1
|
Loudya N, Barkan A, López-Juez E. Plastid retrograde signaling: A developmental perspective. THE PLANT CELL 2024; 36:3903-3913. [PMID: 38546347 PMCID: PMC11449110 DOI: 10.1093/plcell/koae094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/01/2024] [Indexed: 10/05/2024]
Abstract
Chloroplast activities influence nuclear gene expression, a phenomenon referred to as retrograde signaling. Biogenic retrograde signals have been revealed by changes in nuclear gene expression when chloroplast development is disrupted. Research on biogenic signaling has focused on repression of Photosynthesis-Associated Nuclear Genes (PhANGs), but this is just one component of a syndrome involving altered expression of thousands of genes involved in diverse processes, many of which are upregulated. We discuss evidence for a framework that accounts for most of this syndrome. Disruption of chloroplast biogenesis prevents the production of signals required to progress through discrete steps in the program of photosynthetic differentiation, causing retention of juvenile states. As a result, expression of PhANGs and other genes that act late during photosynthetic differentiation is not initiated, while expression of genes that act early is retained. The extent of juvenility, and thus the transcriptome, reflects the disrupted process: lack of plastid translation blocks development very early, whereas disruption of photosynthesis without compromising plastid translation blocks development at a later stage. We discuss implications of these and other recent observations for the nature of the plastid-derived signals that regulate photosynthetic differentiation and the role of GUN1, an enigmatic protein involved in biogenic signaling.
Collapse
Affiliation(s)
- Naresh Loudya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Enrique López-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
2
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Li Y, Liu Y, Ran G, Yu Y, Zhou Y, Zhu Y, Du Y, Pi L. The pentatricopeptide repeat protein DG1 promotes the transition to bilateral symmetry during Arabidopsis embryogenesis through GUN1-mediated plastid signals. THE NEW PHYTOLOGIST 2024; 244:542-557. [PMID: 39140987 DOI: 10.1111/nph.20056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
During Arabidopsis embryogenesis, the transition of the embryo's symmetry from radial to bilateral between the globular and heart stage is a crucial event, involving the formation of cotyledon primordia and concurrently the establishment of a shoot apical meristem (SAM). However, a coherent framework of how this transition is achieved remains to be elucidated. In this study, we investigated the function of DELAYED GREENING 1 (DG1) in Arabidopsis embryogenesis using a newly identified dg1-3 mutant. The absence of chloroplast-localized DG1 in the mutants led to embryos being arrested at the globular or heart stage, accompanied by an expansion of WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) expression. This finding pinpoints the essential role of DG1 in regulating the transition to bilateral symmetry. Furthermore, we showed that this regulation of DG1 may not depend on its role in plastid RNA editing. Nevertheless, we demonstrated that the DG1 function in establishing bilateral symmetry is genetically mediated by GENOMES UNCOUPLED 1 (GUN1), which represses the transition process in dg1-3 embryos. Collectively, our results reveal that DG1 functionally antagonizes GUN1 to promote the transition of the Arabidopsis embryo's symmetry from radial to bilateral and highlight the role of plastid signals in regulating pattern formation during plant embryogenesis.
Collapse
Affiliation(s)
- Yajie Li
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiqiong Liu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Guiping Ran
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yifan Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxian Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yujuan Du
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Zhu Y, Narsai R, He C, Štaka Z, Bai C, Berkowitz O, Liew LC, Whelan J. Overexpression of the transcription factor ANAC017 results in a genomes uncoupled phenotype under lincomycin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:91-108. [PMID: 39145415 DOI: 10.1111/tpj.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Over-expression (OE) lines for the ER-tethered NAC transcription factor ANAC017 displayed de-repression of gun marker genes when grown on lincomycin (lin). RNA-seq revealed that ANAC017OE2 plants constitutively expressed greater than 40% of the genes induced in wild-type with lin treatment, including plastid encoded genes ycf1.2 and the gene cluster ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD, documented as direct RNA targets of GUN1. Genes encoding components involved in organelle translation were enriched in constitutively expressed genes in ANAC017OE2. ANAC017OE resulted in constitutive location in the nucleus and significant constitutive binding of ANAC017 was detected by ChIP-Seq to target genes. ANAC017OE2 lines maintained the ability to green on lin, were more ABA sensitive, did not show photo-oxidative damage after exposure of de-etiolated seedlings to continuous light and the transcriptome response to lin were as much as 80% unique compared to gun1-1. Both double mutants, gun1-1:ANAC017OE and bzip60:ANAC017OE (but not single bzip60), have a gun molecular gene expression pattern and result in variegated and green plants, suggesting that ANAC017OE may act through an independent pathway compared to gun1. Over-expression of ANAC013 or rcd1 did not produce a GUN phenotype or green plants on lin. Thus, constitutive ANAC017OE2 establishes an alternative transcriptional program that likely acts through a number of pathways, that is, maintains plastid gene expression, and induction of a variety of transcription factors involved in reactive oxygen species metabolism, priming plants for lin tolerance to give a gun phenotype.
Collapse
Affiliation(s)
- Yanqiao Zhu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Zorana Štaka
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Bai
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
5
|
Geng R, Li X, Huang J, Zhou W. The chloroplast singlet oxygen-triggered biosynthesis of salicylic acid and jasmonic acid is mediated by EX1 and GUN1 in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:2852-2864. [PMID: 38600785 DOI: 10.1111/pce.14910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Reactive oxygen species (ROS) and defence hormones like salicylic acid (SA) and jasmonic acid (JA) play pivotal roles in triggering cell death. However, the precise mechanism governing the interaction between ROS and SA/JA remains elusive. Recently, our research revealed that RNAi mutants with suppressed expression of PROGRAMMED CELL DEATH8 (PCD8) exhibit an overabundance of tetrapyrrole intermediates, particularly uroporphyrinogen III (Uro III), leading to the accumulation of singlet oxygen (1O2) during the transition from darkness to light, thereby instigating leaf necrosis. In this investigation, we uncovered that 1O2 stimulates biosynthesis of SA and JA, activating SA/JA signalling and the expression of responsive genes in PCD8 RNAi (pcd8) mutants. Introducing NahG or knocking out PAD4 or NPR1 significantly alleviates the cell death phenotype of pcd8 mutants, while coi1 partially mitigates the pcd8 phenotype. Further exploration revealed that EX1 and GUN1 can partially rescue the pcd8 phenotype by reducing the levels of Uro III and 1O2. Notably, mutations in EX1 mutations but not GUN1, substantially diminish SA content in pcd8 mutants compared to the wild type, implying that EX1 acts as the primary mediator of 1O2 signalling-mediated SA biosynthesis. Moreover, the triple ex1 gun1 pcd8 displays a phenotype similar to ex1. Overall, our findings underscore that the 1O2-induced cell death phenotype requires EX1/GUN1-mediated retrograde signalling in pcd8 mutants, providing novel insights into the interplay between ROS and SA/JA.
Collapse
Affiliation(s)
- Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Sun X, Singla-Rastogi M, Wang J, Zhao C, Wang X, Li P. The uS10c-BPG2 module mediates ribosomal RNA processing in chloroplast nucleoids. Nucleic Acids Res 2024; 52:7893-7909. [PMID: 38686791 PMCID: PMC11260468 DOI: 10.1093/nar/gkae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
In plant chloroplasts, certain ribosomal proteins (RPs) and ribosome biogenesis factors (RBFs) are present in nucleoids, implying an association between nucleoids and ribosome biogenesis. In Arabidopsis, the YqeH-type GTPase Brassinazole-Insensitive Pale Green2 (BPG2) is a chloroplast nucleoid-associated RBF. Here, we investigated the relationship between nucleoids and BPG2-involved ribosome biogenesis steps by exploring how BPG2 targets ribosomes. Our findings demonstrate that BPG2 interacts with an essential plastid RP, uS10c, in chloroplast nucleoids in a ribosomal RNA (rRNA)-independent manner. We also discovered that uS10c is a haploinsufficient gene, as the heterozygous deletion of this gene leads to variegated shoots and chlorophyll aggregation. uS10c is integrated into 30S ribosomal particles when rRNA is relatively exposed and also exists in polysome fractions. In contrast, BPG2 exclusively associates with 30S ribosomal particles. Notably, the interaction between BPG2 and 30S particles is influenced by the absence of uS10c, resulting in BPG2 diffusing in chloroplasts instead of targeting nucleoids. Further, our results reveal that the loss of BPG2 function and the heterozygous deletion of uS10c impair the processing of 16S and 23S-4.5S rRNAs, reduce plastid protein accumulation, and trigger the plastid signaling response. Together, these findings indicate that the uS10c-BPG2 module mediates ribosome biogenesis in chloroplast nucleoids.
Collapse
Affiliation(s)
- Xueping Sun
- Institute of Crop Germplasm Resources (Biotechnology Research Center), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, PR China
| | | | - Jingwen Wang
- Institute of Crop Germplasm Resources (Biotechnology Research Center), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Biotechnology Research Center), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong 250100, PR China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Biotechnology Research Center), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong 250100, PR China
| | - Pengcheng Li
- Institute of Crop Germplasm Resources (Biotechnology Research Center), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong 250100, PR China
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Wang G, Wang X, Li D, Yang X, Hu T, Fu J. Comparative proteomics in tall fescue to reveal underlying mechanisms for improving Photosystem II thermotolerance during heat stress memory. BMC Genomics 2024; 25:683. [PMID: 38982385 PMCID: PMC11232258 DOI: 10.1186/s12864-024-10580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The escalating impacts of global warming intensify the detrimental effects of heat stress on crop growth and yield. Among the earliest and most vulnerable sites of damage is Photosystem II (PSII). Plants exposed to recurring high temperatures develop heat stress memory, a phenomenon that enables them to retain information from previous stress events to better cope with subsequent one. Understanding the components and regulatory networks associated with heat stress memory is crucial for the development of heat-resistant crops. RESULTS Physiological assays revealed that heat priming (HP) enabled tall fescue to possess higher Photosystem II photochemical activity when subjected to trigger stress. To investigate the underlying mechanisms of heat stress memory, we performed comparative proteomic analyses on tall fescue leaves at S0 (control), R4 (primed), and S5 (triggering), using an integrated approach of Tandem Mass Tag (TMT) labeling and Liquid Chromatography-Mass Spectrometry. A total of 3,851 proteins were detected, with quantitative information available for 3,835 proteins. Among these, we identified 1,423 differentially abundant proteins (DAPs), including 526 proteins that were classified as Heat Stress Memory Proteins (HSMPs). GO and KEGG enrichment analyses revealed that the HSMPs were primarily associated with the "autophagy" in R4 and with "PSII repair", "HSP binding", and "peptidase activity" in S5. Notably, we identified 7 chloroplast-localized HSMPs (HSP21, DJC77, EGY3, LHCA4, LQY1, PSBR and DEGP8, R4/S0 > 1.2, S5/S0 > 1.2), which were considered to be effectors linked to PSII heat stress memory, predominantly in cluster 4. Protein-protein interaction (PPI) analysis indicated that the ubiquitin-proteasome system, with key nodes at UPL3, RAD23b, and UCH3, might play a role in the selective retention of memory effectors in the R4 stage. Furthermore, we conducted RT-qPCR validation on 12 genes, and the results showed that in comparison to the S5 stage, the R4 stage exhibited reduced consistency between transcript and protein levels, providing additional evidence for post-transcriptional regulation in R4. CONCLUSIONS These findings provide valuable insights into the establishment of heat stress memory under recurring high-temperature episodes and offer a conceptual framework for breeding thermotolerant crops with improved PSII functionality.
Collapse
Affiliation(s)
- Guangyang Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Xiulei Wang
- Urban Management Bureau, Taiqian County, Puyang City, 457600, China
| | - Dongli Li
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Xuehe Yang
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou city, 730020, China.
| | - Jinmin Fu
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China.
| |
Collapse
|
8
|
Su T, Zhang XF, Wu GZ. Functional conservation of GENOMES UNCOUPLED1 in plastid-to-nucleus retrograde signaling in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112053. [PMID: 38417718 DOI: 10.1016/j.plantsci.2024.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/20/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Retrograde signaling between plastids and the nucleus is vital for chloroplast biogenesis and environmental responses. GENOMES UNCOUPLED1 (GUN1) was proposed to be a central integrator of multiple retrograde signaling pathways in the model plant Arabidopsis thaliana (Arabidopsis). However, the function of GUN1 orthologs in other plant species has not been well studied. Here, we found that many GUN1 orthologs from the Solanaceae family have a short N-terminus before the first pentatricopeptide repeat (PPR) motif which is predicted as intrinsically disordered regions (IDRs). Functional analyses of tomato (Solanum lycopersicum L.) GUN1 (SlGUN1), which does not contain N-terminal IDRs, show that it can complement the GUN phenotype of the Arabidopsis gun1 mutant (Atgun1). However, in contrast to the AtGUN1 protein, which does contain the N-terminal IDRs, the SlGUN1 protein is highly accumulated even after chloroplast biogenesis is completed, suggesting that the N-terminal IDRs may determine the stability of the GUN1 protein. Furthermore, we generated tomato Slgun1 genome-edited mutants via the CRISPR-Cas9 system. The Slgun1 mutants exhibited a typical GUN phenotype under lincomycin (Lin) or norflurazon (NF) treatment. Moreover, Slgun1 mutants are hypersensitive to low concentrations of Lin or NF. Taken together, our results suggest that, although lacking the N-terminal IDRs, SlGUN1 plays conserved roles in plastid retrograde signaling in tomato plants.
Collapse
Affiliation(s)
- Tong Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Xiao-Fan Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
9
|
Méndez-Gómez M, Sierra-Cacho D, Jiménez-Morales E, Guzmán P. Modulation of early gene expression responses to water deprivation stress by the E3 ubiquitin ligase ATL80: implications for retrograde signaling interplay. BMC PLANT BIOLOGY 2024; 24:180. [PMID: 38459432 PMCID: PMC10921668 DOI: 10.1186/s12870-024-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Primary response genes play a pivotal role in translating short-lived stress signals into sustained adaptive responses. In this study, we investigated the involvement of ATL80, an E3 ubiquitin ligase, in the dynamics of gene expression following water deprivation stress. We observed that ATL80 is rapidly activated within minutes of water deprivation stress perception, reaching peak expression around 60 min before gradually declining. ATL80, despite its post-translational regulation role, emerged as a key player in modulating early gene expression responses to water deprivation stress. RESULTS The impact of ATL80 on gene expression was assessed using a time-course microarray analysis (0, 15, 30, 60, and 120 min), revealing a burst of differentially expressed genes, many of which were associated with various stress responses. In addition, the diversity of early modulation of gene expression in response to water deprivation stress was significantly abolished in the atl80 mutant compared to wild-type plants. A subset of 73 genes that exhibited a similar expression pattern to ATL80 was identified. Among them, several are linked to stress responses, including ERF/AP2 and WRKY transcription factors, calcium signaling genes, MAP kinases, and signaling peptides. Promoter analysis predicts enrichment of binding sites for CAMTA1 and CAMTA5, which are known regulators of rapid stress responses. Furthermore, we have identified a group of differentially expressed ERF/AP2 transcription factors, proteins associated with folding and refolding, as well as pinpointed core module genes which are known to play roles in retrograde signaling pathways that cross-referenced with the early ATL80 transcriptome. CONCLUSIONS Based on these findings, we propose that ATL80 may target one or more components within the retrograde signaling pathways for degradation. In essence, ATL80 serves as a bridge connecting these signaling pathways and effectively functions as an alarm signal.
Collapse
Affiliation(s)
- Manuel Méndez-Gómez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, 36824, Gto, México
| | - Daniel Sierra-Cacho
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, 36824, Gto, México
| | - Estela Jiménez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, 36824, Gto, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, 36824, Gto, México.
| |
Collapse
|
10
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
11
|
Arnaiz A, Romero-Puertas MC, Santamaria ME, Rosa-Diaz I, Arbona V, Muñoz A, Grbic V, González-Melendi P, Mar Castellano M, Sandalio LM, Martinez M, Diaz I. The Arabidopsis thioredoxin TRXh5regulates the S-nitrosylation pattern of the TIRK receptor being both proteins essential in the modulation of defences to Tetranychus urticae. Redox Biol 2023; 67:102902. [PMID: 37797370 PMCID: PMC10622877 DOI: 10.1016/j.redox.2023.102902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The interaction between plants and phytophagous arthropods encompasses a complex network of molecules, signals, and pathways to overcome defences generated by each interacting organism. Although most of the elements and modulators involved in this interplay are still unidentified, plant redox homeostasis and signalling are essential for the establishment of defence responses. Here, focusing on the response of Arabidopsis thaliana to the spider mite Tetranychus urticae, we demonstrate the involvement in plant defence of the thioredoxin TRXh5, a small redox protein whose expression is induced by mite infestation. TRXh5 is localized in the cell membrane system and cytoplasm and is associated with alterations in the content of reactive oxygen and nitrogen species. Protein S-nitrosylation signal in TRXh5 over-expression lines is decreased and alteration in TRXh5 level produces changes in the JA/SA hormonal crosstalk of infested plants. Moreover, TRXh5 interacts and likely regulates the redox state of an uncharacterized receptor-like kinase, named THIOREDOXIN INTERACTING RECEPTOR KINASE (TIRK), also induced by mite herbivory. Feeding bioassays performed withTRXh5 over-expression plants result in lower leaf damage and reduced egg accumulation after T. urticae infestation than in wild-type (WT) plants. In contrast, mites cause a more severe injury in trxh5 mutant lines where a greater number of eggs accumulates. Likewise, analysis of TIRK-gain and -loss-of-function lines demonstrate the defence role of this receptor in Arabidopsis against T. urticae. Altogether, our findings demonstrate the interaction between TRXh5 and TIRK and highlight the importance of TRXh5 and TIRK in the establishment of effective Arabidopsis defences against spider mite herbivory.
Collapse
Affiliation(s)
- Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain.
| | - Maria C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain.
| | - Irene Rosa-Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain.
| | - Vicent Arbona
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, E-12071, Castelló de la Plana, Spain.
| | - Alfonso Muñoz
- Departamento de Sistemas y Recursos Naturales. Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, UPM, Madrid, Spain.
| | - Vojislava Grbic
- Department of Biology, University of Western Ontario, N6A 5BT, London, Ontario, Canada.
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain.
| | - Luisa Maria Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| |
Collapse
|
12
|
Llamas E, Koyuncu S, Lee HJ, Wehrmann M, Gutierrez-Garcia R, Dunken N, Charura N, Torres-Montilla S, Schlimgen E, Mandel AM, Theile EB, Grossbach J, Wagle P, Lackmann JW, Schermer B, Benzing T, Beyer A, Pulido P, Rodriguez-Concepcion M, Zuccaro A, Vilchez D. In planta expression of human polyQ-expanded huntingtin fragment reveals mechanisms to prevent disease-related protein aggregation. NATURE AGING 2023; 3:1345-1357. [PMID: 37783816 PMCID: PMC10645592 DOI: 10.1038/s43587-023-00502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
In humans, aggregation of polyglutamine repeat (polyQ) proteins causes disorders such as Huntington's disease. Although plants express hundreds of polyQ-containing proteins, no pathologies arising from polyQ aggregation have been reported. To investigate this phenomenon, we expressed an aggregation-prone fragment of human huntingtin (HTT) with an expanded polyQ stretch (Q69) in Arabidopsis thaliana plants. In contrast to animal models, we find that Arabidopsis sp. suppresses Q69 aggregation through chloroplast proteostasis. Inhibition of chloroplast proteostasis diminishes the capacity of plants to prevent cytosolic Q69 aggregation. Moreover, endogenous polyQ-containing proteins also aggregate on chloroplast dysfunction. We find that Q69 interacts with the chloroplast stromal processing peptidase (SPP). Synthetic Arabidopsis SPP prevents polyQ-expanded HTT aggregation in human cells. Likewise, ectopic SPP expression in Caenorhabditis elegans reduces neuronal Q67 aggregation and subsequent neurotoxicity. Our findings suggest that synthetic plant proteins, such as SPP, hold therapeutic potential for polyQ disorders and other age-related diseases involving protein aggregation.
Collapse
Affiliation(s)
- Ernesto Llamas
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Hyun Ju Lee
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Markus Wehrmann
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Ricardo Gutierrez-Garcia
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Nick Dunken
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Nyasha Charura
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | | | - Elena Schlimgen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Amrei M Mandel
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Erik Boelen Theile
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Jan Grossbach
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Prerana Wagle
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Andreas Beyer
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Alga Zuccaro
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Sáiz-Bonilla M, Martín-Merchán A, Pallás V, Navarro JA. A viral protein targets mitochondria and chloroplasts by subverting general import pathways and specific receptors. J Virol 2023; 97:e0112423. [PMID: 37792002 PMCID: PMC10617419 DOI: 10.1128/jvi.01124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Many plant proteins and some proteins from plant pathogens are dually targeted to chloroplasts and mitochondria, and are supposed to be transported along the general pathways for organellar protein import, but this issue has not been explored yet. Moreover, organellar translocon receptors exist as families of several members whose functional specialization in different cargos is supposed but not thoroughly studied. This article provides novel insights into such topics showing for the first time that an exogenous protein, the melon necrotic spot virus coat protein, exploits the common Toc/Tom import systems to enter both mitochondria and chloroplasts while identifying the involved specific receptors.
Collapse
Affiliation(s)
- María Sáiz-Bonilla
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Andrea Martín-Merchán
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Vicente Pallás
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Jose Antonio Navarro
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
14
|
Sajib SA, Kandel M, Prity SA, Oukacine C, Gakière B, Merendino L. Role of plastids and mitochondria in the early development of seedlings in dark growth conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1272822. [PMID: 37841629 PMCID: PMC10570830 DOI: 10.3389/fpls.2023.1272822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Establishment of the seedlings is a crucial stage of the plant life cycle. The success of this process is essential for the growth of the mature plant. In Nature, when seeds germinate under the soil, seedlings follow a dark-specific program called skotomorphogenesis, which is characterized by small, non-green cotyledons, long hypocotyl, and an apical hook-protecting meristematic cells. These developmental structures are required for the seedlings to emerge quickly and safely through the soil and gain autotrophy before the complete depletion of seed resources. Due to the lack of photosynthesis during this period, the seed nutrient stocks are the primary energy source for seedling development. The energy is provided by the bioenergetic organelles, mitochondria, and etioplast (plastid in the dark), to the cell in the form of ATP through mitochondrial respiration and etio-respiration processes, respectively. Recent studies suggest that the limitation of the plastidial or mitochondrial gene expression induces a drastic reprogramming of the seedling morphology in the dark. Here, we discuss the dark signaling mechanisms involved during a regular skotomorphogenesis and how the dysfunction of the bioenergetic organelles is perceived by the nucleus leading to developmental changes. We also describe the probable involvement of several plastid retrograde pathways and the interconnection between plastid and mitochondria during seedling development. Understanding the integration mechanisms of organellar signals in the developmental program of seedlings can be utilized in the future for better emergence of crops through the soil.
Collapse
Affiliation(s)
- Salek Ahmed Sajib
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Margot Kandel
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Sadia Akter Prity
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Cylia Oukacine
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Bertrand Gakière
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Livia Merendino
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| |
Collapse
|
15
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
16
|
Tadini L, Jeran N, Domingo G, Zambelli F, Masiero S, Calabritto A, Costantini E, Forlani S, Marsoni M, Briani F, Vannini C, Pesaresi P. Perturbation of protein homeostasis brings plastids at the crossroad between repair and dismantling. PLoS Genet 2023; 19:e1010344. [PMID: 37418499 PMCID: PMC10355426 DOI: 10.1371/journal.pgen.1010344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/09/2023] [Indexed: 07/09/2023] Open
Abstract
The chloroplast proteome is a dynamic mosaic of plastid- and nuclear-encoded proteins. Plastid protein homeostasis is maintained through the balance between de novo synthesis and proteolysis. Intracellular communication pathways, including the plastid-to-nucleus signalling and the protein homeostasis machinery, made of stromal chaperones and proteases, shape chloroplast proteome based on developmental and physiological needs. However, the maintenance of fully functional chloroplasts is costly and under specific stress conditions the degradation of damaged chloroplasts is essential to the maintenance of a healthy population of photosynthesising organelles while promoting nutrient redistribution to sink tissues. In this work, we have addressed this complex regulatory chloroplast-quality-control pathway by modulating the expression of two nuclear genes encoding plastid ribosomal proteins PRPS1 and PRPL4. By transcriptomics, proteomics and transmission electron microscopy analyses, we show that the increased expression of PRPS1 gene leads to chloroplast degradation and early flowering, as an escape strategy from stress. On the contrary, the overaccumulation of PRPL4 protein is kept under control by increasing the amount of plastid chaperones and components of the unfolded protein response (cpUPR) regulatory mechanism. This study advances our understanding of molecular mechanisms underlying chloroplast retrograde communication and provides new insight into cellular responses to impaired plastid protein homeostasis.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Guido Domingo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Anna Calabritto
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Elena Costantini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Sara Forlani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Milena Marsoni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
17
|
UPL5 modulates WHY2 protein distribution in a Kub-site dependent ubiquitination in response to [Ca2+]cyt-induced leaf senescence. iScience 2023; 26:106216. [PMID: 36994183 PMCID: PMC10040967 DOI: 10.1016/j.isci.2023.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/08/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
The translocation of proteins between various compartments of cells is the simplest and most direct way of an/retrograde communication. However, the mechanism of protein trafficking is far understood. In this study, we showed that the alteration of WHY2 protein abundance in various compartments of cells was dependent on a HECT-type ubiquitin E3 ligase UPL5 interacting with WHY2 in the cytoplasm, plastid, and nucleus, as well as mitochondrion to selectively ubiquitinate various Kub-sites (Kub 45 and Kub 227) of WHY2. Plastid genome stability can be maintained by the UPL5-WHY2 module, accompany by the alteration of photosystem activity and senescence-associated gene expression. In addition, the specificity of UPL5 ubiquitinating various Kub-sites of WHY2 was responded to cold or CaCl2 stress, in a dose [Ca2+]cyt-dependent manner. This demonstrates the integration of the UPL5 ubiquitination with the regulation of WHY2 distribution and retrograde communication between organelle and nuclear events of leaf senescence.
Collapse
|
18
|
Research progress on maintaining chloroplast homeostasis under stress conditions: a review. Acta Biochim Biophys Sin (Shanghai) 2023; 55:173-182. [PMID: 36840466 PMCID: PMC10157539 DOI: 10.3724/abbs.2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
On a global scale, drought, salinity, extreme temperature, and other abiotic stressors severely limit the quality and yield of crops. Therefore, it is crucial to clarify the adaptation strategies of plants to harsh environments. Chloroplasts are important environmental sensors in plant cells. For plants to thrive in different habitats, chloroplast homeostasis must be strictly regulated, which is necessary to maintain efficient plant photosynthesis and other metabolic reactions under stressful environments. To maintain normal chloroplast physiology, two important biological processes are needed: the import and degradation of chloroplast proteins. The orderly import of chloroplast proteins and the timely degradation of damaged chloroplast components play a key role in adapting plants to their environment. In this review, we briefly described the mechanism of chloroplast TOC-TIC protein transport. The importance and recent progress of chloroplast protein turnover, retrograde signaling, and chloroplast protein degradation under stress are summarized. Furthermore, the potential of targeted regulation of chloroplast homeostasis is emphasized to improve plant adaptation to environmental stresses.
Collapse
|
19
|
Li Y, Liu H, Ma T, Li J, Yuan J, Xu YC, Sun R, Zhang X, Jing Y, Guo YL, Lin R. Arabidopsis EXECUTER1 interacts with WRKY transcription factors to mediate plastid-to-nucleus singlet oxygen signaling. THE PLANT CELL 2023; 35:827-851. [PMID: 36423342 PMCID: PMC9940883 DOI: 10.1093/plcell/koac330] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Chloroplasts produce singlet oxygen (1O2), which causes changes in nuclear gene expression through plastid-to-nucleus retrograde signaling to increase plant fitness. However, the identity of this 1O2-triggered pathway remains unclear. Here, we identify mutations in GENOMES UNCOUPLED4 (GUN4) and GUN5 as suppressors of phytochrome-interacting factor1 (pif1) pif3 in regulating the photo-oxidative response in Arabidopsis thaliana. GUN4 and GUN5 specifically interact with EXECUTER1 (EX1) and EX2 in plastids, and this interaction is alleviated by treatment with Rose Bengal (RB) or white light. Impaired expression of GUN4, GUN5, EX1, or EX2 leads to insensitivity to excess light and overexpression of EX1 triggers photo-oxidative responses. Strikingly, upon light irradiation or RB treatment, EX1 transiently accumulates in the nucleus and the nuclear fraction of EX1 shows a similar molecular weight as the plastid-located protein. Point mutagenesis analysis indicated that nuclear localization of EX1 is required for its function. EX1 acts as a transcriptional co-activator and interacts with the transcription factors WRKY18 and WRKY40 to promote the expression of 1O2-responsive genes. This study suggests that EX1 may act in plastid-to-nucleus signaling and establishes a 1O2-triggered retrograde signaling pathway that allows plants adapt to changing light environments during chloroplast development.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanhong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jiarui Yuan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ran Sun
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ya-Long Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Zeng Y, Wang J, Huang S, Xie Y, Zhu T, Liu L, Li L. HSP90s are required for hypocotyl elongation during skotomorphogenesis and thermomorphogenesis via the COP1-ELF3-PIF4 pathway in Arabidopsis. THE NEW PHYTOLOGIST 2023. [PMID: 36707919 DOI: 10.1111/nph.18776] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Light and temperature are two key environmental signals that share several molecular components that, in turn, regulate plant growth. Darkness and high ambient temperatures promote skoto- and thermomorphogenesis, including stem elongation. Heat shock proteins 90 (HSP90s) facilitate the adaptation of organisms to various adverse environmental stimuli. Here, we showed that HSP90s are required for hypocotyl elongation during both skoto- and thermomorphogenesis. When HSP90s activities are impaired by the knockdown of HSP90s expression or the application of HSP90 inhibitors, the expression levels and protein abundance of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) markedly decreased. EARLY FLOWERING 3 (ELF3) deficiency was resistant to the inhibition of HSP90s activities. Furthermore, HSP90s interacted with and destabilized ELF3. In the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) mutant, the changes in endogenous PIF4 and ELF3 protein levels caused by the inhibition of HSP90s activities were abolished. HSP90s enhanced the interaction between COP1 and ELF3, reduced ELF3 functional effects on PIF4 and modulated hypocotyl elongation during skoto- and thermomorphogenesis. Our results indicated that HSP90s participate in light and temperature signalling via the COP1-ELF3-PIF4 module to regulate hypocotyl growth in changing environments.
Collapse
Affiliation(s)
- Yue Zeng
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiayu Wang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Sha Huang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu Xie
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Tongdan Zhu
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Leyi Liu
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
21
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
22
|
Zhu Y, Narsai R, He C, Wang Y, Berkowitz O, Whelan J, Liew LC. Coordinated regulation of the mitochondrial retrograde response by circadian clock regulators and ANAC017. PLANT COMMUNICATIONS 2023; 4:100501. [PMID: 36463409 PMCID: PMC9860193 DOI: 10.1016/j.xplc.2022.100501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Mitochondrial retrograde signaling (MRS) supports photosynthetic function under a variety of conditions. Induction of mitochondrial dysfunction with myxothiazol (a specific inhibitor of the mitochondrial bc1 complex) or antimycin A (an inhibitor of the mitochondrial bc1 complex and cyclic electron transport in the chloroplast under light conditions) in the light and dark revealed diurnal control of MRS. This was evidenced by (1) significantly enhanced binding of ANAC017 to promoters in the light compared with the dark in Arabidopsis plants treated with myxothiazol (but not antimycin A), (2) overlap in the experimentally determined binding sites for ANAC017 and circadian clock regulators in the promoters of ANAC013 and AOX1a, (3) a diurnal expression pattern for ANAC017 and transcription factors it regulates, (4) altered expression of ANAC017-regulated genes in circadian clock mutants with and without myxothiazol treatment, and (5) a decrease in the magnitude of LHY and CCA1 expression in an ANAC017-overexpressing line and protein-protein interaction between ANAC017 and PIF4. This study also shows a large difference in transcriptome responses to antimycin A and myxothiazol in the dark: these responses are ANAC017 independent, observed in shoots and roots, similar to biotic challenge and salicylic acid responses, and involve ERF and ZAT transcription factors. This suggests that antimycin A treatment stimulates a second MRS pathway that is mediated or converges with salicylic acid signaling and provides a merging point with chloroplast retrograde signaling.
Collapse
Affiliation(s)
- Yanqiao Zhu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
23
|
He C, Berkowitz O, Hu S, Zhao Y, Qian K, Shou H, Whelan J, Wang Y. Co-regulation of mitochondrial and chloroplast function: Molecular components and mechanisms. PLANT COMMUNICATIONS 2023; 4:100496. [PMID: 36435968 PMCID: PMC9860188 DOI: 10.1016/j.xplc.2022.100496] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
The metabolic interdependence, interactions, and coordination of functions between chloroplasts and mitochondria are established and intensively studied. However, less is known about the regulatory components that control these interactions and their responses to external stimuli. Here, we outline how chloroplastic and mitochondrial activities are coordinated via common components involved in signal transduction pathways, gene regulatory events, and post-transcriptional processes. The endoplasmic reticulum emerges as a point of convergence for both transcriptional and post-transcriptional pathways that coordinate chloroplast and mitochondrial functions. Although the identification of molecular components and mechanisms of chloroplast and mitochondrial signaling increasingly suggests common players, this raises the question of how these allow for distinct organelle-specific downstream pathways. Outstanding questions with respect to the regulation of post-transcriptional pathways and the cell and/or tissue specificity of organelle signaling are crucial for understanding how these pathways are integrated at a whole-plant level to optimize plant growth and its response to changing environmental conditions.
Collapse
Affiliation(s)
- Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shanshan Hu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yang Zhao
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kun Qian
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
24
|
Wang Y, Wang Y, Zhu X, Ren Y, Dong H, Duan E, Teng X, Zhao H, Chen R, Chen X, Lei J, Yang H, Tian Y, Chen L, Liu X, Liu S, Jiang L, Wang H, Wan J. Tetrapyrrole biosynthesis pathway regulates plastid-to-nucleus signaling by controlling plastid gene expression in plants. PLANT COMMUNICATIONS 2023; 4:100411. [PMID: 35836377 PMCID: PMC9860167 DOI: 10.1016/j.xplc.2022.100411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 05/26/2023]
Abstract
Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast developmental status and is essential for the photoautotrophic lifestyle of plants. Previous studies have established that tetrapyrrole biosynthesis (TPB) and plastid gene expression (PGE) play essential roles in plastid retrograde signaling during early chloroplast biogenesis; however, their functional relationship remains unknown. In this study, we generated a series of rice TPB-related gun (genome uncoupled) mutants and systematically analyzed their effects on nuclear and plastid gene expression under normal conditions or when subjected to treatments with norflurazon (NF; a noncompetitive inhibitor of carotenoid biosynthesis) and/or lincomycin (Lin; a specific inhibitor of plastid translation). We show that under NF treatment, expression of plastid-encoded polymerase (PEP)-transcribed genes is significantly reduced in the wild type but is derepressed in the TPB-related gun mutants. We further demonstrate that the derepressed expression of PEP-transcribed genes may be caused by increased expression of the PEP core subunit and nuclear-encoded sigma factors and by elevated copy numbers of plastid genome per haploid genome. In addition, we show that expression of photosynthesis-associated nuclear genes (PhANGs) and PEP-transcribed genes is correlated in the rice TPB-related gun mutants, with or without NF or Lin treatment. A similar correlation between PhANGs and PGE is also observed in the Arabidopsis gun4 and gun5 mutants. Moreover, we show that increased expression of PEP-transcribed plastid genes is necessary for the gun phenotype in NF-treated TPB-related gun mutants. Further, we provide evidence that these TPB-related GUN genes act upstream of GUN1 in the regulation of retrograde signaling. Taken together, our results suggest that the TPB-related GUN genes control retrograde plastid signaling by regulating the PGE-dependent retrograde signaling pathway.
Collapse
Affiliation(s)
- Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huanhuan Zhao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Rongbo Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaoli Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jie Lei
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Hang Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liangming Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China; National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China.
| |
Collapse
|
25
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
26
|
Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes. Cell 2022; 185:4788-4800.e13. [PMID: 36413996 DOI: 10.1016/j.cell.2022.10.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-encoded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercomplex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid β-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydrophilic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.
Collapse
|
27
|
Griffin JHC, Toledo-Ortiz G. Plant photoreceptors and their signalling components in chloroplastic anterograde and retrograde communication. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7126-7138. [PMID: 35640572 PMCID: PMC9675593 DOI: 10.1093/jxb/erac220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/18/2022] [Indexed: 05/27/2023]
Abstract
The red phytochrome and blue cryptochrome plant photoreceptors play essential roles in promoting genome-wide changes in nuclear and chloroplastic gene expression for photomorphogenesis, plastid development, and greening. While their importance in anterograde signalling has been long recognized, the molecular mechanisms involved remain under active investigation. More recently, the intertwining of the light signalling cascades with the retrograde signals for the optimization of chloroplast functions has been acknowledged. Advances in the field support the participation of phytochromes, cryptochromes, and key light-modulated transcription factors, including HY5 and the PIFs, in the regulation of chloroplastic biochemical pathways that produce retrograde signals, including the tetrapyrroles and the chloroplastic MEP-isoprenoids. Interestingly, in a feedback loop, the photoreceptors and their signalling components are targets themselves of these retrograde signals, aimed at optimizing photomorphogenesis to the status of the chloroplasts, with GUN proteins functioning at the convergence points. High light and shade are also conditions where the photoreceptors tune growth responses to chloroplast functions. Interestingly, photoreceptors and retrograde signals also converge in the modulation of dual-localized proteins (chloroplastic/nuclear) including WHIRLY and HEMERA/pTAC12, whose functions are required for the optimization of photosynthetic activities in changing environments and are proposed to act themselves as retrograde signals.
Collapse
|
28
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
29
|
Rochaix J. Chloroplast protein import machinery and quality control. FEBS J 2022; 289:6908-6918. [PMID: 35472255 PMCID: PMC9790281 DOI: 10.1111/febs.16464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
Most chloroplast proteins are nucleus-encoded, translated on cytoplasmic ribosomes as precursor proteins, and imported into chloroplasts through TOC and TIC, the translocons of the outer and inner chloroplast envelope membranes. While the composition of the TOC complex is well established, there is still some controversy about the importance of a recently identified TIC complex consisting of Tic20, Tic214, Tic100, and Tic56. TOC and TIC form a supercomplex with a protein channel at the junction of the outer and inner envelope membranes through which preproteins are pulled into the stroma by the ATP-powered Ycf2 complex consisting of several FtsH-like ATPases and/or by chloroplast Hsp proteins. Several components of the TOC/TIC system are moonlighting proteins with additional roles in chloroplast gene expression and metabolism. Chaperones and co-chaperones, associated with TOC and TIC on the cytoplasmic and stromal side of the chloroplast envelope, participate in the unfolding and folding of the precursor proteins and act together with the ubiquitin-proteasome system in protein quality control. Chloroplast protein import is also intimately linked with retrograde signaling, revealing altogether an unsuspected complexity in the regulation of this process.
Collapse
Affiliation(s)
- Jean‐David Rochaix
- Departments of Molecular Biology and Plant BiologyUniversity of GenevaSwitzerland
| |
Collapse
|
30
|
Ding F, Li F, Zhang B. A plastid-targeted heat shock cognate 70-kDa protein confers osmotic stress tolerance by enhancing ROS scavenging capability. FRONTIERS IN PLANT SCIENCE 2022; 13:1012145. [PMID: 36275553 PMCID: PMC9581120 DOI: 10.3389/fpls.2022.1012145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 06/12/2023]
Abstract
Osmotic stress severely affects plant growth and development, resulting in massive loss of crop quality and quantity worldwide. The 70-kDa heat shock proteins (HSP70s) are highly conserved molecular chaperones that play essential roles in cellular processes including abiotic stress responses. However, whether and how plastid-targeted heat shock cognate 70 kDa protein (cpHSC70-1) participates in plant osmotic stress response remain elusive. Here, we report that the expression of cpHSC70-1 is significantly induced upon osmotic stress treatment. Phenotypic analyses reveal that the plants with cpHSC70-1 deficiency are sensitive to osmotic stress and the plants overexpressing cpHSC70-1 exhibit enhanced tolerance to osmotic stress. Consistently, the expression of the stress-responsive genes is lower in cphsc70-1 mutant but higher in 35S:: cpHSC70-1 lines than that in wild-type plants when challenged with osmotic stress. Further, the cphsc70-1 plants have less APX and SOD activity, and thus more ROS accumulation than the wild type when treated with mannitol, but the opposite is observed in the overexpression lines. Overall, our data reveal that cpHSC70-1 is induced and functions positively in plant response to osmotic stress by promoting the expression of the stress-responsive genes and reducing ROS accumulation.
Collapse
Affiliation(s)
- Feng Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Fan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Binglei Zhang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
31
|
Honkanen S, Small I. The GENOMES UNCOUPLED1 protein has an ancient, highly conserved role but not in retrograde signalling. THE NEW PHYTOLOGIST 2022; 236:99-113. [PMID: 35708656 PMCID: PMC9545484 DOI: 10.1111/nph.18318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/07/2022] [Indexed: 06/01/2023]
Abstract
The pentatricopeptide repeat protein GENOMES UNCOUPLED1 (GUN1) is required for chloroplast-to-nucleus signalling when plastid translation becomes inhibited during chloroplast development in Arabidopsis thaliana, but its exact molecular function remains unknown. We analysed GUN1 sequences in land plants and streptophyte algae. We tested functional conservation by complementation of the Arabidopsis gun1 mutant with GUN1 genes from the streptophyte alga Coleochate orbicularis or the liverwort Marchantia polymorpha. We also analysed the transcriptomes of M. polymorpha gun1 knockout mutant lines during chloroplast development. GUN1 evolved within the streptophyte algal ancestors of land plants and is highly conserved among land plants but missing from the Rafflesiaceae that lack chloroplast genomes. GUN1 genes from C. orbicularis and M. polymorpha suppress the cold-sensitive phenotype of the Arabidopsis gun1 mutant and restore typical retrograde responses to treatments with inhibitors of plastid translation, even though M. polymorpha responds very differently to such treatments. Our findings suggest that GUN1 is an ancient protein that evolved within the streptophyte algal ancestors of land plants before the first plants colonized land more than 470 million years ago. Its primary role is likely to be in chloroplast gene expression and its role in chloroplast retrograde signalling probably evolved more recently.
Collapse
Affiliation(s)
- Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaCrawleyWA6009Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
32
|
Chloroplast envelope ATPase PGA1/AtFtsH12 is required for chloroplast protein accumulation and cytosol-chloroplast protein homeostasis in Arabidopsis. J Biol Chem 2022; 298:102489. [PMID: 36113581 PMCID: PMC9574505 DOI: 10.1016/j.jbc.2022.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
The establishment of photosynthetic protein complexes during chloroplast development requires the influx of a large number of chloroplast proteins that are encoded by the nuclear genome, which is critical for cytosol and chloroplast protein homeostasis and chloroplast development. However, the mechanisms regulating this process are still not well understood in higher plants. Here, we report the isolation and characterization of the pale green Arabidopsis pga1-1 mutant, which is defective in chloroplast development and chloroplast protein accumulation. Using genetic and biochemical evidence, we reveal that PGA1 encodes AtFtsH12, a chloroplast envelope-localized protein of the FtsH family proteins. We determined a G703R mutation in the GAD motif of the conserved ATPase domain renders the pga1-1 a viable hypomorphic allele of the essential gene AtFtsH12. In de-etiolation assays, we showed that the accumulation of photosynthetic proteins and the expression of photosynthetic genes were impaired in pga1-1. Using the FNRctp-GFP and pTAC2-GFP reporters, we demonstrated that AtFtsH12 was required for the accumulation of chloroplast proteins in vivo. Interestingly, we identified an increase in expression of the mutant AtFtsH12 gene in pga1-1, suggesting a feedback regulation. Moreover, we found that cytosolic and chloroplast proteostasis responses were triggered in pga1-1. Together, taking advantage of the novel pga1-1 mutant, we demonstrate the function of AtFtsH12 in chloroplast protein homeostasis and chloroplast development.
Collapse
|
33
|
Jan M, Liu Z, Rochaix JD, Sun X. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. FRONTIERS IN PLANT SCIENCE 2022; 13:980237. [PMID: 36119624 PMCID: PMC9478734 DOI: 10.3389/fpls.2022.980237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 06/02/2023]
Abstract
The chloroplast is a complex cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids, and phytohormones. Nuclear and chloroplast genetic activity are closely coordinated through signaling chains from the nucleus to chloroplast, referred to as anterograde signaling, and from chloroplast to the nucleus, named retrograde signaling. The chloroplast can act as an environmental sensor and communicates with other cell compartments during its biogenesis and in response to stress, notably with the nucleus through retrograde signaling to regulate nuclear gene expression in response to developmental cues and stresses that affect photosynthesis and growth. Although several components involved in the generation and transmission of plastid-derived retrograde signals and in the regulation of the responsive nuclear genes have been identified, the plastid retrograde signaling network is still poorly understood. Here, we review the current knowledge on multiple plastid retrograde signaling pathways, and on potential plastid signaling molecules. We also discuss the retrograde signaling-dependent regulation of nuclear gene expression within the frame of a multilayered network of transcription factors.
Collapse
Affiliation(s)
- Masood Jan
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
34
|
Jiang Y, Peng X, Zhang Q, Liu Y, Li A, Cheng B, Wu J. Regulation of Drought and Salt Tolerance by OsSKL2 and OsASR1 in Rice. RICE (NEW YORK, N.Y.) 2022; 15:46. [PMID: 36036369 PMCID: PMC9424430 DOI: 10.1186/s12284-022-00592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/22/2022] [Indexed: 05/26/2023]
Abstract
Abiotic stresses such as salinity and drought greatly impact the growth and production of crops worldwide. Here, a shikimate kinase-like 2 (SKL2) gene was cloned from rice and characterized for its regulatory function in salinity and drought tolerance. OsSKL2 was localized in the chloroplast, and its transcripts were significantly induced by drought and salinity stress as well as H2O2 and abscisic acid (ABA) treatment. Meanwhile, overexpression of OsSKL2 in rice increased tolerance to salinity, drought and oxidative stress by increasing antioxidant enzyme activity, and reducing levels of H2O2, malondialdehyde, and relative electrolyte leakage. In contrast, RNAi-induced suppression of OsSKL2 increased sensitivity to stress treatment. Interestingly, overexpression of OsSKL2 also increased sensitivity to exogenous ABA, with an increase in reactive oxygen species (ROS) accumulation. Moreover, OsSKL2 was found to physically interact with OsASR1, a well-known chaperone-like protein, which also exhibited positive roles in salt and drought tolerance. A reduction in ROS production was also observed in leaves of Nicotiana benthamiana showing transient co-expression of OsSKL2 with OsASR1. Taken together, these findings suggest that OsSKL2 together with OsASR1 act as important regulatory factors that confer salt and drought tolerance in rice via ROS scavenging.
Collapse
Affiliation(s)
- Yingli Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaojian Peng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yuqing Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Aiqi Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
35
|
Loudya N, Maffei DPF, Bédard J, Ali SM, Devlin PF, Jarvis RP, López-Juez E. Mutations in the chloroplast inner envelope protein TIC100 impair and repair chloroplast protein import and impact retrograde signaling. THE PLANT CELL 2022; 34:3028-3046. [PMID: 35640571 PMCID: PMC9338805 DOI: 10.1093/plcell/koac153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/19/2022] [Indexed: 05/16/2023]
Abstract
Chloroplast biogenesis requires synthesis of proteins in the nucleocytoplasm and the chloroplast itself. Nucleus-encoded chloroplast proteins are imported via multiprotein translocons in the organelle's envelope membranes. Controversy exists around whether a 1-MDa complex comprising TIC20, TIC100, and other proteins constitutes the inner membrane TIC translocon. The Arabidopsis thaliana cue8 virescent mutant is broadly defective in plastid development. We identify CUE8 as TIC100. The tic100cue8 mutant accumulates reduced levels of 1-MDa complex components and exhibits reduced import of two nucleus-encoded chloroplast proteins of different import profiles. A search for suppressors of tic100cue8 identified a second mutation within the same gene, tic100soh1, which rescues the visible, 1 MDa complex-subunit abundance, and chloroplast protein import phenotypes. tic100soh1 retains but rapidly exits virescence and rescues the synthetic lethality of tic100cue8 when retrograde signaling is impaired by a mutation in the GENOMES UNCOUPLED 1 gene. Alongside the strong virescence, changes in RNA editing and the presence of unimported precursor proteins show that a strong signaling response is triggered when TIC100 function is altered. Our results are consistent with a role for TIC100, and by extension the 1-MDa complex, in the chloroplast import of photosynthetic and nonphotosynthetic proteins, a process which initiates retrograde signaling.
Collapse
Affiliation(s)
- Naresh Loudya
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Douglas P F Maffei
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Jocelyn Bédard
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Sabri Mohd Ali
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Paul F Devlin
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Enrique López-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
36
|
The Single-Stranded DNA-Binding Gene Whirly ( Why1) with a Strong Pathogen-Induced Promoter from Vitis pseudoreticulata Enhances Resistance to Phytophthora capsici. Int J Mol Sci 2022; 23:ijms23148052. [PMID: 35887401 PMCID: PMC9315732 DOI: 10.3390/ijms23148052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
Vitis vinifera plants are disease-susceptible while Vitis pseudoreticulata plants are disease-resistant; however, the molecular mechanism remains unclear. In this study, the single-stranded DNA- and RNA-binding protein gene Whirly (VvWhy1 and VpWhy1) were cloned from V. vinifera "Cabernet Sauvignon" and V. pseudoreticulata "HD1". VvWhy1 and VpWhy1 promoter sequences (pVv and pVp) were also isolated; however, the identity of the promoter sequences was far lower than that between the Why1 coding sequences (CDSs). Both Why1 gene sequences had seven exons and six introns, and they had a C-terminal Whirly conserved domain and N-terminal chloroplast transit peptide, which was then verified to be chloroplast localization. Transcriptional expression showed that VpWhy1 was strongly induced by Plasmopara viticola, while VvWhy1 showed a low expression level. Further, the GUS activity indicated pVp had high activity involved in response to Phytophthora capsici infection. In addition, Nicotiana benthamiana transiently expressing pVp::VvWhy1 and pVp::VpWhy1 enhanced the P. capsici resistance. Moreover, Why1, PR1 and PR10 were upregulated in pVp transgenic N. benthamiana leaves. This research presented a novel insight into disease resistance mechanism that pVp promoted the transcription of Why1, which subsequently regulated the expression of PR1 and PR10, further enhancing the resistance to P. capsici.
Collapse
|
37
|
Sandoval-Ibáñez O, Rolo D, Ghandour R, Hertle AP, Armarego-Marriott T, Sampathkumar A, Zoschke R, Bock R. De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b 6f complex in Arabidopsis. Nat Commun 2022; 13:4045. [PMID: 35831297 PMCID: PMC9279372 DOI: 10.1038/s41467-022-31758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
The conversion of light energy to chemical energy by photosynthesis requires the concerted action of large protein complexes in the thylakoid membrane. Recent work has provided fundamental insights into the three-dimensional structure of these complexes, but how they are assembled from hundreds of parts remains poorly understood. Particularly little is known about the biogenesis of the cytochrome b6f complex (Cytb6f), the redox-coupling complex that interconnects the two photosystems. Here we report the identification of a factor that guides the assembly of Cytb6f in thylakoids of chloroplasts. The protein, DE-ETIOLATION-INDUCED PROTEIN 1 (DEIP1), resides in the thylakoid membrane and is essential for photoautotrophic growth. Knock-out mutants show a specific loss of Cytb6f, and are defective in complex assembly. We demonstrate that DEIP1 interacts with the two cytochrome subunits of the complex, PetA and PetB, and mediates the assembly of intermediates in Cytb6f biogenesis. The identification of DEIP1 provides an entry point into the study of the assembly pathway of a crucial complex in photosynthetic electron transfer. The Cytb6f complex is a multi-subunit enzyme that couples the two photosystems during the light reactions of photosynthesis. Here the authors show that the thylakoid-localized DEIP1 protein interacts with the PetA and PetB subunits, and is essential for Cytb6f complex assembly in Arabidopsis.
Collapse
Affiliation(s)
- Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alexander P Hertle
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Tegan Armarego-Marriott
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
38
|
Fortunato S, Lasorella C, Tadini L, Jeran N, Vita F, Pesaresi P, de Pinto MC. GUN1 involvement in the redox changes occurring during biogenic retrograde signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111265. [PMID: 35643615 DOI: 10.1016/j.plantsci.2022.111265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast biogenesis requires a tight communication between nucleus and plastids. By retrograde signals, plastids transmit information about their functional and developmental state to adjust nuclear gene expression, accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein integrating several developmental and stress-related signals, is one of the main players of retrograde signaling. Here, we focused on the interplay between GUN1 and redox regulation during biogenic retrograde signaling, by investigating redox parameters in Arabidopsis wild type and gun1 seedlings. Our data highlight that during biogenic retrograde signaling superoxide anion (O2-) and hydrogen peroxide (H2O2) play a different role in response to GUN1. Under physiological conditions, even in the absence of a visible phenotype, gun1 mutants show low activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX), with an increase in O2- accumulation and lipid peroxidation, suggesting that GUN1 indirectly protects chloroplasts from oxidative damage. In wild type seedlings, perturbation of chloroplast development with lincomycin causes H2O2 accumulation, in parallel with the decrease of ROS-removal metabolites and enzymes. These redox changes do not take place in gun1 mutants which, in contrast, enhance SOD, APX and catalase activities. Our results indicate that in response to lincomycin, GUN1 is necessary for the H2O2-dependent oxidation of cellular environment, which might contribute to the redox-dependent plastid-to nucleus communication.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Cecilia Lasorella
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | | |
Collapse
|
39
|
Hernández‐Verdeja T, Vuorijoki L, Jin X, Vergara A, Dubreuil C, Strand Å. GENOMES UNCOUPLED1 plays a key role during the de-etiolation process in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:188-203. [PMID: 35322876 PMCID: PMC9324965 DOI: 10.1111/nph.18115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 05/25/2023]
Abstract
One of the most dramatic challenges in the life of a plant occurs when the seedling emerges from the soil and exposure to light triggers expression of genes required for establishment of photosynthesis. This process needs to be tightly regulated, as premature accumulation of light-harvesting proteins and photoreactive Chl precursors causes oxidative damage when the seedling is first exposed to light. Photosynthesis genes are encoded by both nuclear and plastid genomes, and to establish the required level of control, plastid-to-nucleus (retrograde) signalling is necessary to ensure correct gene expression. We herein show that a negative GENOMES UNCOUPLED1 (GUN1)-mediated retrograde signal restricts chloroplast development in darkness and during early light response by regulating the transcription of several critical transcription factors linked to light response, photomorphogenesis, and chloroplast development, and consequently their downstream target genes in Arabidopsis. Thus, the plastids play an essential role during skotomorphogenesis and the early light response, and GUN1 acts as a safeguard during the critical step of seedling emergence from darkness.
Collapse
Affiliation(s)
- Tamara Hernández‐Verdeja
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
- Present address:
Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Linda Vuorijoki
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Xu Jin
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Alexander Vergara
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Carole Dubreuil
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Åsa Strand
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| |
Collapse
|
40
|
A proteostasis network safeguards the chloroplast proteome. Essays Biochem 2022; 66:219-228. [PMID: 35670042 PMCID: PMC9400067 DOI: 10.1042/ebc20210058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Several protein homeostasis (proteostasis) pathways safeguard the integrity of thousands of proteins that localize in plant chloroplasts, the indispensable organelles that perform photosynthesis, produce metabolites, and sense environmental stimuli. In this review, we discuss the latest efforts directed to define the molecular process by which proteins are imported and sorted into the chloroplast. Moreover, we describe the recently elucidated protein folding and degradation pathways that modulate the levels and activities of chloroplast proteins. We also discuss the links between the accumulation of misfolded proteins and the activation of signalling pathways that cope with folding stress within the organelle. Finally, we propose new research directions that would help to elucidate novel molecular mechanisms to maintain chloroplast proteostasis.
Collapse
|
41
|
Szajko K, Sołtys-Kalina D, Heidorn-Czarna M, Smyda-Dajmund P, Wasilewicz-Flis I, Jańska H, Marczewski W. Transcriptomic and proteomic data provide new insights into cold-treated potato tubers with T- and D-type cytoplasm. PLANTA 2022; 255:97. [PMID: 35380306 PMCID: PMC8983635 DOI: 10.1007/s00425-022-03879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Tuber-omics in potato with the T- and D-types of cytoplasm showed different sets of differentially expressed genes and proteins in response to cold storage. For the first time, we report differences in gene and protein expression in potato (Solanum tuberosum L.) tubers possessing the T- or D-type cytoplasm. Two F1 diploid reciprocal populations, referred to as T and D, were used. The pooling strategy was applied for detection of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in tubers consisting of extreme chip colour after cold storage. RNA and protein bulks were constructed from contrasting phenotypes. We recognized 48 and 15 DEGs for the T and D progenies, respectively. DEPs were identified in the amyloplast and mitochondrial fractions. In the T-type cytoplasm, only 2 amyloplast-associated and 5 mitochondria-associated DEPs were detected. Of 37 mitochondria-associated DEPs in the D-type cytoplasm, there were 36 downregulated DEPs in the dark chip colour bulks. These findings suggest that T- and D-type of cytoplasm might influence sugar accumulation in cold-stored potato tubers in different ways. We showed that the mt/nucDNA ratio was higher in D-possessing tubers after cold storage than in T progeny. For the D-type cytoplasm, the pt/nucDNA ratio was higher for tubers characterized by dark chip colour than for those with light chip colour. Our findings suggest that T- and D-type cytoplasm might influence sugar accumulation in cold-stored potato tubers in different ways.
Collapse
Affiliation(s)
- Katarzyna Szajko
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - Dorota Sołtys-Kalina
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | | | - Paulina Smyda-Dajmund
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Iwona Wasilewicz-Flis
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Hanna Jańska
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| |
Collapse
|
42
|
Veciana N, Martín G, Leivar P, Monte E. BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. THE NEW PHYTOLOGIST 2022; 234:93-106. [PMID: 35043407 PMCID: PMC9305768 DOI: 10.1111/nph.17975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.
Collapse
Affiliation(s)
- Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Guiomar Martín
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Pablo Leivar
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull08017BarcelonaSpain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)08028BarcelonaSpain
| |
Collapse
|
43
|
Li M, Lee KP, Liu T, Dogra V, Duan J, Li M, Xing W, Kim C. Antagonistic modules regulate photosynthesis-associated nuclear genes via GOLDEN2-LIKE transcription factors. PLANT PHYSIOLOGY 2022; 188:2308-2324. [PMID: 34951648 PMCID: PMC8968271 DOI: 10.1093/plphys/kiab600] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 05/19/2023]
Abstract
GOLDEN2-LIKE (GLK) transcription factors drive the expression of photosynthesis-associated nuclear genes (PhANGs) indispensable for chloroplast biogenesis. Salicylic acid (SA)-induced SIGMA FACTOR-BINDING PROTEIN 1 (SIB1), a transcription coregulator and positive regulator of cell death, interacts with GLK1 and GLK2 to reinforce the expression of PhANGs, leading to photoinhibition of photosystem II and singlet oxygen (1O2) burst in chloroplasts. 1O2 then contributes to SA-induced cell death via EXECUTER 1 (EX1; 1O2 sensor protein)-mediated retrograde signaling upon reaching a critical level. This earlier finding has initiated research on the potential role of GLK1/2 and EX1 in SA signaling. Consistent with this view, we reveal that LESION-SIMULATING DISEASE 1 (LSD1), a transcription coregulator and negative regulator of SA-primed cell death, interacts with GLK1/2 to repress their activities in Arabidopsis (Arabidopsis thaliana). Overexpression of LSD1 repressed GLK target genes, including PhANGs, whereas loss of LSD1 enhanced their expression. Remarkably, LSD1 overexpression inhibited chloroplast biogenesis, resembling the characteristic glk1glk2 double mutant phenotype. Subsequent chromatin immunoprecipitation coupled with expression analyses further revealed that LSD1 inhibits the DNA-binding activity of GLK1 toward its target promoters. SA-induced nuclear-targeted SIB1 proteins appeared to interrupt the LSD1-GLK interaction, and the subsequent SIB1-GLK interaction activated EX1-mediated 1O2 signaling, elucidating antagonistic modules SIB1 and LSD1 in the regulation of GLK activity. Taken together, we provide a working model that SIB1 and LSD1, mutually exclusive SA-signaling components, antagonistically regulate GLK1/2 to fine-tune the expression of PhANGs, thereby modulating 1O2 homeostasis and related stress responses.
Collapse
Affiliation(s)
| | | | - Tong Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Jianli Duan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mengshuang Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiman Xing
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | |
Collapse
|
44
|
Cackett L, Luginbuehl LH, Schreier TB, Lopez-Juez E, Hibberd JM. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. THE NEW PHYTOLOGIST 2022; 233:2000-2016. [PMID: 34729790 DOI: 10.1111/nph.17839] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/09/2021] [Indexed: 05/20/2023]
Abstract
Chloroplasts are best known for their role in photosynthesis, but they also allow nitrogen and sulphur assimilation, amino acid, fatty acid, nucleotide and hormone synthesis. How chloroplasts develop is therefore relevant to these diverse and fundamental biological processes, but also to attempts at their rational redesign. Light is strictly required for chloroplast formation in all angiosperms and directly regulates the expression of hundreds of chloroplast-related genes. Light also modulates the levels of several hormones including brassinosteriods, cytokinins, auxins and gibberellins, which themselves control chloroplast development particularly during early stages of plant development. Transcription factors such as GOLDENLIKE1&2 (GLK1&2), GATA NITRATE-INDUCIBLE CARBON METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1) act downstream of both light and phytohormone signalling to regulate chloroplast development. Thus, in green tissues transcription factors, light signalling and hormone signalling form a complex network regulating the transcription of chloroplast- and photosynthesis-related genes to control the development and number of chloroplasts per cell. We use this conceptual framework to identify points of regulation that could be harnessed to modulate chloroplast abundance and increase photosynthetic efficiency of crops, and to highlight future avenues to overcome gaps in current knowledge.
Collapse
Affiliation(s)
- Lee Cackett
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Leonie H Luginbuehl
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Tina B Schreier
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Enrique Lopez-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
45
|
Schwenk P, Hiltbrunner A. Phytochrome A Mediates the Disassembly of Processing Bodies in Far-Red Light. FRONTIERS IN PLANT SCIENCE 2022; 13:828529. [PMID: 35283917 PMCID: PMC8905148 DOI: 10.3389/fpls.2022.828529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/27/2023]
Abstract
Phytochromes are red- and far-red light receptors that control the growth and development of plants, enabling them to respond adequately to changing light conditions. It has been shown that halted mRNAs stored in RNA granules called processing bodies are released upon light perception and contribute to the adaptation to the light environment. However, the photophysiological background of this process is largely unknown. We found that light of different wavelengths can trigger the disassembly of processing bodies in a dose- and time-dependent manner. We show that phytochromes control this process in red- and far-red light and that cytoplasmic phytochrome A is sufficient and necessary for the far-red light-induced disassembly of processing bodies. This adds a novel, unexpected cytoplasmic function to the processes controlled by phytochrome A. Overall, our findings suggest a role of phytochromes in the control of translationally halted mRNAs that are stored in processing bodies. We expect our findings to facilitate understanding of how light and environmental cues control the assembly and disassembly of processing bodies, which could have broader implications for the regulation of non-membranous organelles in general.
Collapse
Affiliation(s)
- Philipp Schwenk
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Hiltbrunner
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Hirosawa Y, Tada A, Matsuura T, Mori IC, Ogura Y, Hayashi T, Uehara S, Ito-Inaba Y, Inaba T. Salicylic Acid Acts Antagonistically to Plastid Retrograde Signaling by Promoting the Accumulation of Photosynthesis-associated Proteins in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:1728-1744. [PMID: 34410430 DOI: 10.1093/pcp/pcab128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Plastids are involved in phytohormone metabolism as well as photosynthesis. However, the mechanism by which plastid retrograde signals and phytohormones cooperatively regulate plastid biogenesis remains elusive. Here, we investigated the effects of an inhibitor and a mutation that generate biogenic plastid signals on phytohormones and vice versa. Inhibition of plastid biogenesis by norflurazon (NF) treatment and the plastid protein import2 (ppi2) mutation caused a decrease in salicylic acid (SA) and jasmonic acid (JA). This effect can be attributed in part to the altered expression of genes involved in the biosynthesis and the metabolism of SA and JA. However, SA-dependent induction of the PATHOGENESIS-RELATED1 gene was virtually unaffected in NF-treated plants and the ppi2 mutant. Instead, the level of chlorophyll in these plants was partially restored by the exogenous application of SA. Consistent with this observation, the levels of some photosynthesis-associated proteins increased in the ppi2 and NF-treated plants in response to SA treatment. This regulation in true leaves seems to occur at the posttranscriptional level since SA treatment did not induce the expression of photosynthesis-associated genes. In salicylic acid induction deficient 2 and lesions simulating disease resistance 1 mutants, endogenous SA regulates the accumulation of photosynthesis-associated proteins through transcriptional and posttranscriptional mechanisms. These data indicate that SA acts antagonistically to the inhibition of plastid biogenesis by promoting the accumulation of photosynthesis-associated proteins in Arabidopsis, suggesting a possible link between SA and biogenic plastid signaling.
Collapse
Affiliation(s)
- Yoshihiro Hirosawa
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Akari Tada
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Susumu Uehara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
47
|
Luo S, Kim C. Current Understanding of Temperature Stress-Responsive Chloroplast FtsH Metalloproteases. Int J Mol Sci 2021; 22:ijms222212106. [PMID: 34829988 PMCID: PMC8622299 DOI: 10.3390/ijms222212106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Low and high temperatures are life-threatening stress factors, diminishing plant productivity. One of the earliest responses of plants to stress is a rapid burst of reactive oxygen species (ROS) in chloroplasts. Widespread efforts over the past decade shed new light on the chloroplast as an environmental sensor, translating the environmental fluctuation into varying physiological responses by utilizing distinct retrograde (chloroplast-to-nucleus) signals. Recent studies have unveiled that chloroplasts mediate a similar unfolded/misfolded/damaged protein response (cpUPR) as observed in the endoplasmic reticulum and mitochondria. Although observing cpUPR is not surprising since the chloroplast is a prime organelle producing harmful ROS, the intertwined relationship among ROS, protein damage, and chloroplast protein quality controls (cpPQCs) with retrograde signaling has recently been reported. This finding also gives rise to critical attention on chloroplast proteins involved in cpPQCs, ROS detoxifiers, transcription/translation, import of precursor proteins, and assembly/maturation, the deficiency of which compromises chloroplast protein homeostasis (proteostasis). Any perturbation in the protein may require readjustment of proteostasis by transmitting retrograde signal(s) to the nucleus, whose genome encodes most of the chloroplast proteins involved in proteostasis. This review focuses on recent findings on cpUPR and chloroplast-targeted FILAMENTOUS TEMPERATURE-SENSITIVE H proteases involved in cpPQC and retrograde signaling and their impacts on plant responses to temperature stress.
Collapse
Affiliation(s)
- Shengji Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
- Correspondence:
| |
Collapse
|
48
|
van Wijk KJ, Leppert T, Sun Q, Boguraev SS, Sun Z, Mendoza L, Deutsch EW. The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource. THE PLANT CELL 2021; 33:3421-3453. [PMID: 34411258 PMCID: PMC8566204 DOI: 10.1093/plcell/koab211] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
We developed a resource, the Arabidopsis PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/), to solve central questions about the Arabidopsis thaliana proteome, such as the significance of protein splice forms and post-translational modifications (PTMs), or simply to obtain reliable information about specific proteins. PeptideAtlas is based on published mass spectrometry (MS) data collected through ProteomeXchange and reanalyzed through a uniform processing and metadata annotation pipeline. All matched MS-derived peptide data are linked to spectral, technical, and biological metadata. Nearly 40 million out of ∼143 million MS/MS (tandem MS) spectra were matched to the reference genome Araport11, identifying ∼0.5 million unique peptides and 17,858 uniquely identified proteins (only isoform per gene) at the highest confidence level (false discovery rate 0.0004; 2 non-nested peptides ≥9 amino acid each), assigned canonical proteins, and 3,543 lower-confidence proteins. Physicochemical protein properties were evaluated for targeted identification of unobserved proteins. Additional proteins and isoforms currently not in Araport11 were identified that were generated from pseudogenes, alternative start, stops, and/or splice variants, and small Open Reading Frames; these features should be considered when updating the Arabidopsis genome. Phosphorylation can be inspected through a sophisticated PTM viewer. PeptideAtlas is integrated with community resources including TAIR, tracks in JBrowse, PPDB, and UniProtKB. Subsequent PeptideAtlas builds will incorporate millions more MS/MS data.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, USA
| | - Sascha S Boguraev
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| |
Collapse
|
49
|
Screening and Identification of Candidate GUN1-Interacting Proteins in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms222111364. [PMID: 34768794 PMCID: PMC8583188 DOI: 10.3390/ijms222111364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Chloroplasts are semi-autonomous organelles governed by the precise coordination between the genomes of their own and the nucleus for functioning correctly in response to developmental and environmental cues. Under stressed conditions, various plastid-to-nucleus retrograde signals are generated to regulate the expression of a large number of nuclear genes for acclimation. Among these retrograde signaling pathways, the chloroplast protein GENOMES UNCOUPLED 1 (GUN1) is the first component identified. However, in addition to integrating aberrant physiological signals when chloroplasts are challenged by stresses such as photooxidative damage or the inhibition of plastid gene expression, GUN1 was also found to regulate other developmental processes such as flowering. Several partner proteins have been found to interact with GUN1 and facilitate its different regulatory functions. In this study, we report 15 possible interacting proteins identified through yeast two-hybrid (Y2H) screening, among which 11 showed positive interactions by pair-wise Y2H assay. Through the bimolecular fluorescence complementation assay in Arabidopsis protoplasts, two candidate proteins with chloroplast localization, DJC31 and HCF145, were confirmed to interact with GUN1 in planta. Genes for these GUN1-interacting proteins showed different fluctuations in the WT and gun1 mutant under norflurazon and lincomycin treatments. Our results provide novel clues for a better understanding of molecular mechanisms underlying GUN1-mediated regulations.
Collapse
|
50
|
Jeran N, Rotasperti L, Frabetti G, Calabritto A, Pesaresi P, Tadini L. The PUB4 E3 Ubiquitin Ligase Is Responsible for the Variegated Phenotype Observed upon Alteration of Chloroplast Protein Homeostasis in Arabidopsis Cotyledons. Genes (Basel) 2021; 12:genes12091387. [PMID: 34573369 PMCID: PMC8464772 DOI: 10.3390/genes12091387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022] Open
Abstract
During a plant's life cycle, plastids undergo several modifications, from undifferentiated pro-plastids to either photosynthetically-active chloroplasts, ezioplasts, chromoplasts or storage organelles, such as amyloplasts, elaioplasts and proteinoplasts. Plastid proteome rearrangements and protein homeostasis, together with intracellular communication pathways, are key factors for correct plastid differentiation and functioning. When plastid development is affected, aberrant organelles are degraded and recycled in a process that involves plastid protein ubiquitination. In this study, we have analysed the Arabidopsis gun1-102 ftsh5-3 double mutant, lacking both the plastid-located protein GUN1 (Genomes Uncoupled 1), involved in plastid-to-nucleus communication, and the chloroplast-located FTSH5 (Filamentous temperature-sensitive H5), a metalloprotease with a role in photosystem repair and chloroplast biogenesis. gun1-102 ftsh5-3 seedlings show variegated cotyledons and true leaves that we attempted to suppress by introgressing second-site mutations in genes involved in: (i) plastid translation, (ii) plastid folding/import and (iii) cytosolic protein ubiquitination. Different phenotypic effects, ranging from seedling-lethality to partial or complete suppression of the variegated phenotype, were observed in the corresponding triple mutants. Our findings indicate that Plant U-Box 4 (PUB4) E3 ubiquitin ligase plays a major role in the target degradation of damaged chloroplasts and is the main contributor to the variegated phenotype observed in gun1-102 ftsh5-3 seedlings.
Collapse
|