1
|
Rabinovici GD, Knopman DS, Arbizu J, Benzinger TLS, Donohoe KJ, Hansson O, Herscovitch P, Kuo PH, Lingler JH, Minoshima S, Murray ME, Price JC, Salloway SP, Weber CJ, Carrillo MC, Johnson KA. Updated Appropriate Use Criteria for Amyloid and Tau PET: A Report from the Alzheimer's Association and Society for Nuclear Medicine and Molecular Imaging Workgroup. J Nucl Med 2025:jnumed.124.268756. [PMID: 39778970 DOI: 10.2967/jnumed.124.268756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 01/11/2025] Open
Abstract
The Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened a multidisciplinary workgroup to update appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. Methods: The workgroup identified key research questions that guided a systematic literature review on clinical amyloid/tau PET. Building on this review, the workgroup developed 17 clinical scenarios in which amyloid or tau PET may be considered. A modified Delphi approach was used to rate each scenario by consensus as "rarely appropriate," "uncertain," or "appropriate." Ratings were performed separately for amyloid and tau PET as stand-alone modalities. Results: For amyloid PET, 7 scenarios were rated as appropriate, 2 as uncertain, and 8 as rarely appropriate. For tau PET, 5 scenarios were rated as appropriate, 6 as uncertain, and 6 as rarely appropriate. Conclusion: AUC for amyloid and tau PET provide expert recommendations for clinical use of these technologies in the evolving landscape of diagnostics and therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Gil D Rabinovici
- Department of Neurology and Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California;
| | - David S Knopman
- Mayo Clinic Neurology and Neurosurgery, Rochester, Minnesota
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra Clinic, Pamplona, Spain
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri; Knight Alzheimer's Disease Research Center, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kevin J Donohoe
- Nuclear Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Phillip H Kuo
- Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Jennifer H Lingler
- Department of Health and Community Systems, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | | | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen P Salloway
- Department of Neurology and Psychiatry the Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
- Butler Hospital Memory and Aging Program, Providence, Rhode Island
| | | | | | - Keith A Johnson
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Molecular Neuroimaging, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
2
|
Rabinovici GD, Knopman DS, Arbizu J, Benzinger TLS, Donohoe KJ, Hansson O, Herscovitch P, Kuo PH, Lingler JH, Minoshima S, Murray ME, Price JC, Salloway SP, Weber CJ, Carrillo MC, Johnson KA. Updated appropriate use criteria for amyloid and tau PET: A report from the Alzheimer's Association and Society for Nuclear Medicine and Molecular Imaging Workgroup. Alzheimers Dement 2025. [PMID: 39776249 DOI: 10.1002/alz.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION The Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened a multidisciplinary workgroup to update appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. METHODS The workgroup identified key research questions that guided a systematic literature review on clinical amyloid/tau PET. Building on this review, the workgroup developed 17 clinical scenarios in which amyloid or tau PET may be considered. A modified Delphi approach was used to rate each scenario by consensus as "rarely appropriate," "uncertain," or "appropriate." Ratings were performed separately for amyloid and tau PET as stand-alone modalities. RESULTS For amyloid PET, seven scenarios were rated as appropriate, two as uncertain, and eight as rarely appropriate. For tau PET, five scenarios were rated as appropriate, six as uncertain, and six as rarely appropriate. DISCUSSION AUC for amyloid and tau PET provide expert recommendations for clinical use of these technologies in the evolving landscape of diagnostics and therapeutics for Alzheimer's disease. HIGHLIGHTS A multidisciplinary workgroup convened by the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging updated the appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. The goal of these updated AUC is to assist clinicians in identifying clinical scenarios in which amyloid or tau PET may be useful for guiding the diagnosis and management of patients who have, or are at risk for, cognitive decline These updated AUC are intended for dementia specialists who spend a significant proportion of their clinical effort caring for patients with cognitive complaints, as well as serve as a general reference for a broader audience interested in implementation of amyloid and tau PET in clinical practice.
Collapse
Affiliation(s)
- Gil D Rabinovici
- Department of Neurology and Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - David S Knopman
- Mayo Clinic Neurology and Neurosurgery, Rochester, Minnesota, USA
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra Clinic, Pamplona, Spain
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Kevin J Donohoe
- Nuclear Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Skånes universitetssjukhus, Malmö, Sweden
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Phillip H Kuo
- Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jennifer H Lingler
- Department of Health and Community Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Boston, Charlestown, Massachusetts, USA
| | - Stephen P Salloway
- Department of Neurology and Psychiatry the Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, USA
- Butler Hospital Memory and Aging Program, Providence, Rhode Island, USA
| | | | - Maria C Carrillo
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Keith A Johnson
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Molecular Neuroimaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Yeow D, Fielder M, Hynard S, Adam R, Katz M, Lehn A, Thomas P, O'Sullivan JD. Clinical utility of 18F-fluorodopa positron emission tomography in the movement disorder clinic: an Australian experience. Intern Med J 2025. [PMID: 39757870 DOI: 10.1111/imj.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Differentiating idiopathic Parkinson disease (iPD) from other causes of tremor and parkinsonism based on clinical grounds can be challenging, particularly early in the course of disease or in the case of atypical clinical presentations. 18F-fluorodopa (F-DOPA) is a positron emission tomography (PET) radioligand that can be used to demonstrate the presence and pattern of striatal presynaptic dopaminergic deficit and, thus, assist in the diagnosis of iPD and related disorders. AIMS To determine the clinical utility of F-DOPA PET in an Australian movement disorder clinic setting. METHODS Retrospective cohort study of movement disorder clinic patients referred for F-DOPA PET by four movement disorder neurologists over a 10-year period to a single Australian nuclear medicine centre. Results of F-DOPA PET scans were correlated with changes in provisional diagnosis and management in the short term following review of F-DOPA PET results. RESULTS A total of 105 F-DOPA PET scan results and patient records were examined. In this cohort, provisional clinical diagnosis was altered in 37.9% of patients, and changes to clinical management were made in 48.4% of patients in the short term following review of F-DOPA PET results. Changes in both diagnosis and management were more common following a normal F-DOPA PET scan result (42.4% and 53.0% respectively) than a scan consistent with iPD (23.5% and 32.4% respectively). CONCLUSIONS There was significant change in provisional clinical diagnosis and management in the short term following review of F-DOPA PET results indicating significant clinical utility of F-DOPA PET in the Australian movement disorder clinic setting.
Collapse
Affiliation(s)
- Dennis Yeow
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Matthew Fielder
- Department of Nuclear Medicine, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Shane Hynard
- Department of Nuclear Medicine, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Robert Adam
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Katz
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- Department of Medicine, Redcliffe Hospital, Brisbane, Queensland, Australia
| | - Alexander Lehn
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Neurology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Paul Thomas
- Department of Nuclear Medicine, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - John D O'Sullivan
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Xiang J, Zhang Z, Wu S, Ye K. Positron emission tomography tracers for synucleinopathies. Mol Neurodegener 2025; 20:1. [PMID: 39757220 DOI: 10.1186/s13024-024-00787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are characterized by the aggregation of α-synuclein. Variations in brain distribution allow for differentiation among these diseases and facilitate precise clinical diagnosis. However, distinguishing between synucleinopathies and Parkinsonism with tauopathies poses a challenge, significantly impacting clinical drug development. Therefore, molecular imaging is crucial for synucleinopathies, particularly for clinical diagnosis, assessment of drug efficacy, and disease surveillance. In recent years, advances in molecular imaging have led to rapid development of α-synuclein-specific tracers for positron emission tomography (PET), most of which are still in pre-clinical stages. Interestingly, some of these tracers share similar compound skeletal structures and are currently undergoing optimization for clinical application. Despite this progress, there remain challenges in developing α-synuclein tracers. This review summarizes recent findings on promising PET tracers and discusses representative compounds' characteristics while offering suggestions for further research orientation.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, China.
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
5
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
6
|
Salabert AS, Payoux P. Movement Disorders and Its Variants. PET Clin 2025; 20:113-120. [PMID: 39477718 DOI: 10.1016/j.cpet.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Since the 2000s, Nuclear Medicine has primarily used SPECT with DaTSCAN and PET with [18F]-FDG to explore movement disorders. Recent advances in PET radiotracers, such as LBT 999 for dopamine transporters and tau tracers like flortaucipir for tauopathies, are enhancing diagnostic precision. Other PET tracers target neuroinflammation, synaptic density, cholinergic function, and adenosine A2A receptors. Novel tools like [18F]-ROStrace help detect oxidative stress in neurodegenerative disorders. These developments promise better patient management, reduced examination times, and improved diagnostic accuracy in the exploration of movement disorders pathologies.
Collapse
Affiliation(s)
- Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France; Department of Radiopharmacy, University Hospital of Toulouse, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France; Department of Nuclear Medicine, University Hospital of Toulouse, Place du Dr Baylac, Toulouse Cedex 31059, France.
| |
Collapse
|
7
|
Park H, Kam TI, Dawson VL, Dawson TM. α-Synuclein pathology as a target in neurodegenerative diseases. Nat Rev Neurol 2025; 21:32-47. [PMID: 39609631 DOI: 10.1038/s41582-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
α-Synuclein misfolds into pathological forms that lead to various neurodegenerative diseases known collectively as α-synucleinopathies. In this Review, we provide a comprehensive overview of pivotal advances in α-synuclein research. We examine structural features and physiological functions of α-synuclein and summarize current insights into key post-translational modifications, such as nitration, phosphorylation, ubiquitination, sumoylation and truncation, considering their contributions to neurodegeneration. We also highlight the existence of disease-specific α-synuclein strains and their mechanisms of pathological spread, and discuss seed amplification assays and PET tracers as emerging diagnostic tools for detecting pathological α-synuclein in clinical settings. We also discuss α-synuclein aggregation and clearance mechanisms, and review cell-autonomous and non-cell-autonomous processes that contribute to neuronal death, including the roles of adaptive and innate immunity in α-synuclein-driven neurodegeneration. Finally, we highlight promising therapeutic approaches that target pathological α-synuclein and provide insights into emerging areas of research.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Juengling F, Wuest F, Schirrmacher R, Abele J, Thiel A, Soucy JP, Camicioli R, Garibotto V. PET Imaging in Dementia: Mini-Review and Canadian Perspective for Clinical Use. Can J Neurol Sci 2025; 52:26-38. [PMID: 38433571 DOI: 10.1017/cjn.2024.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
PET imaging is increasingly recognized as an important diagnostic tool to investigate patients with cognitive disturbances of possible neurodegenerative origin. PET with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), assessing glucose metabolism, provides a measure of neurodegeneration and allows a precise differential diagnosis among the most common neurodegenerative diseases, such as Alzheimer's disease, frontotemporal dementia or dementia with Lewy bodies. PET tracers specific for the pathological deposits characteristic of different neurodegenerative processes, namely amyloid and tau deposits typical of Alzheimer's Disease, allow the visualization of these aggregates in vivo. [18F]FDG and amyloid PET imaging have reached a high level of clinical validity and are since 2022 investigations that can be offered to patients in standard clinical care in most of Canada.This article will briefly review and summarize the current knowledge on these diagnostic tools, their integration into diagnostic algorithms as well as perspectives for future developments.
Collapse
Affiliation(s)
- Freimut Juengling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Faculty, University of Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
| | - Ralf Schirrmacher
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Abele
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, Lady Davis Institute for Medical Research, McGill University, Montréal, QC, Canada
| | - Jean-Paul Soucy
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Valentina Garibotto
- Diagnostic Department, Nuclear Medicine and Molecular Imaging Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Palushaj B, Lewis SJG, Abdelnour C. What is the future for dementia with Lewy bodies? J Neurol 2024; 272:43. [PMID: 39666092 DOI: 10.1007/s00415-024-12734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia after Alzheimer's disease (AD), yet it remains under-recognized and frequently misdiagnosed due to heterogenous clinical presentations, the presence of co-pathology, and the lack of specific diagnostic tools. Pathologically, DLB is characterized by the accumulation of misfolded alpha-synuclein (aSyn) aggregates, known as Lewy bodies. Recent advancements have improved in vivo detection of aSyn pathology through techniques such as seed amplification assays, monoclonal antibodies, and positron emission tomography using novel small-molecule ligands. The ability to detect aSyn in vivo has sparked dialogue about using biomarkers to identify individuals with aSyn, similar to the approach influencing the field of AD. Proponents argue that biological staging could facilitate the detection of preclinical disease stages, allowing for earlier intervention and targets for disease modification, and could improve diagnostic sensitivity and accuracy in selecting patients for clinical trials. However, critics caution that this method may oversimplify the complexity of DLB and overlook its clinical heterogeneity, also highlighting practical challenges related to implementation, cost, and global access to advanced diagnostic technologies. Importantly, although significant progress has been made in detecting aSyn for diagnostic purposes, disease-modifying therapies targeting aSyn have yet to demonstrate clear efficacy in slowing disease progression. Elucidating the physiological and pathophysiological roles of aSyn remains an urgent priority in neurodegenerative research. Other experimental research priorities for DLB include developing improved cellular and animal models that reflect epigenetic and environmental factors, mapping post-translational modifications, and systematically characterizing neurons that are vulnerable and resistant to lewy pathology using a multi-omic approach. Clinically, there is an urgent need for international, prospective, longitudinal studies and for validated, disease-specific outcome measures. Addressing these priorities is essential for advancing our understanding of DLB and developing effective therapies.
Collapse
Affiliation(s)
- Bianca Palushaj
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | | | - Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Krismer F, Fanciulli A, Meissner WG, Coon EA, Wenning GK. Multiple system atrophy: advances in pathophysiology, diagnosis, and treatment. Lancet Neurol 2024; 23:1252-1266. [PMID: 39577925 DOI: 10.1016/s1474-4422(24)00396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/24/2024]
Abstract
Multiple system atrophy is an adult-onset, sporadic, and progressive neurodegenerative disease. People with this disorder report a wide range of motor and non-motor symptoms. Overlap in the clinical presentation of multiple system atrophy with other movement disorders (eg, Parkinson's disease and progressive supranuclear palsy) is a concern for accurate and timely diagnosis. Over the past 5 years, progress has been made in understanding key pathophysiological events in multiple system atrophy, including the seeding of α-synuclein inclusions and the detection of disease-specific α-synuclein strains. Diagnostic criteria were revised in 2022 with the intention to improve the accuracy of a diagnosis of multiple system atrophy, particularly for early disease stages. Early signals of efficacy in clinical trials have indicated the potential for disease-modifying therapies for multiple system atrophy, although no trial has yet provided unequivocal evidence of neuroprotection in this rare disease. The advances in pathophysiology could play a part in biomarker discovery for early diagnosis as well as in the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Florian Krismer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | | | - Wassilios G Meissner
- Centre Hospitalier Universitaire Bordeaux, Service de Neurologie des Maladies Neurodégénératives, Institut des Maladies Neurodégénératives Clinique, French Clinical Research Network for Parkinson's Disease and Movement Disorders, Bordeaux, France; Université de Bordeaux, Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux, France; Department of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | | | - Gregor K Wenning
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Ramanan VK. Implementing New Dementia Care Models in Practice. Continuum (Minneap Minn) 2024; 30:1863-1873. [PMID: 39620848 DOI: 10.1212/con.0000000000001500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
ABSTRACT Care for patients with Alzheimer disease and related neurodegenerative causes of dementia is in the midst of a transformation. Recent advancements in diagnostics and therapeutics reflect a rapidly evolving knowledge base and represent positive steps for patients and clinicians facing these progressive diseases; however, the complexities of emerging biomarkers and treatment options present challenges that will require systematic adaptations to routine care to facilitate effective incorporation of these options. This article reviews ongoing updates in the assessment and management of neurodegenerative causes of dementia, focusing on practical models for innovation that practices and health care systems can use to implement these new tools. In particular, sustainable adaptation in the field will benefit from a comprehensive approach implemented at local levels, including (1) education of clinicians and communities to refine perceptions about dementia care, (2) multifaceted stakeholder engagement to optimize infrastructure and workflows to the new era, and (3) investments in personnel to address existing and exacerbated gaps.
Collapse
|
12
|
Risacher SL. Neuroimaging in Dementia. Continuum (Minneap Minn) 2024; 30:1761-1789. [PMID: 39620843 DOI: 10.1212/con.0000000000001509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE This article captures the current literature regarding the use of neuroimaging measures to study neurodegenerative diseases, including early- and late-onset Alzheimer disease, vascular cognitive impairment, frontotemporal lobar degeneration disorders, dementia with Lewy bodies, and Parkinson disease dementia. In particular, the article highlights significant recent changes in novel therapeutics now available for the treatment of Alzheimer disease and in defining neurodegenerative disease using biological frameworks. Studies summarized include those using structural and functional MRI (fMRI) techniques, as well as metabolic and molecular emission tomography imaging (ie, positron emission tomography [PET] and single-photon emission computerized tomography [SPECT]). LATEST DEVELOPMENTS Neuroimaging measures are considered essential biomarkers for the detection and diagnosis of most neurodegenerative diseases. The recent approval of anti-amyloid antibody therapies has highlighted the importance of MRI and PET techniques in treatment eligibility and monitoring for associated side effects. Given the success of the initial biomarker-based classification system for Alzheimer disease (the amyloid, tau, neurodegeneration [A/T/N] framework), researchers in vascular cognitive impairment have created similar techniques for biomarker-based diagnosis. Further, the A/T/N framework for Alzheimer disease has been updated to include several pathologic targets for biomarker detection. ESSENTIAL POINTS Neurodegenerative diseases have a major health impact on millions of patients around the world. Neuroimaging biomarkers are rapidly becoming major diagnostic tools for the detection, monitoring, and treatment of neurodegenerative diseases. This article educates readers about the current literature surrounding the use of neuroimaging tools in neurodegenerative diseases along with recent important developments in the field.
Collapse
|
13
|
Galvin JE. Lewy Body Dementia. Continuum (Minneap Minn) 2024; 30:1673-1698. [PMID: 39620839 DOI: 10.1212/con.0000000000001496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Lewy body dementia (LBD) is an umbrella term describing two closely related conditions: Parkinson disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD is the second most common cause of neurodegenerative dementia but is often underrecognized in clinical practice. This review covers the key epidemiologic, clinical, cognitive, behavioral, and biomarker features of LBD and discusses current treatment options. LATEST DEVELOPMENTS Indicative biomarkers of LBD improve the ability to make a diagnosis and include single-photon emission computed tomography (SPECT) of the dopamine system (brain) and the noradrenergic system (cardiac), and polysomnography. α-Synuclein-specific biomarkers in spinal fluid, skin, plasma, and brain imaging are in active development with some available for clinical use. Prodromal stages of PDD and DLB have been contextualized, and diagnostic criteria have been published. An emerging theme is whether an integrated staging system focusing on protein aggregation, rather than clinical symptoms, may advance research efforts. ESSENTIAL POINTS LBD is a common cause of cognitive impairment in older adults but is often subject to significant delays in diagnosis and treatment, increasing the burden on patients and family care partners. Understanding key features of disease and the use of biomarkers will improve recognition. Earlier detection may also facilitate the development of new therapeutics and enrollment in clinical trials.
Collapse
|
14
|
Kalia LV, Asis A, Arbour N, Bar-Or A, Bove R, Di Luca DG, Fon EA, Fox S, Gan-Or Z, Gommerman JL, Kang UJ, Klawiter EC, Koch M, Kolind S, Lang AE, Lee KK, Lincoln MR, MacDonald PA, McKeown MJ, Mestre TA, Miron VE, Ontaneda D, Rousseaux MWC, Schlossmacher MG, Schneider R, Stoessl AJ, Oh J. Disease-modifying therapies for Parkinson disease: lessons from multiple sclerosis. Nat Rev Neurol 2024; 20:724-737. [PMID: 39375563 DOI: 10.1038/s41582-024-01023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The development of disease-modifying therapies (DMTs) for neurological disorders is an important goal in modern neurology, and the associated challenges are similar in many chronic neurological conditions. Major advances have been made in the multiple sclerosis (MS) field, with a range of DMTs being approved for relapsing MS and the introduction of the first DMTs for progressive MS. By contrast, people with Parkinson disease (PD) still lack such treatment options, relying instead on decades-old therapeutic approaches that provide only symptomatic relief. To address this unmet need, an in-person symposium was held in Toronto, Canada, in November 2022 for international researchers and experts in MS and PD to discuss strategies for advancing DMT development. In this Roadmap article, we highlight discussions from the symposium, which focused on therapeutic targets and preclinical models, disease spectra and subclassifications, and clinical trial design and outcome measures. From these discussions, we propose areas for novel or deeper exploration in PD using lessons learned from therapeutic development in MS. In addition, we identify challenges common to the PD and MS fields that need to be addressed to further advance the discovery and development of effective DMTs.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | - Nathalie Arbour
- Department of Neurosciences, Université de Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
| | - Amit Bar-Or
- Division of MS and Related Disorders, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Di Luca
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward A Fon
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Susan Fox
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jennifer L Gommerman
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Un Jung Kang
- Department of Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Parekh Center for Interdisciplinary Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Fresco Institute for Parkinson's and Movement Disorders, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcus Koch
- University of Calgary MS Clinic, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Shannon Kolind
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Matthew R Lincoln
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Penny A MacDonald
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Veronique E Miron
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- The United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Schlossmacher
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Stocchi F, Bravi D, Emmi A, Antonini A. Parkinson disease therapy: current strategies and future research priorities. Nat Rev Neurol 2024; 20:695-707. [PMID: 39496848 DOI: 10.1038/s41582-024-01034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
Parkinson disease (PD) is the fastest growing neurological disorder globally and poses substantial management challenges owing to progressive disability, emergence of levodopa-resistant symptoms, and treatment-related complications. In this Review, we examine the current state of research into PD therapies and outline future priorities for advancing our understanding and treatment of the disease. We identify two main research priorities for the coming years: first, slowing the progression of the disease through the integration of sensitive biomarkers and targeted biological therapies, and second, enhancing existing symptomatic treatments, encompassing surgical and infusion therapies, with the goal of postponing complications and improving long-term patient management. The path towards disease modification is impeded by the multifaceted pathophysiology and diverse mechanisms underlying PD. Ongoing studies are directed at α-synuclein aggregation, complemented by efforts to address specific pathways associated with the less common genetic forms of the disease. The success of these efforts relies on establishing robust end points, incorporating technology, and identifying reliable biomarkers for early diagnosis and continuous monitoring of disease progression. In the context of symptomatic treatment, the focus should shift towards refining existing approaches and fostering the development of novel therapeutic strategies that target levodopa-resistant symptoms and clinical manifestations that substantially impair quality of life.
Collapse
Affiliation(s)
- Fabrizio Stocchi
- Department of Neurology, University San Raffaele, Rome, Italy.
- Deptartment of Neurology, Institute for Research and Medical Care, IRCCS San Raffaele, Rome, Italy.
| | - Daniele Bravi
- Deptartment of Neurology, Institute for Research and Medical Care, IRCCS San Raffaele, Rome, Italy
| | - Aron Emmi
- Center for Neurodegenerative Diseases (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Angelo Antonini
- Center for Neurodegenerative Diseases (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, Padua Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
16
|
Saturnino Guarino D, Miranda Azpiazu P, Sunnemark D, Elmore CS, Bergare J, Artelsmair M, Nordvall G, Forsberg Morén A, Jia Z, Cortes-Gonzalez M, Mach RH, Wilcox KC, Finnema S, Schou M, Varrone A. Identification and In Vitro and In Vivo Characterization of KAC-50.1 as a Potential α-Synuclein PET Radioligand. ACS Chem Neurosci 2024; 15:4210-4219. [PMID: 39528351 PMCID: PMC11587505 DOI: 10.1021/acschemneuro.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The accumulation of aggregated α-synuclein (α-syn) is a pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Here within, we report the in vitro characterization targeting site 2 of α-syn fibrils and in vivo evaluation of NHPs of KAC-50.1 as a potential α-syn positron emission tomography (PET) radioligand. Preclinical studies were performed using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. These experiments were followed by PET imaging in cynomolgus monkeys using [11C]KAC-50.1. [3H]KAC-50.1 displayed a KD of 35 nM toward site 2 in recombinant α-syn fibrils. Specific binding of [3H]KAC-50.1 was observed in brain tissues with abundant α-syn pathology but also in AD, PSP, and CBD cases, indicating binding to amyloid β (Aβ) and tau pathology. PET studies showed a rapid entrance of [11C]KAC-50.1 into the brain and relatively rapid washout from cortical brain regions, with slower washout in subcortical regions. [3H]KAC-50.1 is a ligand that binds to fibrillar α-syn but shows limited selectivity for α-syn versus Aβ and tau fibrils. PET studies in NHPs indicate that [11C]KAC-50.1, despite reversible kinetic properties, displays retention in white matter. Altogether, the in vitro and in vivo properties do not support further development of [11C]KAC-50.1 as a PET imaging agent.
Collapse
Affiliation(s)
- Dinahlee Saturnino Guarino
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patricia Miranda Azpiazu
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, BioClinicum, Floor 4, Akademiska
Stråket 1, 17174 Solna, Sweden
| | - Dan Sunnemark
- Offspring
Biosciences, Sweden AB, SE-151 36 Södertälje, Sweden
- Applied
Immunology, Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Charles S. Elmore
- Isotope
Chemistry, Drug Safety and Metabolism, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Jonas Bergare
- Isotope
Chemistry, Drug Safety and Metabolism, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Markus Artelsmair
- Isotope
Chemistry, Drug Safety and Metabolism, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Gunnar Nordvall
- AlzeCure
Pharma AB, Hälsovägen
7, SE-141 57 Huddinge, Sweden
| | - Anton Forsberg Morén
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, BioClinicum, Floor 4, Akademiska
Stråket 1, 17174 Solna, Sweden
| | - Zhisheng Jia
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, BioClinicum, Floor 4, Akademiska
Stråket 1, 17174 Solna, Sweden
| | - Miguel Cortes-Gonzalez
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, BioClinicum, Floor 4, Akademiska
Stråket 1, 17174 Solna, Sweden
| | - Robert H. Mach
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kyle C. Wilcox
- AbbVie
Inc, 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Sjoerd Finnema
- AbbVie
Inc, 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Magnus Schou
- AstraZeneca,
Precision Medicine Diagnostic Development and HBS Science, AstraZeneca
R&DRINGGOLD Oncology, KI-RCF PET, J2:30, BioClinicum, Visionsgatan
4, SE-17164 Solna, Sweden
| | - Andrea Varrone
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, BioClinicum, Floor 4, Akademiska
Stråket 1, 17174 Solna, Sweden
| |
Collapse
|
17
|
Mekala S, Wu Y, Li YM. Strategies of positron emission tomography (PET) tracer development for imaging of tau and α-synuclein in neurodegenerative disorders. RSC Med Chem 2024:d4md00576g. [PMID: 39678127 PMCID: PMC11638850 DOI: 10.1039/d4md00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by the presence of extracellular amyloid plaques consisting of β-amyloid peptides (Aβ) and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau (pTau) protein in the brain. Genetic and animal studies strongly indicate that Aβ, tau and neuroinflammation play important roles in the pathogenesis of AD. Several staging models showed that NFTs correlated well with the disease progression. Positron emission tomography (PET) imaging has become a widely used non-invasive technique to image NFTs for early diagnosis of AD. Despite the remarkable progress made over the past few years, tau PET imaging is still challenging due to the nature of tau pathology and the technical aspects of PET imaging. Tau pathology often coexists with other proteinopathies, such as Aβ plaques and α-synuclein aggregates. Distinguishing tau-specific signals from other overlapping pathologies is difficult, especially in the context of AD, where multiple protein aggregates are present, as well as the spectrum of different tau isoforms (3R and 4R) and conformations. Moreover, tracers should ideally have optimal pharmacokinetic properties to penetrate the blood-brain barrier (BBB) while maintaining specificity, low toxicity, low non-specific binding, rapid uptake and clearance from the brain, and formation of no radiolabeled metabolites in the brain. On the other hand, Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by the abnormal accumulations of α-synuclein in neurons. Heterogeneity and the unclear pathogenesis of PD hinder early and accurate diagnosis of the disease for therapeutic development in clinical use. In this review, while referring to existing reviews, we focus on the design strategies and current progress in tau (NFTs) targeting new PET tracers for AD; evolution of non-AD tau targeting PET tracers for applications including progressive supranuclear paralysis (PSP) and corticobasal degeneration (CBD); new PET tracer development for α-synuclein aggregate imaging in PD and giving an outlook for future PET tracer development.
Collapse
Affiliation(s)
- Shekar Mekala
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York New York 10065 USA
| | - You Wu
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York New York 10065 USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York New York 10065 USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| |
Collapse
|
18
|
Brendel M, Guedj E, Yakushev I, Morbelli S, Höglinger GU, Tolboom N, Verger A, Albert NL, Cecchin D, Fernandez PA, Fraioli F, Traub-Weidinger T, Van Weehaeghe D, Barthel H. Neuroimaging biomarkers in the biological definition of Parkinson's disease and dementia with Lewy bodies - EANM position on current state, unmet needs and future perspectives. Eur J Nucl Med Mol Imaging 2024; 51:3496-3500. [PMID: 38907856 PMCID: PMC11445360 DOI: 10.1007/s00259-024-06803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Affiliation(s)
- Matthias Brendel
- Department of Nuclear Medicine, LMU Hospital, Ludwig-Maximilians-University of Munich, Marchioninstraße 15, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Eric Guedj
- Département de Médecine Nucléaire, Aix Marseille Univ, APHM, CNRS, Centrale Marseille, Institut Fresnel, Hôpital de La Timone, CERIMED, Marseille, France
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Silvia Morbelli
- Nuclear Medicine Unit, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, LMU Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging, Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Allée du Morvan, 54500, Nancy, France
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, Ludwig-Maximilians-University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Diego Cecchin
- Department of Medicine, Unit of Nuclear Medicine, University Hospital of Padova, Padua, Italy
| | - Pablo Aguiar Fernandez
- CIMUS, Universidade Santiago de Compostela & Nuclear Medicine Department, Univ. Hospital IDIS, Santiago de Compostela, Spain
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Tatjana Traub-Weidinger
- Department of Diagnostic and Therapeutic Nuclear Medicine, Clinic Donaustadt, Vienna Health Care Group, Vienna, Austria
| | - Donatienne Van Weehaeghe
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Liu K, Tao Y, Zhao Q, Xia W, Li X, Zhang S, Yao Y, Xiang H, Han C, Tan L, Sun B, Li D, Li A, Liu C. Binding adaptability of chemical ligands to polymorphic α-synuclein amyloid fibrils. Proc Natl Acad Sci U S A 2024; 121:e2321633121. [PMID: 39172784 PMCID: PMC11363296 DOI: 10.1073/pnas.2321633121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
α-synuclein (α-syn) assembles into structurally distinct fibril polymorphs seen in different synucleinopathies, such as Parkinson's disease and multiple system atrophy. Targeting these unique fibril structures using chemical ligands holds diagnostic significance for different disease subtypes. However, the molecular mechanisms governing small molecules interacting with different fibril polymorphs remain unclear. Here, we investigated the interactions of small molecules belonging to four distinct scaffolds, with different α-syn fibril polymorphs. Using cryo-electron microscopy, we determined the structures of these molecules when bound to the fibrils formed by E46K mutant α-syn and compared them to those bound with wild-type α-syn fibrils. Notably, we observed that these ligands exhibit remarkable binding adaptability, as they engage distinct binding sites across different fibril polymorphs. While the molecular scaffold primarily steered the binding locations and geometries on specific sites, the conjugated functional groups further refined this adaptable binding by fine-tuning the geometries and binding sites. Overall, our finding elucidates the adaptability of small molecules binding to different fibril structures, which sheds light on the diagnostic tracer and drug developments tailored to specific pathological fibril polymorphs.
Collapse
Affiliation(s)
- Kaien Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Xiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yuxuan Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Chao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Ang Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| |
Collapse
|
20
|
Matarazzo M, Obeso JA. Alpha synuclein PET imaging, a step closer to in vivo neuropathology in Parkinson's disease and related disorders. Neuron 2024; 112:2457-2458. [PMID: 39116836 DOI: 10.1016/j.neuron.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
In this issue of Neuron, Endo et al.1 develop a PET tracer capable of detecting alpha-synuclein (ɑ-syn). With validation in animal models and humans, this tracer brings us closer to being able to monitor the synuclein aggregation process and associated pathological changes in Parkinson's disease (PD) and other synucleinopathies.
Collapse
Affiliation(s)
- Michele Matarazzo
- HM CINAC, Hospital Puerta del Sur, Fundación Hospitales de Madrid, Madrid, Spain; CIBERNED, Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Puerta del Sur, Fundación Hospitales de Madrid, Madrid, Spain; CIBERNED, Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Endo H, Ono M, Takado Y, Matsuoka K, Takahashi M, Tagai K, Kataoka Y, Hirata K, Takahata K, Seki C, Kokubo N, Fujinaga M, Mori W, Nagai Y, Mimura K, Kumata K, Kikuchi T, Shimozawa A, Mishra SK, Yamaguchi Y, Shimizu H, Kakita A, Takuwa H, Shinotoh H, Shimada H, Kimura Y, Ichise M, Suhara T, Minamimoto T, Sahara N, Kawamura K, Zhang MR, Hasegawa M, Higuchi M. Imaging α-synuclein pathologies in animal models and patients with Parkinson's and related diseases. Neuron 2024; 112:2540-2557.e8. [PMID: 38843838 DOI: 10.1016/j.neuron.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/24/2024] [Accepted: 05/07/2024] [Indexed: 08/10/2024]
Abstract
Deposition of α-synuclein fibrils is implicated in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), while in vivo detection of α-synuclein pathologies in these illnesses has been challenging. Here, we have developed a small-molecule ligand, C05-05, for visualizing α-synuclein deposits in the brains of living subjects. In vivo optical and positron emission tomography (PET) imaging of mouse and marmoset models demonstrated that C05-05 captured a dynamic propagation of fibrillogenesis along neural pathways, followed by disruptions of these structures. High-affinity binding of 18F-C05-05 to α-synuclein aggregates in human brain tissues was also proven by in vitro assays. Notably, PET-detectable 18F-C05-05 signals were intensified in the midbrains of PD and DLB patients as compared with healthy controls, providing the first demonstration of visualizing α-synuclein pathologies in these illnesses. Collectively, we propose a new imaging technology offering neuropathology-based translational assessments of PD and allied disorders toward diagnostic and therapeutic research and development.
Collapse
Affiliation(s)
- Hironobu Endo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Maiko Ono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yuhei Takado
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kiwamu Matsuoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, Nara Medical University, Nara 634-8522, Japan
| | - Manami Takahashi
- Quantum Neuromapping and Neuromodulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kenji Tagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yuko Kataoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kosei Hirata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Keisuke Takahata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Chie Seki
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Naomi Kokubo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yuji Nagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Koki Mimura
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tatsuya Kikuchi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Aki Shimozawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Sushil K Mishra
- Department of BioMolecular Sciences, The University of Mississippi, Oxford, MS 38677, USA
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Miyagi Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hiroyuki Takuwa
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Quantum Neuromapping and Neuromodulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hitoshi Shinotoh
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Neurology Clinic, Chiba 260-0045, Chiba Japan
| | - Hitoshi Shimada
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Yasuyuki Kimura
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan
| | - Masanori Ichise
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tetsuya Suhara
- National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Naruhiko Sahara
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Neuroetiology and Diagnostic Science, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
22
|
Stankovic I, Kuijpers M, Kaufmann H. An update on multiple system atrophy. Curr Opin Neurol 2024; 37:400-408. [PMID: 38828714 PMCID: PMC11219253 DOI: 10.1097/wco.0000000000001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
PURPOSE OF REVIEW Multiple system atrophy (MSA) is a rapidly progressive synucleinopathy characterized by autonomic failure, parkinsonism, and cerebellar ataxia. Here, we provide an update on α-synuclein's role in MSA pathophysiology and review the new Movement Disorders Society (MDS) diagnostic criteria and the utility of α-synuclein-based biomarkers. We also highlight ongoing efforts toward clinical trial readiness and review potential disease-modifying therapies undergoing clinical trials. RECENT FINDINGS A role of urinary tract infections in triggering α-synuclein aggregation and contribution of genes implicated in oligodendroglial development have been suggested in the MSA pathophysiology. The clinically probable MSA category of the new diagnostic criteria shows improved accuracy in early disease stages. Predictors of phenoconversion from pure autonomic failure to MSA are now better defined. Alpha-synuclein strains in CSF and serum, phosphorylated α-synuclein deposits in the skin, and brain α-synuclein pathology visualized using PET ligand [18F]ACI-12589 are emerging as valuable diagnostic tools. Clinical trials in MSA investigate drugs targeting α-synuclein aggregation or preventing α-synuclein expression, along with stem cell and gene therapies to halt disease progression. SUMMARY New MSA diagnostic criteria and α-synuclein-based biomarkers may enhance diagnostic accuracy while promising therapies are in development to address disease progression.
Collapse
Affiliation(s)
- Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Mechteld Kuijpers
- Dysautonomia Center, Langone Medical Center, New York University School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Dysautonomia Center, Langone Medical Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
23
|
Zarkali A, Thomas GEC, Zetterberg H, Weil RS. Neuroimaging and fluid biomarkers in Parkinson's disease in an era of targeted interventions. Nat Commun 2024; 15:5661. [PMID: 38969680 PMCID: PMC11226684 DOI: 10.1038/s41467-024-49949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in Parkinson's disease is the variability in symptoms and rates of progression, underpinned by heterogeneity of pathological processes. Biomarkers are urgently needed for accurate diagnosis, patient stratification, monitoring disease progression and precise treatment. These were previously lacking, but recently, novel imaging and fluid biomarkers have been developed. Here, we consider new imaging approaches showing sensitivity to brain tissue composition, and examine novel fluid biomarkers showing specificity for pathological processes, including seed amplification assays and extracellular vesicles. We reflect on these biomarkers in the context of new biological staging systems, and on emerging techniques currently in development.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, Institute of Neurology, UCL, London, UK.
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Rimona S Weil
- Dementia Research Centre, Institute of Neurology, UCL, London, UK
- Department of Advanced Neuroimaging, UCL, London, UK
- Movement Disorders Centre, UCL, London, UK
| |
Collapse
|
24
|
Mastenbroek SE, Vogel JW, Collij LE, Serrano GE, Tremblay C, Young AL, Arce RA, Shill HA, Driver-Dunckley ED, Mehta SH, Belden CM, Atri A, Choudhury P, Barkhof F, Adler CH, Ossenkoppele R, Beach TG, Hansson O. Disease progression modelling reveals heterogeneity in trajectories of Lewy-type α-synuclein pathology. Nat Commun 2024; 15:5133. [PMID: 38879548 PMCID: PMC11180185 DOI: 10.1038/s41467-024-49402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
Lewy body (LB) diseases, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. Here we apply a data-driven disease progression model to regional neuropathological LB density scores from 814 brain donors with Lewy pathology. We describe three inferred trajectories of LB pathology that are characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) show earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) initially exhibit abnormalities in brainstem regions. Early limbic pathology is associated with Alzheimer's disease-associated characteristics while early brainstem pathology is associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in Lewy body disease.
Collapse
Affiliation(s)
- Sophie E Mastenbroek
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Jacob W Vogel
- Department of Clinical Sciences Malmö, Faculty of Medicine, SciLifeLab, Lund University, Lund, Sweden
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | - Alexandra L Young
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | | | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Erika D Driver-Dunckley
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | - Shyamal H Mehta
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, USA
- Department of Neurology, Center for Mind/Brain Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Institutes of Neurology & Healthcare Engineering, University College London, London, UK
| | - Charles H Adler
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
25
|
Bonanno F, Saw RS, Bleher D, Papadopoulos I, Bowden GD, Bjerregaard-Andersen K, Windhorst AD, Pichler BJ, Herfert K, Maurer A. Advancing Parkinson's Disease Diagnostics: The Potential of Arylpyrazolethiazole Derivatives for Imaging α-Synuclein Aggregates. ACS OMEGA 2024; 9:24774-24788. [PMID: 38882134 PMCID: PMC11170759 DOI: 10.1021/acsomega.4c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024]
Abstract
The development of positron emission tomography (PET) tracers capable of detecting α-synuclein (α-syn) aggregates in vivo would represent a breakthrough for advancing the understanding and enabling the early diagnosis of Parkinson's disease and related disorders. It also holds the potential to assess the efficacy of therapeutic interventions. However, this remains challenging due to different structures of α-syn aggregates, the need for selectivity over other structurally similar amyloid proteins, like amyloid-β (Aβ), which frequently coexist with α-syn pathology, and the low abundance of the target in the brain that requires the development of a high-affinity ligand. To develop a successful PET tracer for the central nervous system (CNS), stringent criteria in terms of polarity and molecular size must also be considered, as the tracer must penetrate the blood-brain barrier and have low nonspecific binding to brain tissue. Here, we report a series of arylpyrazolethiazole (APT) derivatives, rationally designed from a structure-activity relationship study centered on existing ligands for α-syn fibrils, with a particular focus on the selectivity toward α-syn fibrils and control of physicochemical properties suitable for a CNS PET tracer. In vitro competition binding assays performed against [3H]MODAG-001 using recombinant α-syn and Aβ1-42 fibrils revealed APT-13 with an inhibition constant of 27.8 ± 9.7 nM and a selectivity of more than 3.3 fold over Aβ. Radiolabeled [11C]APT-13 demonstrated excellent brain penetration in healthy mice with a peak standardized uptake value of 1.94 ± 0.29 and fast washout from the brain (t 1/2 = 9 ± 1 min). This study highlights the potential of APT-13 as a lead compound for developing PET tracers to detect α-syn aggregates in vivo.
Collapse
Affiliation(s)
- Federica Bonanno
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, Tübingen 72076, Germany
| | - Ran Sing Saw
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, Tübingen 72076, Germany
| | - Daniel Bleher
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, Tübingen 72076, Germany
| | - Ioannis Papadopoulos
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, Tübingen 72076, Germany
| | - Gregory D Bowden
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Röntgenweg 11, Tübingen 72076, Germany
| | | | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1085c, 1081 HV Amsterdam, The Netherlands
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Röntgenweg 11, Tübingen 72076, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, Tübingen 72076, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Röntgenweg 11, Tübingen 72076, Germany
| |
Collapse
|
26
|
Outeiro TF, Kalia LV, Bezard E, Ferrario J, Lin CH, Salama M, Standaert DG, Taiwo L, Takahashi R, Vila M, Mollenhauer B, Svenningsson P. Basic Science in Movement Disorders: Fueling the Engine of Translation into Clinical Practice. Mov Disord 2024; 39:929-933. [PMID: 38576081 DOI: 10.1002/mds.29802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Basic Science is crucial for the advancement of clinical care for Movement Disorders. Here, we provide brief updates on how basic science is important for understanding disease mechanisms, disease prevention, disease diagnosis, development of novel therapies and to establish the basis for personalized medicine. We conclude the viewpoint by a call to action to further improve interactions between clinician and basic scientists. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Juan Ferrario
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3) and CONICET, Buenos Aires, Argentina
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
- Faculty of Medicine, Mansoura University, Dakahleya, Egypt
| | - David G Standaert
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lolade Taiwo
- Department of Neurology, University College Hospital, Ibadan, Nigeria
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Autonomous University of Barcelona (UAB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Brit Mollenhauer
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Paracelsus-Elena-Klinik, Kassel, Germany; University Medical Center Goettingen, Institute of Neurology, Goettingen, Germany
| | - Per Svenningsson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Clinical Neuroscience and Neurology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
27
|
Matarazzo M, Pérez-Soriano A, Vafai N, Shahinfard E, Cheng KJC, McKenzie J, Neilson N, Miao Q, Schaffer P, Shinotoh H, Kordower JH, Sossi V, Stoessl AJ. Misfolded protein deposits in Parkinson's disease and Parkinson's disease-related cognitive impairment, a [ 11C]PBB3 study. NPJ Parkinsons Dis 2024; 10:96. [PMID: 38702305 PMCID: PMC11068893 DOI: 10.1038/s41531-024-00708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
Parkinson's disease (PD) is associated with aggregation of misfolded α-synuclein and other proteins, including tau. We designed a cross-sectional study to quantify the brain binding of [11C]PBB3 (a ligand known to bind to misfolded tau and possibly α-synuclein) as a proxy of misfolded protein aggregation in Parkinson's disease (PD) subjects with and without cognitive impairment and healthy controls (HC). In this cross-sectional study, nineteen cognitively normal PD subjects (CN-PD), thirteen cognitively impaired PD subjects (CI-PD) and ten HC underwent [11C]PBB3 PET. A subset of the PD subjects also underwent PET imaging with [11C](+)DTBZ to assess dopaminergic denervation and [11C]PBR28 to assess neuroinflammation. Compared to HC, PD subjects showed higher [11C]PBB3 binding in the posterior putamen but not the substantia nigra. There was no relationship across subjects between [11C]PBB3 and [11C]PBR28 binding in nigrostriatal regions. [11C]PBB3 binding was increased in the anterior cingulate in CI-PD compared to CN-PD and HC, and there was an inverse correlation between cognitive scores and [11C]PBB3 binding in this region across all PD subjects. Our results support a primary role of abnormal protein deposition localized to the posterior putamen in PD. This suggests that striatal axonal terminals are preferentially involved in the pathophysiology of PD. Furthermore, our findings suggest that anterior cingulate pathology might represent a significant in vivo marker of cognitive impairment in PD, in agreement with previous neuropathological studies.
Collapse
Affiliation(s)
- Michele Matarazzo
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Pérez-Soriano
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nasim Vafai
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Elham Shahinfard
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Ju-Chieh Cheng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Jessamyn McKenzie
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nicole Neilson
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | | | | | - Hitoshi Shinotoh
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada.
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Del Giudice KP, Cosgaya M, Zaro I, Ravasi V, Santacruz P, Painous C, Fernández M, Cámara A, Compta Y. Anti-alpha synuclein and anti-tau immunotherapies: Can a cocktail approach work? Parkinsonism Relat Disord 2024; 122:106080. [PMID: 38508903 DOI: 10.1016/j.parkreldis.2024.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
The hypothesis that neurodegenerative diseases are proteinopathies due to toxic effect of different underlying proteins, such as amyloid-beta and 3+4R-tau in Alzheimer's disease (AD) and alpha-synuclein in Parkinson's disease (PD), while still controversial is supported by several studies in the literature. This has led to conduct clinical trials attempting to reduce the load of these allegedly toxic proteins by immunotherapy, mostly but not solely based on antibodies against these proteins. Already completed clinical trials have ranged from initially negative results to recently partial positive outcomes, specifically for anti-amyloid antibodies in AD but also albeit to lesser degree for anti-synuclein antibodies in PD. Currently, there are several ongoing clinical trials in degenerative parkinsonisms with anti-synuclein approaches in PD and multiple system atrophy (MSA), as well as with anti-tau antibodies in 4R-tauopathies such as progressive supranuclear palsy (PSP). While it can be argued that expectations that part of these clinical trials will be positive can be hope or hype, it is reasonable to consider the future possibility of "cocktail" combination of different antibodies after the available experimental evidence of cross-talk between these proteins and neuropathological evidence of coexistence of these proteinopathies more frequently than expected by chance. Moreover, such "cocktail" approaches are widespread and accepted common practice in other fields such as oncology, and the complexity of neurodegenerative parkinsonisms makes reasonable the option for testing and eventually applying such combined approaches, should these prove useful separately, in the setting of patients with evidence of underlying concomitant proteinopathies, for example through biomarkers.
Collapse
Affiliation(s)
- Kirsys Patricia Del Giudice
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marina Cosgaya
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Idoia Zaro
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Valeria Ravasi
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Pilar Santacruz
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Celia Painous
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Manel Fernández
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ana Cámara
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
29
|
Pees A, Tong J, Birudaraju S, Munot YS, Liang SH, Saturnino Guarino D, Mach RH, Mathis CA, Vasdev N. Development of Pyridothiophene Compounds for PET Imaging of α-Synuclein. Chemistry 2024; 30:e202303921. [PMID: 38354298 DOI: 10.1002/chem.202303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Aggregated α-synuclein (α-syn) protein is a pathological hallmark of Parkinson's disease (PD) and Lewy body dementia (LBD). Development of positron emission tomography (PET) radiotracers to image α-syn aggregates has been a longstanding goal. This work explores the suitability of a pyridothiophene scaffold for α-syn PET radiotracers, where 47 derivatives of a potent pyridothiophene (asyn-44; Kd=1.85 nM) were synthesized and screened against [3H]asyn-44 in competitive binding assays using post-mortem PD brain homogenates. Equilibrium inhibition constant (Ki) values of the most potent compounds were determined, of which three had Ki's in the lower nanomolar range (12-15 nM). An autoradiography study confirmed that [3H]asyn-44 is promising for imaging brain sections from multiple system atrophy and PD donors. Fluorine-18 labelled asyn-44 was synthesized in 6±2 % radiochemical yield (decay-corrected, n=5) with a molar activity of 263±121 GBq/μmol. Preliminary PET imaging of [18F]asyn-44 in rats showed high initial brain uptake (>1.5 standardized uptake value (SUV)), moderate washout (~0.4 SUV at 60 min), and low variability. Radiometabolite analysis showed 60-80 % parent tracer in the brain after 30 and 60 mins. While [18F]asyn-44 displayed good in vitro properties and acceptable brain uptake, troublesome radiometabolites precluded further PET imaging studies. The synthesis and in vitro evaluation of additional pyridothiophene derivatives are underway, with the goal of attaining improved affinity and metabolic stability.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | | | | | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Dinahlee Saturnino Guarino
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, Pennsylvania, 19104-6323, United States
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, Pennsylvania, 19104-6323, United States
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, United States
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T-1R8, Canada
| |
Collapse
|
30
|
Bendetowicz D, Fabbri M, Sirna F, Fernagut PO, Foubert-Samier A, Saulnier T, Le Traon AP, Proust-Lima C, Rascol O, Meissner WG. Recent Advances in Clinical Trials in Multiple System Atrophy. Curr Neurol Neurosci Rep 2024; 24:95-112. [PMID: 38416311 DOI: 10.1007/s11910-024-01335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW This review summarizes previous and ongoing neuroprotection trials in multiple system atrophy (MSA), a rare and fatal neurodegenerative disease characterized by parkinsonism, cerebellar, and autonomic dysfunction. It also describes the preclinical therapeutic pipeline and provides some considerations relevant to successfully conducting clinical trials in MSA, i.e., diagnosis, endpoints, and trial design. RECENT FINDINGS Over 30 compounds have been tested in clinical trials in MSA. While this illustrates a strong treatment pipeline, only two have reached their primary endpoint. Ongoing clinical trials primarily focus on targeting α-synuclein, the neuropathological hallmark of MSA being α-synuclein-bearing glial cytoplasmic inclusions. The mostly negative trial outcomes highlight the importance of better understanding underlying disease mechanisms and improving preclinical models. Together with efforts to refine clinical measurement tools, innovative statistical methods, and developments in biomarker research, this will enhance the design of future neuroprotection trials in MSA and the likelihood of positive outcomes.
Collapse
Affiliation(s)
- David Bendetowicz
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France.
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, NS-Park/FCRIN Network, Bordeaux, France.
| | - Margherita Fabbri
- MSA French Reference Center, Univ. Hospital Toulouse, Toulouse, France
- Univ. Toulouse, CIC-1436, Departments of Clinical Pharmacology and Neurosciences, NeuroToul COEN Center, NS-Park/FCRIN Network, Toulouse University Hospital, Inserm, U1048/1214, Toulouse, France
| | - Federico Sirna
- Univ. Bordeaux, INSERM, BPH, U1219, IPSED, Bordeaux, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM UMR-S 1084, Poitiers, France
| | - Alexandra Foubert-Samier
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, NS-Park/FCRIN Network, Bordeaux, France
- Univ. Bordeaux, INSERM, BPH, U1219, IPSED, Bordeaux, France
| | | | - Anne Pavy Le Traon
- MSA French Reference Center, Univ. Hospital Toulouse, Toulouse, France
- Univ. Toulouse, CIC-1436, Departments of Clinical Pharmacology and Neurosciences, NeuroToul COEN Center, NS-Park/FCRIN Network, Toulouse University Hospital, Inserm, U1048/1214, Toulouse, France
| | | | - Olivier Rascol
- MSA French Reference Center, Univ. Hospital Toulouse, Toulouse, France
- Univ. Toulouse, CIC-1436, Departments of Clinical Pharmacology and Neurosciences, NeuroToul COEN Center, NS-Park/FCRIN Network, Toulouse University Hospital, Inserm, U1048/1214, Toulouse, France
| | - Wassilios G Meissner
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, NS-Park/FCRIN Network, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| |
Collapse
|
31
|
Tarutani A, Hasegawa M. Ultrastructures of α-Synuclein Filaments in Synucleinopathy Brains and Experimental Models. J Mov Disord 2024; 17:15-29. [PMID: 37990381 PMCID: PMC10846975 DOI: 10.14802/jmd.23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/23/2023] Open
Abstract
Intracellular α-synuclein (α-syn) inclusions are a neuropathological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA), both of which are termed synucleinopathies. LBD is defined by Lewy bodies and Lewy neurites in neurons, while MSA displays glial cytoplasmic inclusions in oligodendrocytes. Pathological α-syn adopts an ordered filamentous structure with a 5-10 nm filament diameter, and this conformational change has been suggested to be involved in the disease onset and progression. Synucleinopathies also exhibit characteristic ultrastructural and biochemical properties of α-syn filaments, and α-syn strains with distinct conformations have been identified. Numerous experimental studies have supported the idea that pathological α-syn self-amplifies and spreads throughout the brain, during which processes the conformation of α-syn filaments may drive the disease specificity. In this review, we summarize the ultrastructural features and heterogeneity of α-syn filaments in the brains of patients with synucleinopathy and in experimental models of seeded α-syn aggregation.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
32
|
Theis H, Pavese N, Rektorová I, van Eimeren T. Imaging Biomarkers in Prodromal and Earliest Phases of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S353-S365. [PMID: 38339941 PMCID: PMC11492013 DOI: 10.3233/jpd-230385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
Assessing imaging biomarker in the prodromal and early phases of Parkinson's disease (PD) is of great importance to ensure an early and safe diagnosis. In the last decades, imaging modalities advanced and are now able to assess many different aspects of neurodegeneration in PD. MRI sequences can measure iron content or neuromelanin. Apart from SPECT imaging with Ioflupane, more specific PET tracers to assess degeneration of the dopaminergic system are available. Furthermore, metabolic PET patterns can be used to anticipate a phenoconversion from prodromal PD to manifest PD. In this regard, it is worth mentioning that PET imaging of inflammation will gain significance. Molecular imaging of neurotransmitters like serotonin, noradrenaline and acetylcholine shed more light on non-motor symptoms. Outside of the brain, molecular imaging of the heart and gut is used to measure PD-related degeneration of the autonomous nervous system. Moreover, optical coherence tomography can noninvasively detect degeneration of retinal fibers as a potential biomarker in PD. In this review, we describe these state-of-the-art imaging modalities in early and prodromal PD and point out in how far these techniques can and will be used in the future to pave the way towards a biomarker-based staging of PD.
Collapse
Affiliation(s)
- Hendrik Theis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Nicola Pavese
- Aarhus University, Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus N, Denmark
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Irena Rektorová
- Masaryk University, Faculty of Medicine and St. Anne’s University Hospital, International Clinical Research Center, ICRC, Brno, Czech Republic
- Masaryk University, Faculty of Medicine and St. Anne’s University Hospital, First Department of Neurology, Brno, Czech Republic
- Masaryk University, Applied Neuroscience Research Group, Central European Institute of Technology – CEITEC, Brno, Czech Republic
| | - Thilo van Eimeren
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| |
Collapse
|