1
|
Theeuwen TPJM, Wijfjes RY, Dorussen D, Lawson AW, Lind J, Jin K, Boekeloo J, Tijink D, Hall D, Hanhart C, Becker FFM, van Eeuwijk FA, Kramer DM, Wijnker E, Harbinson J, Koornneef M, Aarts MGM. Species-wide inventory of Arabidopsis thaliana organellar variation reveals ample phenotypic variation for photosynthetic performance. Proc Natl Acad Sci U S A 2024; 121:e2414024121. [PMID: 39602263 PMCID: PMC11626173 DOI: 10.1073/pnas.2414024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Efforts to improve photosynthetic performance are increasingly employing natural genetic variation. However, genetic variation in the organellar genomes (plasmotypes) is often disregarded due to the difficulty of studying the plasmotypes and the lack of evidence that this is a worthwhile investment. Here, we systematically phenotyped plasmotype diversity using Arabidopsis thaliana as a model species. A reanalysis of whole-genome resequencing data of 1,541 representative accessions shows that the genetic diversity among the mitochondrial genomes is eight times lower than among the chloroplast genomes. Plasmotype diversity of the accessions divides the species into two major phylogenetic clusters, within which highly divergent subclusters are distinguished. We combined plasmotypes from 60 A. thaliana accessions with the nuclear genomes (nucleotypes) of four A. thaliana accessions to create a panel of 232 cytonuclear genotypes (cybrids). The cybrid plants were grown in a range of different light and temperature conditions and phenotyped using high-throughput phenotyping platforms. Analysis of the phenotypes showed that several plasmotypes alone or in interaction with the nucleotypes have significant effects on photosynthesis and that the effects are highly dependent on the environment. Moreover, we introduce Plasmotype Association Studies (PAS) as a method to reveal plasmotypic effects. Within A. thaliana, several organellar variants can influence photosynthetic phenotypes, which emphasizes the valuable role this variation has on improving photosynthetic performance. The increasing feasibility of producing cybrids in various species calls for further research into how these phenotypes may support breeding goals in crop species.
Collapse
Affiliation(s)
- Tom P. J. M. Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Raúl Y. Wijfjes
- Bioinformatics Group, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Delfi Dorussen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Aaron W. Lawson
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jorrit Lind
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Kaining Jin
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Janhenk Boekeloo
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Dillian Tijink
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David Hall
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Corrie Hanhart
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Frank F. M. Becker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Fred A. van Eeuwijk
- Biometris, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David M. Kramer
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University & Research, Wageningen6708 WE, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| |
Collapse
|
2
|
Nakazato I, Arimura SI. Genome editing in angiosperm chloroplasts: targeted DNA double-strand break and base editing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:872-880. [PMID: 39276374 DOI: 10.1111/tpj.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Chloroplasts are organelles that are derived from a photosynthetic bacterium and have their own genome. Genome editing is a recently developing technology that allows for specific modifications of target sequences. The first successful application of genome editing in chloroplasts was reported in 2021, and since then, this research field has been expanding. Although the chloroplast genome of several dicot species can be stably modified by a conventional method, which involves inserting foreign DNAs into the chloroplast genome via homologous recombination, genome editing offers several advantages over this method. In this review, we introduce genome editing methods targeting the chloroplast genome and describe their advantages and limitations. So far, CRISPR/Cas systems are inapplicable for editing the chloroplast genome because guide RNAs, unlike proteins, cannot be efficiently delivered into chloroplasts. Therefore, protein-based enzymes are used to edit the chloroplast genome. These enzymes contain a chloroplast-transit peptide, the DNA-binding domain of transcription activator-like effector nuclease (TALEN), or a catalytic domain that induces DNA modifications. To date, genome editing methods can cause DNA double-strand break or introduce C:G-to-T:A and A:T-to-G:C base edits at or near the target sequence. These methods are expected to contribute to basic research on the chloroplast genome in many species and to be fundamental methods of plant breeding utilizing the chloroplast genome.
Collapse
Affiliation(s)
- Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo, 113-8657, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo, 113-8657, Japan
| |
Collapse
|
3
|
Xie Y, Wang M, Mo B, Liang C. Plant kinetochore complex: composition, function, and regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1467236. [PMID: 39464281 PMCID: PMC11503545 DOI: 10.3389/fpls.2024.1467236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.
Collapse
Affiliation(s)
- Yuqian Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingliang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Xia L, Wang H, Zhao X, Zhao Q, Yu X, Li J, Lou Q, Chen J, Cheng C. The CsPPR gene with RNA-editing function involved in leaf color asymmetry of the reciprocal hybrids derived from Cucumis sativus and C. hystrix. PLANTA 2024; 260:102. [PMID: 39302471 DOI: 10.1007/s00425-024-04513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION The leaf color asymmetry found in the reciprocal hybrids C. hystrix × C. sativus (HC) and C. sativus × C. hystrix (CH) could be influenced by the CsPPR gene (CsaV3_1G038250.1). Most angiosperm organelles are maternally inherited; thus, the reciprocal hybrids usually exhibit asymmetric phenotypes that are associated with the maternal parent. However, there are two sets of organelle genomes in the plant cytoplasm, and the mechanism of reciprocal differences are more complex and largely unknown, because the chloroplast genes are involved besides mitochondrial genes. Cucumis spp. contains the species, i.e., cucumber and melon, which chloroplasts and mitochondria are maternally inherited and paternally inherited, respectively, serving as good materials for the study of reciprocal differences. In this study, leaf color asymmetry was observed in the reciprocal hybrids (HC and CH) derived from C. sativus (2n = 14, CC) and C. hystrix (2n = 24, HH), where the leaves of HC were found to have reduced chlorophyll content, abnormal chloroplast structure and lower photosynthetic capacity. Transcriptomic analysis revealed that the chloroplast development-related genes were differentially expressed in leaf color asymmetry. Genetic analysis showed that leaf color asymmetry was caused by the maternal chloroplast genome. Comparative analysis of chloroplast genomes revealed that there was no mutation in the chloroplast genome during interspecific hybridization. Moreover, a PPR gene (CsaV3_1G038250.1) with RNA-editing function was found to be involved in the regulation of leaf color asymmetry. These findings provide new insights into the regulatory mechanisms of asymmetric phenotypes in plant reciprocal crosses.
Collapse
Affiliation(s)
- Lei Xia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaokun Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Maryenti T, Koshimizu S, Onda N, Ishii T, Yano K, Okamoto T. Wheat Cybrid Plants, OryzaWheat, Regenerated from Wheat-Rice Hybrid Zygotes via in Vitro Fertilization System Possess Wheat-Rice Hybrid Mitochondria. PLANT & CELL PHYSIOLOGY 2024; 65:1344-1357. [PMID: 39107984 PMCID: PMC11369819 DOI: 10.1093/pcp/pcae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 09/04/2024]
Abstract
Hybridization generates biodiversity, and wide hybridization plays a pivotal role in enhancing and broadening the useful attributes of crops. The hybridization barrier between wheat and rice, the two most important cereals, was recently overcome by in vitro production of allopolyploid wheat-rice hybrid zygotes, which can develop and grow into mature plants. In the study, genomic sequences and compositions of the possible hybrid plants were investigated through short- and long-read sequencing analyses and fluorescence in situ hybridization (FISH)-based visualization. The possible hybrid possessed whole wheat nuclear and cytoplasmic DNAs and rice mitochondrial (mt) DNA, along with variable retention rates of rice mtDNA ranging from 11% to 47%. The rice mtDNA retained in the wheat cybrid, termed Oryzawheat, can be transmitted across generations. In addition to mitochondrial hybridization, translocation of rice chromosome 1 into wheat chromosome 6A was detected in a F1 hybrid individual. OryzaWheat can provide a new horizon for utilizing inter-subfamily genetic resources among wheat and rice belonging to different subfamilies, Pooideae and Ehrhartoideae, respectively.
Collapse
Affiliation(s)
- Tety Maryenti
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Shizuka Koshimizu
- Bioinformation and DDBJ Center, National Institute of Genetics, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Nonoka Onda
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori 680-001, Japan
| | - Kentaro Yano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- WellGreen-i Co. Ltd., Kanagawa 215-0007, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
6
|
Altamura MM, Piacentini D, Della Rovere F, Fattorini L, Valletta A, Falasca G. Plastid dynamism integrates development and environment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108813. [PMID: 38861821 DOI: 10.1016/j.plaphy.2024.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
In land plants plastid type differentiation occurs concomitantly with cellular differentiation and the transition from one type to another is under developmental and environmental control. Plastid dynamism is based on a bilateral communication between plastids and nucleus through anterograde and retrograde signaling. Signaling occurs through the interaction with specific phytohormones (abscisic acid, strigolactones, jasmonates, gibberellins, brassinosteroids, ethylene, salicylic acid, cytokinin and auxin). The review is focused on the modulation of plastid capabilities at both transcriptional and post-translational levels at the crossroad between development and stress, with a particular attention to the chloroplast, because the most studied plastid type. The role of plastid-encoded and nuclear-encoded proteins for plastid development and stress responses, and the changes of plastid fate through the activity of stromules and plastoglobules, are discussed. Examples of plastid dynamism in response to soil stress agents (salinity, lead, cadmium, arsenic, and chromium) are described. Albinism and root greening are described based on the modulation activities of auxin and cytokinin. The physiological and functional responses of the sensory epidermal and vascular plastids to abiotic and biotic stresses along with their specific roles in stress sensing are described together with their potential modulation of retrograde signaling pathways. Future research perspectives include an in-depth study of sensory plastids to explore their potential for establishing a transgenerational memory to stress. Suggestions about anterograde and retrograde pathways acting at interspecific level and on the lipids of plastoglobules as a novel class of plastid morphogenic agents are provided.
Collapse
Affiliation(s)
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | | | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | - Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | | |
Collapse
|
7
|
June V, Song X, Chen ZJ. Imprinting but not cytonuclear interactions determines seed size heterosis in Arabidopsis hybrids. PLANT PHYSIOLOGY 2024; 195:1214-1228. [PMID: 38319651 PMCID: PMC11142339 DOI: 10.1093/plphys/kiae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
The parent-of-origin effect on seeds can result from imprinting (unequal expression of paternal and maternal alleles) or combinational effects between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding factors, we produced cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in Arabidopsis (Arabidopsis thaliana) ecotypes Col-0 and C24. These CNS lines differed only in the nuclear genome (imprinting) or cytoplasm. The CNS reciprocal hybrids with the same cytoplasm displayed ∼20% seed size difference, whereas the seed size was similar between the reciprocal hybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection identified 104 maternally expressed genes (MEGs) and 90 paternally expressed genes (PEGs). These imprinted genes were involved in pectin catabolism and cell wall modification in the endosperm. Homeodomain Glabrous9 (HDG9), an epiallele and one of 11 cross-specific imprinted genes, affected seed size. In the embryo, there were a handful of imprinted genes in the CNS hybrids but only 1 was expressed at higher levels than in the endosperm. AT4G13495 was found to encode a long-noncoding RNA (lncRNA), but no obvious seed phenotype was observed in lncRNA knockout lines. Nuclear RNA Polymerase D1 (NRPD1), encoding the largest subunit of RNA Pol IV, was involved in the biogenesis of small interfering RNAs. Seed size and embryos were larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross, supporting a role of the maternal NRPD1 allele in seed development. Although limited ecotypes were tested, these results suggest that imprinting and the maternal NRPD1-mediated small RNA pathway play roles in seed size heterosis in plant hybrids.
Collapse
Affiliation(s)
- Viviana June
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaoya Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Bortiri E, Selby R, Egger R, Tolhurst L, Dong S, Beam K, Meier K, Fabish J, Delaney D, Dunn M, Mcnamara D, Setliff K, Castro Miranda Lunny R, Gergen S, Dawe RK, Kelliher T. Cyto-swapping in maize by haploid induction with a cenh3 mutant. NATURE PLANTS 2024; 10:567-571. [PMID: 38499777 DOI: 10.1038/s41477-024-01630-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024]
Abstract
Maize mutants of the centromeric histone H3 (CENP-A/CENH3) gene can form haploids that inherit only chromosomes of the pollinating parent but the cytoplasm from the female parent. We developed CENH3 haploid inducers carrying a dominant anthocyanin colour marker for efficient haploid identification and harbouring cytoplasmic male sterile cytoplasm, a type of cytoplasm that results in male sterility useful for efficient hybrid seed production. The resulting cytoplasmic male sterility cyto-swapping method provides a faster and cheaper way to convert commercial lines to cytoplasmic male sterile compared to conventional trait introgression.
Collapse
Affiliation(s)
| | - Rebecca Selby
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | - Rachel Egger
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | | | - Shujie Dong
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | - Kayla Beam
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | - Kerry Meier
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | - Jon Fabish
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | | | - Mary Dunn
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | - Dawn Mcnamara
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | | | | | | | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Tim Kelliher
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Han F, Zhang X, Liu Y, Liu Y, Zhao H, Li Z. One-step creation of CMS lines using a BoCENH3-based haploid induction system in Brassica crop. NATURE PLANTS 2024; 10:581-586. [PMID: 38499776 PMCID: PMC11035129 DOI: 10.1038/s41477-024-01643-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Heterosis utilization in a large proportion of crops depends on the use of cytoplasmic male sterility (CMS) tools, requiring the development of homozygous fertile lines and CMS lines1. Although doubled haploid (DH) technology has been developed for several crops to rapidly generate fertile lines2,3, CMS lines are generally created by multiple rounds of backcrossing, which is time consuming and expensive4. Here we describe a method for generating both homozygous fertile and CMS lines through in vivo paternal haploid induction (HI). We generated in-frame deletion and restored frameshift mutants of BoCENH3 in Brassica oleracea using the CRISPR/Cas9 system. The mutants induced paternal haploids by outcrossing. We subsequently generated HI lines with CMS cytoplasm, which enabled the generation of homozygous CMS lines in one step. The BoCENH3-based HI system provides a new DH technology to accelerate breeding in Brassica and other crops.
Collapse
Affiliation(s)
- Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoli Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yuxiang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
10
|
Maruthachalam R. Haploids fast-track hybrid plant breeding. NATURE PLANTS 2024; 10:530-532. [PMID: 38499775 DOI: 10.1038/s41477-024-01656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, India.
| |
Collapse
|
11
|
Jurado-Ruiz F, Nguyen TP, Peller J, Aranzana MJ, Polder G, Aarts MGM. LeTra: a leaf tracking workflow based on convolutional neural networks and intersection over union. PLANT METHODS 2024; 20:11. [PMID: 38233879 PMCID: PMC10795293 DOI: 10.1186/s13007-024-01138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND The study of plant photosynthesis is essential for productivity and yield. Thanks to the development of high-throughput phenotyping (HTP) facilities, based on chlorophyll fluorescence imaging, photosynthetic traits can be measured in a reliable, reproducible and efficient manner. In most state-of-the-art HTP platforms, these traits are automatedly analyzed at individual plant level, but information at leaf level is often restricted by the use of manual annotation. Automated leaf tracking over time is therefore highly desired. Methods for tracking individual leaves are still uncommon, convoluted, or require large datasets. Hence, applications and libraries with different techniques are required. New phenotyping platforms are initiated now more frequently than ever; however, the application of advanced computer vision techniques, such as convolutional neural networks, is still growing at a slow pace. Here, we provide a method for leaf segmentation and tracking through the fine-tuning of Mask R-CNN and intersection over union as a solution for leaf tracking on top-down images of plants. We also provide datasets and code for training and testing on both detection and tracking of individual leaves, aiming to stimulate the community to expand the current methodologies on this topic. RESULTS We tested the results for detection and segmentation on 523 Arabidopsis thaliana leaves at three different stages of development from which we obtained a mean F-score of 0.956 on detection and 0.844 on segmentation overlap through the intersection over union (IoU). On the tracking side, we tested nine different plants with 191 leaves. A total of 161 leaves were tracked without issues, accounting to a total of 84.29% correct tracking, and a Higher Order Tracking Accuracy (HOTA) of 0.846. In our case study, leaf age and leaf order influenced photosynthetic capacity and photosynthetic response to light treatments. Leaf-dependent photosynthesis varies according to the genetic background. CONCLUSION The method provided is robust for leaf tracking on top-down images. Although one of the strong components of the method is the low requirement in training data to achieve a good base result (based on fine-tuning), most of the tracking issues found could be solved by expanding the training dataset for the Mask R-CNN model.
Collapse
Affiliation(s)
- Federico Jurado-Ruiz
- Center for Research in Agricultural Genomics (CRAG), Cerdanyola, 08193, Barcelona, Spain
| | - Thu-Phuong Nguyen
- Laboratory of Genetics, Wageningen University and Research (WUR), Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Joseph Peller
- Greenhouse Horticulture, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - María José Aranzana
- Center for Research in Agricultural Genomics (CRAG), Cerdanyola, 08193, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Gerrit Polder
- Greenhouse Horticulture, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research (WUR), Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Tiwari LD, Bdolach E, Prusty MR, Bodenheimer S, Be'ery A, Faigenboim-Doron A, Yamamoto E, Panzarová K, Kashkush K, Shental N, Fridman E. Cytonuclear interactions modulate the plasticity of photosynthetic rhythmicity and growth in wild barley. PHYSIOLOGIA PLANTARUM 2024; 176:e14192. [PMID: 38351880 DOI: 10.1111/ppl.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
In plants, the contribution of the plasmotype (mitochondria and chloroplast) in controlling the circadian clock plasticity and possible consequences on cytonuclear genetic makeup have yet to be fully elucidated. A genome-wide association study in the wild barley (Hordeum vulgare ssp. spontaneum) B1K collection identified overlap with our previously mapped DRIVERS OF CLOCKS (DOCs) loci in wild-cultivated interspecific population. Moreover, we identified non-random segregation and epistatic interactions between nuclear DOCs loci and the chloroplastic RpoC1 gene, indicating an adaptive value for specific cytonuclear gene combinations. Furthermore, we show that DOC1.1, which harbours the candidate SIGMA FACTOR-B (SIG-B) gene, is linked with the differential expression of SIG-B and CCA1 genes and contributes to the circadian gating response to heat. High-resolution temporal growth and photosynthesis measurements of B1K also link the DOCs loci to differential growth, Chl content and quantum yield. To validate the involvement of the Plastid encoded polymerase (PEP) complex, we over-expressed the two barley chloroplastic RpoC1 alleles in Arabidopsis and identified significant differential plasticity under elevated temperatures. Finally, enhanced clock plasticity of de novo ENU (N-Ethyl-N-nitrosourea) -induced barley rpoB1 mutant further implicates the PEP complex as a key player in regulating the circadian clock output. Overall, this study highlights the contribution of specific cytonuclear interaction between rpoC1 (PEP gene) and SIG-B with distinct circadian timing regulation under heat, and their pleiotropic effects on growth implicate an adaptive value.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Eyal Bdolach
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Manas Ranjan Prusty
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Schewach Bodenheimer
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avital Be'ery
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Adi Faigenboim-Doron
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Eiji Yamamoto
- Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Noam Shental
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana, Israel
| | - Eyal Fridman
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| |
Collapse
|
13
|
Lawson T, Vialet-Chabrand S. Imaging Spatial and Temporal Variation in Photosynthesis Using Chlorophyll Fluorescence. Methods Mol Biol 2024; 2790:293-316. [PMID: 38649577 DOI: 10.1007/978-1-0716-3790-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chlorophyll fluorescence imaging provides a noninvasive rapid screen to assess the physiological status of a number of leaves or plants simultaneously. Although there are no standard protocols for chlorophyll fluorescence imaging, here we provide an example of routines for some of the typical measurements.
Collapse
Affiliation(s)
- Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK.
| | - Silvere Vialet-Chabrand
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
14
|
Tiwari LD, Kurtz-Sohn A, Bdolach E, Fridman E. Crops under past diversification and ongoing climate change: more than just selection of nuclear genes for flowering. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5431-5440. [PMID: 37480516 DOI: 10.1093/jxb/erad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/21/2023] [Indexed: 07/24/2023]
Abstract
Diversification and breeding following domestication and under current climate change across the globe are the two most significant evolutionary events experienced by major crops. Diversification of crops from their wild ancestors has favored dramatic changes in the sensitivity of the plants to the environment, particularly significantly in transducing light inputs to the circadian clock, which has allowed the growth of major crops in the relatively short growing season experienced in the Northern Hemisphere. Historically, mutants and the mapping of quantitative trait loci (QTL) have facilitated the identification and the cloning of genes that underlie major changes of the clock and the regulation of flowering. Recent studies have suggested that the thermal plasticity of the circadian clock output, and not just the core genes that follow temperature compensation, has also been under selection during diversification and breeding. Wild alleles that accelerate output rhythmicity could be beneficial for crop resilience. Furthermore, wild alleles with beneficial and flowering-independent effects under stress indicate their possible role in maintaining a balanced source-sink relationship, thereby allowing productivity under climatic change. Because the chloroplast genome also regulates the plasticity of the clock output, mapping populations including cytonuclear interactions should be utilized within an integrated field and clock phenomics framework. In this review, we highlight the need to integrate physiological and developmental approaches (physio-devo) to gain a better understanding when re-domesticating wild gene alleles into modern cultivars to increase their robustness under abiotic heat and drought stresses.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Ayelet Kurtz-Sohn
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Bdolach
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Eyal Fridman
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| |
Collapse
|
15
|
June V, Song X, Jeffrey Chen Z. Imprinting but not cytonuclear interactions affects parent-of-origin effect on seed size in Arabidopsis hybrids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557997. [PMID: 37745544 PMCID: PMC10516054 DOI: 10.1101/2023.09.15.557997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The parent-of-origin effect on seed size can result from imprinting or a combinational effect between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding effects, we generated cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in the Arabidopsis thaliana ecotypes Col-0 and C24. These CNS lines differ only in the nuclear genome (imprinting) or in the cytoplasm. The CNS reciprocal hybrids with the same cytoplasm display a ~20% seed size difference as observed in the conventional hybrids. However, seed size is similar between the reciprocal cybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection have identified 104 maternally expressed genes (MEGs) and 90 paternally-expressed genes (PEGs). These imprinted genes are involved in pectin catabolism and cell wall modification in the endosperm. HDG9, an epiallele and one of 11 cross-specific imprinted genes, controls seed size. In the embryo, a handful of imprinted genes is found in the CNS hybrids but only one is expressed higher in the embryo than endosperm. AT4G13495 encodes a long-noncoding RNA (lncRNA), but no obvious seed phenotype is observed in the lncRNA knockout lines. NRPD1, encoding the largest subunit of RNA Pol IV, is involved in the biogenesis of small interfering RNAs. Seed size and embryo is larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross. In spite of limited ecotypes tested, these results suggest potential roles of imprinting and NRPD1-mediated small RNA pathway in seed size variation in hybrids.
Collapse
Affiliation(s)
- Viviana June
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Xiaoya Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Z. Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
16
|
Le QTN, Sugi N, Yamaguchi M, Hirayama T, Kobayashi M, Suzuki Y, Kusano M, Shiba H. Morphological and metabolomics profiling of intraspecific Arabidopsis hybrids in relation to biomass heterosis. Sci Rep 2023; 13:9529. [PMID: 37308530 DOI: 10.1038/s41598-023-36618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
Heterosis contributes greatly to the worldwide agricultural yield. However, the molecular mechanism underlying heterosis remains unclear. This study took advantage of Arabidopsis intraspecific hybrids to identify heterosis-related metabolites. Forty-six intraspecific hybrids were used to examine parental effects on seed area and germination time. The degree of heterosis was evaluated based on biomass: combinations showing high heterosis of F1 hybrids exhibited a biomass increase from 6.1 to 44% over the better parent value (BPV), whereas that of the low- and no-heterosis hybrids ranged from - 19.8 to 9.8% over the BPV. Metabolomics analyses of F1 hybrids with high heterosis and those with low one suggested that changes in TCA cycle intermediates are key factors that control growth. Notably, higher fumarate/malate ratios were observed in the high heterosis F1 hybrids, suggesting they provide metabolic support associated with the increased biomass. These hybrids may produce more energy-intensive biomass by speeding up the efficiency of TCA fluxes. However, the expression levels of TCA-process-related genes in F1 hybrids were not associated with the intensity of heterosis, suggesting that the post-transcriptional or post-translational regulation of these genes may affect the productivity of the intermediates in the TCA cycle.
Collapse
Affiliation(s)
- Quynh Thi Ngoc Le
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan
- Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Viet Nam
| | - Naoya Sugi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Masaaki Yamaguchi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan
| | - Touko Hirayama
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Japan
| | - Miyako Kusano
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Hiroshi Shiba
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan.
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Ten-Nodai 1-1-1, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
17
|
Makarenko MS, Azarin KV, Gavrilova VA. Mitogenomic Research of Silverleaf Sunflower ( Helianthus argophyllus) and Its Interspecific Hybrids. Curr Issues Mol Biol 2023; 45:4841-4849. [PMID: 37367057 DOI: 10.3390/cimb45060308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Interspecific hybridization is widespread for sunflowers, both in wild populations and commercial breeding. One of the most common species that can efficiently cross with Helianthus annuus is the Silverleaf sunflower-Helianthus argophyllus. The current study carried out structural and functional organization analyses of mitochondrial DNA in H. argophyllus and the interspecific hybrid, H. annuus (VIR114A line) × H. argophyllus. The complete mitogenome of H. argophyllus counts 300,843 bp, has a similar organization to the mitogenome of cultivated sunflower, and holds SNPs typical for wild sunflowers. RNA editing analysis predicted 484 sites in H. argophyllus mitochondrial CDS. The mitochondrial genome of the H. annuus × H. argophyllus hybrid is identical to the maternal line (VIR114A). We expected that significant rearrangements in the mitochondrial DNA of the hybrid would occur, due to the frequent recombination. However, the hybrid mitogenome lacks rearrangements, presumably due to the preservation of nuclear-cytoplasmic interaction paths.
Collapse
Affiliation(s)
- Maksim S Makarenko
- The Laboratory of Plant Genomics, The Institute for Information Transmission Problems, 127051 Moscow, Russia
| | - Kirill V Azarin
- The Laboratory of Molecular Genetics, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Vera A Gavrilova
- Oil and Fiber Crops Genetic Resources Department, The N.I. Vavilov All Russian Institute of Plant Genetic Resources, 190031 Saint Petersburg, Russia
| |
Collapse
|
18
|
Wang Z, Chen M, Yang H, Hu Z, Yu Y, Xu H, Yan S, Yi K, Li J. A simple and highly efficient strategy to induce both paternal and maternal haploids through temperature manipulation. NATURE PLANTS 2023; 9:699-705. [PMID: 37012429 DOI: 10.1038/s41477-023-01389-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/02/2023] [Indexed: 05/23/2023]
Abstract
Haploid production by outcrossing with inducers is one of the key technologies to revolutionize breeding. A promising approach for developing haploid inducers is by manipulating centromere-specific histone H3 (CENH3/CENPA)1. GFP-tailswap, a CENH3-based inducer, induces paternal haploids at around 30% and maternal haploids at around 5% (ref. 2). However, male sterility of GFP-tailswap makes high-demand maternal haploid induction more challenging. Our study describes a simple and highly effective method for improving both directions of haploid production. Lower temperatures dramatically enhance pollen vigour but reduce haploid induction efficiency, while higher temperatures act oppositely. Importantly, the effects of temperatures on pollen vigour and on haploid induction efficiency are independent. These features enable us to easily induce maternal haploids at around 24.8% by using pollen of inducers grown at lower temperatures to pollinate target plants, followed by switching to high temperatures for haploid induction. Moreover, paternal haploid induction can be simplified and enhanced by growing the inducer at higher temperatures pre- and post-pollination. Our findings provide new clues for developing and using CENH3-based haploid inducers in crops.
Collapse
Affiliation(s)
- Ze Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Min Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Zhengdao Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Youfeng Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Hao Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Shunping Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Li
- Sanya Nanfan Research Institute of Hainan University, Sanya, China.
- College of Tropical Crops, Hainan University, Haikou, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
19
|
Improving
C
3
photosynthesis by exploiting natural genetic variation:
Hirschfeldia incana
as a model species. Food Energy Secur 2022. [DOI: 10.1002/fes3.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
Theeuwen TPJM, Logie LL, Harbinson J, Aarts MGM. Genetics as a key to improving crop photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3122-3137. [PMID: 35235648 PMCID: PMC9126732 DOI: 10.1093/jxb/erac076] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 05/02/2023]
Abstract
Since the basic biochemical mechanisms of photosynthesis are remarkably conserved among plant species, genetic modification approaches have so far been the main route to improve the photosynthetic performance of crops. Yet, phenotypic variation observed in wild species and between varieties of crop species implies there is standing natural genetic variation for photosynthesis, offering a largely unexplored resource to use for breeding crops with improved photosynthesis and higher yields. The reason this has not yet been explored is that the variation probably involves thousands of genes, each contributing only a little to photosynthesis, making them hard to identify without proper phenotyping and genetic tools. This is changing, though, and increasingly studies report on quantitative trait loci for photosynthetic phenotypes. So far, hardly any of these quantitative trait loci have been used in marker assisted breeding or genomic selection approaches to improve crop photosynthesis and yield, and hardly ever have the underlying causal genes been identified. We propose to take the genetics of photosynthesis to a higher level, and identify the genes and alleles nature has used for millions of years to tune photosynthesis to be in line with local environmental conditions. We will need to determine the physiological function of the genes and alleles, and design novel strategies to use this knowledge to improve crop photosynthesis through conventional plant breeding, based on readily available crop plant germplasm. In this work, we present and discuss the genetic methods needed to reveal natural genetic variation, and elaborate on how to apply this to improve crop photosynthesis.
Collapse
Affiliation(s)
- Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
- Correspondence:
| | - Louise L Logie
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeremy Harbinson
- Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
21
|
Sharwood RE, Quick WP, Sargent D, Estavillo GM, Silva-Perez V, Furbank RT. Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3085-3108. [PMID: 35274686 DOI: 10.1093/jxb/erac081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Improvement of photosynthetic traits in crops to increase yield potential and crop resilience has recently become a major breeding target. Synthetic biology and genetic technologies offer unparalleled opportunities to create new genetics for photosynthetic traits driven by existing fundamental knowledge. However, large 'gene bank' collections of germplasm comprising historical collections of crop species and their relatives offer a wealth of opportunities to find novel allelic variation in the key steps of photosynthesis, to identify new mechanisms and to accelerate genetic progress in crop breeding programmes. Here we explore the available genetic resources in food and fibre crops, strategies to selectively target allelic variation in genes underpinning key photosynthetic processes, and deployment of this variation via gene editing in modern elite material.
Collapse
Affiliation(s)
- Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - W Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Demi Sargent
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | | | | | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
22
|
Castillo-Bravo R, Fort A, Cashell R, Brychkova G, McKeown PC, Spillane C. Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:835219. [PMID: 35330872 PMCID: PMC8940307 DOI: 10.3389/fpls.2022.835219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.
Collapse
|
23
|
Kanazawa A, Chattopadhyay A, Kuhlgert S, Tuitupou H, Maiti T, Kramer DM. Light potentials of photosynthetic energy storage in the field: what limits the ability to use or dissipate rapidly increased light energy? ROYAL SOCIETY OPEN SCIENCE 2021; 8:211102. [PMID: 34925868 PMCID: PMC8672073 DOI: 10.1098/rsos.211102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The responses of plant photosynthesis to rapid fluctuations in environmental conditions are critical for efficient conversion of light energy. These responses are not well-seen laboratory conditions and are difficult to probe in field environments. We demonstrate an open science approach to this problem that combines multifaceted measurements of photosynthesis and environmental conditions, and an unsupervised statistical clustering approach. In a selected set of data on mint (Mentha sp.), we show that 'light potentials' for linear electron flow and non-photochemical quenching (NPQ) upon rapid light increases are strongly suppressed in leaves previously exposed to low ambient photosynthetically active radiation (PAR) or low leaf temperatures, factors that can act both independently and cooperatively. Further analyses allowed us to test specific mechanisms. With decreasing leaf temperature or PAR, limitations to photosynthesis during high light fluctuations shifted from rapidly induced NPQ to photosynthetic control of electron flow at the cytochrome b6f complex. At low temperatures, high light induced lumen acidification, but did not induce NPQ, leading to accumulation of reduced electron transfer intermediates, probably inducing photodamage, revealing a potential target for improving the efficiency and robustness of photosynthesis. We discuss the implications of the approach for open science efforts to understand and improve crop productivity.
Collapse
Affiliation(s)
- Atsuko Kanazawa
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abhijnan Chattopadhyay
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Sebastian Kuhlgert
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Hainite Tuitupou
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - David M. Kramer
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Mandel JR, Ramsey AJ, Holley JM, Scott VA, Mody D, Abbot P. Disentangling Complex Inheritance Patterns of Plant Organellar Genomes: An Example From Carrot. J Hered 2021; 111:531-538. [PMID: 32886780 DOI: 10.1093/jhered/esaa037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Plant mitochondria and plastids display an array of inheritance patterns and varying levels of heteroplasmy, where individuals harbor more than 1 version of a mitochondrial or plastid genome. Organelle inheritance in plants has the potential to be quite complex and can vary with plant growth, development, and reproduction. Few studies have sought to investigate these complicated patterns of within-individual variation and inheritance using experimental crosses in plants. We carried out crosses in carrot, Daucus carota L. (Apiaceae), which has previously been shown to exhibit organellar heteroplasmy. We used mitochondrial and plastid markers to begin to disentangle the patterns of organellar inheritance and the fate of heteroplasmic variation, with special focus on cases where the mother displayed heteroplasmy. We also investigated heteroplasmy across the plant, assaying leaf samples at different development stages and ages. Mitochondrial and plastid paternal leakage was rare and offspring received remarkably similar heteroplasmic mixtures to their heteroplasmic mothers, indicating that heteroplasmy is maintained over the course of maternal inheritance. When offspring did differ from their mother, they were likely to exhibit a loss of the genetic variation that was present in their mother. Finally, we found that mitochondrial variation did not vary significantly over plant development, indicating that substantial vegetative sorting did not occur. Our study is one of the first to quantitatively investigate inheritance patterns and heteroplasmy in plants using controlled crosses, and we look forward to future studies making use of whole genome information to study the complex evolutionary dynamics of plant organellar genomes.
Collapse
Affiliation(s)
- Jennifer R Mandel
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA.,Center for Biodiversity Research, The University of Memphis, Memphis, TN, USA
| | - Adam J Ramsey
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - Jacob M Holley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Victoria A Scott
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Dviti Mody
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
25
|
Makarenko MS, Omelchenko DO, Usatov AV, Gavrilova VA. The Insights into Mitochondrial Genomes of Sunflowers. PLANTS (BASEL, SWITZERLAND) 2021; 10:1774. [PMID: 34579307 PMCID: PMC8466785 DOI: 10.3390/plants10091774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
The significant difference in the mtDNA size and structure with simultaneous slow evolving genes makes the mitochondrial genome paradoxical among all three DNA carriers in the plant cell. Such features make mitochondrial genome investigations of particular interest. The genus Helianthus is a diverse taxonomic group, including at least two economically valuable species-common sunflower (H. annuus) and Jerusalem artichoke (H. tuberosus). The successful investigation of the sunflower nuclear genome provided insights into some genomics aspects and significantly intensified sunflower genetic studies. However, the investigations of organelles' genetic information in Helianthus, especially devoted to mitochondrial genomics, are presented by limited studies. Using NGS sequencing, we assembled the complete mitochondrial genomes for H. occidentalis (281,175 bp) and H. tuberosus (281,287 bp) in the current investigation. Besides the master circle chromosome, in the case of H. tuberosus, the 1361 bp circular plasmid was identified. The mitochondrial gene content was found to be identical for both sunflower species, counting 32 protein-coding genes, 3 rRNA, 23 tRNA genes, and 18 ORFs. The comparative analysis between perennial sunflowers revealed common and polymorphic SSR and SNPs. Comparison of perennial sunflowers with H. annuus allowed us to establish similar rearrangements in mitogenomes, which have possibly been inherited from a common ancestor after the divergence of annual and perennial sunflower species. It is notable that H. occidentalis and H. tuberosus mitogenomes are much more similar to H. strumosus than H. grosseserratus.
Collapse
Affiliation(s)
- Maksim S. Makarenko
- The Laboratory of Plant Genomics, The Institute for Information Transmission Problems, 127051 Moscow, Russia;
| | - Denis O. Omelchenko
- The Laboratory of Plant Genomics, The Institute for Information Transmission Problems, 127051 Moscow, Russia;
| | - Alexander V. Usatov
- The Department of Genetics, Southern Federal University, 344006 Rostov-on-Don, Russia;
| | - Vera A. Gavrilova
- Oil and Fiber Crops Genetic Resources Department, The N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190031 Saint Petersburg, Russia;
| |
Collapse
|
26
|
Thondehaalmath T, Kulaar DS, Bondada R, Maruthachalam R. Understanding and exploiting uniparental genome elimination in plants: insights from Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4646-4662. [PMID: 33851980 DOI: 10.1093/jxb/erab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Uniparental genome elimination (UGE) refers to the preferential exclusion of one set of the parental chromosome complement during embryogenesis following successful fertilization, giving rise to uniparental haploid progeny. This artificially induced phenomenon was documented as one of the consequences of distant (wide) hybridization in plants. Ten decades since its discovery, attempts to unravel the molecular mechanism behind this process remained elusive due to a lack of genetic tools and genomic resources in the species exhibiting UGE. Hence, its successful adoption in agronomic crops for in planta (in vivo) haploid production remains implausible. Recently, Arabidopsis thaliana has emerged as a model system to unravel the molecular basis of UGE. It is now possible to simulate the genetic consequences of distant crosses in an A. thaliana intraspecific cross by a simple modification of centromeres, via the manipulation of the centromere-specific histone H3 variant gene, CENH3. Thus, the experimental advantages conferred by A. thaliana have been used to elucidate and exploit the benefits of UGE in crop breeding. In this review, we discuss developments and prospects of CENH3 gene-mediated UGE and other in planta haploid induction strategies to illustrate its potential in expediting plant breeding and genetics in A. thaliana and other model plants.
Collapse
Affiliation(s)
- Tejas Thondehaalmath
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Dilsher Singh Kulaar
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ramesh Bondada
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| |
Collapse
|
27
|
He W, Chen C, Xiang K, Wang J, Zheng P, Tembrock LR, Jin D, Wu Z. The History and Diversity of Rice Domestication as Resolved From 1464 Complete Plastid Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:781793. [PMID: 34868182 PMCID: PMC8637288 DOI: 10.3389/fpls.2021.781793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 05/19/2023]
Abstract
The plastid is an essential organelle in autotrophic plant cells, descending from free-living cyanobacteria and acquired by early eukaryotic cells through endosymbiosis roughly one billion years ago. It contained a streamlined genome (plastome) that is uniparentally inherited and non-recombinant, which makes it an ideal tool for resolving the origin and diversity of plant species and populations. In the present study, a large dataset was amassed by de novo assembling plastomes from 295 common wild rice (Oryza rufipogon Griff.) and 1135 Asian cultivated rice (Oryza sativa L.) accessions, supplemented with 34 plastomes from other Oryza species. From this dataset, the phylogenetic relationships and biogeographic history of O. rufipogon and O. sativa were reconstructed. Our results revealed two major maternal lineages across the two species, which further diverged into nine well supported genetic clusters. Among them, the Or-wj-I/II/III and Or-wi-I/II genetic clusters were shared with cultivated (percentage for each cluster ranging 54.9%∼99.3%) and wild rice accessions. Molecular dating, phylogeographic analyses and reconstruction of population historical dynamics indicated an earlier origin of the Or-wj-I/II genetic clusters from East Asian with at least two population expansions, and later origins of other genetic clusters from multiple regions with one or more population expansions. These results supported a single origin of japonica rice (mainly in Or-wj-I/II) and multiple origins of indica rice (in all five clusters) for the history of rice domestication. The massive plastomic data set presented here provides an important resource for understanding the history and evolution of rice domestication as well as a genomic resources for use in future breeding and conservation efforts.
Collapse
Affiliation(s)
- Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Caijin Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Kunli Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Luke R. Tembrock,
| | - Deming Jin
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Deming Jin,
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- *Correspondence: Zhiqiang Wu,
| |
Collapse
|
28
|
Breman FC, Snijder RC, Korver JW, Pelzer S, Sancho-Such M, Schranz ME, Bakker FT. Interspecific Hybrids Between Pelargonium × hortorum and Species From P. Section Ciconium Reveal Biparental Plastid Inheritance and Multi-Locus Cyto-Nuclear Incompatibility. FRONTIERS IN PLANT SCIENCE 2020; 11:614871. [PMID: 33391328 PMCID: PMC7775418 DOI: 10.3389/fpls.2020.614871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/23/2020] [Indexed: 06/01/2023]
Abstract
The genetics underlying Cyto-Nuclear Incompatibility (CNI) was studied in Pelargonium interspecific hybrids. We created hybrids of 12 closely related crop wild relatives (CWR) with the ornamental P. × hortorum. Ten of the resulting 12 (F1) interspecific hybrids segregate for chlorosis suggesting biparental plastid inheritance. The segregation ratios of the interspecific F2 populations show nuclear interactions of one, two, or three nuclear genes regulating plastid function dependent on the parents. We further validated that biparental inheritance of plastids is common in section Ciconium, using diagnostic PCR primers. Our results pave the way for using the diverse species from section Ciconium, each with its own set of characteristics, as novel sources of desired breeding traits for P. × hortorum cultivars.
Collapse
Affiliation(s)
- Floris C. Breman
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - Joost W. Korver
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Sieme Pelzer
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Freek T. Bakker
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
29
|
Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol 2020; 38:1397-1401. [PMID: 33169035 DOI: 10.1038/s41587-020-0728-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
New breeding technologies accelerate germplasm improvement and reduce the cost of goods in seed production1-3. Many such technologies could use in vivo paternal haploid induction (HI), which occurs when double fertilization precedes maternal (egg cell) genome loss. Engineering of the essential CENTROMERIC HISTONE (CENH3) gene induces paternal HI in Arabidopsis4-6. Despite conservation of CENH3 function across crops, CENH3-based HI has not been successful outside of the Arabidopsis model system7. Here we report a commercially operable paternal HI line in wheat with a ~7% HI rate, identified by screening genome-edited TaCENH3α-heteroallelic combinations. Unlike in Arabidopsis, edited alleles exhibited reduced transmission in female gametophytes, and heterozygous genotypes triggered higher HI rates than homozygous combinations. These developments might pave the way for the deployment of CENH3 HI technology in diverse crops.
Collapse
|
30
|
The Investigation of Perennial Sunflower Species ( Helianthus L.) Mitochondrial Genomes. Genes (Basel) 2020; 11:genes11090982. [PMID: 32846894 PMCID: PMC7565312 DOI: 10.3390/genes11090982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
The genus Helianthus is a diverse taxonomic group with approximately 50 species. Most sunflower genomic investigations are devoted to economically valuable species, e.g., H. annuus, while other Helianthus species, especially perennial, are predominantly a blind spot. In the current study, we have assembled the complete mitogenomes of two perennial species: H. grosseserratus (273,543 bp) and H. strumosus (281,055 bp). We analyzed their sequences and gene profiles in comparison to the available complete mitogenomes of H. annuus. Except for sdh4 and trnA-UGC, both perennial sunflower species had the same gene content and almost identical protein-coding sequences when compared with each other and with annual sunflowers (H. annuus). Common mitochondrial open reading frames (ORFs) (orf117, orf139, and orf334) in sunflowers and unique ORFs for H. grosseserratus (orf633) and H. strumosus (orf126, orf184, orf207) were identified. The maintenance of plastid-derived coding sequences in the mitogenomes of both annual and perennial sunflowers and the low frequency of nonsynonymous mutations point at an extremely low variability of mitochondrial DNA (mtDNA) coding sequences in the Helianthus genus.
Collapse
|
31
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
32
|
Chardon F, Cueff G, Delannoy E, Aubé F, Lornac A, Bedu M, Gilard F, Pateyron S, Rogniaux H, Gargaros A, Mireau H, Rajjou L, Martin-Magniette ML, Budar F. The Consequences of a Disruption in Cyto-Nuclear Coadaptation on the Molecular Response to a Nitrate Starvation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E573. [PMID: 32369924 PMCID: PMC7285260 DOI: 10.3390/plants9050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/04/2022]
Abstract
Mitochondria and chloroplasts are important actors in the plant nutritional efficiency. So, it could be expected that a disruption of the coadaptation between nuclear and organellar genomes impact plant response to nutrient stresses. We addressed this issue using two Arabidopsis accessions, namely Ct1 and Jea, and their reciprocal cytolines possessing the nuclear genome from one parent and the organellar genomes of the other one. We measured gene expression, and quantified proteins and metabolites under N starvation and non-limiting conditions. We observed a typical response to N starvation at the phenotype and molecular levels. The phenotypical response to N starvation was similar in the cytolines compared to the parents. However, we observed an effect of the disruption of genomic coadaptation at the molecular levels, distinct from the previously described responses to organellar stresses. Strikingly, genes differentially expressed in cytolines compared to parents were mainly repressed in the cytolines. These genes encoded more mitochondrial and nuclear proteins than randomly expected, while N starvation responsive ones were enriched in genes for chloroplast and nuclear proteins. In cytolines, the non-coadapted cytonuclear genomic combination tends to modulate the response to N starvation observed in the parental lines on various biological processes.
Collapse
Affiliation(s)
- Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Aurélia Lornac
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Magali Bedu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Audrey Gargaros
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| |
Collapse
|
33
|
Botet R, Keurentjes JJB. The Role of Transcriptional Regulation in Hybrid Vigor. FRONTIERS IN PLANT SCIENCE 2020; 11:410. [PMID: 32351526 PMCID: PMC7174566 DOI: 10.3389/fpls.2020.00410] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 05/19/2023]
Abstract
The genetic basis of hybrid vigor in plants remains largely unsolved but strong evidence suggests that variation in transcriptional regulation can explain many aspects of this phenomenon. Natural variation in transcriptional regulation is highly abundant in virtually all species and thus a potential source of heterotic variability. Allele Specific Expression (ASE), which is tightly linked to parent of origin effects and modulated by complex interactions in cis and in trans, is generally considered to play a key role in explaining the differences between hybrids and parental lines. Here we discuss the recent developments in elucidating the role of transcriptional variation in a number of aspects of hybrid vigor, thereby bridging old paradigms and hypotheses with contemporary research in various species.
Collapse
Affiliation(s)
- Ramon Botet
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
34
|
Postel Z, Touzet P. Cytonuclear Genetic Incompatibilities in Plant Speciation. PLANTS 2020; 9:plants9040487. [PMID: 32290056 PMCID: PMC7238192 DOI: 10.3390/plants9040487] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Due to the endosymbiotic origin of organelles, a pattern of coevolution and coadaptation between organellar and nuclear genomes is required for proper cell function. In this review, we focus on the impact of cytonuclear interaction on the reproductive isolation of plant species. We give examples of cases where species exhibit barriers to reproduction which involve plastid-nuclear or mito-nuclear genetic incompatibilities, and describe the evolutionary processes at play. We also discuss potential mechanisms of hybrid fitness recovery such as paternal leakage. Finally, we point out the possible interplay between plant mating systems and cytonuclear coevolution, and its consequence on plant speciation.
Collapse
|
35
|
Affiliation(s)
- Alan C Christensen
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|