39427989 DOI: 10.1016/j.jgar.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVES To address the lack of research on the prevalence of carbapenem-resistant Enterobacterales (CREs) in Xinjiang, China, and elucidate the genomic characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) ST11-KL30. METHODS CREs were collected in Xinjiang from 2021 to 2023. The antimicrobial susceptibility testing of carbapenems was performed via agar dilution method. Whole-genome sequencing was completed on the Illumina platform, and subsequent genomic analyses of CRKP, such as sequencing typing, K-locus and O-locus identification, virulence score assessment, and phylogenetic analysis, were performed. The virulence of CRKP isolates was determined in vitro and in vivo, and biofilm formation was assessed by crystal violet staining. Additionally, the virulence plasmid was reconstructed, and the formation of CRKP ST11-KL30 was revealed based on genome data from public database. RESULTS Eighty-five CRE isolates were collected, among which CRKP was most prevalent (68/85). KPC was the most dominant carbapenemase (60/68) in CRKP, while NDM-type carbapenemase was more prevalent in other species. ST11 was the dominant CRKP clone and was phylogenetically divided into three clusters: ST11-KL64, ST11-KL47 and ST11-KL30. CRKP ST11-KL30 is a novel recombinant clone that harbours a pK2044-like virulence plasmid and can be derived from ST11-KL64 by obtaining an ∼57 kb region from ST29-KL30. Compared to ST11-KL47 and ST11-KL64, ST11-KL30 had lower virulence, but had enhanced biofilm formation. CONCLUSIONS We describe the prevalence of CRE prevalence southern Xinjiang and report the emergence of a region-specific clone. Our findings underscore the potential dissemination of ST11-KL30, which warrants increased monitoring in the future.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Clinical Laboratory, Sir Run Shaw Hospital Affiliated Zhejiang University School of Medicine Alaer Hospital, Alaer, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Xiangping Hou
- Department of Clinical Laboratory, Sir Run Shaw Hospital Affiliated Zhejiang University School of Medicine Alaer Hospital, Alaer, China
| | - Gang Sun
- Department of Clinical Laboratory, The First Division Hospital of Xinjiang Production and Construction Corps, Aksu, China
| | - Ying Fu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China; Department of Clinical Laboratory, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Clinical Laboratory, Sir Run Shaw Hospital Affiliated Zhejiang University School of Medicine Alaer Hospital, Alaer, China
| | - Bingyan Yao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China; Department of Clinical Laboratory, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Liu
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Weng
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Meng
- Department of Clinical Laboratory, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Qin K, Shi X, Yang K, Xu Q, Wang F, Chen S, Xu T, Liu J, Wen W, Chen R, Liu Z, Cui L, Zhou K. Phage-antibiotic synergy suppresses resistance emergence of Klebsiella pneumoniae by altering the evolutionary fitness. mBio 2024; 15:e0139324. [PMID: 39248568 PMCID: PMC11481518 DOI: 10.1128/mbio.01393-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Phage-antibiotic synergy (PAS) represents a superior treatment strategy for pathogen infections with less probability of resistance development. Here, we aim to understand the molecular mechanism by which PAS suppresses resistance in terms of population evolution. A novel hypervirulent Klebsiella pneumoniae (KP) phage H5 was genetically and structurally characterized. The combination of H5 and ceftazidime (CAZ) showed a robust synergistic effect in suppressing resistance emergence. Single-cell Raman analysis showed that the phage-CAZ combination suppressed bacterial metabolic activities, contrasting with the upregulation observed with phage alone. The altered population evolutionary trajectory was found to be responsible for the contrasting metabolic activities under different selective pressures, resulting in pleiotropic effects. A pre-existing wcaJ point mutation (wcaJG949A) was exclusively selected by H5, conferring a fitness advantage and up-regulated activity of carbohydrate metabolism, but also causing a trade-off between phage resistance and collateral sensitivity to CAZ. The wcaJ point mutation was counter-selected by H5-CAZ, inducing various mutations in galU that imposed evolutionary disadvantages with higher fitness costs, and suppressed carbohydrate metabolic activity. H5 and H5-CAZ treatments resulted in opposite effects on the transcriptional activity of the phosphotransferase system and the ascorbate and aldarate metabolism pathway, suggesting potential targets for phage resistance suppression. Our study reveals a novel mechanism of resistance suppression by PAS, highlighting how the complexity of bacterial adaptation to selective pressures drives treatment outcomes. IMPORTANCE Phage-antibiotic synergy (PAS) has been recently proposed as a superior strategy for the treatment of multidrug-resistant pathogens to effectively reduce bacterial load and slow down both phage and antibiotic resistance. However, the underlying mechanisms of resistance suppression by PAS have been poorly and rarely been studied. In this study, we tried to understand how PAS suppresses the emergence of resistance using a hypervirulent Klebsiella pneumoniae (KP) strain and a novel phage H5 in combination with ceftazidime (CAZ) as a model. Our study reveals a novel mechanism by which PAS drives altered evolutionary trajectory of bacterial populations, leading to suppressed emergence of resistance. The findings advance our understanding of how PAS suppresses the emergence of resistance, and are imperative for optimizing the efficacy of phage-antibiotic therapy to further improve clinical outcomes.
Collapse
Affiliation(s)
- Kunhao Qin
- Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Health Science Center, Medical Department of Jinggangshan University, Ji'an, China
| | - Xing Shi
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Qiuqing Xu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Fuxing Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Senxiong Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jinquan Liu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wangrong Wen
- Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, China
- Clinical Laboratory Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Rongchang Chen
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Kai Zhou
- Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
7
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
8
|
Han X, Yao J, He J, Liu H, Jiang Y, Zhao D, Shi Q, Zhou J, Hu H, Lan P, Zhou H, Li X. Clinical and laboratory insights into the threat of hypervirulent Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107275. [PMID: 39002700 DOI: 10.1016/j.ijantimicag.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) typically causes severe invasive infections affecting multiple sites in healthy individuals. In the past, hvKP was characterized by a hypermucoviscosity phenotype, susceptibility to antimicrobial agents, and its tendency to cause invasive infections in healthy individuals within the community. However, there has been an alarming increase in reports of multidrug-resistant hvKP, particularly carbapenem-resistant strains, causing nosocomial infections in critically ill or immunocompromised patients. This presents a significant challenge for clinical treatment. Early identification of hvKP is crucial for timely infection control. Notably, identifying hvKP has become confusing due to its prevalence in nosocomial settings and the limited predictive specificity of the hypermucoviscosity phenotype. Novel virulence predictors for hvKP have been discovered through animal models or machine learning algorithms, while standardization of identification criteria is still necessary. Timely source control and antibiotic therapy have been widely employed for the treatment of hvKP infections. Additionally, phage therapy is a promising alternative approach due to escalating antibiotic resistance. In summary, this narrative review highlights the latest research progress in the development, virulence factors, identification, epidemiology of hvKP, and treatment options available for hvKP infection.
Collapse
Affiliation(s)
- Xinhong Han
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiayao Yao
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huangdu Hu
- Department of Infectious Diseases, Centre for General Practice Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peng Lan
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Jiang S, Ma Z, Cao H, Mo L, Jin J, Yu B, Chu K, Hu J. Genomic study substantiates the intensive care unit as a reservoir for carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China. Microb Genom 2024; 10:001299. [PMID: 39325028 PMCID: PMC11541224 DOI: 10.1099/mgen.0.001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has recently emerged as a notable public health concern, while the underlying drivers of CRKP transmission among patients across different healthcare facilities have not been fully elucidated. To explore the transmission dynamics of CRKP, 45 isolates were collected from both the intensive care unit (ICU) and non-ICU facilities in a teaching hospital in Guangdong, China, from March 2020 to August 2023. The collection of clinical data and antimicrobial resistance phenotypes was conducted, followed by genomic data analysis for these isolates. The mean age of the patients was 75.2 years, with 18 patients (40.0%) admitted to the ICU. The predominant strain in hospital-acquired CRKP was sequence type 11 (ST11), with k-locus type 64 and serotype O1/O2v1 (KL64:O1/O2v1), accounting for 95.6% (43/45) of the cases. The CRKP ST11 isolates from the ICU exhibited a low single nucleotide polymorphism (SNP) distance when compared to isolates from other departments. Genome-wide association studies identified 17 genes strongly associated with SNPs that distinguish CRKP ST11 isolates from those in the ICU and other departments. Temporal transmission analysis revealed that all CRKP isolates from other departments were genetically very close to those from the ICU, with fewer than 16 SNP differences. To further elucidate the transmission routes among departments within the hospital, we reconstructed detailed patient-to-patient transmission pathways using hybrid methods that combine TransPhylo with an SNP-based algorithm. A clear transmission route, along with mutations in potential key genes, was deduced from genomic data coupled with clinical information in this study, providing insights into CRKP transmission dynamics in healthcare settings.
Collapse
Affiliation(s)
- Shuo Jiang
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen, Guangdong, PR China, Shenzhen, Guangdong, PR China
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Zheng Ma
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen, Guangdong, PR China, Shenzhen, Guangdong, PR China
| | - Huiluo Cao
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Li Mo
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen, Guangdong, PR China, Shenzhen, Guangdong, PR China
| | - Jinlan Jin
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen, Guangdong, PR China, Shenzhen, Guangdong, PR China
| | - Bohai Yu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen, Guangdong, PR China, Shenzhen, Guangdong, PR China
| | - Kankan Chu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen, Guangdong, PR China, Shenzhen, Guangdong, PR China
| | - Jihua Hu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen, Guangdong, PR China, Shenzhen, Guangdong, PR China
| |
Collapse
|
10
|
Wang S, Ma S, Sun S, Wang Q, Ding Q, Jin L, Chen F, Yin G, Wu X, Wang R, Wang H. Global evolutionary dynamics of virulence genes in ST11-KL47 carbapenem-resistant Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107245. [PMID: 38906484 DOI: 10.1016/j.ijantimicag.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
ST11-KL47 is a hypervirulent carbapenem-resistant Klebsiella pneumoniae (CRKP) that is highly prevalent in China and poses a major public health risk. To investigate the evolutionary dynamics of virulence genes in this subclone, we analysed 78 sequenced isolates obtained from a long-term study across 29 centres from 17 cities in China. Virulence genes were located in large hybrid pNDM-Mar-like plasmids (length: ∼266 kilobases) rather than in classical pK2044-like plasmids. These hybrid plasmids, derived from the fusion of pK2044 and pNDM-Mar plasmids mediated by insertion sequence (IS) elements (such as ISKpn28 and IS26), integrated virulence gene fragments into the chromosome. Analysis of 217 sequences containing the special IncFIB (pNDM-Mar) replicon using public databases indicated that these plasmids typically contained T4SS-related and multiple antimicrobial resistance genes, were present in 24 countries, and were found in humans, animals, and the environment. Notably, the chromosomal integration of virulence genes was observed in strains across five countries across two continents. In vivo and in vitro models showed that the large hybrid plasmid increased the host fitness cost while increasing virulence. Conversely, virulence genes transferred to chromosomes resulted in increased fitness and lower virulence. In conclusion, virulence genes in the plasmids of ST11-KL47 CRKP are evolving, driven by adaptive negative selection, to enable vertical chromosomal inheritance along with conferring a survival advantage and low pathogenicity.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Shuai Ma
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Fengning Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyu Wu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
11
|
Zhang X, Zeng W, Kong J, Huang Z, Shu H, Tang M, Qian C, Xu C, Zhou T, Ye J. The prevalence and mechanisms of heteroresistance to ceftazidime/avibactam in KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother 2024; 79:1865-1876. [PMID: 38842536 DOI: 10.1093/jac/dkae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVES To investigate the prevalence and mechanisms of ceftazidime/avibactam heteroresistance in KPC-producing Klebsiella pneumoniae (KPC-KP) isolates, as well as the role of heteroresistance in the transition of ceftazidime/avibactam susceptibility to resistance. METHODS Clinical KPC-KP isolates were obtained from a tertiary hospital in China from 2016 to 2017 and 2019 to 2020. Antimicrobial susceptibility was determined by the broth microdilution method. Population analysis profiles were used to assess ceftazidime/avibactam heteroresistance. WGS and molecular cloning were conducted to reveal heteroresistance mechanisms and molecular characteristics. RESULTS The findings indicated that the transition of ceftazidime/avibactam susceptibility to resistance during the treatment of KPC-KP infection is primarily attributed to the heteroresistance exhibited by KPC-KP isolates towards ceftazidime/avibactam. Among 355 ceftazidime/avibactam-susceptible KPC-KP isolates (indicating a resistance rate of 0%), 41 (11.55%) exhibited ceftazidime/avibactam heteroresistance, with the primary mechanism being the presence of KPC mutant subpopulations. These KPC variants, arising from point mutations, deletions and insertions, significantly increased ceftazidime/avibactam resistance while alongside enhanced carbapenem susceptibility. Notably, 11 new KPC variants were identified. Furthermore, four heteroresistant isolates were caused by mixed infection involving subpopulations carrying NDM-1 or NDM-5. Phylogenetic analysis indicated that the clonal spread of ST11-KL64 KPC-KP may be correlated with the prevalence of heteroresistance. CONCLUSIONS Ceftazidime/avibactam heteroresistance, primarily driven by pre-existing KPC variants, underscores the importance of considering heteroresistance in ceftazidime/avibactam therapeutics. Awareness of these dynamics is crucial for the effective and sustainable clinical application of ceftazidime/avibactam.
Collapse
Affiliation(s)
- Xiaotuan Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zeyu Huang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongyun Shu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Changrui Qian
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chunquan Xu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
12
|
Chen J, Wu Y, Zhang G, Kang W, Wang T, Li J, Zhou M, Zhang L, Liu Y, Xu X, Jia X, Xu Y, Liu Y. Tracing the possible evolutionary trends of Morganella morganii: insights from molecular epidemiology and phylogenetic analysis. mSystems 2024; 9:e0030624. [PMID: 38884495 PMCID: PMC11264931 DOI: 10.1128/msystems.00306-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Morganella morganii, encompassing two subspecies, subsp. morganii and subsp. sibonii, is a common opportunistic pathogen, notable for intrinsic resistance to multiple antimicrobial agents. Despite its clinical significance, research into the potential evolutionary dynamics of M. morganii remains limited. This study involved the analysis of genome sequences from 431 M. morganii isolates, comprising 206 isolates that cause host infections, obtained from this study and 225 from the NCBI genome data sets. A diverse array of antimicrobial resistance genes (ARGs) was identified in M. morganii isolates, including mcr-1, tet(X4), tmexCD-toprJ, and various carbapenemase genes. In addition, a novel blaKPC-2-bearing plasmid with demonstrated conjugative capability was discovered in M. morganii. The majority of virulence-related genes (VRGs), except for the hlyCABD gene cluster, were found in almost all M. morganii. Three novel genospecies of M. morganii were identified, designated as M. chanii, M. variant1, and M. variant2. Compared to M. sibonii, M. chanii genospecies possessed a greater number of flagellar-related genes, typically located within mobile genetic elements (MGEs), suggesting potential for better environmental adaptability. Phylogenetic analysis further disclosed that M. morganii was divided into 12 sequence clusters (SCs). Particularly, SC9 harbored an elevated abundance of ARGs and VRGs, mainly toxin-related genes, and was associated with a higher presence of MGEs compared to non-SC9 strains. The collective findings suggest that M. morganii undergoes evolution driven by the influence of MGEs, thereby significantly enhancing its adaptability to selective pressures of environmental changes and clinical antimicrobial agents.IMPORTANCEThe growing clinical significance of Morganella morganii arises from its abundant virulence factors and antimicrobial resistance genes, resulting in elevated infection rates and increased clinical scrutiny. However, research on the molecular epidemiology and evolutionary trends of M. morganii has been scarce. Our study established a list of virulence-related genes (VRGs) for M. morganii and conducted a large-scale epidemiological investigation into these VRGs. Based on genomic classification, three novel genotypes of M. morganii were identified, representing evolutionary adaptations and responses to environmental challenges. Furthermore, we discovered the emergence of a sequence cluster enriched with antimicrobial resistance genes, VRGs, and mobile genetic elements, attributed to the selective pressure of antimicrobial agents. In addition, we identified a novel conjugative plasmid harboring the blaKPC-2 gene. These findings hold significance in monitoring and comprehending the epidemiology of M. morganii.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Kang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tong Wang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menglan Zhou
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Liu
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuesong Xu
- Department of Clinical Laboratory, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xinmiao Jia
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yali Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Yu W, Huang C, Lian X, Jinag L, Li H, Shen P, Xiao Y. Genomic and immunocyte characterisation of bloodstream infection caused by Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 2024; 23:56. [PMID: 38902832 PMCID: PMC11191348 DOI: 10.1186/s12941-024-00721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the characteristics of immunocyte associated with bloodstream infection (BSI) caused by Klebsiella pneumoniae (Kpn). METHODS Patients with BSI-Kpn were included from 2015 to 2022 in our hospital. Immunocyte subpopulations of enrolled BSI-Kpn patients were tested on the same day of blood culture using multicolor flow cytometry analysis. Antibiotic susceptibility test was determined by agar dilution or broth dilution method. All included isolates were subjected to whole genome sequencing and comparative genomics analysis. Clinical and genetic data were integrated to investigate the risk factors associated with clinical outcome. RESULTS There were 173 patients with non-duplicate BSI-Kpn, including 81 carbapenem-resistant Kpn (CRKP), 30 extended-spectrum β-lactamases producing Kpn (ESBL-Kpn), 62 none CRKP or ESBL-Kpn (S-Kpn). Among 68 ST11-CRKP isolates, ST11-O2v1:KL64 was the most common serotypes cluster (77.9%, 53/68), followed by ST11-OL101: KL47 (13.2%, 9/68). Compared with CSKP group, subpopulations of immunocyte in patients with CRKP were significantly lower (P < 0.01). In patients with ST11-O2v1:KL64 BSI-Kpn, the level of cytotoxic T lymphocytes (CD3 + CD8 +) is the highest, while the B lymphocytes (CD3-CD19 +) was the least. In addition, the level of immunocyte in patients with Kpn co-harbored clpV-ybtQ-qacE were lower than that in patients with Kpn harbored one of clpV, ybtQ or qacE and without these three genes. Furthermore, co-existence of clpV-ybtQ-qacE was independently associated with a higher risk for 30-day mortality. CONCLUSIONS The results demonstrate that patients with BSI-CRKP, especially for ST11-O2v1:KL64, exhibit lower leukomonocyte counts. In addition, BSI-Kpn co-harbored clpV-ybtQ-qacE is correlated to higher 30-day mortality.
Collapse
Affiliation(s)
- Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Huang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Xiang Lian
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Lushun Jinag
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Teng G, Zhang M, Fu Y, Yang X, Kang Y, Qin Q, Jin Y, Huang M, Xu Y. Adaptive attenuation of virulence in hypervirulent carbapenem-resistant Klebsiella pneumoniae. mSystems 2024; 9:e0136323. [PMID: 38752758 PMCID: PMC11237801 DOI: 10.1128/msystems.01363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
The emergence of nosocomial infections caused by hypervirulent and carbapenem-resistant K. pneumoniae (hv-CRKP) has become a significant public health challenge. The genetic traits of virulence and resistance plasmids in hv-CRKP have been extensively studied; however, research on the adaptive evolution strategies of clinical strains inside the host was scarce. This study aimed to understand the effects of antibiotic treatment on the phenotype and genotype characteristics of hv-CRKP. We investigated the evolution of hv-CRKP strains isolated from the same patient to elucidate the transition between hospital invasion and colonization. A comparative genomics analysis was performed to identify single nucleotide polymorphisms in the rmpA promoter. Subsequent validation through RNA-seq and gene deletion confirmed that distinct rmpA promoter sequences exert control over the mucoid phenotype. Additionally, biofilm experiments, cell adhesion assays, and animal infection models were conducted to illuminate the influence of rmpA promoter diversity on virulence changes. We demonstrated that the P12T and P11T promoters of rmpA possess strong activity, which leads to the evolution of CRKP into infectious and virulent strains. Meanwhile, the specific sequence of polyT motifs in the rmpA promoter led to a decrease in the lethality of hv-CRKP and enhanced cell adhesion and colonization. To summarize, the rmpA promoter of hv-CRKP is utilized to control capsule production, thereby modifying pathogenicity to better suit the host's ecological environment.IMPORTANCEThe prevalence of hospital-acquired illness caused by hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is significant, leading to prolonged antibiotic treatment. However, there are few reports on the phenotypic changes of hv-CRKP in patients undergoing antibiotic treatment. We performed a comprehensive examination of the genetic evolutionary traits of hv-CRKP obtained from the same patient and observed variations in the promoter sequences of the virulence factor rmpA. The strong activity of the promoter sequences P11T and P12T enhances the consistent production of capsule polysaccharides, resulting in an invasive strain. Conversely, weak promoter activity of P9T and P10T is advantageous for exposing pili, hence improving bacterial cell attachment ability and facilitating bacterial colonization. This finding also explains the confusion of some clinical strains carrying wild-type rmpA but exhibiting a low mucoid phenotype. This adaptive alteration facilitates the dissemination of K. pneumoniae within the hospital setting.
Collapse
Affiliation(s)
- Gaoqin Teng
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Multiple Organ Failure, Ministry of Education, Hangzhou, China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - YingYing Fu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoqiang Yang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yanhua Kang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuying Qin
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ye Jin
- Key Laboratory of Multiple Organ Failure, Ministry of Education, Hangzhou, China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Key Laboratory of Multiple Organ Failure, Ministry of Education, Hangzhou, China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchang Xu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
15
|
Huang Y, Cai Y, He W, Zhang L, Zhao Y. Virulence gene distribution and molecular epidemiological characteristics of carbapenem-resistant Klebsiella pneumoniae in the ICU. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:730-736. [PMID: 39174887 PMCID: PMC11341222 DOI: 10.11817/j.issn.1672-7347.2024.240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES The drug-resistant genes carried by carbapenem-resistant Klebsiella pneumoniae (CRKP) limit clinical treatment options, and its virulence genes severely affect patient prognosis. This study aims to investigate the distribution of virulence genes, capsular serotypes, and molecular epidemiological characteristics of CRKP in ICU, to understand the characteristics of CRKP infections in ICU, and to provide a scientific basis for effective monitoring and control of CRKP infections in ICU. METHODS A total of 40 non-duplicate strains of CRKP isolated from the ICU of Guangdong Provincial People's Hospital between January 2021 and December 2022 were collected and analyzed. Whole-genome sequencing was used to analyze the distribution of resistance genes, virulence genes, and capsular serotypes of the strains. The sequences of 7 housekeeping genes of CRKP genome were uploaded to the Klebsiella pneumoniae (KPN)multilocus sequence typing (MLST) database to determine the sequence types (STs) of the strains. RESULTS The age of the 40 ICU CRKP-infected patients was (69.03±17.82) years old, with various underlying diseases, and there were 20 patients with improved clinical outcome and 20 patients with death. The isolated strains primarily originated from mid-stream urine and bronchoalveolar lavage fluid. Whole-genome sequencing results revealed that the strains predominantly carried blaKPC-1 (29 strains, 72.5%) and blaNDM-1 (6 strains, 15.0%), with 5 strains carrying both blaKPC-1 and blaNDM-1. Various virulence genes were detected, among which the carriage rates of genes such as entA, entB, entE, entS, fepA, fepC, fepG, yag/ecp, and ompA reached 100%, while the carriage rates of genes such as entD, fimB, iroB, iroD, fes,and pla were low. The CRKP strains isolated from ICU were predominantly ST11 (27 cases, 67.5%), with KL64 being the main capsular serotype (29 cases, 72.5%). A total of 23 ST11-KL64 CRKP strains were detected, accounting for 57.5%. CONCLUSIONS The main type of ICU CRKP is ST11-KL64, carrying various virulence genes, primarily those related to iron absorption. Furthermore, blaKPC has shifted from blaKPC-2 to blaKPC-1. Therefore, close monitoring of the molecular epidemiological changes of CRKP is necessary, and strict control measures should be implemented to effectively curb the occurrence of CRKP infections.
Collapse
Affiliation(s)
- Yaxuan Huang
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Yihan Cai
- Department of Clinical Laboratory, Xiaolan People's Hospital of Zhongshan/Fifth People's Hospital of Zhongshan, Zhongshan Guangdong 528415, China
| | - Wanxia He
- Yunkang School of Medicine and Health, Guangzhou Nanfang College, Guangzhou 510970, China
| | - Liyan Zhang
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Yue Zhao
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
16
|
Li J, Wu W, Wu M, Zhou Z, Wang J, Qiu M, Xu L, Ren J, Wu X. Clinical and Molecular Characteristics of Patients with Bloodstream Infections Caused by KPC and NDM Co-Producing Carbapenem-Resistant Klebsiella pneumoniae. Infect Drug Resist 2024; 17:1685-1697. [PMID: 38711471 PMCID: PMC11073536 DOI: 10.2147/idr.s455146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose Klebsiella pneumoniae carbapenemase (KPC) and New Delhi metallo-β-lactamase (NDM) co-producing carbapenem-resistant Klebsiella pneumoniae (KPC-NDM-CRKP) isolates have been increasingly reported worldwide but have not yet been systematically studied. Thus, we have conducted a study to compare the risk factors, molecular characteristics, and mortality involved in clinical bloodstream infections (BSIs) caused by KPC-NDM-CRKP and KPC-CRKP strains. Methods A retrospective study was conducted on 231 patients with BSIs caused by CRKP at Jinling Hospital in China from January 2020 to December 2022. Antimicrobial susceptibility testing, carbapenemase genes detection and whole-genome sequencing were performed subsequently. Results Overall, 231 patients were included in this study: 25 patients with KPC-NDM-CRKP BSIs and 206 patients with KPC-CRKP BSIs. Multivariate analysis implicated ICU-acquired BSI, surgery within 30 days, and longer stay of hospitalization prior to CRKP isolation as independent risk factors for KPC-NDM-CRKP BSIs. The 30-day mortality rate of the KPC-NDM-CRKP BSIs group was 56% (14/25) compared with 32.5% (67/206) in the KPC-CRKP BSIs control group (P = 0.02). The ICU-acquired BSIs, APACHE II score at BSI onset, and BSIs caused by KPC-NDM-CRKP were independent predictors for 30-day mortality in patients with CRKP bacteremia. The most prevalent ST in KPC-NDM-CRKP isolates was ST11 (23/25, 92%), followed by ST15 (2/25, 8%). Conclusion In patients with CRKP BSIs, KPC-NDM-CRKP was associated with an excess of mortality. The likelihood that KPC-NDM-CRKP will become the next "superbug" highlights the significance of epidemiologic surveillance and clinical awareness of this pathogen.
Collapse
Affiliation(s)
- Jiayang Li
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Wenqi Wu
- School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Meilin Wu
- Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhitao Zhou
- Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jiajie Wang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Mingjie Qiu
- Nanjing Medical University, Nanjing, People’s Republic of China
| | - Li Xu
- Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianan Ren
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Xiuwen Wu
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
17
|
Wang Q, Wang R, Wang S, Zhang A, Duan Q, Sun S, Jin L, Wang X, Zhang Y, Wang C, Kang H, Zhang Z, Liao K, Guo Y, Jin L, Liu Z, Yang C, Wang H. Expansion and transmission dynamics of high risk carbapenem-resistant Klebsiella pneumoniae subclones in China: An epidemiological, spatial, genomic analysis. Drug Resist Updat 2024; 74:101083. [PMID: 38593500 DOI: 10.1016/j.drup.2024.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
AIMS Carbapenem-resistant Klebsiella pneumonia (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure. METHODS We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP. RESULTS Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China's southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (bmr3, mltC, pyrB, ppsC, and sdaC) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits in vitro. CONCLUSIONS The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.
Collapse
Affiliation(s)
- Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Anru Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qiaoyan Duan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Longyang Jin
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan, Friendship Hospital, Beijing, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chunlei Wang
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan, Friendship Hospital, Beijing, China
| | - Haiquan Kang
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhijie Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinghui Guo
- Hebei Children's Hospital, Shijiazhuang, China
| | - Liang Jin
- Department of Clinical Laboratory, First Hospital of Qinhuangdao, Hebei, China
| | - Zhiwu Liu
- Department of Medical Laboratory Center, the First Hospital of Lanzhou University, Lanzhou, China
| | - Chunxia Yang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
18
|
Gao Y, Wu J, Shen J, Xu Y, Li L, Wang W, Zhou N, Zhang M. Chitosan modified magnetic nanocomposite for biofilm destruction and precise photothermal/photodynamic therapy. Int J Biol Macromol 2024; 259:129402. [PMID: 38219940 DOI: 10.1016/j.ijbiomac.2024.129402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Getting rid of the biofilms is a major challenge when treating skin and soft tissue infections (SSTI), an inflammatory illness brought on by bacteria. Traditional magnetic materials have a limited dispersibility and a biofilm permeable property, making it challenging to remove biofilms and causing infection to linger. To solve these problems, we developed a kind of magnetic composite nanoplatform coated with indocyanine green carbon dots and modified with chitosan modification (Fe-ICGCDs@CS). Fe-ICGCDs@CS has high dispersibility and improves the conductivity of biofilms under magnetic action. Fe-ICGCDs@CS can adsorb bacteria via the positive charge and achieve precise photothermal sterilization and photodynamic therapy (PDT). Moreover, by catalyzing hydrogen peroxide (2 mM), Fe-ICGCDs@CS can produce oxygen to relieve the anoxic state in the deep layer of biofilms and activate dormant bacteria to make them sensitive to external stimuli. All in all, unlike the common "just kill" sterilization model, Fe-ICGCDs@CS can accurately kill bacteria and be recovered by an external magnetic field at the end of treatment, thus reducing the potential biological toxicity of nanomaterials. Therefore, the proposed Fe-ICGCDs@CS provides a new antibacterial method with low biotoxicity for clinical application in the treatment of biofilm infections.
Collapse
Affiliation(s)
- Yumeng Gao
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China; Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jing Wu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China; Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ming Zhang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
19
|
Wang R, Zhang A, Sun S, Yin G, Wu X, Ding Q, Wang Q, Chen F, Wang S, van Dorp L, Zhang Y, Jin L, Wang X, Balloux F, Wang H. Increase in antioxidant capacity associated with the successful subclone of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11-KL64. Nat Commun 2024; 15:67. [PMID: 38167298 PMCID: PMC10761919 DOI: 10.1038/s41467-023-44351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The acquisition of exogenous mobile genetic material imposes an adaptive burden on bacteria, whereas the adaptational evolution of virulence plasmids upon entry into carbapenem-resistant Klebsiella pneumoniae (CRKP) and its impact remains unclear. To better understand the virulence in CRKP, we characterize virulence plasmids utilizing a large genomic data containing 1219 K. pneumoniae from our long-term surveillance and publicly accessible databases. Phylogenetic evaluation unveils associations between distinct virulence plasmids and serotypes. The sub-lineage ST11-KL64 CRKP acquires a pK2044-like virulence plasmid from ST23-KL1 hypervirulent K. pneumoniae, with a 2698 bp region deletion in all ST11-KL64. The deletion is observed to regulate methionine metabolism, enhance antioxidant capacity, and further improve survival of hypervirulent CRKP in macrophages. The pK2044-like virulence plasmid discards certain sequences to enhance survival of ST11-KL64, thereby conferring an evolutionary advantage. This work contributes to multifaceted understanding of virulence and provides insight into potential causes behind low fitness costs observed in bacteria.
Collapse
Affiliation(s)
- Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Anru Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xingyu Wu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Fengning Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Lucy van Dorp
- UCL Genetics Institute, Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Francois Balloux
- UCL Genetics Institute, Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China.
| |
Collapse
|
20
|
Li YT, Wang YC, Chen CM, Tang HL, Chen BH, Teng RH, Chiou CS, Lu MC, Lai YC. Distinct evolution of ST11 KL64 Klebsiella pneumoniae in Taiwan. Front Microbiol 2023; 14:1291540. [PMID: 38143864 PMCID: PMC10748404 DOI: 10.3389/fmicb.2023.1291540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Carbapenem-resistant ST11_KL64 Klebsiella pneumoniae emerged as a significant public health concern in Taiwan, peaking between 2013 and 2015, with the majority of isolates exhibiting OXA-48 as the sole carbapenemase. In this study, we employed whole-genome sequencing to investigate the molecular underpinnings of ST11_KL64 isolates collected from 2013 to 2021. Phylogenomic analysis revealed a notable genetic divergence between the ST11_KL64 strains in Taiwan and those in China, suggesting an independent evolutionary trajectory. Our findings indicated that the ST11_KL64_Taiwan lineage originated from the ST11_KL64 lineage in Brazil, with recombination events leading to the integration of ICEKp11 and a 27-kb fragment at the tRNAASN sites, shaping its unique genomic landscape. To further elucidate this unique sublineage, we examined the plasmid contents. In contrast to ST11_KL64_Brazil strains, which predominantly carried blaKPC-2, ST11_KL64_Taiwan strains exhibited the acquisition of an epidemic blaOXA-48-carrying IncL plasmid. Additionally, ST11_KL64_Taiwan strains consistently harbored a multi-drug resistance IncC plasmid, along with a collection of gene clusters that conferred resistance to heavy metals and the phage shock protein system via various Inc-type plasmids. Although few, there were still rare ST11_KL64_Taiwan strains that have evolved into hypervirulent CRKP through the horizontal acquisition of pLVPK variants. Comprehensive characterization of the high-risk ST11_KL64 lineage in Taiwan not only sheds light on its epidemic success but also provides essential data for ongoing surveillance efforts aimed at tracking the spread and evolution of ST11_KL64 across different geographical regions. Understanding the molecular underpinnings of CRKP evolution is crucial for developing effective strategies to combat its emergence and dissemination.
Collapse
Affiliation(s)
- Yia-Ting Li
- Division of Respiratory Therapy, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Ming Chen
- Department of Internal Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Hui-Ling Tang
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bo-Han Chen
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ru-Hsiou Teng
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chien-Shun Chiou
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chyi Lai
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|