1
|
Montes C, Zhang J, Nolan TM, Walley JW. Single-cell proteomics differentiates Arabidopsis root cell types. THE NEW PHYTOLOGIST 2024; 244:1750-1759. [PMID: 38923440 DOI: 10.1111/nph.19923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Single-cell proteomics (SCP) is an emerging approach to resolve cellular heterogeneity within complex tissues of multi-cellular organisms. Here, we demonstrate the feasibility of SCP on plant samples using the model plant Arabidopsis thaliana. Specifically, we focused on examining isolated single cells from the cortex and endodermis, which are two adjacent root cell types derived from a common stem cell lineage. From 756 root cells, we identified 3763 proteins and 1118 proteins/cell. Ultimately, we focus on 3217 proteins quantified following stringent filtering. Of these, we identified 596 proteins whose expression is enriched in either the cortex or endodermis and are able to differentiate these closely related plant cell types. Collectivity, this study demonstrates that SCP can resolve neighboring cell types with distinct functions, thereby facilitating the identification of biomarkers and candidate proteins to enable functional genomics.
Collapse
Affiliation(s)
- Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Jingyuan Zhang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
2
|
Uddin N, Li X, Ullah MW, Sethupathy S, Ma K, Zahoor, Elboughdiri N, Khan KA, Zhu D. Lignin developmental patterns and Casparian strip as apoplastic barriers: A review. Int J Biol Macromol 2024; 260:129595. [PMID: 38253138 DOI: 10.1016/j.ijbiomac.2024.129595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Lignin and Casparian strips are two essential components of plant cells that play critical roles in plant development regulate nutrients and water across the plants cell. Recent studies have extensively investigated lignin diversity and Casparian strip formation, providing valuable insights into plant physiology. This review presents the established lignin biosynthesis pathway, as well as the developmental patterns of lignin and Casparian strip and transcriptional network associated with Casparian strip formation. It describes the biochemical and genetic mechanisms that regulate lignin biosynthesis and deposition in different plants cell types and tissues. Additionally, the review highlights recent studies that have uncovered novel lignin biosynthesis genes and enzymatic pathways, expanding our understanding of lignin diversity. This review also discusses the developmental patterns of Casparian strip in roots and their role in regulating nutrient and water transport, focusing on recent genetic and molecular studies that have identified regulators of Casparian strip formation. Previous research has shown that lignin biosynthesis genes also play a role in Casparian strip formation, suggesting that these processes are interconnected. In conclusion, this comprehensive overview provides insights into the developmental patterns of lignin diversity and Casparian strip as apoplastic barriers. It also identifies future research directions, including the functional characterization of novel lignin biosynthesis genes and the identification of additional regulators of Casparian strip formation. Overall, this review enhances our understanding of the complex and interconnected processes that drive plant growth, pathogen defense, regulation and development.
Collapse
Affiliation(s)
- Nisar Uddin
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xia Li
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Keyu Ma
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Liu M, Zhang Y, Shaw RK, Zhang X, Li J, Li L, Li S, Adnan M, Jiang F, Bi Y, Yin X, Fan X. Genome-Wide Association Study and Prediction of Tassel Weight of Tropical Maize Germplasm in Multi-Parent Population. Int J Mol Sci 2024; 25:1756. [PMID: 38339032 PMCID: PMC10855296 DOI: 10.3390/ijms25031756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Tassel weight (TW) is a crucial agronomic trait that significantly affects pollen supply and grain yield development in maize breeding. To improve maize yield and develop new varieties, a comprehensive understanding of the genetic mechanisms underlying tassel weight is essential. In this study, tropical maize inbred lines, namely CML312, CML373, CML444, and YML46, were selected as female parents and crossed with the elite maize inbred line Ye107, which served as the common male parent, to develop a multi-parent population comprising four F8 recombinant inbred line (RIL) subpopulations. Using 6616 high-quality single nucleotide polymorphism (SNP) markers, we conducted genome-wide association analysis (GWAS) and genomic selection (GS) on 642 F8 RILs in four subpopulations across three different environments. Through GWAS, we identified 16 SNPs that were significantly associated with TW, encompassing two stable loci expressed across multiple environments. Furthermore, within the candidate regions of these SNPs, we discovered four novel candidate genes related to TW, namely Zm00001d044362, Zm00001d011048, Zm00001d011049, and Zm00001d031173 distributed on chromosomes 1, 3, and 8, which have not been previously reported. These genes are involved in processes such as signal transduction, growth and development, protein splicing, and pollen development, all of which play crucial roles in inflorescence meristem development, directly affecting TW. The co-localized SNP, S8_137379725, on chromosome 8 was situated within a 16.569 kb long terminal repeat retrotransposon (LTR-RT), located 22.819 kb upstream and 26.428 kb downstream of the candidate genes (Zm00001d011048 and Zm00001d011049). When comparing three distinct GS models, the BayesB model demonstrated the highest accuracy in predicting TW. This study establishes the theoretical foundation for future research into the genetic mechanisms underlying maize TW and the efficient breeding of high-yielding varieties with desired tassel weight through GS.
Collapse
Affiliation(s)
- Meichen Liu
- School of Agriculture, Yunnan University, Kunming 650500, China; (M.L.); (X.Z.); (J.L.); (L.L.); (S.L.)
| | - Yudong Zhang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (M.A.); (F.J.); (Y.B.); (X.Y.)
| | - Ranjan K. Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (M.A.); (F.J.); (Y.B.); (X.Y.)
| | - Xingjie Zhang
- School of Agriculture, Yunnan University, Kunming 650500, China; (M.L.); (X.Z.); (J.L.); (L.L.); (S.L.)
| | - Jinfeng Li
- School of Agriculture, Yunnan University, Kunming 650500, China; (M.L.); (X.Z.); (J.L.); (L.L.); (S.L.)
| | - Linzhuo Li
- School of Agriculture, Yunnan University, Kunming 650500, China; (M.L.); (X.Z.); (J.L.); (L.L.); (S.L.)
| | - Shaoxiong Li
- School of Agriculture, Yunnan University, Kunming 650500, China; (M.L.); (X.Z.); (J.L.); (L.L.); (S.L.)
| | - Muhammad Adnan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (M.A.); (F.J.); (Y.B.); (X.Y.)
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (M.A.); (F.J.); (Y.B.); (X.Y.)
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (M.A.); (F.J.); (Y.B.); (X.Y.)
| | - Xingfu Yin
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (M.A.); (F.J.); (Y.B.); (X.Y.)
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Y.Z.); (R.K.S.); (M.A.); (F.J.); (Y.B.); (X.Y.)
| |
Collapse
|
4
|
Zhang B, Xin B, Sun X, Chao D, Zheng H, Peng L, Chen X, Zhang L, Yu J, Ma D, Xia J. Small peptide signaling via OsCIF1/2 mediates Casparian strip formation at the root endodermal and nonendodermal cell layers in rice. THE PLANT CELL 2024; 36:383-403. [PMID: 37847118 PMCID: PMC10827571 DOI: 10.1093/plcell/koad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
The Casparian strip (CS) is a ring-like lignin structure deposited between endodermal cells that forms an apoplastic barrier to control the selective uptake of nutrients in vascular plants. However, the molecular mechanism of CS formation in rice (Oryza sativa), which possesses one CS each in the endodermis and exodermis, is relatively unknown. Here, we functionally characterized CS INTEGRITY FACTOR1 (OsCIF1a, OsCIF1b), OsCIF2, and SCHENGEN3 (OsSGN3a, OsSGN3b) in rice. OsCIF1s and OsCIF2 were mainly expressed in the stele, while OsSGN3s localized around the CS at the endodermis. Knockout of all three OsCIFs or both OsSGN3s resulted in a discontinuous CS and a dramatic reduction in compensatory (less localized) lignification and suberization at the endodermis. By contrast, ectopic overexpression of OsCIF1 or OsCIF2 induced CS formation as well as overlignification and oversuberization at single or double cortical cell layers adjacent to the endodermis. Ectopic co-overexpression of OsCIF1 and SHORTROOT1 (OsSHR1) induced the formation of more CS-like structures at multiple cortical cell layers. Transcriptome analysis identified 112 downstream genes modulated by the OsCIF1/2-OsSGN3 signaling pathway, which is involved in CS formation and activation of the compensatory machinery in native endodermis and nonnative endodermis-like cell layers. Our results provide important insights into the molecular mechanism of CIF-mediated CS formation at the root endodermal and nonendodermal cell layers.
Collapse
Affiliation(s)
- Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Boning Xin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoqian Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dong Chao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Huawei Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liyun Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingxiang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Lin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinyu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dan Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Zhang L, He C, Lai Y, Wang Y, Kang L, Liu A, Lan C, Su H, Gao Y, Li Z, Yang F, Li Q, Mao H, Chen D, Chen W, Kaufmann K, Yan W. Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. Genome Biol 2023; 24:65. [PMID: 37016448 PMCID: PMC10074895 DOI: 10.1186/s13059-023-02908-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Homoeologs are defined as homologous genes resulting from allopolyploidy. Bread wheat, Triticum aestivum, is an allohexaploid species with many homoeologs. Homoeolog expression bias, referring to the relative contribution of homoeologs to the transcriptome, is critical for determining the traits that influence wheat growth and development. Asymmetric transcription of homoeologs has been so far investigated in a tissue or organ-specific manner, which could be misleading due to a mixture of cell types. RESULTS Here, we perform single nuclei RNA sequencing and ATAC sequencing of wheat root to study the asymmetric gene transcription, reconstruct cell differentiation trajectories and cell-type-specific gene regulatory networks. We identify 22 cell types. We then reconstruct cell differentiation trajectories that suggest different origins between epidermis/cortex and endodermis, distinguishing bread wheat from Arabidopsis. We show that the ratio of asymmetrically transcribed triads varies greatly when analyzing at the single-cell level. Hub transcription factors determining cell type identity are also identified. In particular, we demonstrate that TaSPL14 participates in vasculature development by regulating the expression of BAM1. Combining single-cell transcription and chromatin accessibility data, we construct the pseudo-time regulatory network driving root hair differentiation. We find MYB3R4, REF6, HDG1, and GATAs as key regulators in this process. CONCLUSIONS Our findings reveal the transcriptional landscape of root organization and asymmetric gene transcription at single-cell resolution in polyploid wheat.
Collapse
Affiliation(s)
- Lihua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuting Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yating Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lu Kang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ankui Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuwen Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zeqing Li
- Wuhan Igenebook Biotechnology Co., Ltd, Wuhan, 430014 China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität Zu Berlin, 10115 Berlin, Germany
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
6
|
Üstüner S, Schäfer P, Eichmann R. Development specifies, diversifies and empowers root immunity. EMBO Rep 2022; 23:e55631. [PMID: 36330761 PMCID: PMC9724680 DOI: 10.15252/embr.202255631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
Roots are a highly organised plant tissue consisting of different cell types with distinct developmental functions defined by cell identity networks. Roots are the target of some of the most devastating diseases and possess a highly effective immune system. The recognition of microbe- or plant-derived molecules released in response to microbial attack is highly important in the activation of complex immunity gene networks. Development and immunity are intertwined, and immunity activation can result in growth inhibition. In turn, by connecting immunity and cell identity regulators, cell types are able to launch a cell type-specific immunity based on the developmental function of each cell type. By this strategy, fundamental developmental processes of each cell type contribute their most basic functions to drive cost-effective but highly diverse and, thus, efficient immune responses. This review highlights the interdependence of root development and immunity and how the developmental age of root cells contributes to positive and negative outcomes of development-immunity cross-talk.
Collapse
Affiliation(s)
- Sim Üstüner
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| |
Collapse
|
7
|
Li M, Li P, Wang C, Xu H, Wang M, Wang Y, Niu X, Xu M, Wang H, Qin Y, Tang W, Bai M, Wang W, Wu S. Brassinosteroid signaling restricts root lignification by antagonizing SHORT-ROOT function in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1182-1198. [PMID: 35809074 PMCID: PMC9516771 DOI: 10.1093/plphys/kiac327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/25/2022] [Indexed: 05/20/2023]
Abstract
Cell wall lignification is a key step in forming functional endodermis and protoxylem (PX) in plant roots. Lignified casparian strips (CS) in endodermis and tracheary elements of PX are essential for selective absorption and transport of water and nutrients. Although multiple key regulators of CS and PX have been identified, the spatial information that drives the developmental shift to root lignification remains unknown. Here, we found that brassinosteroid (BR) signaling plays a key role in inhibiting root lignification in the root elongation zone. The inhibitory activity of BR signaling occurs partially through the direct binding of BRASSINAZOLE-RESISTANT 1 (BZR1) to SHORT-ROOT (SHR), repressing the SHR-mediated activation of downstream genes that are involved in root lignification. Upon entering the mature root zone, BR signaling declines rapidly, which releases SHR activity and initiates root lignification. Our results provide a mechanistic view of the developmental transition to cell wall lignification in Arabidopsis thaliana roots.
Collapse
Affiliation(s)
| | | | | | - Huimin Xu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengxue Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanli Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xufang Niu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyuan Xu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxin Qin
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mingyi Bai
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Wenfei Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | |
Collapse
|
8
|
Xu H, Liu P, Wang C, Wu S, Dong C, Lin Q, Sun W, Huang B, Xu M, Tauqeer A, Wu S. Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response. PLANT PHYSIOLOGY 2022; 190:1165-1181. [PMID: 35781829 PMCID: PMC9516719 DOI: 10.1093/plphys/kiac298] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/14/2022] [Indexed: 05/05/2023]
Abstract
Vascular tissues are surrounded by an apoplastic barrier formed by endodermis that is vital for selective absorption of water and nutrients. Lignification and suberization of endodermal cell walls are fundamental processes in establishing the apoplastic barrier. Endodermal suberization in Arabidopsis (Arabidopsis thaliana) roots is presumed to be the integration of developmental regulation and stress responses. In root endodermis, the suberization level is enhanced when the Casparian strip, the lignified structure, is defective. However, it is not entirely clear how lignification and suberization interplay and how they interact with stress signaling. Here, in Arabidopsis, we constructed a hierarchical network mediated by SHORT-ROOT (SHR), a master regulator of endodermal development, and identified 13 key MYB transcription factors (TFs) that form multiple sub-networks. Combined with functional analyses, we further uncovered MYB TFs that mediate feedback or feed-forward loops, thus balancing lignification and suberization in Arabidopsis roots. In addition, sub-networks comprising nine MYB TFs were identified that interact with abscisic acid signaling to integrate stress response and root development. Our data provide insights into the mechanisms that enhance plant adaptation to changing environments.
Collapse
Affiliation(s)
| | | | | | - Shasha Wu
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaoqun Dong
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qingyun Lin
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenru Sun
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Benben Huang
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meizhi Xu
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Arfa Tauqeer
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | |
Collapse
|
9
|
Wang Z, Zhang B, Chen Z, Wu M, Chao D, Wei Q, Xin Y, Li L, Ming Z, Xia J. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis. THE PLANT CELL 2022; 34:2948-2968. [PMID: 35543496 PMCID: PMC9338812 DOI: 10.1093/plcell/koac140] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/16/2022] [Indexed: 05/14/2023]
Abstract
Plants have evolved a lignin-based Casparian strip (CS) in roots that restricts passive diffusion of mineral elements from the soil to the stele. However, the molecular mechanisms underlying CS formation in rice (Oryza sativa), which contains a CS at both the exodermis and endodermis, are poorly understood. Here, we demonstrate that CS formation at the rice endodermis is redundantly regulated by three MYELOBLASTOSIS (MYB) transcription factors, OsMYB36a, OsMYB36b, and OsMYB36c, that are highly expressed in root tips. Knockout of all three genes resulted in a complete absence of CS at the endodermis and retarded plant growth in hydroponic conditions and in soil. Compared with the wild-type, the triple mutants showed higher calcium (Ca) levels and lower Mn, Fe, Zn, Cu, and Cd levels in shoots. High Ca supply further inhibited mutant growth and increased Ca levels in shoots. Transcriptome analysis identified 1,093 downstream genes regulated by OsMYB36a/b/c, including the key CS formation gene OsCASP1 and other genes that function in CS formation at the endodermis. Three OsMYB36s regulate OsCASP1 and OsESB1 expression by directly binding to MYB-binding motifs in their promoters. Our findings thus provide important insights into the mechanism of CS formation at the endodermis and the selective uptake of mineral elements in roots.
Collapse
Affiliation(s)
| | | | - Zhiwei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Mingjuan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dong Chao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Qiuxing Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yafeng Xin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Longying Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | | |
Collapse
|
10
|
Kim G, Ryu H, Sung J. Hormonal Crosstalk and Root Suberization for Drought Stress Tolerance in Plants. Biomolecules 2022; 12:811. [PMID: 35740936 PMCID: PMC9220869 DOI: 10.3390/biom12060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Higher plants in terrestrial environments face to numerous unpredictable environmental challenges, which lead to a significant impact on plant growth and development. In particular, the climate change caused by global warming is causing drought stress and rapid desertification in agricultural fields. Many scientific advances have been achieved to solve these problems for agricultural and plant ecosystems. In this review, we handled recent advances in our understanding of the physiological changes and strategies for plants undergoing drought stress. The activation of ABA synthesis and signaling pathways by drought stress regulates root development via the formation of complicated signaling networks with auxin, cytokinin, and ethylene signaling. An abundance of intrinsic soluble sugar, especially trehalose-6-phosphate, promotes the SnRK-mediated stress-resistance mechanism. Suberin deposition in the root endodermis is a physical barrier that regulates the influx/efflux of water and nutrients through complex hormonal and metabolic networks, and suberization is essential for drought-stressed plants to survive. It is highly anticipated that this work will contribute to the reproduction and productivity improvements of drought-resistant crops in the future.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheong-ju 28644, Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheong-ju 28644, Korea
| | - Jwakyung Sung
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| |
Collapse
|
11
|
Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A, Vlot AHC, Schiebinger G, Benfey PN, Ohler U. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev Cell 2022; 57:543-560.e9. [PMID: 35134336 DOI: 10.1101/2020.06.29.178863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 05/22/2023]
Abstract
In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.
Collapse
Affiliation(s)
- Rachel Shahan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Che-Wei Hsu
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Benjamin J Cole
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stephen Zhang
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anna Hendrika Cornelia Vlot
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany.
| |
Collapse
|
12
|
Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A, Vlot AHC, Schiebinger G, Benfey PN, Ohler U. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev Cell 2022; 57:543-560.e9. [PMID: 35134336 PMCID: PMC9014886 DOI: 10.1016/j.devcel.2022.01.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.
Collapse
Affiliation(s)
- Rachel Shahan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Che-Wei Hsu
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Benjamin J Cole
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stephen Zhang
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anna Hendrika Cornelia Vlot
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany.
| |
Collapse
|
13
|
Woolfson KN, Esfandiari M, Bernards MA. Suberin Biosynthesis, Assembly, and Regulation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040555. [PMID: 35214889 PMCID: PMC8875741 DOI: 10.3390/plants11040555] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 05/03/2023]
Abstract
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer preventing water loss and pathogen infection. The deposition of suberin is part of the skin maturation process of important tuber crops such as potato and can affect storage longevity. Historically, the term "suberin" has been used to describe a polyester of largely aliphatic monomers (fatty acids, ω-hydroxy fatty acids, α,ω-dioic acids, 1-alkanols), hydroxycinnamic acids, and glycerol. However, exhaustive alkaline hydrolysis, which removes esterified aliphatics and phenolics from suberized tissue, reveals a core poly(phenolic) macromolecule, the depolymerization of which yields phenolics not found in the aliphatic polyester. Time course analysis of suberin deposition, at both the transcriptional and metabolite levels, supports a temporal regulation of suberin deposition, with phenolics being polymerized into a poly(phenolic) domain in advance of the bulk of the poly(aliphatics) that characterize suberized cells. In the present review, we summarize the literature describing suberin monomer biosynthesis and speculate on aspects of suberin assembly. In addition, we highlight recent advances in our understanding of how suberization may be regulated, including at the phytohormone, transcription factor, and protein scaffold levels.
Collapse
|
14
|
Siqueira JA, Otoni WC, Araújo WL. The hidden half comes into the spotlight: Peeking inside the black box of root developmental phases. PLANT COMMUNICATIONS 2022; 3:100246. [PMID: 35059627 PMCID: PMC8760039 DOI: 10.1016/j.xplc.2021.100246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/13/2021] [Accepted: 09/18/2021] [Indexed: 05/30/2023]
Abstract
Efficient use of natural resources (e.g., light, water, and nutrients) can be improved with a tailored developmental program that maximizes the lifetime and fitness of plants. In plant shoots, a developmental phase represents a time window in which the meristem triggers the development of unique morphological and physiological traits, leading to the emergence of leaves, flowers, and fruits. Whereas developmental phases in plant shoots have been shown to enhance food production in crops, this phenomenon has remained poorly investigated in roots. In light of recent advances, we suggest that root development occurs in three main phases: root apical meristem appearance, foraging, and senescence. We provide compelling evidence suggesting that these phases are regulated by at least four developmental pathways: autonomous, non-autonomous, hormonal, and periodic. Root developmental pathways differentially coordinate organ plasticity, promoting morphological alterations, tissue regeneration, and cell death regulation. Furthermore, we suggest how nutritional checkpoints may allow progression through the developmental phases, thus completing the root life cycle. These insights highlight novel and exciting advances in root biology that may help maximize the productivity of crops through more sustainable agriculture and the reduced use of chemical fertilizers.
Collapse
|
15
|
Shiono K, Yoshikawa M, Kreszies T, Yamada S, Hojo Y, Matsuura T, Mori IC, Schreiber L, Yoshioka T. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa). THE NEW PHYTOLOGIST 2022; 233:655-669. [PMID: 34725822 DOI: 10.1111/nph.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
To acclimate to waterlogged conditions, wetland plants form a barrier to radial oxygen loss (ROL) that can enhance oxygen transport to the root apex. We hypothesized that one or more hormones are involved in the induction of the barrier and searched for such hormones in rice. We previously identified 98 genes that were tissue-specifically upregulated during ROL barrier formation in rice. The RiceXPro database showed that most of these genes were highly enhanced by exogenous abscisic acid (ABA). We then examined the effect of ABA on ROL barrier formation by using an ABA biosynthesis inhibitor (fluridone, FLU), by applying exogenous ABA and by examining a mutant with a defective ABA biosynthesis gene (osaba1). FLU suppressed barrier formation in a stagnant solution that mimics waterlogged soil. Under aerobic conditions, rice does not naturally form a barrier, but 24 h of ABA treatment induced barrier formation. osaba1 did not form a barrier under stagnant conditions, but the application of ABA rescued the barrier. In parallel with ROL barrier formation, suberin lamellae formed in the exodermis. These findings strongly suggest that ABA is an inducer of suberin lamellae formation in the exodermis, resulting in an ROL barrier formation in rice.
Collapse
Affiliation(s)
- Katsuhiro Shiono
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui, 910-1195, Japan
| | - Marina Yoshikawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui, 910-1195, Japan
| | - Tino Kreszies
- Plant Nutrition and Crop Physiology, Department of Crop Science, University of Göttingen, Carl-Sprengel-Weg 1, Göttingen, 37075, Germany
| | - Sumiyo Yamada
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui, 910-1195, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular Botany, University of Bonn, Kirschallee 1, 53115, Germany
| | - Toshihito Yoshioka
- Faculty of Agro-Food Science, Niigata Agro-Food University, 2416 Hiranedai, Tainai, Niigata, 959-2702, Japan
| |
Collapse
|
16
|
Liu C, Xiang D, Wu Q, Ye X, Yan H, Zhao G, Zou L. Dynamic transcriptome and co-expression analysis suggest the potential roles of small secreted peptides from Tartary buckwheat (Fagopyrum tataricum) in low nitrogen stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111091. [PMID: 34763875 DOI: 10.1016/j.plantsci.2021.111091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Small secreted peptides (SSPs) regulate nitrogen (N) response and signaling in plants. Although much progress has been made in understanding the functions of SSPs in N response, very little information is available regarding non-model plants. Tartary buckwheat (Fagopyrum tataricum), a dicotyledonous crop, has a good adaptability to low N (LN) stress; however, little is known regarding the associated mechanisms underlying this adaptation. In this study, 932 putative SSPs were genome-wide characterized in TB genome. Of these SSPs, 233 SSPs were annotated as established SSPs, such as CLE, RALF, PSK, and CEP peptides. The gene expression of 675 putative SSPs was detected in five tissues and 258 SSPs were tissue-specific expressed genes. To analyze the responses of TB SSPs to LN, the dynamic expression analysis of TB roots under LN stress was conducted by RNA-seq. The expression of 378 putative TB SSP genes was detected with diverse expression patterns under LN stress, and some important LN-responsive SSPs were identified. Co-expression analysis suggested SSPs may regulate the adaptability of TB under LN conditions by modulating the expression of the genes involved in N transport and assimilation and IAA signaling. Furthermore, 53 LN stress-responsive RLKs encoding genes were identified and they were predicted as potential SSP receptors. This study expands the repertoire of SSPs in plants and provides useful information for further investigation of the functions of Tartary buckwheat SSPs in LN stress responses.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Huiling Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| |
Collapse
|
17
|
Onyenedum JG, Pace MR. The role of ontogeny in wood diversity and evolution. AMERICAN JOURNAL OF BOTANY 2021; 108:2331-2355. [PMID: 34761812 DOI: 10.1002/ajb2.1801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Evolutionary developmental biology (evo-devo) explores the link between developmental patterning and phenotypic change through evolutionary time. In this review, we highlight the scientific advancements in understanding xylem evolution afforded by the evo-devo approach, opportunities for further engagement, and future research directions for the field. We review evidence that (1) heterochrony-the change in rate and timing of developmental events, (2) homeosis-the ontogenetic replacement of features, (3) heterometry-the change in quantity of a feature, (4) exaptation-the co-opting and repurposing of an ancestral feature, (5) the interplay between developmental and capacity constraints, and (6) novelty-the emergence of a novel feature, have all contributed to generating the diversity of woods. We present opportunities for future research engagement, which combine wood ontogeny within the context of robust phylogenetic hypotheses, and molecular biology.
Collapse
Affiliation(s)
- Joyce G Onyenedum
- School of Integrative Plant Sciences and L. H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Marcelo R Pace
- Department of Botany, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Mexico City, 04510, Mexico
| |
Collapse
|
18
|
Fujita S. CASPARIAN STRIP INTEGRITY FACTOR (CIF) family peptides - regulator of plant extracellular barriers. Peptides 2021; 143:170599. [PMID: 34174383 DOI: 10.1016/j.peptides.2021.170599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023]
Abstract
In multicellular organisms, water and most of the small molecules, such as nutrients, toxic substances, and signaling compounds, move freely through extracellular spaces, depending on their biochemical nature. To restrict the simple diffusion of small molecules, multicellular organisms have evolved extracellular barriers across specific tissue layers, such as tight junctions in the animal epithelium. Similar extracellular barriers are also generated in plants through the accumulation of hydrophobic chemicals, such as lignin or cutin, although the detailed molecular mechanisms underlying this process remain elusive. Here, I summarize recent advances in extracellular barrier formation in plants by focusing mainly on CASPARIAN STRIP INTEGRITY FACTOR (CIF) family peptides, which trigger the spatially precise deposition of designated cell wall components, enabling plants to establish transcellular barrier networks correctly. The genome of Arabidopsis thaliana, a model plant species, harbors five CIF genes, which encode propeptides which are processed into small secreted peptides of 21-24 amino acids. Sulfation of tyrosine residues in CIF peptides ensures their full bioactivity and high-affinity binding to their receptors SCHENGEN3/GASSHO1 (SGN3/GSO1) and GSO2 in vitro. Additionally, in vivo analysis shows that physical restriction of CIF peptide diffusion and the subcellular localization of a signaling module and expression patterns of a peptide processing enzyme specify the location of signal activation. Thus, the CIF peptide family provides fascinating models for understanding mature peptide biogenesis and spatially limited signal activation with small diffusive molecules.
Collapse
Affiliation(s)
- Satoshi Fujita
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
19
|
Zhang S, Quartararo A, Betz OK, Madahhosseini S, Heringer AS, Le T, Shao Y, Caruso T, Ferguson L, Jernstedt J, Wilkop T, Drakakaki G. Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress. PLANT DIRECT 2021; 5:e00315. [PMID: 34027297 PMCID: PMC8133763 DOI: 10.1002/pld3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 05/11/2023]
Abstract
Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy-based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pistacia integerrima (PGI) and a hybrid, P. atlantica x P. integerrima (UCB1). We analyzed root sections via fluorescence microscopy across a developmental gradient, defined by xylem development, for sodium localization and for cellular barrier differentiation via suberin deposition. Our cumulative data suggest that the salinity response in pistachio rootstock species is associated with both vacuolar sodium ion (Na+) sequestration in the root cortex and increased suberin deposition at apoplastic barriers. Furthermore, both vacuolar sequestration and suberin deposition correlate with the root developmental gradient. We observed a higher rate of Na+ vacuolar sequestration and reduced salt-induced leaf damage in UCB1 when compared to P. integerrima. In addition, UCB1 displayed higher basal levels of suberization, in both the exodermis and endodermis, compared to P. integerrima. This difference was enhanced after salinity stress. These cellular characteristics are phenotypes that can be taken into account during screening for sodium-mediated salinity tolerance in woody plant species.
Collapse
Affiliation(s)
- Shuxiao Zhang
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Alessandra Quartararo
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Oliver Karl Betz
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Shahab Madahhosseini
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Genetic and Plant Production DepartmentVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Angelo Schuabb Heringer
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Unidade de Biologia IntegrativaSetor de Genômica e ProteômicaUENFRio de JaneiroRJBrazil
| | - Thu Le
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Yuhang Shao
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of AgricultureNanjing Agricultural UniversityNanjingJiangsu ProvinceP. R. China
| | - Tiziano Caruso
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Judy Jernstedt
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Thomas Wilkop
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Light Microscopy CoreDepartment of PhysiologyUniversity of KentuckyLexingtonKYUSA
| | - Georgia Drakakaki
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| |
Collapse
|
20
|
Tomescu AMF. The stele - a developmental perspective on the diversity and evolution of primary vascular architecture. Biol Rev Camb Philos Soc 2021; 96:1263-1283. [PMID: 33655608 DOI: 10.1111/brv.12699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
The stele concept is one of the oldest enduring concepts in plant biology. Here, I review the history of the concept and build an argument for an updated view of steles and their evolution. Studies of stelar organization have generated a widely ranging array of definitions that determine the way we classify steles and construct scenarios about the evolution of stelar architecture. Because at the organismal level biological evolution proceeds by changes in development, concepts of structure need to be grounded in development to be relevant in an evolutionary perspective. For the stele, most traditional definitions that incorporate development have viewed it as the totality of tissues that either originate from procambium - currently the prevailing view - or are bordered by a boundary layer (e.g. endodermis). Consensus between these two perspectives can be reached by recasting the stele as a structural entity of dual nature. Following a brief review of the history of the stele concept, basic terminology related to stelar organization, and traditional classifications of the steles, I revisit boundary layers from the perspective of histogenesis as a dynamic mosaic of developmental domains. I review anatomical and molecular data to explore and reaffirm the importance of boundary layers for stelar organization. Drawing on information from comparative anatomy, developmental regulation, and the fossil record, I propose a stele concept that integrates both the boundary layer and the procambial perspectives, consistent with a dual nature of the stele. This dual stele model posits that stelar architecture is determined at the apical meristem by two major cell fate specification events: a first one that specifies a provascular domain and its boundaries, and a second event that specifies a procambial domain (which will mature into conducting tissues) from cell subpopulations of the provascular domain. If the position and extent of the developmental domains defined by the two events are determined by different concentrations of the same morphogen (most likely auxin), then the distribution of this organizer factor in the shoot apical meristem, as modulated by changes in axis size and the effect of lateral organs, can explain the different stelar configurations documented among tracheophytes. This model provides working hypotheses that incorporate assumptions and generate implications that can be tested empirically. The model also offers criteria for an updated classification of steles in line with current understanding of plant development. In this classification, steles fall into two major categories determined by the configuration of boundary layers: boundary protosteles and boundary siphonosteles, each with subtypes defined by the architecture of the vascular tissues. Validation of the dual stele model and, more generally, in-depth understanding of the regulation of stelar architecture, will necessitate targeted efforts in two areas: (i) the regulation of procambium, vascular tissue, and boundary layer specification in all extant vascular plants, considering that most of the diversity in stelar architecture is hosted by seed-free plants, which are the least explored in terms of developmental regulation; (ii) the configuration of vascular tissues and, especially, boundary layers, in as many extinct lineages as possible.
Collapse
Affiliation(s)
- Alexandru M F Tomescu
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, U.S.A
| |
Collapse
|
21
|
Ou Y, Kui H, Li J. Receptor-like Kinases in Root Development: Current Progress and Future Directions. MOLECULAR PLANT 2021; 14:166-185. [PMID: 33316466 DOI: 10.1016/j.molp.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Cell-to-cell and cell-to-environment communications are critical to the growth and development of plants. Cell surface-localized receptor-like kinases (RLKs) are mainly involved in sensing various extracellular signals to initiate their corresponding cellular responses. As important vegetative organs for higher plants to adapt to a terrestrial living situation, roots play a critical role for the survival of plants. It has been demonstrated that RLKs control many biological processes during root growth and development. In this review, we summarize several key regulatory processes during Arabidopsis root development in which RLKs play critical roles. We also put forward a number of relevant questions that are required to be explored in future studies.
Collapse
Affiliation(s)
- Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
22
|
Fröschel C, Komorek J, Attard A, Marsell A, Lopez-Arboleda WA, Le Berre J, Wolf E, Geldner N, Waller F, Korte A, Dröge-Laser W. Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes. Cell Host Microbe 2020; 29:299-310.e7. [PMID: 33378688 DOI: 10.1016/j.chom.2020.11.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/02/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Plant roots are built of concentric cell layers that are thought to respond to microbial infections by employing specific, genetically defined programs. Yet, the functional impact of this radial organization remains elusive, particularly due to the lack of genome-wide techniques for monitoring expression at a cell-layer resolution. Here, cell-type-specific expression of tagged ribosomes enabled the isolation of ribosome-bound mRNA to obtain cell-layer translatomes (TRAP-seq, translating ribosome affinity purification and RNA sequencing). After inoculation with the vascular pathogen Verticillium longisporum, pathogenic oomycete Phytophthora parasitica, or mutualistic endophyte Serendipita indica, root cell-layer responses reflected the fundamentally different colonization strategies of these microbes. Notably, V. longisporum specifically suppressed the endodermal barrier, which restricts fungal progression, allowing microbial access to the root central cylinder. Moreover, localized biosynthesis of antimicrobial compounds and ethylene differed in response to pathogens and mutualists. These examples highlight the power of this resource to gain insights into root-microbe interactions and to develop strategies in crop improvement.
Collapse
Affiliation(s)
- Christian Fröschel
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Jaqueline Komorek
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Agnès Attard
- INRAE, CNRS, ISA, Université Côte d'Azur, 400 Route des Chappes, 06903 Sophia Antipolis, France
| | - Alexander Marsell
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - William A Lopez-Arboleda
- Center for Computational and Theoretical Biology, CCTB, Julius-Maximilians-Universität Würzburg, Klara-Oppenheimer-Weg 32, 97074 Würzburg, Germany
| | - Joëlle Le Berre
- INRAE, CNRS, ISA, Université Côte d'Azur, 400 Route des Chappes, 06903 Sophia Antipolis, France
| | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, Université de Lausanne, Biophore Building, Unil-Sorge, 1015 Lausanne, Switzerland
| | - Frank Waller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Arthur Korte
- Center for Computational and Theoretical Biology, CCTB, Julius-Maximilians-Universität Würzburg, Klara-Oppenheimer-Weg 32, 97074 Würzburg, Germany
| | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|
23
|
The Roles of Peptide Hormones and Their Receptors during Plant Root Development. Genes (Basel) 2020; 12:genes12010022. [PMID: 33375648 PMCID: PMC7823343 DOI: 10.3390/genes12010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/03/2023] Open
Abstract
Peptide hormones play pivotal roles in many physiological processes through coordinating developmental and environmental cues among different cells. Peptide hormones are recognized by their receptors that convey signals to downstream targets and interact with multiple pathways to fine-tune plant growth. Extensive research has illustrated the mechanisms of peptides in shoots but functional studies of peptides in roots are scarce. Reactive oxygen species (ROS) are known to be involved in stress-related events. However, recent studies have shown that they are also associated with many processes that regulate plant development. Here, we focus on recent advances in understanding the relationships between peptide hormones and their receptors during root growth including outlines of how ROS are integrated with these networks.
Collapse
|
24
|
BAM1/2 receptor kinase signaling drives CLE peptide-mediated formative cell divisions in Arabidopsis roots. Proc Natl Acad Sci U S A 2020; 117:32750-32756. [PMID: 33288706 PMCID: PMC7768756 DOI: 10.1073/pnas.2018565117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proper elaboration of the plant body plan requires that cell division patterns are coordinated during development in complex tissues. Activation of cell cycle machinery is critical for this process, but it is not clear how or if this links to cell-to-cell communication networks that are important during development. Here we show that key cell divisions that generate the plant root are controlled by cell-to-cell signaling peptides which act through plant-specific receptor kinases to control expression of a specific cyclinD cell cycle regulatory gene. We show that cyclinD gene expression depends on both receptor signaling and the SHORT-ROOT transcription factor to ensure timely and robust cell division patterns. Cell division is often regulated by extracellular signaling networks to ensure correct patterning during development. In Arabidopsis, the SHORT-ROOT (SHR)/SCARECROW (SCR) transcription factor dimer activates CYCLIND6;1 (CYCD6;1) to drive formative divisions during root ground tissue development. Here, we show plasma-membrane-localized BARELY ANY MERISTEM1/2 (BAM1/2) family receptor kinases are required for SHR-dependent formative divisions and CYCD6;1 expression, but not SHR-dependent ground tissue specification. Root-enriched CLE ligands bind the BAM1 extracellular domain and are necessary and sufficient to activate SHR-mediated divisions and CYCD6;1 expression. Correspondingly, BAM-CLE signaling contributes to the restriction of formative divisions to the distal root region. Additionally, genetic analysis reveals that BAM-CLE and SHR converge to regulate additional cell divisions outside of the ground tissues. Our work identifies an extracellular signaling pathway regulating formative root divisions and provides a framework to explore this pathway in patterning and evolution.
Collapse
|
25
|
Reyt G, Chao Z, Flis P, Salas-González I, Castrillo G, Chao DY, Salt DE. Uclacyanin Proteins Are Required for Lignified Nanodomain Formation within Casparian Strips. Curr Biol 2020; 30:4103-4111.e6. [PMID: 32857976 PMCID: PMC7575197 DOI: 10.1016/j.cub.2020.07.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 01/09/2023]
Abstract
Casparian strips (CSs) are cell wall modifications of vascular plants restricting extracellular free diffusion into and out of the vascular system [1]. This barrier plays a critical role in controlling the acquisition of nutrients and water necessary for normal plant development [2-5]. CSs are formed by the precise deposition of a band of lignin approximately 2 μm wide and 150 nm thick spanning the apoplastic space between adjacent endodermal cells [6, 7]. Here, we identified a copper-containing protein, Uclacyanin1 (UCC1), that is sub-compartmentalized within the CS. UCC1 forms a central CS nanodomain in comparison with other CS-located proteins that are found to be mainly accumulated at the periphery of the CS. We found that loss-of-function of two uclacyanins (UCC1 and UCC2) reduces lignification specifically in this central CS nanodomain, revealing a nano-compartmentalized machinery for lignin polymerization. This loss of lignification leads to increased endodermal permeability and, consequently, to a loss of mineral nutrient homeostasis.
Collapse
Affiliation(s)
- Guilhem Reyt
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Zhenfei Chao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Paulina Flis
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Isai Salas-González
- Curriculum in Bioinformatics and Computational Biology, Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriel Castrillo
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - David E Salt
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK.
| |
Collapse
|
26
|
Zhuang Y, Li L. Are cuproproteins part of the multi-protein framework for making the Casparian strip? PLANT SIGNALING & BEHAVIOR 2020; 15:1798605. [PMID: 32729358 PMCID: PMC8550615 DOI: 10.1080/15592324.2020.1798605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Casparian strip (CS) is a lignified structure localized on the cell wall between adjacent root endodermal cells and functions as an apoplastic diffusion barrier in the root. The polarly localized, lignin-based CS is an excellent system for studying peptide signaling and position recognition. In this short review, we summarize advances in the past decade on the molecular mechanism governing CS development. In addition to the multi-protein framework underlying the CS membrane domain, we discuss recently observed participation of cell wall located cuproproteins in CS formation. These new discoveries shed light on a potential CS wall domain that coordinates with the membrane domain to provide bidirectional positional information for guiding precise CS development.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
27
|
Wang C, Wang H, Li P, Li H, Xu C, Cohen H, Aharoni A, Wu S. Developmental programs interact with abscisic acid to coordinate root suberization in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:241-251. [PMID: 32645747 DOI: 10.1111/tpj.14920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 05/20/2023]
Abstract
Suberin lamellae, which provide a hydrophobic protective barrier against biotic and abiotic stresses, are widely deposited in various cell types during plant development and in response to stress. However, it remains unclear how developmental programs interact with stress responses to direct the precise spatiotemporal pattern of suberin deposition. In this study, we found that SHORT-ROOT (SHR), together with its downstream factor MYB36, guided suberization specifically in the root endodermis. Despite a partial dependence on abscisic acid (ABA), the suberization mediated by SHR and MYB36 appeared to derive from a slow readout of developmental programs, which was in contrast to the rapid but transient suberization induced by ABA. Furthermore, we found the MYB39 transcription factor functioned as a common downstream hub of the SHR/MYB36 pathway and the ABA-triggered response. MYB39 could directly bind to the FAR5 (alcohol-forming fatty acyl-coenzyme A reductase) promoter to activate its expression. In addition, overexpression of MYB39 dramatically increased the amount of suberization in Arabidopsis roots. Our results provide important insights into the interaction between developmental programs and environmental stimuli in root suberization in Arabidopsis.
Collapse
Affiliation(s)
- Chunhua Wang
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Wang
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengxue Li
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haiyang Li
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunmiao Xu
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hagai Cohen
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shuang Wu
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
28
|
Patron NJ. Beyond natural: synthetic expansions of botanical form and function. THE NEW PHYTOLOGIST 2020; 227:295-310. [PMID: 32239523 PMCID: PMC7383487 DOI: 10.1111/nph.16562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 05/05/2023]
Abstract
Powered by developments that enabled genome-scale investigations, systems biology emerged as a field aiming to understand how phenotypes emerge from network functions. These advances fuelled a new engineering discipline focussed on synthetic reconstructions of complex biological systems with the goal of predictable rational design and control. Initially, progress in the nascent field of synthetic biology was slow due to the ad hoc nature of molecular biology methods such as cloning. The application of engineering principles such as standardisation, together with several key technical advances, enabled a revolution in the speed and accuracy of genetic manipulation. Combined with mathematical and statistical modelling, this has improved the predictability of engineering biological systems of which nonlinearity and stochasticity are intrinsic features leading to remarkable achievements in biotechnology as well as novel insights into biological function. In the past decade, there has been slow but steady progress in establishing foundations for synthetic biology in plant systems. Recently, this has enabled model-informed rational design to be successfully applied to the engineering of plant gene regulation and metabolism. Synthetic biology is now poised to transform the potential of plant biotechnology. However, reaching full potential will require conscious adjustments to the skillsets and mind sets of plant scientists.
Collapse
Affiliation(s)
- Nicola J. Patron
- Engineering BiologyEarlham InstituteNorwich Research Park, NorwichNorfolkNR4 7UZUK
| |
Collapse
|
29
|
Fujita S, De Bellis D, Edel KH, Köster P, Andersen TG, Schmid-Siegert E, Dénervaud Tendon V, Pfister A, Marhavý P, Ursache R, Doblas VG, Barberon M, Daraspe J, Creff A, Ingram G, Kudla J, Geldner N. SCHENGEN receptor module drives localized ROS production and lignification in plant roots. EMBO J 2020; 39:e103894. [PMID: 32187732 PMCID: PMC7196915 DOI: 10.15252/embj.2019103894] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Production of reactive oxygen species (ROS) by NADPH oxidases (NOXs) impacts many processes in animals and plants, and many plant receptor pathways involve rapid, NOX‐dependent increases of ROS. Yet, their general reactivity has made it challenging to pinpoint the precise role and immediate molecular action of ROS. A well‐understood ROS action in plants is to provide the co‐substrate for lignin peroxidases in the cell wall. Lignin can be deposited with exquisite spatial control, but the underlying mechanisms have remained elusive. Here, we establish a kinase signaling relay that exerts direct, spatial control over ROS production and lignification within the cell wall. We show that polar localization of a single kinase component is crucial for pathway function. Our data indicate that an intersection of more broadly localized components allows for micrometer‐scale precision of lignification and that this system is triggered through initiation of ROS production as a critical peroxidase co‐substrate.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Tonni Grube Andersen
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | | | | | - Alexandre Pfister
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Peter Marhavý
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Robertas Ursache
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Verónica G Doblas
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Marie Barberon
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Ramakrishna P, Barberon M. Polarized transport across root epithelia. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:23-29. [PMID: 31323542 DOI: 10.1016/j.pbi.2019.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
Plant roots explore the soil to acquire water and nutrients which are often available at concentrations that drastically differ from the plant's actual need for growth and development. This stark difference between availability and requirement can be dealt with owing to the root's architecture as an inverted gut. In roots, the two epithelial characteristics (selective acquisition and diffusion barrier) are split between two cell layers: the epidermis at the root periphery and the endodermis as the innermost cortical cell layer around the vasculature. Polarized transport of nutrients across the root epithelium can be achieved through different pathways: apoplastic, symplastic, or coupled transcellular. This review highlights different features of the root that allow this polarized transport. Special emphasis is placed on the coupled transcellular pathway, facilitated by polarized nutrient carriers along root cell layers but barred by suberin lamellae in endodermal cells.
Collapse
Affiliation(s)
- Priya Ramakrishna
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Marie Barberon
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
31
|
Kaufmann C, Sauter M. Sulfated plant peptide hormones. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4267-4277. [PMID: 31231771 PMCID: PMC6698702 DOI: 10.1093/jxb/erz292] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/11/2019] [Indexed: 05/08/2023]
Abstract
Sulfated peptides are plant hormones that are active at nanomolar concentrations. The sulfation at one or more tyrosine residues is catalysed by tyrosylprotein sulfotransferase (TPST), which is encoded by a single-copy gene. The sulfate group is provided by the co-substrate 3´-phosphoadenosine 5´-phosphosulfate (PAPS), which links synthesis of sulfated signaling peptides to sulfur metabolism. The precursor proteins share a conserved DY-motif that is implicated in specifying tyrosine sulfation. Several sulfated peptides undergo additional modification such as hydroxylation of proline and glycosylation of hydroxyproline. The modifications render the secreted signaling molecules active and stable. Several sulfated signaling peptides have been shown to be perceived by leucine-rich repeat receptor-like kinases (LRR-RLKs) but have signaling pathways that, for the most part, are yet to be elucidated. Sulfated peptide hormones regulate growth and a wide variety of developmental processes, and intricately modulate immunity to pathogens. While basic research on sulfated peptides has made steady progress, their potential in agricultural and pharmaceutical applications has yet to be explored.
Collapse
Affiliation(s)
- Christine Kaufmann
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten, Kiel, Germany
- Correspondence:
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten, Kiel, Germany
| |
Collapse
|
32
|
Wright RC, Nemhauser J. Plant Synthetic Biology: Quantifying the "Known Unknowns" and Discovering the "Unknown Unknowns". PLANT PHYSIOLOGY 2019; 179:885-893. [PMID: 30630870 PMCID: PMC6393784 DOI: 10.1104/pp.18.01222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/14/2018] [Indexed: 05/03/2023]
Abstract
Biosensors, advanced microscopy, and single- cell transcriptomics are advancing plant synthetic biology.
Collapse
Affiliation(s)
- R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
33
|
Di Mambro R, Sabatini S, Dello Ioio R. Patterning the Axes: A Lesson from the Root. PLANTS 2018; 8:plants8010008. [PMID: 30602700 PMCID: PMC6358898 DOI: 10.3390/plants8010008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
How the body plan is established and maintained in multicellular organisms is a central question in developmental biology. Thanks to its simple and symmetric structure, the root represents a powerful tool to study the molecular mechanisms underlying the establishment and maintenance of developmental axes. Plant roots show two main axes along which cells pass through different developmental stages and acquire different fates: the root proximodistal axis spans longitudinally from the hypocotyl junction (proximal) to the root tip (distal), whereas the radial axis spans transversely from the vasculature tissue (centre) to the epidermis (outer). Both axes are generated by stereotypical divisions occurring during embryogenesis and are maintained post-embryonically. Here, we review the latest scientific advances on how the correct formation of root proximodistal and radial axes is achieved.
Collapse
Affiliation(s)
- Riccardo Di Mambro
- Department of Biology, University of Pisa, via L. Ghini, 13-56126 Pisa, Italy.
| | - Sabrina Sabatini
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma "Sapienza", via dei Sardi, 70-00185 Rome, Italy.
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma "Sapienza", via dei Sardi, 70-00185 Rome, Italy.
| |
Collapse
|
34
|
The Casparian strip-one ring to bring cell biology to lignification? Curr Opin Biotechnol 2018; 56:121-129. [PMID: 30502636 DOI: 10.1016/j.copbio.2018.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
Lignin research has long been motivated by the outstanding importance of wood for human societies. The annual, non-woody Arabidopsis thaliana, has nevertheless contributed greatly to our understanding of lignification, due to its unrivalled genetic resources. Arabidopsis is also great for cell and developmental biology, allowing precise imaging and tracking of cell types. Root endodermis differentiation involves the precise lignification of the Casparian Strip, as an apoplastic barrier; while barrier damage triggers a less localized, compensatory lignification. Transcriptional reprogramming and peptide-induced signalling emerge as promising tools for the study of endodermal lignification. We argue that endodermis lignification is an attractive model complementary to equally powerful, cellular xylem differentiation systems, as it might better represent the restricted - often localized - lignification seen in non-vascular cells.
Collapse
|
35
|
Abstract
The endodermis of plants is surrounded by an impermeable belt, the casparian strip, making it a highly selective barrier for nutrient uptake. Successful reprogramming of non-endodermal cells to form a casparian strip requires two signals produced by the vasculature.
Collapse
Affiliation(s)
- Alexis Maizel
- Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|