1
|
Wang Y, Strauss S, Smith RS, Sampathkumar A. Actin-mediated avoidance of tricellular junction influences global topology at the Arabidopsis shoot apical meristem. Cell Rep 2024; 43:114844. [PMID: 39418163 DOI: 10.1016/j.celrep.2024.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Division plane orientation contributes to cell shape and topological organization, playing a key role in morphogenesis, but the precise physical and molecular mechanism influencing these processes remains largely obscure in plants. In particular, it is less clear how the placement of the new walls occurs in relation to the walls of neighboring cells. Here, we show that genetic perturbation of the actin cytoskeleton results in more rectangular cell shapes and higher incidences of four-way junctions, perturbing the global topology of cells in the shoot apical meristem of Arabidopsis thaliana. Actin mutants also exhibit changes in the expansion rate of the new versus the maternal cell wall after division, affecting the evolution of internal angles at tricellular junctions. Further, the increased width of the preprophase band in the actin mutant contributes to inaccuracy in the placement of the new cell wall. Computational simulation further substantiates this hypothesis and reproduces the observed cell shape defects.
Collapse
Affiliation(s)
- Yang Wang
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | - Soeren Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Ln, NR4 7UH Norwich, UK
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
2
|
Aardening Z, Khandal H, Erlichman OA, Savaldi-Goldstein S. The whole and its parts: cell-specific functions of brassinosteroids. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00283-8. [PMID: 39562236 DOI: 10.1016/j.tplants.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Brassinosteroid (BR) phytohormones operate at both the cellular and organ levels, and impart distinct transcriptional responses in different cell types and developmental zones, with distinct effects on organ size and shape. Here, we review recent advances implementing high-resolution and modeling tools that have provided new insights into the role of BR signaling in growth coordination across cell layers. We discuss recently gained knowledge on BR movement and its relevance for intercellular communication, as well as how local protein environments enable cell- and stage-specific BR regulation. We also explore how tissue-specific alterations in BR signaling enhance crop yield. Together, we offer a comprehensive view of how BR signaling shapes the whole (overall growth dynamics) through its parts (intricate cellular interactions).
Collapse
Affiliation(s)
- Ziv Aardening
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hitaishi Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
3
|
Zhu W, Fu Y, Zhou H, Zhou Y, Zhang D, Wang Y, Su Y, Li Z, Liang J. RACK1 links phyB and BES1 to coordinate brassinosteroid-dependent root meristem development. THE NEW PHYTOLOGIST 2024; 244:883-899. [PMID: 39149918 DOI: 10.1111/nph.20055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Light and brassinosteroids (BR) are indispensable for plant growth and control cell division in the apical meristem. However, how external light signals cooperate with internal brassinosteroids to program root meristem development remains elusive. We reveal that the photoreceptor phytochrome B (phyB) guides the scaffold protein RACK1 to coordinate BR signaling for maintaining root meristematic activity. phyB and RACK1 promote early root meristem development. Mechanistically, RACK1 could reinforce the phyB-SPA1 association by interacting with both phyB and SPA1, which indirectly affects COP1-dependent RACK1 degradation, resulting in the accumulation of RACK1 in roots. Subsequently, RACK1 interacts with BES1 to repress its DNA-binding activity toward the target gene CYCD3;1, leading to the release of BES1-mediated inhibition of CYCD3;1 transcription, and hence the promotion of root meristem development. Our study provides mechanistic insights into the regulation of root meristem development by combination of light and phytohormones signals through the photoreceptors and scaffold proteins.
Collapse
Affiliation(s)
- Wei Zhu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yajuan Fu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hua Zhou
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yeling Zhou
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dayan Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuzhu Wang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujing Su
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiansheng Liang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Mody TA, Rolle A, Stucki N, Roll F, Bauer U, Schneitz K. Topological analysis of 3D digital ovules identifies cellular patterns associated with ovule shape diversity. Development 2024; 151:dev202590. [PMID: 38738635 PMCID: PMC11168579 DOI: 10.1242/dev.202590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Tissue morphogenesis remains poorly understood. In plants, a central problem is how the 3D cellular architecture of a developing organ contributes to its final shape. We address this question through a comparative analysis of ovule morphogenesis, taking advantage of the diversity in ovule shape across angiosperms. Here, we provide a 3D digital atlas of Cardamine hirsuta ovule development at single cell resolution and compare it with an equivalent atlas of Arabidopsis thaliana. We introduce nerve-based topological analysis as a tool for unbiased detection of differences in cellular architectures and corroborate identified topological differences between two homologous tissues by comparative morphometrics and visual inspection. We find that differences in topology, cell volume variation and tissue growth patterns in the sheet-like integuments and the bulbous chalaza are associated with differences in ovule curvature. In contrast, the radialized conical ovule primordia and nucelli exhibit similar shapes, despite differences in internal cellular topology and tissue growth patterns. Our results support the notion that the structural organization of a tissue is associated with its susceptibility to shape changes during evolutionary shifts in 3D cellular architecture.
Collapse
Affiliation(s)
- Tejasvinee Atul Mody
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 4, 85354 Freising, Germany
| | - Alexander Rolle
- Applied and Computational Topology, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85747 Garching, Germany
| | - Nico Stucki
- Applied and Computational Topology, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85747 Garching, Germany
- Munich Data Science Institute, Technical University of Munich, Walther-von-Dyck Strasse 10, 85747 Garching, Germany
| | - Fabian Roll
- Applied and Computational Topology, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85747 Garching, Germany
| | - Ulrich Bauer
- Applied and Computational Topology, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85747 Garching, Germany
- Munich Data Science Institute, Technical University of Munich, Walther-von-Dyck Strasse 10, 85747 Garching, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 4, 85354 Freising, Germany
| |
Collapse
|
5
|
Blanco-Touriñán N, Rana S, Nolan TM, Li K, Vukašinović N, Hsu CW, Russinova E, Hardtke CS. The brassinosteroid receptor gene BRI1 safeguards cell-autonomous brassinosteroid signaling across tissues. SCIENCE ADVANCES 2024; 10:eadq3352. [PMID: 39321293 PMCID: PMC11423886 DOI: 10.1126/sciadv.adq3352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Brassinosteroid signaling is essential for plant growth as exemplified by the dwarf phenotype of loss-of-function mutants in BRASSINOSTEROID INSENSITIVE 1 (BRI1), a ubiquitously expressed Arabidopsis brassinosteroid receptor gene. Complementation of brassinosteroid-blind receptor mutants by BRI1 expression with various tissue-specific promoters implied that local brassinosteroid signaling may instruct growth non-cell autonomously. Here, we performed such rescues with a panel of receptor variants and promoters, in combination with tissue-specific transgene knockouts. Our experiments demonstrate that brassinosteroid receptor expression in several tissues is necessary but not sufficient for rescue. Moreover, complementation with tissue-specific promoters requires the genuine BRI1 gene body sequence, which confers ubiquitous expression of trace receptor amounts that are sufficient to promote brassinosteroid-dependent root growth. Our data, therefore, argue for a largely cell-autonomous action of brassinosteroid receptors.
Collapse
Affiliation(s)
- Noel Blanco-Touriñán
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Trevor M. Nolan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Kunkun Li
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Caballero L, Pasternak T, Riyazuddin R, Pérez-Pérez JM. Connecting high-resolution 3D chromatin maps with cell division and cell differentiation at the root apical meristem. PLANT CELL REPORTS 2024; 43:232. [PMID: 39283352 PMCID: PMC11405483 DOI: 10.1007/s00299-024-03322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
KEY MESSAGE We used marker-free technologies to study chromatin at cellular resolution. Our results show asymmetric chromatin distribution, explore chromatin dynamics during mitosis, and reveal structural differences between trichoblast and atrichoblast cell. The shapes, sizes, and structural organizations of plant nuclei vary considerably among cell types, tissues, and species. This diversity is dependent on various factors, including cellular function, developmental stage, and environmental or physiological conditions. The differences in nuclear structure reflect the state of chromatin, which, in turn, controls gene expression and regulates cell fate. To examine the interrelationship between nuclear structure, cell morphology, and tissue-specific cell proliferation and differentiation processes, we conducted multiple visualizations of H3K4me1, H3K9me2, 4',6-diamidino-2-phenylindole, 5-ethynyl 2'-deoxyuridine, and SCRI Renaissance 2200, followed by subsequent quantitative analysis of individual cells and nuclei. By assigning cylindrical coordinates to the nuclei in the iRoCS toolbox, we were able to construct in situ digital three-dimensional chromatin maps for all the tissue layers of individual roots. A detailed analysis of the nuclei features of H3K4me1 and H3K9me2 in the mitotic and the elongation zones in trichoblast and atrichoblast cells at the root apical meristem revealed cell type-specific chromatin dynamics with asymmetric distribution of euchromatin and heterochromatin marks that may be associated with cell cycle and cell differentiation characteristics of specific cells. Furthermore, the spatial distribution of nuclei stained with 5-ethynyl 2'-deoxyuridine in the epidermis and cortex tissues suggests short-range coordination of cell division and nuclear migration in a linear sequence through an unknown regulatory mechanism.
Collapse
Affiliation(s)
- Lara Caballero
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Spain
| | - Taras Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Spain
| | | | | |
Collapse
|
7
|
Vijayan A, Mody TA, Yu Q, Wolny A, Cerrone L, Strauss S, Tsiantis M, Smith RS, Hamprecht FA, Kreshuk A, Schneitz K. A deep learning-based toolkit for 3D nuclei segmentation and quantitative analysis in cellular and tissue context. Development 2024; 151:dev202800. [PMID: 39036998 PMCID: PMC11273294 DOI: 10.1242/dev.202800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
We present a new set of computational tools that enable accurate and widely applicable 3D segmentation of nuclei in various 3D digital organs. We have developed an approach for ground truth generation and iterative training of 3D nuclear segmentation models, which we applied to popular CellPose, PlantSeg and StarDist algorithms. We provide two high-quality models trained on plant nuclei that enable 3D segmentation of nuclei in datasets obtained from fixed or live samples, acquired from different plant and animal tissues, and stained with various nuclear stains or fluorescent protein-based nuclear reporters. We also share a diverse high-quality training dataset of about 10,000 nuclei. Furthermore, we advanced the MorphoGraphX analysis and visualization software by, among other things, providing a method for linking 3D segmented nuclei to their surrounding cells in 3D digital organs. We found that the nuclear-to-cell volume ratio varies between different ovule tissues and during the development of a tissue. Finally, we extended the PlantSeg 3D segmentation pipeline with a proofreading tool that uses 3D segmented nuclei as seeds to correct cell segmentation errors in difficult-to-segment tissues.
Collapse
Affiliation(s)
- Athul Vijayan
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Tejasvinee Atul Mody
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Qin Yu
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg 69117, Germany
| | - Adrian Wolny
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Lorenzo Cerrone
- Interdsisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg 69120, Germany
| | - Soeren Strauss
- Department of Comparative Developmental and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Miltos Tsiantis
- Department of Comparative Developmental and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Richard S. Smith
- Department of Comparative Developmental and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Computational and Systems Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Fred A. Hamprecht
- Interdsisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg 69120, Germany
| | - Anna Kreshuk
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
8
|
Hoermayer L, Montesinos JC, Trozzi N, Spona L, Yoshida S, Marhava P, Caballero-Mancebo S, Benková E, Heisenberg CP, Dagdas Y, Majda M, Friml J. Mechanical forces in plant tissue matrix orient cell divisions via microtubule stabilization. Dev Cell 2024; 59:1333-1344.e4. [PMID: 38579717 DOI: 10.1016/j.devcel.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Plant morphogenesis relies exclusively on oriented cell expansion and division. Nonetheless, the mechanism(s) determining division plane orientation remain elusive. Here, we studied tissue healing after laser-assisted wounding in roots of Arabidopsis thaliana and uncovered how mechanical forces stabilize and reorient the microtubule cytoskeleton for the orientation of cell division. We identified that root tissue functions as an interconnected cell matrix, with a radial gradient of tissue extendibility causing predictable tissue deformation after wounding. This deformation causes instant redirection of expansion in the surrounding cells and reorientation of microtubule arrays, ultimately predicting cell division orientation. Microtubules are destabilized under low tension, whereas stretching of cells, either through wounding or external aspiration, immediately induces their polymerization. The higher microtubule abundance in the stretched cell parts leads to the reorientation of microtubule arrays and, ultimately, informs cell division planes. This provides a long-sought mechanism for flexible re-arrangement of cell divisions by mechanical forces for tissue reconstruction and plant architecture.
Collapse
Affiliation(s)
- Lukas Hoermayer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland; Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Juan Carlos Montesinos
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain
| | - Nicola Trozzi
- Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland
| | - Leonhard Spona
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Saiko Yoshida
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Max Planck Institute for Plant Breeding Research, 50829 Carl-von-Linné-Weg 10, Cologne, Germany
| | - Petra Marhava
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, University of Agricultural Sciences (SLU), 90183 Umeå, Sweden
| | | | - Eva Benková
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Mateusz Majda
- Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.
| |
Collapse
|
9
|
Al-Mamun MH, Cazzonelli CI, Krishna P. BZR1 and BES1 transcription factors mediate brassinosteroid control over root system architecture in response to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2024; 15:1387321. [PMID: 38779077 PMCID: PMC11109456 DOI: 10.3389/fpls.2024.1387321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Plants modify their root system architecture (RSA) in response to nitrogen (N) deficiency. The plant steroidal hormone, brassinosteroid (BR), plays important roles in root growth and development. This study demonstrates that optimal levels of exogenous BR impact significant increases in lateral root length and numbers in Arabidopsis seedlings under mild N-deficient conditions as compared to untreated seedlings. The impact of BR on RSA was stronger under mild N deficiency than under N-sufficient conditions. The BR effects on RSA were mimicked in dominant mutants of BZR1 and BES1 (bzr1-1D and bes1-D) transcription factors, while the RSA was highly reduced in the BR-insensitive mutant bri1-6, confirming that BR signaling is essential for the development of RSA under both N-sufficient and N-deficient conditions. Exogenous BR and constitutive activity of BZR1 and BES1 in dominant mutants led to enhanced root meristem, meristematic cell number, and cortical cell length. Under mild N deficiency, bzr1-1D displayed higher fresh and dry shoot weights, chlorophyll content, and N levels in the shoot, as compared to the wild type. These results indicate that BR modulates RSA under both N-sufficient and N-deficient conditions via the transcription factors BES1/BZR1 module and confers tolerance to N deficiency.
Collapse
Affiliation(s)
| | | | - Priti Krishna
- School of Science, Western Sydney University, Richmond, NSW, Australia
- Faculty of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| |
Collapse
|
10
|
Pinto SC, Stojilković B, Zhang X, Sablowski R. Plant cell size: Links to cell cycle, differentiation and ploidy. CURRENT OPINION IN PLANT BIOLOGY 2024; 78:102527. [PMID: 38484440 DOI: 10.1016/j.pbi.2024.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
Cell size affects many processes, including exchange of nutrients and external signals, cell division and tissue mechanics. Across eukaryotes, cells have evolved mechanisms that assess their own size to inform processes such as cell cycle progression or gene expression. Here, we review recent progress in understanding plant cell size regulation and its implications, relating these findings to work in other eukaryotes. Highlights include use of DNA contents as reference point to control the cell cycle in shoot meristems, a size-dependent cell fate decision during stomatal development and insights into the interconnection between ploidy, cell size and cell wall mechanics.
Collapse
Affiliation(s)
- Sara C Pinto
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | - Xinyu Zhang
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
11
|
Alonso S, Cebrián G, Gautam K, Iglesias-Moya J, Martínez C, Jamilena M. A mutation in the brassinosteroid biosynthesis gene CpDWF5 disrupts vegetative and reproductive development and the salt stress response in squash ( Cucurbita pepo). HORTICULTURE RESEARCH 2024; 11:uhae050. [PMID: 38645681 PMCID: PMC11031414 DOI: 10.1093/hr/uhae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 04/23/2024]
Abstract
A Cucurbita pepo mutant with multiple defects in growth and development has been identified and characterized. The mutant dwfcp displayed a dwarf phenotype with dark green and shrinking leaves, shortened internodes and petioles, shorter but thicker roots and greater root biomass, and reduced fertility. The causal mutation of the phenotype was found to disrupt gene Cp4.1LG17g04540, the squash orthologue of the Arabidopsis brassinosteroid (BR) biosynthesis gene DWF5, encoding for 7-dehydrocholesterol reductase. A single nucleotide transition (G > A) causes a splicing defect in intron 6 that leads to a premature stop codon and a truncated CpDWF5 protein. The mutation co-segregated with the dwarf phenotype in a large BC1S1 segregating population. The reduced expression of CpDWF5 and brassinolide (BL) content in most mutant organs, and partial rescue of the mutant phenotype by exogenous application of BL, showed that the primary cause of the dwarfism in dwfcp is a BR deficiency. The results showed that in C. pepo, CpDWF5 is not only a positive growth regulator of different plant organs but also a negative regulator of salt tolerance. During germination and the early stages of seedling development, the dwarf mutant was less affected by salt stress than the wild type, concomitantly with a greater upregulation of genes associated with salt tolerance, including those involved in abscisic acid (ABA) biosynthesis, ABA and Ca2+ signaling, and those coding for cation exchangers and transporters.
Collapse
Affiliation(s)
- Sonsoles Alonso
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), and Research Center CIAMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Gustavo Cebrián
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), and Research Center CIAMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Keshav Gautam
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), and Research Center CIAMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Jessica Iglesias-Moya
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), and Research Center CIAMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Cecilia Martínez
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), and Research Center CIAMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), and Research Center CIAMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
12
|
Delesalle C, Vert G, Fujita S. The cell surface is the place to be for brassinosteroid perception and responses. NATURE PLANTS 2024; 10:206-218. [PMID: 38388723 DOI: 10.1038/s41477-024-01621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Adjusting the microenvironment around the cell surface is critical to responding to external cues or endogenous signals and to maintaining cell activities. In plant cells, the plasma membrane is covered by the cell wall and scaffolded with cytoskeletal networks, which altogether compose the cell surface. It has long been known that these structures mutually interact, but the mechanisms that integrate the whole system are still obscure. Here we spotlight the brassinosteroid (BR) plant hormone receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) since it represents an outstanding model for understanding cell surface signalling and regulation. We summarize how BRI1 activity and dynamics are controlled by plasma membrane components and their associated factors to fine-tune signalling. The downstream signals, in turn, manipulate cell surface structures by transcriptional and post-translational mechanisms. Moreover, the changes in these architectures impact BR signalling, resulting in a feedback loop formation. This Review discusses how BRI1 and BR signalling function as central hubs to integrate cell surface regulation.
Collapse
Affiliation(s)
- Charlotte Delesalle
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Satoshi Fujita
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France.
| |
Collapse
|
13
|
Mathew MM, Ganguly A, Prasad K. Multiple feedbacks on self-organized morphogenesis during plant regeneration. THE NEW PHYTOLOGIST 2024; 241:553-559. [PMID: 37984062 DOI: 10.1111/nph.19412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Decades of research have primarily emphasized genetic blueprint as the driving force behind plant regeneration. The flow of information from genetics, which manifests as biochemical properties, including hormones, has been extensively implicated in plant regeneration. However, recent advancements have unveiled additional intrinsic modules within this information flow. Here, we explore the three core modules of plant regeneration: biochemical properties, mechanical forces acting on cells, and cell geometry. We debate their roles and interactions during morphogenesis, emphasizing the potential for multiple feedbacks between these core modules to drive pattern formation during regeneration. We propose that de novo organ regeneration is a self-organized event driven by multidirectional information flow between these core modules.
Collapse
Affiliation(s)
- Mabel Maria Mathew
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Akansha Ganguly
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Kalika Prasad
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| |
Collapse
|
14
|
Haimlich S, Fridman Y, Khandal H, Savaldi-Goldstein S, Levy A. Widespread horizontal gene transfer between plants and bacteria. ISME COMMUNICATIONS 2024; 4:ycae073. [PMID: 38808121 PMCID: PMC11131428 DOI: 10.1093/ismeco/ycae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Plants host a large array of commensal bacteria that interact with the host. The growth of both bacteria and plants is often dependent on nutrients derived from the cognate partners, and the bacteria fine-tune host immunity against pathogens. This ancient interaction is common in all studied land plants and is critical for proper plant health and development. We hypothesized that the spatial vicinity and the long-term relationships between plants and their microbiota may promote cross-kingdom horizontal gene transfer (HGT), a phenomenon that is relatively rare in nature. To test this hypothesis, we analyzed the Arabidopsis thaliana genome and its extensively sequenced microbiome to detect events of horizontal transfer of full-length genes that transferred between plants and bacteria. Interestingly, we detected 75 unique genes that were horizontally transferred between plants and bacteria. Plants and bacteria exchange in both directions genes that are enriched in carbohydrate metabolism functions, and bacteria transferred to plants genes that are enriched in auxin biosynthesis genes. Next, we provided a proof of concept for the functional similarity between a horizontally transferred bacterial gene and its Arabidopsis homologue in planta. The Arabidopsis DET2 gene is essential for biosynthesis of the brassinosteroid phytohormones, and loss of function of the gene leads to dwarfism. We found that expression of the DET2 homologue from Leifsonia bacteria of the Actinobacteria phylum in the Arabidopsis det2 background complements the mutant and leads to normal plant growth. Together, these data suggest that cross-kingdom HGT events shape the metabolic capabilities and interactions between plants and bacteria.
Collapse
Affiliation(s)
- Shelly Haimlich
- The Department of Plant Pathology and Microbiology, Institute of Environmental Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yulia Fridman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hitaishi Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Asaf Levy
- The Department of Plant Pathology and Microbiology, Institute of Environmental Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
15
|
Laruelle E, Palauqui JC, Andrey P, Trubuil A. TreeJ: an ImageJ plugin for interactive cell lineage reconstruction from static images. PLANT METHODS 2023; 19:128. [PMID: 37974271 PMCID: PMC10655406 DOI: 10.1186/s13007-023-01106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND With the emergence of deep-learning methods, tools are needed to capture and standardize image annotations made by experimentalists. In developmental biology, cell lineages are generally reconstructed from time-lapse data. However, some tissues need to be fixed to be accessible or to improve the staining. In this case, classical software do not offer the possibility of generating any lineage. Because of their rigid cell walls, plants present the advantage of keeping traces of the cell division history over successive generations in the cell patterns. To record this information despite having only a static image, dedicated tools are required. RESULTS We developed an interface to assist users in the building and editing of a lineage tree from a 3D labeled image. Each cell within the tree can be tagged. From the created tree, cells of a sub-tree or cells sharing the same tag can be extracted. The tree can be exported in a format compatible with dedicated software for advanced graph visualization and manipulation. CONCLUSIONS The TreeJ plugin for ImageJ/Fiji allows the user to generate and manipulate a lineage tree structure. The tree is compatible with other software to analyze the tree organization at the graphical level and at the cell pattern level. The code source is available at https://github.com/L-EL/TreeJ .
Collapse
Affiliation(s)
- Elise Laruelle
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint Cyr, 78000, Versailles, France.
- MaIAGE, INRAE, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-josas, France.
- Sainsbury Laboratory, Cambridge University, Bateman Street, CB2 1LR, Cambridge, UK.
| | - Jean-Christophe Palauqui
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint Cyr, 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint Cyr, 78000, Versailles, France
| | - Alain Trubuil
- MaIAGE, INRAE, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-josas, France
| |
Collapse
|
16
|
Guo X, Li Y, Li N, Li G, Sun Y, Zhang S. BvCPD promotes parenchyma cell and vascular bundle development in sugar beet ( Beta vulgaris L.) taproot. FRONTIERS IN PLANT SCIENCE 2023; 14:1271329. [PMID: 37771491 PMCID: PMC10523326 DOI: 10.3389/fpls.2023.1271329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
Constitutive photomorpogenic dwarf (CPD) is a pivotal enzyme gene for brassinolide (BR) synthesis and plays an important role in plant growth, including increasing plant biomass and plant height, elongating cells, and promoting xylem differentiation. However, little is known about the function of the CPD gene in sugar beet. In the current study, we isolated CPD from Beta vulgaris L. (BvCPD), which encodes protein localized in the nucleus, cell membrane, and cell wall. BvCPD was strongly expressed in parenchyma cells and vascular bundles. The transgenic sugar beet overexpressing BvCPD exhibited larger diameter than that of the wild type (WT), which mainly owing to the increased number and size of parenchyma cells, the enlarged lumen and area of vessel in the xylem. Additionally, overexpression of BvCPD increased the synthesis of endogenous BR, causing changes in the content of endogenous auxin (IAA) and gibberellin (GA) and accumulation of cellulose and lignin in cambium 1-4 rings of the taproot. These results suggest that BvCPD can promote the biosynthesis of endogenous BR, improve cell wall components, promote the development of parenchyma cells and vascular bundle, thereby playing an important role in promoting the growth and development of sugar beet taproot.
Collapse
Affiliation(s)
| | | | | | | | - Yaqing Sun
- Sugar Beet Physiological Research Institute, Inner Mongolia Agricultural University, Hohhot, China
| | - Shaoying Zhang
- Sugar Beet Physiological Research Institute, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
17
|
Zhu L, Wang H, Zhu J, Wang X, Jiang B, Hou L, Xiao G. A conserved brassinosteroid-mediated BES1-CERP-EXPA3 signaling cascade controls plant cell elongation. Cell Rep 2023; 42:112301. [PMID: 36952343 DOI: 10.1016/j.celrep.2023.112301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/05/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Continuous plant growth is achieved by cell division and cell elongation. Brassinosteroids control cell elongation and differentiation throughout plant life. However, signaling cascades underlying BR-mediated cell elongation are unknown. In this study, we introduce cotton fiber, one of the most representative single-celled tissues, to decipher cell-specific BR signaling. We find that gain of function of GhBES1, a key transcriptional activator in BR signaling, enhances fiber elongation. The chromatin immunoprecipitation sequencing analysis identifies a cell-elongation-related protein, GhCERP, whose transcription is directly activated by GhBES1. GhCERP, a downstream target of GhBES1, transmits the GhBES1-mediated BR signaling to its target gene, GhEXPA3-1. Ultimately, GhEXPA3-1 promotes fiber cell elongation. In addition, inter-species functional analysis of the BR-mediated BES1-CERP-EXPA3 signaling cascade also promotes Arabidopsis root and hypocotyl growth. We propose that the BES1-CERP-EXPA3 module may be a broad-spectrum pathway that is universally exploited by diverse plant species to regulate BR-promoted cell elongation.
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jiaojie Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaosi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Bin Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Liyong Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
18
|
Ohashi-Ito K, Iwamoto K, Yamagami A, Nakano T, Fukuda H. HD-ZIP III-dependent local promotion of brassinosteroid synthesis suppresses vascular cell division in Arabidopsis root apical meristem. Proc Natl Acad Sci U S A 2023; 120:e2216632120. [PMID: 37011193 PMCID: PMC10104508 DOI: 10.1073/pnas.2216632120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023] Open
Abstract
Spatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown. Here, we performed transcriptome analysis to identify downstream genes of HD-ZIP III and found that HD-ZIP III TFs positively regulate brassinosteroid biosynthesis-related genes, such as CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), in vascular cells. Introduction of pREVOLUTA::CPD in a quadruple loss-of-function mutant of HD-ZIP III genes partly rescued the phenotype in terms of the vascular defect in the RAM. Treatment of a quadruple loss-of-function mutant, a gain-of-function mutant of HD-ZIP III, and the wild type with brassinosteroid and a brassinosteroid synthesis inhibitor also indicated that HD-ZIP III TFs act together to suppress vascular cell division by increasing brassinosteroid levels. Furthermore, brassinosteroid application suppressed the cytokinin response in vascular cells. Together, our findings suggest that the suppression of vascular cell division by HD-ZIP III TFs is caused, at least in part, by the increase in brassinosteroid levels through the transcriptional activation of brassinosteroid biosynthesis genes in the vascular cells of the RAM. This elevated brassinosteroid level suppresses cytokinin response in vascular cells, inhibiting vascular cell division in the RAM.
Collapse
Affiliation(s)
- Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Kuninori Iwamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Ayumi Yamagami
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Takeshi Nakano
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
- Department of Bioscience and Biotechnology, Faculty of Environmental Sciences, Kyoto University of Advanced Science, Kyoto621-8555, Japan
| |
Collapse
|
19
|
Mira MM, Ibrahim S, So K, Kowatsch R, Duncan RW, Hill RD, Stasolla C. Specificity in root domain accumulation of Phytoglobin1 and nitric oxide (NO) determines meristematic viability in water-stressed Brassica napus roots. ANNALS OF BOTANY 2023; 131:475-490. [PMID: 36571296 PMCID: PMC10072105 DOI: 10.1093/aob/mcac161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Drought reduces plant productivity, especially in the susceptible species Brassica napus. Water stress, mimicked by applications of 10 % polyethylene glycol (PEG), elevates nitric oxide (NO) in root cells after a few hours, contributing to degradation of the root apical meristems (RAMs), the function of which relies on auxin and brassinosteroids (BRs). Phytoglobins (Pgbs) are effective NO scavengers induced by this stress. This study examines the effects of BnPgb1 dysregulation in dehydrating B. napus roots, and the spatiotemporal relationship between Pgb1 and activities of auxin and BRs in the regulation of the RAM. METHODS Brassica napus lines over-expressing [BnPgb1(S)] or down-regulating [BnPgb1(RNAi)] BnPgb1 were exposed to PEG-induced water stress. The localization of BnPgb1, NO, auxin and PIN1 were analysed during the first 48 h, while the expression level of biosynthetic auxin and BR genes was measured during the first 24 h. Pharmacological treatments were conducted to assess the requirement of auxin and BR in dehydrating roots. KEY RESULTS During PEG stress, BnPgb1 protein accumulated preferentially in the peripheral domains of the root elongation zone, exposing the meristem to NO, which inhibits polar auxin transport (PAT), probably by interfering with PIN1 localization and the synthesis of auxin. Diminished auxin at the root tip depressed the synthesis of BR and caused the degradation of the RAMs. The strength of BnPgb1 signal in the elongation zone was increased in BnPgb1(S) roots, where NO was confined to the most apical cells. Consequently, PAT and auxin synthesis were retained, and the definition of RAMs was maintained. Auxin preservation of the RAM required BRs, although BRs alone was not sufficient to fully rescue drought-damaged RAMs in auxin-depleted environments. CONCLUSIONS The tissue-specific localization of BnPgb1 and NO determine B. napus root responses to water stress. A model is proposed in which auxin and BRs act as downstream components of BnPgb1 signalling in the preservation of RAMs in dehydrating roots.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Shimaa Ibrahim
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Kenny So
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ralph Kowatsch
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
20
|
Nolan TM, Vukašinović N, Hsu CW, Zhang J, Vanhoutte I, Shahan R, Taylor IW, Greenstreet L, Heitz M, Afanassiev A, Wang P, Szekely P, Brosnan A, Yin Y, Schiebinger G, Ohler U, Russinova E, Benfey PN. Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root. Science 2023; 379:eadf4721. [PMID: 36996230 PMCID: PMC10119888 DOI: 10.1126/science.adf4721] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Brassinosteroids are plant steroid hormones that regulate diverse processes, such as cell division and cell elongation, through gene regulatory networks that vary in space and time. By using time series single-cell RNA sequencing to profile brassinosteroid-responsive gene expression specific to different cell types and developmental stages of the Arabidopsis root, we identified the elongating cortex as a site where brassinosteroids trigger a shift from proliferation to elongation associated with increased expression of cell wall-related genes. Our analysis revealed HOMEOBOX FROM ARABIDOPSIS THALIANA 7 (HAT7) and GT-2-LIKE 1 (GTL1) as brassinosteroid-responsive transcription factors that regulate cortex cell elongation. These results establish the cortex as a site of brassinosteroid-mediated growth and unveil a brassinosteroid signaling network regulating the transition from proliferation to elongation, which illuminates aspects of spatiotemporal hormone responses.
Collapse
Affiliation(s)
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Department of Biology, Humboldt Universitat zu Berlin, Berlin, Germany
- The Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | | | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Rachel Shahan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | | | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Matthieu Heitz
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Ping Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Pablo Szekely
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Aiden Brosnan
- Department of Biology, Duke University, Durham, NC, USA
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Uwe Ohler
- Department of Biology, Humboldt Universitat zu Berlin, Berlin, Germany
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
- Department of Computer Science, Humboldt Universitat zu Berlin, Berlin, Germany
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| |
Collapse
|
21
|
Altamura MM, Piacentini D, Della Rovere F, Fattorini L, Falasca G, Betti C. New Paradigms in Brassinosteroids, Strigolactones, Sphingolipids, and Nitric Oxide Interaction in the Control of Lateral and Adventitious Root Formation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020413. [PMID: 36679126 PMCID: PMC9864901 DOI: 10.3390/plants12020413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 05/05/2023]
Abstract
The root system is formed by the primary root (PR), which forms lateral roots (LRs) and, in some cases, adventitious roots (ARs), which in turn may produce their own LRs. The formation of ARs is also essential for vegetative propagation in planta and in vitro and for breeding programs. Root formation and branching is coordinated by a complex developmental network, which maximizes the plant's ability to cope with abiotic stress. Rooting is also a response caused in a cutting by wounding and disconnection from the donor plant. Brassinosteroids (BRs) are steroid molecules perceived at the cell surface. They act as plant-growth-regulators (PGRs) and modulate plant development to provide stress tolerance. BRs and auxins control the formation of LRs and ARs. The auxin/BR interaction involves other PGRs and compounds, such as nitric oxide (NO), strigolactones (SLs), and sphingolipids (SPLs). The roles of these interactions in root formation and plasticity are still to be discovered. SLs are carotenoid derived PGRs. SLs enhance/reduce LR/AR formation depending on species and culture conditions. These PGRs possibly crosstalk with BRs. SPLs form domains with sterols within cellular membranes. Both SLs and SPLs participate in plant development and stress responses. SPLs are determinant for auxin cell-trafficking, which is essential for the formation of LRs/ARs in planta and in in vitro systems. Although little is known about the transport, trafficking, and signaling of SPLs, they seem to interact with BRs and SLs in regulating root-system growth. Here, we review the literature on BRs as modulators of LR and AR formation, as well as their crosstalk with SLs and SPLs through NO signaling. Knowledge on the control of rooting by these non-classical PGRs can help in improving crop productivity and enhancing AR-response from cuttings.
Collapse
Affiliation(s)
- Maria Maddalena Altamura
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Camilla Betti
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
22
|
Kalbfuß N, Strohmayr A, Kegel M, Le L, Grosse-Holz F, Brunschweiger B, Stöckl K, Wiese C, Franke C, Schiestl C, Prem S, Sha S, Franz-Oberdorf K, Hafermann J, Thiemé M, Facher E, Palubicki W, Bolle C, Assaad FF. A role for brassinosteroid signalling in decision-making processes in the Arabidopsis seedling. PLoS Genet 2022; 18:e1010541. [PMID: 36508461 PMCID: PMC9779667 DOI: 10.1371/journal.pgen.1010541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/22/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plants often adapt to adverse conditions via differential growth, whereby limited resources are discriminately allocated to optimize the growth of one organ at the expense of another. Little is known about the decision-making processes that underly differential growth. In this study, we developed a screen to identify decision making mutants by deploying two tools that have been used in decision theory: a well-defined yet limited budget, as well as conflict-of-interest scenarios. A forward genetic screen that combined light and water withdrawal was carried out. This identified BRASSINOSTEROID INSENSITIVE 2 (BIN2) alleles as decision mutants with "confused" phenotypes. An assessment of organ and cell length suggested that hypocotyl elongation occurred predominantly via cellular elongation. In contrast, root growth appeared to be regulated by a combination of cell division and cell elongation or exit from the meristem. Gain- or loss- of function bin2 mutants were most severely impaired in their ability to adjust cell geometry in the hypocotyl or cell elongation as a function of distance from the quiescent centre in the root tips. This study describes a novel paradigm for root growth under limiting conditions, which depends not only on hypocotyl-versus-root trade-offs in the allocation of limited resources, but also on an ability to deploy different strategies for root growth in response to multiple stress conditions.
Collapse
Affiliation(s)
- Nils Kalbfuß
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Alexander Strohmayr
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Marcel Kegel
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Lien Le
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | | | | | - Katharina Stöckl
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Christian Wiese
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Carina Franke
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Caroline Schiestl
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Sophia Prem
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Shuyao Sha
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | | | - Juliane Hafermann
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Marc Thiemé
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Eva Facher
- Systematic Botany and Mycology, Faculty of Biology, Ludwig-Maximilians-University, Munich, Germany
| | - Wojciech Palubicki
- Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Polen
| | - Cordelia Bolle
- Plant Molecular Biology (Botany), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Farhah F. Assaad
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
23
|
Xin P, Schier J, Šefrnová Y, Kulich I, Dubrovsky JG, Vielle-Calzada JP, Soukup A. The Arabidopsis TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE (TTL) family members are involved in root system formation via their interaction with cytoskeleton and cell wall remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:946-965. [PMID: 36270031 DOI: 10.1111/tpj.15980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 05/21/2023]
Abstract
Lateral roots (LR) are essential components of the plant edaphic interface; contributing to water and nutrient uptake, biotic and abiotic interactions, stress survival, and plant anchorage. We have identified the TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 3 (TTL3) gene as being related to LR emergence and later development. Loss of function of TTL3 leads to a reduced number of emerged LR due to delayed development of lateral root primordia (LRP). This trait is further enhanced in the triple mutant ttl1ttl3ttl4. TTL3 interacts with microtubules and endomembranes, and is known to participate in the brassinosteroid (BR) signaling pathway. Both ttl3 and ttl1ttl3ttl4 mutants are less sensitive to BR treatment in terms of LR formation and primary root growth. The ability of TTL3 to modulate biophysical properties of the cell wall was established under restrictive conditions of hyperosmotic stress and loss of root growth recovery, which was enhanced in ttl1ttl3ttl4. Timing and spatial distribution of TTL3 expression is consistent with its role in development of LRP before their emergence and subsequent growth of LR. TTL3 emerged as a component of the root system morphogenesis regulatory network.
Collapse
Affiliation(s)
- Pengfei Xin
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Jakub Schier
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Yvetta Šefrnová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca, 62250, Morelos, Mexico
| | - Jean-Philippe Vielle-Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, Mexico
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
24
|
Großeholz R, Wanke F, Rohr L, Glöckner N, Rausch L, Scholl S, Scacchi E, Spazierer AJ, Shabala L, Shabala S, Schumacher K, Kummer U, Harter K. Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root. eLife 2022; 11:e73031. [PMID: 36069528 PMCID: PMC9525061 DOI: 10.7554/elife.73031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/03/2022] [Indexed: 11/13/2022] Open
Abstract
Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H+-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.
Collapse
Affiliation(s)
- Ruth Großeholz
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- BioQuant, Heidelberg UniversityHeidelbergGermany
| | - Friederike Wanke
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Leander Rohr
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Nina Glöckner
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Luiselotte Rausch
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Stefan Scholl
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Emanuele Scacchi
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
- Department of Ecological and biological Science, Tuscia UniversityViterboItaly
| | | | - Lana Shabala
- Tasmanian Institute for Agriculture, University of TasmaniaHobartAustralia
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of TasmaniaHobartAustralia
- International Research Centre for Environmental Membrane Biology, Foshan UniversityFoshanChina
| | - Karin Schumacher
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Ursula Kummer
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- BioQuant, Heidelberg UniversityHeidelbergGermany
| | - Klaus Harter
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| |
Collapse
|
25
|
Le Gloanec C, Collet L, Silveira SR, Wang B, Routier-Kierzkowska AL, Kierzkowski D. Cell type-specific dynamics underlie cellular growth variability in plants. Development 2022; 149:276118. [DOI: 10.1242/dev.200783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT
Coordination of growth, patterning and differentiation is required for shaping organs in multicellular organisms. In plants, cell growth is controlled by positional information, yet the behavior of individual cells is often highly heterogeneous. The origin of this variability is still unclear. Using time-lapse imaging, we determined the source and relevance of cellular growth variability in developing organs of Arabidopsis thaliana. We show that growth is more heterogeneous in the leaf blade than in the midrib and petiole, correlating with higher local differences in growth rates between neighboring cells in the blade. This local growth variability coincides with developing stomata. Stomatal lineages follow a specific, time-dependent growth program that is different from that of their surroundings. Quantification of cellular dynamics in the leaves of a mutant lacking stomata, as well as analysis of floral organs, supports the idea that growth variability is mainly driven by stomata differentiation. Thus, the cell-autonomous behavior of specialized cells is the main source of local growth variability in otherwise homogeneously growing tissue. Those growth differences are buffered by the immediate neighbors of stomata and trichomes to achieve robust organ shapes.
Collapse
Affiliation(s)
- Constance Le Gloanec
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| | - Loann Collet
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| | - Sylvia R. Silveira
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| | - Binghan Wang
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| | - Anne-Lise Routier-Kierzkowska
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| | - Daniel Kierzkowski
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| |
Collapse
|
26
|
Vijayan A, Strauss S, Tofanelli R, Mody TA, Lee K, Tsiantis M, Smith RS, Schneitz K. The annotation and analysis of complex 3D plant organs using 3DCoordX. PLANT PHYSIOLOGY 2022; 189:1278-1295. [PMID: 35348744 PMCID: PMC9237718 DOI: 10.1093/plphys/kiac145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
A fundamental question in biology concerns how molecular and cellular processes become integrated during morphogenesis. In plants, characterization of 3D digital representations of organs at single-cell resolution represents a promising approach to addressing this problem. A major challenge is to provide organ-centric spatial context to cells of an organ. We developed several general rules for the annotation of cell position and embodied them in 3DCoordX, a user-interactive computer toolbox implemented in the open-source software MorphoGraphX. 3DCoordX enables rapid spatial annotation of cells even in highly curved biological shapes. Using 3DCoordX, we analyzed cellular growth patterns in organs of several species. For example, the data indicated the presence of a basal cell proliferation zone in the ovule primordium of Arabidopsis (Arabidopsis thaliana). Proof-of-concept analyses suggested a preferential increase in cell length associated with neck elongation in the archegonium of Marchantia (Marchantia polymorpha) and variations in cell volume linked to central morphogenetic features of a trap of the carnivorous plant Utricularia (Utricularia gibba). Our work demonstrates the broad applicability of the developed strategies as they provide organ-centric spatial context to cellular features in plant organs of diverse shape complexity.
Collapse
Affiliation(s)
| | | | - Rachele Tofanelli
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tejasvinee Atul Mody
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Miltos Tsiantis
- Department of Comparative Developmental and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Richard S Smith
- Department of Comparative Developmental and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- The John Innes Centre, Norwich, UK
| | | |
Collapse
|
27
|
Wang Y, Zhou Y, Liang J. Characterization of Organellar-Specific ABA Responses during Environmental Stresses in Tobacco Cells and Arabidopsis Plants. Cells 2022; 11:2039. [PMID: 35805123 PMCID: PMC9265483 DOI: 10.3390/cells11132039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Abscisic acid (ABA) is a critical phytohormone involved in multifaceted processes in plant metabolism and growth under both stressed and nonstressed conditions. Its accumulation in various tissues and cells has long been established as a biomarker for plant stress responses. To date, a comprehensive understanding of ABA distribution and dynamics at subcellular resolution in response to environmental cues is still lacking. Here, we modified the previously developed ABA sensor ABAleon2.1_Tao3 (Tao3) and targeted it to different organelles including the endoplasmic reticulum (ER), chloroplast/plastid, and nucleus through the addition of corresponding signal peptides. Together with the cytosolic Tao3, we show distinct ABA distribution patterns in different tobacco cells with the chloroplast showing a lower level of ABA in both cell types. In a tobacco mesophyll cell, organellar ABA displayed specific alterations depending on osmotic stimulus, with ABA levels being generally enhanced under a lower and higher concentration of salt and mannitol treatment, respectively. In Arabidopsis roots, cells from both the meristem and elongation zone accumulated ABA considerably in the cytoplasm upon mannitol treatment, while the plastid and nuclear ABA was generally reduced dependent upon specific cell types. In Arabidopsis leaf tissue, subcellular ABA seemed to be less responsive when stressed, with notable increases of ER ABA in epidermal cells and a reduction of nuclear ABA in guard cells. Together, our results present a detailed characterization of stimulus-dependent cell type-specific organellar ABA responses in tobacco and Arabidopsis plants, supporting a highly coordinated regulatory network for mediating subcellular ABA homeostasis during plant adaptation processes.
Collapse
Affiliation(s)
- Yuzhu Wang
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Strauss S, Runions A, Lane B, Eschweiler D, Bajpai N, Trozzi N, Routier-Kierzkowska AL, Yoshida S, Rodrigues da Silveira S, Vijayan A, Tofanelli R, Majda M, Echevin E, Le Gloanec C, Bertrand-Rakusova H, Adibi M, Schneitz K, Bassel G, Kierzkowski D, Stegmaier J, Tsiantis M, Smith RS. Using positional information to provide context for biological image analysis with MorphoGraphX 2.0. eLife 2022; 11:72601. [PMID: 35510843 PMCID: PMC9159754 DOI: 10.7554/elife.72601] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially coordinated multicellular responses necessary for the organization of emergent forms. Understanding how positional cues guide morphogenesis requires the quantification of gene expression and growth dynamics in the context of their underlying coordinate systems. Here, we present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 2015) that implement a generalized framework to annotate developing organs with local coordinate systems. These coordinate systems introduce an organ-centric spatial context to microscopy data, allowing gene expression and growth to be quantified and compared in the context of the positional information thought to control them.
Collapse
Affiliation(s)
- Sören Strauss
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Adam Runions
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Dennis Eschweiler
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Namrata Bajpai
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | - Saiko Yoshida
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Athul Vijayan
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Rachele Tofanelli
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Emillie Echevin
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | | | | | - Milad Adibi
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kay Schneitz
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - George Bassel
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Daniel Kierzkowski
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | |
Collapse
|
29
|
Liu S, Strauss S, Adibi M, Mosca G, Yoshida S, Dello Ioio R, Runions A, Andersen TG, Grossmann G, Huijser P, Smith RS, Tsiantis M. Cytokinin promotes growth cessation in the Arabidopsis root. Curr Biol 2022; 32:1974-1985.e3. [PMID: 35354067 DOI: 10.1016/j.cub.2022.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
The Arabidopsis root offers good opportunities to investigate how regulated cellular growth shapes different tissues and organs, a key question in developmental biology. Along the root's longitudinal axis, cells sequentially occupy different developmental states. Proliferative meristematic cells give rise to differentiating cells, which rapidly elongate in the elongation zone, then mature and stop growing in the differentiation zone. The phytohormone cytokinin contributes to this zonation by positioning the boundary between the meristem and the elongation zone, called the transition zone. However, the cellular growth profile underlying root zonation is not well understood, and the cellular mechanisms that mediate growth cessation remain unclear. By using time-lapse imaging, genetics, and computational analysis, we analyze the effect of cytokinin on root zonation and cellular growth. We found that cytokinin promotes growth cessation in the distal (shootward) elongation zone in conjunction with accelerating the transition from elongation to differentiation. We estimated cell-wall stiffness by using osmotic treatment experiments and found that cytokinin-mediated growth cessation is associated with cell-wall stiffening and requires the action of an auxin influx carrier, AUX1. Our measurement of growth and cell-wall mechanical properties at a cellular resolution reveal mechanisms via which cytokinin influences cell behavior to shape tissue patterns.
Collapse
Affiliation(s)
- Shanda Liu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Milad Adibi
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Gabriella Mosca
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany; Physics Department, Technical University Munich, James-Franck-Str. 1/I, 85748 Garching b. Munich, Germany
| | - Saiko Yoshida
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza, via dei Sardi, 70, 00185 Rome, Italy
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Tonni Grube Andersen
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Guido Grossmann
- Institute for Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany; Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
30
|
Brassinosteroids Mitigate Cadmium Effects in Arabidopsis Root System without Any Cooperation with Nitric Oxide. Int J Mol Sci 2022; 23:ijms23020825. [PMID: 35055009 PMCID: PMC8776143 DOI: 10.3390/ijms23020825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
The heavy metal cadmium (Cd) affects root system development and quiescent center (QC)-definition in Arabidopsis root-apices. The brassinosteroids-(BRs)-mediated tolerance to heavy metals has been reported to occur by a modulation of nitric oxide (NO) and root auxin-localization. However, how BRs counteract Cd-action in different root types is unknown. This research aimed to find correlations between BRs and NO in response to Cd in Arabidopsis’s root system, monitoring their effects on QC-definition and auxin localization in root-apices. To this aim, root system developmental changes induced by low levels of 24-epibrassinolide (eBL) or by the BR-biosynthesis inhibitor brassinazole (Brz), combined or not with CdSO4, and/or with the NO-donor nitroprusside (SNP), were investigated using morpho-anatomical and NO-epifluorescence analyses, and monitoring auxin-localization by the DR5::GUS system. Results show that eBL, alone or combined with Cd, enhances lateral (LR) and adventitious (AR) root formation and counteracts QC-disruption and auxin-delocalization caused by Cd in primary root/LR/AR apices. Exogenous NO enhances LR and AR formation in Cd-presence, without synergism with eBL. The NO-signal is positively affected by eBL, but not in Cd-presence, and BR-biosynthesis inhibition does not change the low NO-signal caused by Cd. Collectively, results show that BRs ameliorate Cd-effects on all root types acting independently from NO.
Collapse
|